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Resumen en castellano

Contexto: Debido a los próximos grandes surveys espectroscópicos de estrellas masivas,
se necesitan de nuevas técnicas capaces de manejar estas grandes cantidades de datos. A
esto debe sumarse los avances en el campo de la evolución estelar, los cuales establecen
que parámetros estelares tales como la masa o el radio no pueden ser calculados conociendo
únicamente los valores de temperatura efectiva y luminosidad, siendo necesario un análisis
multidimensional. Una de las herramientas usadas para determinar los parámetros estelares
es BONNSAI. Esta herramienta consiste en un análisis estadístico bayesiano que hace coin-
cidir los datos empíricos con los modelos de evolución estelar de Bonn. Como alternativa a
esta herramienta, este trabajo realiza un estudio exploratorio en el uso de redes neuronales
para la inferencia de masas, radios y luminosidades. Esta metodología se presenta como una
forma nueva de hallar estos parámetros estelares a partir de modelos evolutivos con el fin de
complementar las medidas obtenidas a través de los análisis espectroscópicos cuantitativos.

Objetivos : Este trabajo consiste en estudiar la viabilidad de las redes neuronales en
la inferencia de masas, radios y luminosidades de una muestra empírica de estrellas tipo O
de la base de datos de IACOB. Se buscan además cuales son las condiciones óptimas del
entrenamiento para un análisis futuro más profundo.

Metodología : Realizamos inferencias a varias muestras de estrellas. La red neuronal
se entrena para todas las inferencias con estrellas sintéticas generadas con el código de
SYCLIST. Los parámetros de entrada se distribuyen en tres grupos: el L-training que in-
cluye la temperatura efectiva, luminosidad espectroscópica y velocidad de rotación proyec-
tada, el L-training que incluye la temperatura efectiva, luminosidad y velocidad de rotación
proyectada y el L&L-training que incluye la temperatura efectiva, luminosidad, luminosidad
espectroscópica y velocidad de rotación proyectada.

En primer lugar se definen dos métodos de entrenamiento de la red neuronal que se
denominan entrenamiento global y entrenamiento local. Se estudia cual de dos métodos da
menores errores intrínsecos en la inferencia. El entrenamiento global se basa en muestrear
y entrenar toda la región de interés del diagrama espectroscópico de Hertzsprung-Russell
(definida por la muestra empírica de estrellas tipo O), mientras que el entrenamiento local
busca un mejor resultado disminuyendo la región de entrenamiento para no sobrecargar a
la red neuronal. Para el entrenamiento global se representa la distribución del error relativo
de cada parámetro objetivo y se obtiene su valor medio y desviación estándar. Además,
también se estudia si la inferencia presenta tendencias en las zonas de alta luminosidad y
baja luminosidad. Para el entrenamiento local se toman 8 estrellas de prueba y se les realiza
la inferencia con muestra de entrenamiento formada por todas las estrellas encerradas en
una caja centrada en los valores de temperatura efectiva y luminosidad espectroscópica de
la estrella problema.

El siguiente paso consiste en estudiar el efecto de los errores observacionales. Para ello se
añaden errores aleatorios a los parámetros de entrada asumiendo una distribución gaussiana
con desviación estándar igual al promedio de los errores de los parámetros de entrada de



la muestra empírica. Para esta inferencia se vuelven a obtener las distribuciones de errores
relativos y con los resultados del análisis de errores intrínsecos se obtiene la distribución
de los errores observacionales añadidos. Finalmente se realiza la inferencia en una muestra
empírica de estrellas masivas de tipo O, que posteriormente se compara con los resultados
obtenidos espectroscópicamente por Holgado et al. (2020).

Resultados y conclusiones : El entrenamiento local presenta errores relativos muy
dependientes de la posición de la estrella en el diagrama espectroscópico de Hertzsprung-
Russell. El entrenamiento global resulta en incertidumbres más bajas y consistentes que las
obtenidas por el entrenamiento local. Por ello, concluimos en que el entrenamiento global
es mejor que el entrenamiento local. Como las incertidumbres de los errores intrínsecos del
entrenamiento L&L-training son las menores, se obtiene que el mejor grupo de entrenamiento
L&L-training es el mejor entrenamiento del primer análisis. Dividiendo la muestra de prueba
en dos regiones (una de alta luminosidad y otra de baja luminosidad) se obtiene que la
inferencia tiende a infraestimar el valor de las variables objetivo en la región de luminosidad
alta frente a los valores de la región de luminosidad baja para el entrenamiento global.
Además, las incertidumbres de la región de baja luminosidad son menores que aquellas de
la región de alta luminosidad.

El análisis de los errores observacionales añadidos muestran que los mejores grupos de
variables de entrenamiento son el L-training y el L-training por tener las menores incer-
tidumbres totales (intrínseca y observacional). Estas incertidumbres se encuentran en val-
ores inferiores al 13% en todas las variables objetivo. Este análisis muestra también que las
distribuciones de errores relativos de los errores observacionales añadidos son casi idénticas
a las distribuciones que consideran errores observacionales e intrínsecos. Por ello, los errores
dominantes en la inferencia son los observacionales

Al realizar la inferencia con la muestra empírica de estrellas O, los resultados obtenidos
discrepan con los resultados del análisis espectroscópico cuantitativo. Este resultado está
relacionado con la cuestión abierta de la discrepancia de masas, que establece que las masas
obtenidas a partir de los modelos de evolución estelar y aquellas obtenidas a partir del análisis
espectroscópico cuantitativo no son iguales. Se piensa que este problema esta causado por
una determinación errónea de las gravedades en el análisis espectroscópico cuantitativo o por
deficiencias de los modelos de evolución estelar. Como mejoras a realizara para un futuro
análisis se comenta que es necesario poseer más valores de velocidad de rotación respecto a
la velocidad de rotación crítica para cubrir mejor este parámetro. A la hora de obtener los
cúmulos, una IMF constante ayudaría a la homogenización del espacio de parámetros y es
necesario considerar un rango de metalicidades en lugar de un solo valor (metalicidad solar).
Se concluye finalmente que el método de inferencia de parámetros estelares empleando redes
neuronales da resultados aceptables cuando se evalúan estrellas sintéticas. Sin embargo, las
imperfecciones en los modelos de evolución estelar y la discrepancia de masas provocan que
al inferir los parámetros con estrellas reales no se obtengan resultados similares a los del
análisis espectroscópico.
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Chapter 1

Introduction

This work aims to serve as a pilot study to investigate the viability of the use of neural

networks to infer certain stellar parameters in high-mass (O-type) main sequence stars. In

particular, the ultimate objective is to be able to provide a full characterization of the

physical properties of these stars. This is done by complementing the empirical information

which can be extracted from the quantitative analysis of their optical spectra (such as the

effective temperature and the surface gravity) with other important stellar parameters which

determination requires the use of the outcome of evolutionary model computations (e.g. the

stellar mass and radius).

High-mass stars (such as, e.g., those with O spectral types) are those with mass above

8 M� and they can produce elements heavier than carbon in their core. The CNO cycle is

the dominant reaction in their their cores while they are on the main sequence, meaning

that their life expectancy is much smaller compared to those stars of less mass, which burn

hydrogen into helium via the pp-chain. high-mass stars, at the end of their lives, produce a

neutron star or a black hole as a remnant of the supernova that occurs in the final collapse

of their core, when the radiation pressure generated by the nuclear reactions is surpassed

by the gravitational force.

Generally speaking, the physical parameters of any star (including, for example, the

effective temperature, radius, luminosity, or surface gravity) mainly depend on their initial

mass and age. In fact, the initial mass is the most critical parameter determining the
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evolution of stars, since it determines its inner structure, the nuclear reactions occurring

in their cores along their lifetimes, and and even the type of stellar remnant once the star

dies. Hence, in order to properly characterize a given star, it is needed to obtain empirical

information about all the parameters mentioned above, and, in the case of high-mass stars,

also about other important quantities such as their spin rates and the amount of mass that

the star is loosing due to stellar winds.

The traditional method of obtaining the mass of a star consist in comparing the posi-

tion of the star in the Hertzsprung-Russell Diagram (HRD) with the nearest evolutionary

stellar track, or by interpolating the closest tracks. However, recent studies showed that

the evolution of high-mass star is critically affected by its initial rotational velocity (see

Figure 1.1 and explanation below), meaning that having access to the effective temperature

and luminosity of the star may not necessarily provide enough information to obtain the

present mass of a star by locating it in the HRD (Maeder & Meynet, 2000). As a conse-

quence, a multidimensional analysis of the stellar parameters is needed to characterize the

stars (see, e.g., Schneider et al., 2014). This implies that more complex techniques need to

be developed, being a machine learning technique, neural networks, the chosen one for this

work.

Depending on the specific type of star (mainly depending on its effective temperature

or spectral type) different techniques are required to derive information about its mass. In

the case of high-mass OB-type stars, parameters such as the projected rotational velocity

(V sini), the effective temperature (Teff), or the surface gravity (log(g)) are commonly ob-

tained by means of quantitative spectroscopy (see notes in Simón-Díaz, 2020). Having access

to other parameters such as the luminosity, radius and mass requires extra information: the

apparent magnitude, interstellar extinction and the distance to the star. Alternatively, if

there is no reliable information about distance, these three stellar parameters can be inferred

by using evolutionary tracks provided by a stellar evolution code.

While this approach is relatively straightforward in the case of intermediate and low
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mass stars, it becomes more delicate as we move to the high-mass star domain. This is due

to the combination of two important ingredients affecting the evolution of high-mass stars.

On the one side, these stars can reach much larger rotational speeds than in the case of

lower mass stars (e.g. the distribution of projected rotational velocities in main sequence

stars with masses above 8 M� have been found to reach values up to 600 km/s Ramírez-

Agudelo et al., 2013). On the other side, in those cases with significant initial equatorial

velocities, the rotation of the star produces non-negligible effects on the evolutionary tracks.

This effect can be seen in Figure 1.1 the stellar evolutionary tracks differ depending on the

considered initial equatorial velocity1. These differences are more important at higher mass.

As a consequence, the so-called evolutionary mass2 cannot be univocally determined by

considering the effective temperature (Teff) and the luminosity of the star (or, alternatively,

Teff and the spectroscopic luminosity log(L/L�)). The considered initial equatorial velocity

in the evolutionary tracks plays an important role whenever the star is rotating above ∼20%

of its critical velocity. The multivaluation in mass can be seen in Figure 1.1 by looking at

the dotted track of 40 M� and the solid track of 85 M�, which coincide at Teff =32 500 K

and log(L/L�)= 4.2 dex, giving a difference in the estimated mass of 45 M�.

1.1 High-mass stars observational current state

The knowledge on high-mass stars has its applications in other fields beyond the stellar

physics. As these stars are a source of ionizing photons, the development in the high-

mass stars field serves as an improvement in the study of HII regions where they are formed

(Tenorio-Tagle et al., 2006). Also, as these stars have stellar winds, increasing the knowledge

of the surface enrichment and their wind properties (Trundle & Lennon, 2005) improve the
1The representation used in this figure is similar to the Hertzsprung-Russell diagram (HRD) which is

the so-called spectroscopic Hertzsprung-Russell diagram (sHRD), being the difference between both repre-
sentations that the sHRD uses the quantity L (defined as L = T 4

eff/g). This quantity allows to construct a
diagram with a similar structure as the HRD with the advantage that a measure of the distance of the star
is not needed, since only Teff and log(g) (two quantities that are obtained from the analysis of the spectrum)
are considered.

2The value of the mass derived using the evolutionary tracks.
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Figure 1.1: Spectroscopic Hertzsprung-Rusell diagram (sHRD) of the evolutionary tracks
given by the Geneva models for a solar metallicity. Solid, dashed and dotted lines represent
the tracks for a star with the indicated initial mass with a ratio of equatorial velocity over
the critical velocity (veq /vcrit) of 0, 0.2 and 0.4, respectively.

understanding of the chemodynamical evolution of galaxies.

As new multi-object spectrographs are commissioned, it is expected to have a consider-

able increase in the number of known high-mass stars in the foresight future. This is the

case of WEAVE (William Herschel Telescope Enhanced Area Velocity Explorer) which is a

multi-object spectrograph that is under development and is expected to have its first light

by the begining of 2022. This instrument will allow to gather hundreds spectra of high-mass

stars in a given pointing thanks to the feature of being a multi-object spectrograph allowing

to measure multiple stars that are in a given field and obtain the spectra of all these stars

by moving their light to the spectrograph though different fibers. These instruments are

very important for the development of the long term surveys of Galactic O-stars that will

be carried out in the next years. But, before then, we already have accesible data from

spectroscopic surveys which have provided high-quiality spectra for thousand of high-mass
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OB stars. One of these surveys is IACOB (P.I., Simón-Díaz, Spain), whose objective is to

build a large database of high-resolution multi-epoch spectra of Galactic OB stars to inves-

tigate the physical properties and evolution of high-mass stars. Another survey studying

high-mass stars is VLT-Flames Tarantula Survey (VFTS, P.I., C. Evans, UK). It is focused

in obtaining multi-epoch optical spectroscopy of OB stars in the 30 Doradus region, in the

Large Magellanic Cloud. Its objective is to detect binary high-mass stars by measuring

variations in their radial velocity between different epochs.

This work has been developed in the framework of IACOB. This project has currently

compiled high quality multi-epoch spectroscopic observations for a sample of more than

1000 Galactic high-mass O and B-type stars, part of which are represented in Figure 1.2.

While the quantitative spectroscopic analysis of the stars surveyed by the IACOB project

is allowing us to obtain estimates for their projected rotational velocities, effective temper-

atures and surface gravities, the question is now: how other parameters (such as the mass),

for which we need to make use of the outcome of stellar evolutionary model computations,

are going to be obtained (specially taking into account the caveats mentioned above). As an

answer to this, this work presents an exploratory study on this by using machine learning

techniques, specifically Artificial Neural Networks (ANN).

At the moment there are two main methods for measuring the mass and radius of a

star. These methods use the parameters derived through quantitative spectroscopic analysis

together with distance and photometric information (see e.g. Simón-Díaz, 2020) while others

use the stellar evolution models, comparing the observed parameters with the evolutionary

tracks.

Ideally speaking, the masses determined by means of both methodologies should agree.

However, a long-standing issue in the field of high-mass stars is the so-called mass discrep-

ancy problem (Herrero et al.,1992). This mass has proven to be model dependent and also

depends on the mass range. This discrepancy is thought to be caused either by the large

uncertainties obtained in the luminosity and gravity or by a flaw in the implementation of
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Figure 1.2: IACOB sample of OB stars in the spectroscopic Hertzsprung-Rusell diagram.
The color scale shows the density of stars in the sample. Courtesy of Abel de Burgos
(IAC/ULL).

the physical processes when computing the evolutionary models (Markova et al. 2018).

1.2 Objectives and structure

Stellar parameter inference using machine learning had not been done previously; however,

a big data analysis tool focused on inferring stellar parameters was developed. This tool

is BONNSAI (Schneider et al. 2014), which is a bayesian statistical method that matches

observational data with a given stellar evolution model (Bonn Models in this case). The

aims of this inference tool are to obtain a probability distribution of the stellar parameters

able to predict the values of stellar parameters that had not been yet measured, and to test

the stellar evolution models.

This work presents a starting point to create an alternative to the BONNSAI tool, since
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one of its main drawbacks is that it requires high computation times. Supervised machine

learning includes many tools that can be used to infer the stellar parameters (e.g different

types of Neural Networks, Random Forest algorithms). The chosen method in this work

is a Multilayer Perceptron which is one of the simplest forms of Artificial Neural Networks

(ANN). This is the type of Neural Network available with the Orange Data Mining Software

(Demšar et al. 2013), which is the software used to train the Neural Network. These Neural

Networks are characterized for having at least three layers of neurons (input, output and

hidden layers) whose training is based on the backpropagation technique. The advantage

of using an ANN is that it only needs to be calculated once per training sample, meaning

that once obtained an optimal sample it is only need to be applied to a problem set of stars,

resulting in a method faster than the bayesian method.

The main objective of this work is to explore the use of ANNs in the inference of the

radius (R), mass (M) and luminosity (log(L/L�)) of a sample of Galactic O-type stars, also

identifying the optimal conditions for a future deeper analysis. This inference is made to

complement the spectroscopically obtained measurements of gravity and effective temper-

ature. The training sample is made of synthetic stars obtained from the stellar evolution

models. This is also a preparatory work for the use of real stars in the training, once their

number is high enough to cover the whole parameter space.

This work is structured in 5 chapters. Chapter 2 consist in a description of the tools and

samples (empirical and synthetic) that are used ; an optimization of the synthetic sample for

the training of the ANN; the training variables that are considered in the different training

variable sets considered and the definition of two initial training methods. Chapter 3 shows

the analysis made with the sample of synthetic stars and the study of how observational

errors would affect in these synthetic stars. In Chapter 4, this study is done with a sample

of Galactic O-type stars of which there is available data on Teff , log(g) and log(L/L�), and

comparing it to the results obtained by a previously done quantitative spectroscopic analysis

in Holgado et al. (2020). Chapter 5 presents the main conclusions of this work.
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Chapter 2

Methodology

In this chapter we describe the tools we have used to create and analyze the various working

samples used in training and testing the ANN. We also describe the various training methods

and inference tests that we have explored in this work.

2.1 Tools

The tools used in this work are two: SYCLIST and the Orange Data Mining Software.

SYCLIST (Georgy et al., 2014) is a cluster generator code which was developed by the

University of Geneva, based in the Geneva evolutionary models (Ekström et al., 2012).

The aim of the development of these evolutionary models is to provide more precise results

by considering the stellar parameters variations given recent observations and the insight

given by techniques such as asteroseismology, interferometry or spectropolarimetry about

the stellar interior structure, rotation and stellar winds. These models give as an output the

following parameters: effective temperature (Teff), luminosity (log(L)), initial mass (Mini),

actual mass (M), surface abundances of helium, carbon, nitrogen, oxygen, equatorial veloc-

ity (veq) and velocity over the critical velocity1 (veq/vc) . The online version of SYCLIST2

can give three outputs: interpolated evolutionary tracks, isochrones and synthetic coeval

stellar populations (Georgy et al., 2014). The output chosen is the synthetic coeval stellar
1Defined as the velocity at which the centrifugal force surpasses the gravitational force, causing that the

star can not be gravitationally bounded.
2https://www.unige.ch/sciences/astro/evolution/en/database/syclist/
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populations (where the number of synthetic stars requested for each cluster are 105) because

it presents a more dense grid of values than evolutionary tracks and isochrones. This allows

to have the HRD space more sampled than using the other two outputs.

The Orange Data Mining Software is a Python based platform aimed to help with the

management and analysis of large datasets. It includes tools of supervised machine learning

(e.g. random forest algorithm or artificial neural networks) as well as unsupervised machine

learning tools (e.g. principal component analysis or manifold learning). These tools are

displayed in a graphic environment, making its usage intuitive for novel users. However

the number of hyperparameters are limited compared to other Machine Learning tools (e.g.

SciKit-learn) but provides a good interface for entering in the Machine Learning discipline

and for developing an exploratory work.

2.2 The empirical sample

The empirical sample analyzed in this work is part of the database of O-type stars (Hol-

gado et al. (2020) surveyed by the IACOB and OWN projects (Figure 2.1). These are

two complementary surveys aimed at obtaining empirical information about Galactic OB

stars. The IACOB project is the responsible of obtaining and performing the quantitative

spectroscopic analysis of a large database of high-resolution multi-epoch of OB-type stars

in the Northern Hemisphere, while OWN is a long-term survey whose objective is to mon-

itor O-Stars and WN-type stars in the Southern Hemisphere, with the aim of detecting

and studying spectroscopic binaries. The spectrographs used in these surveys are FIES at

NOT2.56m and HERMES at MERCATOR1.2m in the Northern Hemisphere; and FEROS

at MPG/ESO-2.2m.

This empirical sample comprises 123 O-type stars including both, likely single (LS) and

single line spectroscopic binaries (SB1). A quantitative spectroscopic analysis made by

Holgado et al. (2020) yielded the following parameter range: projected equatorial velocity

(V sini) between 10 – 250 km/s, log(L/L�) between 3.4 – 4.8 dex and Teff between 27 400 –
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50 300 K, being these stars in the Main Sequence evolutionary phase. Other spectroscopically

obtained parameters of these stars are the spectral type, luminosity class, macroturbulence,

microturbulence, effective temperature, gravity, spectroscopic luminosity, luminosity, helium

abundance, spectroscopic radius and wind strength parameter. The parameters used in this

work are the effective temperature (Teff), the spectroscopic luminosity (log(L/L�)), the lu-

minosity (log(L/L�)) and projected equatorial velocity (V sini) (summarized in Table A.1).

The mean uncertainties of these parameters are 700 K, 0.08 dex and 0.02 dex3 respectively.
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Figure 2.1: Spectroscopic Hertzsprung-Rusell diagram of the empirical sample used in this
work. Solid, dashed and dotted line represents the tracks for a star with a ratio of equatorial
velocity over the critical velocity (see Chapter 2) of 0,0.2 and 0.4, respectively.

2.3 The synthetic sample

The initial synthetic sample is created by using SYCLIST, and is represented in Figure 2.2.

As stars evolve faster as the initial mass increase, it is needed to have a smaller difference in
3These uncertainties for log(L/L�) do not include the distance uncertainties.
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age in the younger clusters in order to have a good sampling of the high luminosity region

of the HRD. For this reason the age span is separated into two groups: the first one goes

from 1 Myr to 3 Myr in steps of 0.25 Myr while the second goes from 3 Myr to 8.5 Myr in

steps of 0.5 Myr. Stars younger than 1 Myr are not computed because this age is the lower

limit considered in SYCLIST computations and 8.5 Myr is taken as an upper limit because

this age correspond to the turnoff point of stars with mass close to 15 M�. Cluster having

an age older that 8.5 Myr are hence not expected to have any star above 15 Msol in the

main sequence, our main region of study (see Figure 2.1). These clusters follow a Salpeter

IMF (Initial Mass Function), meaning that the density of stars in the HRD/sHRD shows a

gradient with respect to mass.
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Figure 2.2: Spectroscopic Hertzsprung-Rusell diagram of the initial synthetic sample built
joining together stars from all considered clusters (with varying age and initial rotational
velocities, see text for explanation). Solid, dashed and dotted line represents the tracks for a
star with a ratio of equatorial velocity over the critical velocity of 0,0.2 and 0.4, respectively.

As the mass is multivaluated in the HRD/sHRD since it depends strongly with veq/vc for

the higher mass stars, rotation becomes an important parameter to be considered. Because
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the evolutionary tracks at the highest masses follow different paths in the HRD/sHRD

depending on the value of veq/vc, clusters are obtained for the three available veq/vc (velocity

groups), each one having a total of 20 ages for a total of 60 clusters. This large amount of

clusters ensure that all the main region of study (i.e. that covered by the sample of O-type

stars presented in Figure 2.1) is well sampled with stars of the three velocity groups.

The synthetic sample includes stars from 15 to 85M� at every evolutionary stage. How-

ever, it is needed first to limit the region since the interest of this work are the Main Sequence

O-stars. Evolutionary tracks for the highest mass stars return to the region delimited by the

empirical sample in later evolutionary stages (e.g. Wolf-Rayet stars). A rejection of these

evolved stars is made by excluding stars which actual mass is lower than 70%4 of the initial

mass. It is considered a range in Teff of 25 000 – 55 000 K and 3.2 – 4.4 dex for log(L/L�), be-

ing this domain slightly larger than the range of values of the empirical sample to minimize

border effects in the inference of the outermost stars parameters.

The high density of stars in the low-luminosity regions of the HRD/sHRD of Figure 2.2

(due to the effect of the considered IMF) may lead to an overload of redundant information

in the inference and and to an increase in the computation time. To avoid this situation,

we decided to make a pre-processing of the initial sample to ensure homogenization of

data density across the whole parameter space. This is needed because the star density of

the low-luminosity region bins is ∼ 5 × 105 stars/bin without the homogenization. This

homogenization consist in a binning of the HRD/sHRD where a given density of stars inside

each bin is forced. This density corresponds to the density of the lowest populated bins in

order to maximize the sampling while maintaining density homogeneity between the bins

(Figure 2.3). The bin size considered corresponds to a 2σ, being σ the mean value of the

uncertainties obtained from the measurements of both Teff and log(L/L�) from the empirical

sample. This bin sizes are 1 400 K and 0.16 dex for Teff and log(L/L�) of, respectively. As

the measured rotational velocity of the stars is not the actual veq but the projected equatorial
4This remaining mass threshold ensures that only main sequence stars are considered.
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velocity (V sini), a projection of veq is being made to match the available empirical variables.

This is made by creating a homogeneous distribution in sin(i), being i the angle between the

angular velocity of the star and the line-of-sight (LOS), and projecting veq by multiplying

it by sin(i).
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Figure 2.3: Spectroscopic Hertzsprung-Rusell diagram of the synthetic sample showing the
binning. The density of stars in each bin is around 200 stars.

2.4 Training Parameters and methods

It is necessary to state that the training is made using synthetic stars because the number

of observed O-type stars is still too sparse to cover the whole parameter space. The input

parameters used in the inference are log(Teff), log(L/L�) and the V sini from the spectro-

scopic analysis and log(L) which is obtained by using the distance to the star. The input

parameters log(Teff), log(L/L�) and log(L) are used because they are the variables that form

13



the HRD and sHRD, and because they are used in the quantitative spectroscopic analysis

and track interpolation to derive the values of mass and therefore radius. The V sini is

taken to include a component associated with the rotation of the stars.

Three combinations of these input parameters are used to train the ANN. The first

training set consist in log(Teff), V sini and log(L/L�) (L-training); the second uses log(Teff),

V sini and log(L/L�) (L-training), and the third uses log(Teff), V sini and both log(L/L�)

and log(L/L�) (L&L-training). These different training sets are considered to check how

having access to empirical information about the stellar luminosities (which is only available

when we have reliable information about the distance to the star)5 modifies the inference

results by comparing the inference with log(L) with the inference with log(L/L�). The

last configuration is taken in an attempt of getting better results by increasing the number

of input variables since log(L/L�) and log(L) are obtained through different methods and

carry different information. The target variables of the inference are the actual mass (Minf )

and radius (Rinf ). In addition, the stellar luminosity log(L/L�)inf will be also considered

as target variable in those cases in which it is not used as input variable.

The ANN viability study is performed by doing the following inference test, using the

three training sets for all the tests. Firstly it is studied which of the following methods

provide the lowest systematic errors when applied to a synthetic test sample:

• a training considering the whole region of interest (see Sect. 2.3) where the O-type

stars are located (in terms of Teff and log(L)),

• a local training considering only considering a small region in the parameter space

around the star whose parameters are going to be inferred.

After choosing the method with the lowest systematic errors, the next analysis consist in

a comparison between an inference of synthetic stars and an inference of the same synthetic
5And therefore a measure of log(L)
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stars with an added error to their Teff , L and log(g)6 based on the averaged uncertainties

from the empirical sample. Lastly, the trained ANN is applied to the empirical sample

and the inferred target variables are compared with the values obtained by the quantitative

spectroscopic analysis.

6Remember that L = T 4
eff/g. Apart from Teff , variations in log(g) affects directly into the value of

log(L/L�).
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Chapter 3

Mass, radius and luminosity inference:
intrinsic errors and observational
uncertainties.

In this chapter, we investigate the intrinsic errors as well as the effect of considering obser-

vational uncertainties associated with the inference of stellar masses, radii and luminosities.

These uncertainties sources set the minimum uncertainty obtainable of the ANN used in this

work, assuming that stellar evolution models are correct. This chapter presents then three

analyses about training the ANN and inferring stellar parameters using the synthetic sample

described in Sect. 2.3 and the three training sets (L-training, L-training and L&L-training).

The first two analyses are made to quantify the intrinsic errors of two training methods

while the last analysis consist in quantifying the effect of the observational uncertainties in

the inference. This quantification is made by inducing uncertainties based on the average

uncertainties of the empirical sample.

3.1 Quantification of intrinsic errors

In order to know which are the intrinsic errors associated to the inference of stellar param-

eters using ANN, a study is done using the synthetic sample (Sect. 2.3). This study consist

in using two methods for the training: a global training where its domain in the sHRD is

defined by the empirical sample (see Sect 2.3) and a local training that uses only neigh-
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bouring stars of each problem star. The motivation behind the local training is to check if a

training using small grids of stars around each problem star is more efficient than the global

training and yield better results. For this reason, a comparison between both methods is

made, choosing the best method for the rest of the work.

3.1.1 Global training analysis

For the global training method, the synthetic sample is splitted in two groups: the synthetic

training sample and the synthetic test sample (see each of the two samples represented in the

sHRD in Figure 3.1). The synthetic training sample comprises 90% of the synthetic sample

and the synthetic test sample includes the remaining 10%. The ANN is trained with the

synthetic training sample and it is applied to the synthetic test sample to infer the target

variables.
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Figure 3.1: sHRD illustrating the distribution of the the training (left) and test sample
(right).
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Figure 3.2: Results of the global training analysis. These histograms show the relative error
for the inferred mass (Minf) with respect to the input value given by the models (Mmod) for
the three types of training variable sets mentioned in Sect. 2.4. The bin size follows the
Freedman-Diaconis rule (Freedman & Diaconis 1981).

The results of the global training method are presented in Figure 3.2, Figure A.1 and

Figure A.2 for the mass (M), radius (R) and luminosity (log(L)) respectively. These figures

show the error distribution for each target variable. These errors are presented as relative

errors for M and R, and the absolute error for the logarithm of the luminosity 1. Mean

values and standard deviations of the distributions are summarized in Table 3.1.

It can be seen in Figure 3.2 that the training considering both types of luminosities

gives the distribution with the lowest intrinsic errors in the mass inference. This is seen

quantitatively in the values given by the Table 3.1. The standard deviation of the mass

inference is similar when using only one type of luminosity and is one order of magnitude

lower in the L&L-training. The improvement in the intrinsic errors associated with the

L&L-training inference is caused by the increase of information of the stars (since both

log(L) and log(L) are considered). The mean values of the distributions are ∼ 0 meaning

that there is not any significant global trend in under/overestimating the value of the mass.

The inclusion of log(L) in the inference results in a remarkable improvement in the infer-

ence of the radius (see L-training and L&L-training results in Table 3.1 and figure A.1. This
1The absolute error of log(L) shows the relative error of L since: ∆log(L) ≈ ∆L/L
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Target variable L-training L-training L & L-training
<x> σ <x> σ <x> σ

∆M/M(%) 0 3 0 3 -0.1 0.3
∆R/R(%) -1 3 0.2 0.9 0.0 1.1

∆ log(L/L�) (dex) 0.00 0.03

Table 3.1: Mean (<x>) and standard deviation (σ) of the relative error distribution of each
inferred stellar parameters for all the training sets. Note that the absolute error of log(L)
shows the relative error of L since ∆log(L) ≈ ∆L/L.

is because the luminosity, radius and effective temperature are correlated by the equation

of the luminosity (eq. 3.1):

L

L�
=

(
R

R�

)2 (
Teff

Teff�

)4

. (3.1)

As the value of the intrinsic error in the radius is ∼2% lower for both L-training and

L&L-training than the value given by L-training, the two first mentioned training sets are

the more convenient to infer the radius.

It is also worth to study how the intrinsic errors varies with respect to the position

of the test stars in the sHRD. In order to quantify these variations, the synthetic test

sample is divided in two groups, the upper sHRD stars (up-sHRD) and the lower sHRD

(low-sHRD) stars. These groups contain those star that have log(L/L�) greater than 3.82

dex and log(L/L�) lower than 3.8 dex respectively. Histograms of the relative error of the

target variables are obtained for these two groups and the complete test sample. They

are represented in Figure 3.3, Figure A.3 and Figure A.4 for inference of the mass, radius

and luminosity respectively. Mean values and standard deviations of these distributions are

summarized in Table 3.2.

The mass inference is underestimated in up-sHRD stars (red) respect to low-sHRD stars

(blue) in all the training sets. The standard deviations are higher in the up-sHRD than in

the low-sHRD because evolutionary tracks are less affected by veq in the low-sHRD region,
2This value is taken because its approximately the mean value of the spectroscopic luminosity domain.
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Figure 3.3: Histograms representing the distribution of intrinsic uncertainties associated
with the inference of the mass using the three considered training sets. Red/blue distributions
represent the case of the stars located in the upper/lower part of the sHRD (see Figure 3.1
right panel). In black results for the global sample.

Target variable L-training L-training L & L-training
Up-sHRD stars <x> σ <x> σ <x> σ

∆M/M(%) -1 4 0 4 -0.3 0.3
∆R/R(%) -1 4 0.2 0.7 -0.0 1.1

∆ log(L/L�) (dex) 0.00 0.04
Low-sHRD stars <x> σ <x> σ <x> σ

∆M/M(%) 0.2 1.4 0.6 1.0 -0.1 0.4
∆R/R(%) -0.5 1.2 0.3 1.1 -0.1 1.0

∆ log(L/L�) (dex) -0.003 -0.017

Table 3.2: Mean (<x>) and standard deviation (σ) of the relative error distribution of
each inferred stellar parameters for all the training sets. This is calculated for the up-sHRD
stars and the low-sHRD stars.

as it corresponds to the least massive stars. The radius inference has similar results for the

L-training and the L&L-training between both groups. In the case of the L-training the

inference of the radius is worse for the up-sHRD as the mean value and deviations of the

relative error are higher in this case. The luminosity inference behaves similarly to the other

two target variables: the intrinsic errors are much lower in the low-sHRD. The explanation
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found for this is that low-luminosity stars are less affected by rotational effects; thus the

values of the effective temperature and both luminosities for a given mass do not differ as

much as for the high-luminosity stars.

From these results we conclude that there are trends in the inference. The

target variables of the stars are underestimated in the up-sHRD region when

compared to the low-sHRD region. Also the low-sHRD stars standard deviations

are smaller than those from the up-sHRD stars.

3.1.2 Local training method

The other method proposed for the inference of the target variables is the local training.

For this method an specific training sample is made for each problem star. Each training

sample consist in all the training stars inside a box in the sHRD centered in the value of Teff

and log(L) of the star and with a width of 1 400K for Teff and 0.16 dex for the log(L). This

width corresponds to a 2σ value of the uncertainties of the empirical sample (Sect. 2.2).

This training method needs to create an specific sample for each star and the sample

creation process is not automatized. Thus, a group of eight mock synthetic stars that are

distributed across the sHRD are used to analyze this method (Figure 3.4). These mock stars

positions in the sHRD were chosen to cover appropriately all the domain. This analysis is

also made using the three training sets (L-training, L-training and L&L-training). The

results of the inference of these synthetic mock stars are summarized in Table 3.3.

Results presented in Table 3.3 show different behaviours depending on the target variable

and the used training set. The L-training shows that for the mass the relative errors are

lower for stars with lower Teff (excluding S6). For the radius, the trend observed is that the

relative error gets smaller as log(L) and Teff are higher, i.e. as the stellar mass increases.

The values of log(L) do not show any clear behaviour.

In the L-training, the mass and radius inferences behave similarly to those from the

L-training. However, the L&L-training shows the opposite behaviour in the mass inference
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Figure 3.4: Positions in the sHRD of the eight stars used in the local training method
analysis. The box in the bottom-left corner show the training box size which is centered at
the star position.

L-training
S1 S2 S3 S4 S5 S6 S7 S8 Average

∆M/M(%) 7 5 -3 4 0.4 11 27 0.8 7±3
∆R/R(%) 4 -14 -7 16 18 -3 17 19 6±5
∆log(L/L�) 0.12 0.10 -0.024 0.3 -0.06 0.1 1.4 0.04 0.25±0.17

L-training
S1 S2 S3 S4 S5 S6 S7 S8 Average

∆M/M(%) 13 3 -4 6 -0.4 0.6 30 -0.7 6±4
∆R/R(%) -5 -1.9 -4 8 14 -0.8 15 15 6±3

L&L-training
S1 S2 S3 S4 S5 S6 S7 S8 Average

∆M/M(%) 13 -1.0 -4 13 0.6 0.5 -1.8 -1.5 2.4±2.4
∆R/R(%) 1.1 -2.9 -3 -18 13 2.5 30 11 4±5

Table 3.3: Relative errors of the target variables using the local training method for the
three training sets described in Sect. 2.4 of the stars represented in Figure 3.4.

for the stars with lower masses (S7 and S8) while for the remaining stars the behaviour is

the same as the other two training sets.

One interesting case to be mentioned is the inference results for S7. The relative errors

of the mass inference in the L-training and L-training are much higher that for the rest of
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the stars. It can be thought that the local training sample used with this star is wrong. In

order to check if the initial local training sample of S7 is wrong, other training samples were

obtained giving similar results. The errors of the target variables may vary a lot depending

of the position of the star (e.g. S5 and S6 radius inference for all training sets), so we

conclude that the local training highly depends on the position in the sHRD of

the star.

It can be concluded then that this method of training may give intrinsic errors

that are much higher than the results obtained in the global training. They do

not follow an specific trend, so these types of results can not be avoided.

L-training
S1 S2 S3 S4 S5 S6 S7 S8

∆M/M(%) 3 -0.15 -4 0.04 0.9 1.2 -0.9 -0.3
∆R/R(%) 2.4 5 -6 0.10 3 2.2 -0.16 0.05
∆log(L/L�) -0.02 0.016 -0.05 -0.02 0.015 -0.004 0.010 0.023

L-training
S1 S2 S3 S4 S5 S6 S7 S8

∆M/M(%) 7 3 -5 -0.03 1.1 1.0 -2.4 -0.78
∆R/R(%) -1.2 -0.5 -0.9 0.4 -0.7 0.03 0.8 -0.7

L&L-training
S1 S2 S3 S4 S5 S6 S7 S8

∆M/M(%) 0.23 0.3 -0.09 0.09 -0.3 0.021 -0.11 0.4
∆R/R(%) 1.1 0.04 -1.2 0.011 0.7 0.4 3 1.2

Table 3.4: Relative errors of the target variables using the global training method for the
three training sets described in Sect. 2.4 of the stars represented in Figure 3.4.

A comparison of these results to those obtained by applying the global training method

to these stars (Table 3.4) is made. It is seen that the intrinsic errors in the case of the global

training do not show values of the relative errors one order of magnitude higher than the rest

of stars. They are therefore more consistent. Other critical difference between both methods

is the computation time: the training time for the global training method is ∼22 seconds

while for each specific training sample of the local training method it is around ∼8 seconds.

This means that for a problem sample of more than 2 stars the global training become the
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most time-efficient method. Because of the more consistent intrinsic errors and the

more efficient time usage, it is concluded that the global training is better than

the local training. For this reason, the global training is considered in the forthcoming

analyses.

3.2 Inference of the synthetic sample with added obser-
vational errors.

While the objective of the analysis presented in Sect. 3.1 was to find the lowest intrinsic

errors among two training methods and three training sets, this section presents the results

of the analysis of how observational errors propagates through the inference.

For this exercise we build a new test sample in which each data-point in the original

test sample (see Sect. 3.1.1) is modified by adding a value randomly obtained from a Gaus-

sian distribution for each dimension. The standard deviation of these distributions are the

corresponding averaged uncertainties of the empirical sample (see Sect. 2.2). These mean

uncertainties are 700K for Teff , 0.02 for log(L) and 0.08 for log(L/L�). The new test sample

is generated by adding these randomly generated errors to the values of the test sample

defined in Section 3.1.1.

The training is done with the same training sample than in Sect 3.1.1 and it is applied

to the new test sample (see Figure 3.5). The results are showed in Figure 3.6, Figure A.5

and Figure A.6 for the inference of the mass, radius, and luminosity, respectively. Mean val-

ues and standard deviations of the relative error distribution are summarized in Table 3.5.

Although both luminosities are related by the mass3, they are obtained through different

methods (quantitative spectroscopy and by using distances for log(L) and log(L) respec-

tively). For this reason, the errors in log(L) and log(L) are added independently. This

implies that the new values of the luminosities may contradict the relationship between

log(L) and log(L) that the ANN has made during the training, and hence the L&L-training
3L=L/M in solar units.
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Figure 3.5: (Left) Sample used in the analyses of intrinsic errors and (Right) same sample
with added errors for the analysis of inference with uncertainties. Note that the left figure
shows the structure of the clusters that forms the initial synthetic sample while the right
figure stars presents the dispersion introduced by adding errors.

worsen when compared to the L-training and the L-training. In this test the training with

the lowest uncertainties is the one that uses L. This is a expected result because the uncer-

tainty in log(L) is four times lower than the uncertainty in log(L).
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Figure 3.6: Results of the global training with added observational errors. These histograms
show the relative error of the inferred mass (Minf) with respect to the input value given by
the models (Mmod) for the three types of training variable sets mentioned in Chapter 2. The
bin size follows the Freedman-Diaconis rule (Freedman & Diaconis 1981).

After comparing these results with those obtained in Section 3.1.1, it can be concluded
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Target variable L-training L-training L&L-training
<x> σ <x> σ <x> σ

∆M/M(%) 0 9 -1 4 -1 19
∆R/R(%) 0 13 0 4 0 6

∆ log(L/L�) (dex) 0.00 0.11

Table 3.5: Mean and standard deviation of the relative error distribution of each target
variables for all the training variable sets defined in Chapter 2 with added observational
errors.

that as the L-training is the least affected by observational uncertainties, it

results in the best training. This is because the observational uncertainty of log(L)

is smaller than that of log(L). Since the uncertainty of log(L) considered in the previous

test do not take into account distance uncertainties it is interesting to repeat the analysis

after calculating the typical value for the uncertainties of log(L) when the typical distance

uncertainty is considered.

In order to obtain the typical uncertainty of log(L), it is needed to obtain a relationship

between the distance and the luminosity. This relationship can be derived from the following

equations:

MV = V − 5 log(d) + 5, (3.2)

MV −MV� = −2.5 log(L/L�), (3.3)

where eq. 3.2 is the distance modulus and eq. 3.3 is the subtraction of the absolute

magnitude in V (MV) of a star and the solar absolute magnitude in V-band. The distance

is noted as d and the apparent magnitude in V-band as V.

The errors propagation of eq. 3.2 and eq. 3.3 are:

∆MV = ∆V − 5

ln10

∆d

d
, (3.4)
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∆log(L/L�) =
∆MV

2.5
. (3.5)

Taking into account that ∆V ∼ 0.01 mag (which is negligible), and substituting eq. 3.4

in eq. 3.5 we obtain:

∆log(L/L�) ≈ 0.9
∆d

d
(3.6)

which gives a value of ∆log(L/L�) ≈ 0.09 dex by asuming that the values of the relative

error of the distance given by GAIA for O-type stars are ∆d
d
∼ 10%4 (Holgado et al. in

prep.).

The inference results when considering an error for ∆log(L/L�) ≈ 0.09 dex summarized

in Table 3.6 and the corresponding histograms for the mass and the radius are presented

in Figure 3.7 and Figure A.7, respectively. The L-training is not considered in this part of

the analysis because it is not affected by any modification of the considered uncertainties

associated with the luminosity when building the test sample.
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Figure 3.7: Representation of the relative error distribution of the mass for the L-training
and the L&L-training considering ∆log(L/L�) = 0.09 dex. The bin size follows the
Freedman-Diaconis rule (Freedman & Diaconis 1981).

4The relative error actually goes from 5% to 15% so it is taken the mean value as a typical uncertainty.
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Target Variable L-training L&L-training
<x> σ <x> σ

∆M/M(%) -1 7 0 30
∆R/R(%) -1 11 -1 9

Table 3.6: Mean and standard deviation of the relative error distribution of each target
variable for all the training variable sets defined in Chapter 2 when observational errors are
added, and including ∆log(L/L�) = 0.09 dex.

The comparison between Table 3.5 and Table 3.6 shows, on the one side that a change of

0.07 in ∆log(L/L�) worsen the target variables uncertainties in the L-training (Table 3.6)

up to values slightly lower (2% of difference) to those of the L-training (Table 3.5). On the

other side, the L&L-training results in a much worse mass inference, having an uncertainty

of 30% (compared to 19% obtained for ∆log(L/L�) = 0.02 dex). The radius inference

does not change significantly meaning than the best training set to infer the radius is the

L&L-training.

The L&L-training gives the best inference in radius but since its mass inference errors

are more than three times larger than for the other training sets, it is not practical to use it.

We conclude that in the case of synthetic stars with added observational errors

the best training sets are the L-training and L-training.

From the results obtained in this section and those presented in Table 3.1, it can be

quantified the contribution of the added observational errors in the global training. On the

one side the values provided in Table 3.1 are the systematic uncertainties. On the other

side the values quoted in Table 3.5 (for L-training) and Table 3.6 (for L-training and L&L-

training) represent the combined effect of intrinsic errors and observational uncertainties.

Hence, subtracting the relative errors obtained in Sect. 3.1.1 to those of this section yields

the distribution of added observational errors (Figure 3.8, Figure A.8 and Figure A.9 for

the mass, radius and luminosity, respectively). The distributions mean value and standard

deviations are summarized in Table 3.7.

After comparing this results with those obtained in Table 3.5 and Table 3.6, we see
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Figure 3.8: Relative error (e.g. δMint for the mass intrinsic errors ) distributions of the
added observational errors for the mass inference, for the three types of training variable
sets mentioned in Chapter 2. The bin size follows the Freedman-Diaconis rule (Freedman &
Diaconis 1981).

Target variable L-training L-training L&L-training
<x> σ <x> σ <x> σ

∆M/M(%) 1 9 1 7 3 25
∆R/R(%) 3 13 0 11 0 9

∆ log(L/L�) (dex) 0.00 0.11

Table 3.7: Standard deviation associated to the added observational errors distribution.

that all the standard deviations but L-training and L&L-training mass inference are equal.

These two last mentioned inferences have standard deviations that are very close to the

value obtained by considering intrinsic and added observational errors. These values for

the L-training mass inference are are 7% and 9% (for intrinsic and intrinsic+observational,

respectively).

We conclude then than when considering intrinsic errors and observational

errors, the training with the lower uncertainties is the L-training. Nevertheless,

since the uncertainties of the L-training are slightly worse (∼ 2%), it proves to be

a good alternative to the L-training when there is no a reliable measurement of

the distance. We also conclude that the added observational errors are dominant

in the inference.

29



Chapter 4

Application of ANN to the empirical
sample.

In this chapter, we move a step further in our investigation of the applicability of ANN to

infer stellar parameters by considering what we have called the empirical sample (see Chap-

ter 2). We compare the results using the L-training and L-training for the empirical sample

with those obtained by Holgado et al. (2020) using an spectroscopic quantitative analysis.

In order to understand how the spectroscopic results were obtained, a brief description is

included before the analysis.

The spectroscopic analysis uses stellar atmosphere models to create a grid of synthetic

spectra that are used to fit the problem spectra (e.g. Simón-Díaz et al. 2011). The main

parameters obtained are effective temperature and gravity. These two parameters can be

then complemented with other such as the luminosity, radius and mass only in the case

that we have access to the distance to the star. In particular, the stellar luminosity can

be obtained if we have empirical information about the bolometric magnitude, which can

be obtained from the apparent visual magnitude, the extinction, the bolometric correction

(which is a function of the effective temperature) and the distance. The stellar radius can

be obtained by using the expression of the luminosity in terms of the radius and effective

temperature (eq. 4.1) and hence the mass (eq. 4.2) (Herrero et al., 1992):
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log

(
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L�
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= 2 log

(
R

R�

)
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(
Teff

Teff�

)
(4.1)

log

(
M

M�

)
= 2 log

(
R

R�

)
+ log

(
g

g�

)
(4.2)

which are defined as spectroscopic radius and spectroscopic mass respectively to be

distinguished from those obtained through other methods.

4.1 Global training applied to the empirical sample.

Since the training sets resulting in the lowest uncertainties in the inference are L-training

and L-training (Sect. 3.2), we used them in this test. The results of the inference are

shown in Figure 4.1, where the inferred values of the target variables (left column), their

values obtained by Holgado et al. (2020) using a spectroscopic quantitative analysis (middle

column) and the relative comparison between both results (right column) are represented.

The L-training result in inferred evolutionary masses underestimated when compared to

the evolutionary tracks (see top left panel in Figure 4.1). It is likely due to the uncertainties

in log(L) since as the stars are more massive, their tracks are more horizontal meaning that

this uncertainties in log(L) enclose a wide range of mass. This was initially thought to be a

border effect in the inference domain. In order to confirm this, the mass range was extended

up to 120 M�; however, as the results did not change when extending the domain, this is

not the cause of the underestimation.

The top-middle panel of Figure 4.1 presents the spectroscopic mass estimated by Holgado

et al. (2020), and top right panel of Figure 4.1 the comparison between the inferred mass

and the spectroscopic mass. The comparison between both spectroscopic and inferred mass

shows that most stellar masses are highly overestimated (from 30 000 to 36 000 K) or highly

underestimated (from 36 000 to 50 000 K). This discrepancy in the mass obtained from the

quantitative spectroscopy and from the inference using the evolutionary models is an open

question present in the stellar physics. The so-called mass discrepancy was addressed by

31



  

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

15

20

25

30

35

40

M
ev

o(
M

su
n)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

15

20

25

30

35

40

M
sp

ec
(M

su
n)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

20

15

10

5

0

5

10

15

20

(M
ev

o
M

sp
ec

)/M
ev

o (
%

)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

5

10

15

20

25

30
R e

vo
(R

su
n)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

5

10

15

20

25

30

R s
pe

c(R
su

n)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

lo
g(

L e
vo

)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

lo
g(

L d
)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

0.4

0.2

0.0

0.2

0.4

lo
g(

L e
vo

)
lo

g(
L d

)

3000035000400004500050000
Teff[K]

3.4

3.6

3.8

4.0

4.2

lo
g(

/
)

20

25

32

40

60

85

10

0

10

20

30

40

50

60

70

(R
ev

o
R s

pe
c)/

R e
vo

 (%
)

Figure 4.1: Comparison of the target variables inferred using the L-training set (left col-
umn) and the corresponding values using quantitative spectoscopic analysis (middle column).
The right column shows the difference between both methods. Solid lines represent ZAMS
and tracks of v/vv = 0, dashed lines to v/vv = 0.2, and dotted lines to v/vc = 0.4. Since
this training does not use L, it is also inferred.

Herrero et al. (1992). Although it is not clear which of quantitative spectroscopy and

evolutionary models is the cause of this, it is though that the mass discrepancy depends on

the assumptions made to describe the physical processes of the stellar evolution (Markova

et al., 2018).

Radius inference results are in general underestimated across the sHRD when compared

to the spectroscopic results, which is more clear for those of higher masses evolved stars
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(the top-right corner of the middle-right panel in Figure 4.1). In the spectroscopic results

(central panel of Figure 4.1), there are few stars that are being shown with radius much

larger than the evolutionary tracks close to them. Far from meaning that these are very

high-mass stars, this is more related to a wrong measure in the distance of the stars. Since

the distance is needed to compute the luminosity and by knowing the luminosity the mass

and radius are computed, a wrong measure of the distance leads to values of these variables

inconsistent with the prediction from adjacent evolutionary tracks.

The inferred luminosity (bottom pannels of Figure 4.1)) has a more stable behavior at

higher log(L) than the other target variables and is more consistent with the evolutionary

tracks.
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Figure 4.2: Comparison of the target variables inferred using the L-training set (left col-
umn) and the corresponding values using quantitative spectroscopic analysis (middle col-
umn). The right column shows the difference between both methods. Solid lines represent
ZAMS and tracks of v/vv = 0, dashed lines to v/vv = 0.2, and dotted lines to v/vc = 0.4.

When using L-training instead of L-training there are some stars without a reliable

measurement of their distances, meaning that their luminosities are not accurate. Figure 4.2
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top-right panel shows that the inferred masses have two different trends depending on the

region: for evolved stars their inferred masses are overestimated while for the younger stars

is the contrary.

Radius on its part shows a clear trend when comparing both methods (middle-right

panel in Figure 4.2). The stellar radii are mostly overestimated. This overestimations is

lower for more evolved stars (those with cooler temperatures). The effective temperature at

which the difference is close to zero is around 35 000 K, meaning that the trend in radius is

anticorrelated with the inferred mass. The overestimation of the mass is associated with an

underestimation of the radius in the evolved stars region and conversely when approaching

the ZAMS.

The results of the inference can be compared with the evolutionary tracks and the color

scale of Figure 4.1 and Figure 4.2. The L-training inferred masses are clearly underestimated

(top-left pannel in Figure 4.1 as the high mass stars around the 85 M� track have inferred

masses around 30M�. The reason found to explain this is that the synthetic training sample

is not appropriate to study real stellar populations yet. This is because:

• There are only three values of veq/vc considered in the training. As veq/vc is a contin-

uous variable, it is needed to have a better sampling in this variable, which projection

is an input in the training.

• The training sample was built using solar metallicity. As the value of the metallicity

increases, the stellar effective temperatures become smaller.

• There are discrepancies between the models and the observational data due to missing

ingredients in the stellar evolution theory.

The first and the third reason are the most critical for the inference. The first is important

because the effect of the equatorial velocity critically affects to the evolutionary tracks,

while the cooling effect caused by the variations of the metallicity is not that decisive.

These limitations lie in the improvement of the stellar-evolution models, since SYCLIST
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only provide three value of metallicity and veq/vc for each (Georgy et al., 2014). Once

more values of veq/vc can be provided as more metallicities can be considered, as well as

the models improve by fixing their flaws, it is expected to get then better results for the

inference applied to observed stars.

4.2 Future improvements

In general, it was seen that for a sample of real stars the inference work correctly, although

there are discrepancies between the inference results and the spectroscopic results which

are caused by the assumptions in the models. This is caused by few factors: the equatorial

velocity in the Geneva models drops rapidly into slow rotators, which means that the mass

loss due to stellar winds occur in a short period of time. This is a problem in the models

because measured projected equatorial velocities are far from the low values expected from

these models, and is one of the parameters that do not correspond with observations. The

number of critical velocities used in this work are the three available, but since the rotational

velocity is a continuous variable, more rotations are needed.

It is also important to state that these stellar models are for single stars. In the case of

multiple systems new evolutionary tracks are needed since the multiplicity may affect the

stellar parameters of their individual components. One of this effects are an increase in the

mass obtained through quantitative spectroscopy for a given star due to having a higher

value of the luminosity as part of the companion light may be measured. For unresolved

multiple systems this can lead to very high mass measurements. Other effects that may be

present is the modification of the stellar rotation rates caused by tidal effect, mergers or

mass transference, affecting to the evolution of the individual stars (see e.g. Sana & Evans,

2011)

To improve this method from what has been presented in this work, few ideas are pro-

posed. The first one is to create a highly homogeneous sample in the sHRD by using a

constant IMF so all regions can be equally sampled, considering also that for the considered
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time span more ages are needed to fill the sHRD. The number of synthetic stars used in

this work are 5.89 millions of stars, which were needed to fill the upper part of the sHRD,

where the frequency of stars is much lower than at lower initial masses. The constant IMF

allow to consider much less stars while considering more values of v/vc, more ages and even

more metallicities. Since these clusters were all computed for a solar metallicity, it is needed

to consider at least a range of metallicities similar to the ones of the problem sample, as

different metallicities move stars to cooler temperatures in the sHRD.
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Chapter 5

Conclusions

This work shows that ANN are a tool to be considered when determining those stellar

parameters based on the outcome of stellar evolutionary models (such as, e.g., the mass).

The main advantage presented by this method is the adaptability of the model, meaning that

as long as effective temperature, equatorial projected velocity and both types of luminosities

are given, it is possible to train it and do the inference.

The methodology of the ANN has proven to give acceptable results considering the

intrinsic and added observational errors. However, the lack of tools to create a better

sample and the flaws in the stellar evolution models limits this ANN trained with synthetic

stars to be applied to observational data.

The inference made by the global training presents trends, seen as underestimations in

the target variables when comparing the high-luminosity stars with the low-luminosity stars.

However, this training proves to have lower intrinsic uncertainties than the local training,

because the local training depends highly in the position in the sHRD of the problem star.

For the case where there are no added observational errors, the best training set is the

L&L-training, presenting intrinsic uncertainties of 0.3% and 1.1% for the mass and radius,

respectively.

From the comparison between intrinsic and observational uncertainties, we conclude that

the second one is the dominant error source. As the uncertainties of both L-training and

L-training are the lowest and similar, these are the best training sets for added observa-
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tional uncertainties, yielding maximum uncertainties of 9% and 13% in the mass and radius

inference, respectively.

In the inference applied to the empirical sample there are underestimation trends in

the mass and radius. The mass discrepancy between the evolutionary-models results and

the spectroscopic results was addressed by Herrero et al. (1992). It is still not clear if the

discrepancy is caused by wrong measurements of the gravity in the quantitative spectroscopic

analysis or by the flaws of the evolutionary models. We think that this mass discrepancy

is enhanced by the lack of variety of values of (veq/vc) as only three values are accounted.

However, this method can be improved by using a more appropriate sample for the training

(see Sect. 4.2), proving wether more values of (veq/vc) improve the inference results.
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Appendix A

Complementary Figures and Tables
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Figure A.1: Results of the global training analysis. These histograms show the relative error
for the inferred radius (Rinf) and the value given by the models (Rmod) for the three types
of training variable sets mentioned in Chapter 2. These results are obtained without adding
any uncertainty source and the bin size follows the Freedman-Diaconis rule (Freedman &
Diaconis 1981).

Name HD Teff (K) log(L/L�) log(L/L�) (dex) Mspec (M�) Rspec (R�)
HD93129AaAb 45.6±1.1 4.136±0.108 6.55±0.03 737.0±74.3 29.5±0.3
CYGOB2-7 50.3±1.8 4.106±0.144 6.05±0.05 94.9±29.9 13.9±0.3
HD190429A 36.6±0.8 4.114±0.098 5.89±0.03 59.0±6.2 22.0±0.3
HD15570 40.2±0.8 4.177±0.069 6.21±0.02 106.1±14.8 26.4±0.4
HD14947 39.1±1.1 4.109±0.111 6.13±0.03 112.8±20.1 25.5±0.5
CYGOB2-9 40.1±1.0 3.883±0.109 6.27±0.03 243.8±57.6 28.4±0.4
CPD-472963AB 37.1±0.5 4.157±0.046 5.97±0.02 65.9±6.4 23.4±0.2
CYGOB2-11 37.3±1.5 4.047±0.156 5.99±0.05 91.4±25.1 23.8±0.6
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HD169582 38.9±1.3 4.050±0.218 5.48±0.04 30.4±13.5 12.2±0.2
HD229196 36.8±1.0 4.053±0.093 6.00±0.03 74.2±16.6 24.9±0.4
HD163758 34.6±0.6 4.256±0.076 5.89±0.01 42.9±6.5 24.6±0.4
HD157857 36.7±0.7 4.049±0.087 5.91±0.01 63.9±5.2 23.1±0.3
HD69464 35.8±1.0 4.226±0.094 5.83±0.03 41.0±6.6 21.6±0.4
HD193514 35.9±0.5 4.030±0.047 5.78±0.01 56.7±7.6 20.1±0.2
HD94963 36.3±0.6 4.090±0.067 5.92±0.02 67.9±8.0 23.1±0.3
HD151515 36.0±1.0 4.065±0.139 5.45±0.02 25.7±6.9 13.7±0.3
HD188001 32.4±0.5 4.232±0.094 5.60±0.02 25.1±3.0 20.4±0.3
HD192639 34.7±0.7 4.121±0.115 5.96±0.02 70.0±17.3 26.5±0.3
HD156154 34.2±0.5 4.216±0.047 5.53±0.01 21.1±2.1 16.7±0.2
HD17603 33.3±0.8 4.220±0.090 5.73±0.02 31.3±5.1 21.9±0.4
HD171589 36.5±0.8 3.979±0.071 5.40±0.02 25.9±3.8 12.5±0.2
HD34656 36.0±0.5 4.115±0.047 5.76±0.01 44.3±3.6 19.4±0.2
HD225160 33.2±1.2 4.125±0.153 5.63±0.01 27.8±3.9 21.0±0.3
BD-114586 32.4±0.6 4.212±0.105 5.54±0.02 21.4±4.3 18.6±0.3
HD162978 35.0±0.5 4.066±0.047 5.35±0.02 19.3±1.9 12.9±0.1
HD303492 28.3±1.0 4.287±0.086 6.02±0.01 48.5±6.4 42.5±1.9
HD125241 32.1±0.5 4.176±0.048 5.58±0.01 23.7±2.5 19.8±0.2
HD75211 33.4±0.6 4.085±0.068 5.53±0.02 25.2±3.5 17.5±0.2
HD207198 33.1±0.5 4.159±0.048 5.47±0.01 20.6±2.1 16.6±0.2
HD30614 29.4±0.6 4.263±0.078 5.50±0.01 13.8±2.5 23.5±0.6
HD152249 31.1±0.5 4.151±0.049 5.81±0.01 44.1±4.1 27.8±0.4
HD202124 31.1±0.5 4.141±0.066 5.62±0.02 25.3±5.8 23.1±0.4
HD210809 30.9±0.5 4.230±0.057 5.69±0.01 28.8±3.7 24.4±0.4
HD209975 32.0±0.5 4.111±0.048 5.42±0.02 20.6±1.7 16.8±0.2
HD71304 32.0±0.5 4.111±0.048 5.67±0.02 35.8±2.9 22.3±0.2
HD57061AaAb 33.0±0.5 3.964±0.048 7.11±0.02 1472.0±70.9 110.3±1.2
HD152424 30.2±0.5 4.140±0.067 5.69±0.01 35.0±4.7 25.5±0.4
HD218915 31.1±0.5 4.141±0.049 6.02±0.02 73.6±7.0 35.2±0.2
HD154368 30.4±0.5 4.281±0.049 5.78±0.01 31.0±2.7 28.0±0.5
HD123008 31.7±0.5 4.174±0.057 5.70±0.02 32.8±4.3 23.4±0.3
HD76968 30.8±0.5 4.064±0.049 5.51±0.02 27.8±2.8 19.9±0.2
HD188209 30.1±0.5 4.264±0.095 5.43±0.01 14.8±3.2 19.2±0.3
HD105056 27.4±0.6 4.261±0.089 5.44±0.02 14.5±2.2 23.7±0.6
HD195592 28.0±0.5 4.269±0.051 6.07±0.01 65.9±7.3 46.8±0.4
HD149038 29.8±0.5 4.107±0.050 5.58±0.02 30.3±4.0 23.2±0.3
HD225146 28.3±0.6 4.087±0.097 5.34±0.02 17.6±3.3 19.6±0.3
HD104565 28.9±0.5 4.224±0.050 5.59±0.01 23.2±2.8 25.2±0.5
HD154811 29.8±0.5 4.067±0.050 5.28±0.02 15.1±1.6 16.6±0.2
HD152147 30.1±0.5 4.044±0.095 5.47±0.02 25.9±6.0 20.1±0.3
HD47432 29.1±0.5 4.206±0.050 5.82±0.02 38.5±3.5 32.2±0.6
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HD68450 30.6±0.9 4.023±0.140 5.22±0.03 16.4±4.4 14.6±0.3
HD10125 30.9±0.5 3.940±0.057 6.26±0.02 193.5±27.8 47.0±0.5
HD152405 30.3±0.5 4.026±0.094 5.36±0.02 21.5±4.2 17.4±0.2
HD93843 37.3±0.6 4.147±0.057 5.62±0.02 29.7±3.3 15.6±0.2
HD152723AaAb 38.0±0.5 3.899±0.046 6.16±0.02 185.8±18.2 27.8±0.2
HD96946 39.0±0.5 3.894±0.073 5.59±0.01 50.5±9.2 13.8±0.1
HD156738AB 37.9±1.1 3.875±0.158 6.24±0.03 249.4±83.8 30.8±0.5
HD190864 37.5±0.9 4.046±0.090 5.43±0.03 24.5±4.4 12.3±0.2
HD93160AB 36.6±0.7 3.794±0.096 6.02±0.02 169.3±22.8 25.6±0.4
CYGOB2-4A 36.4±1.7 4.104±0.171 5.34±0.05 18.2±5.0 11.7±0.4
HD163800 35.2±0.5 4.156±0.047 5.37±0.02 16.7±1.6 13.0±0.2
HD319702 36.3±0.7 3.670±0.144 5.27±0.02 42.1±12.5 10.9±0.1
HD36861A 35.2±0.5 4.056±0.047 5.06±0.02 9.8±2.5 9.1±0.1
HD114737AB 35.7±0.5 3.721±0.047 4.69±0.02 9.6±1.7 5.8±0.1
HD218195A 34.1±0.5 3.991±0.094 4.94±0.02 9.1±1.5 8.4±0.1
HD93249A 32.8±0.5 3.953±0.084 5.37±0.02 27.5±5.0 15.1±0.2
HD24431 34.9±0.5 3.791±0.056 5.18±0.02 24.9±4.1 10.6±0.1
HD193443AB 33.0±0.5 3.954±0.048 5.56±0.02 39.3±4.0 18.5±0.2
HD16832 32.0±0.5 4.041±0.057 5.12±0.02 12.4±1.7 11.8±0.1
HD96264 33.1±1.0 3.799±0.159 5.36±0.04 39.0±12.0 14.7±0.3
HD154643 31.0±0.5 3.845±0.049 4.95±0.02 12.5±1.6 10.4±0.1
HD189957 32.1±0.5 3.836±0.066 5.03±0.02 15.3±2.4 10.5±0.1
HD64568 46.9±1.0 4.145±0.071 5.85±0.03 50.2±6.5 12.7±0.2
HD93128 49.3±2.2 4.071±0.178 6.03±0.06 100.5±34.0 14.3±0.4
HD46223 42.2±0.5 4.161±0.045 5.69±0.02 33.6±3.6 13.0±0.2
HD96715 45.2±1.2 4.101±0.129 5.83±0.03 55.1±13.8 13.3±0.3
HD93250AB 45.0±0.6 4.143±0.055 6.14±0.02 99.3±12.0 19.5±0.2
HD168076AB 43.0±1.8 4.004±0.167 6.79±0.05 574.0±125.2 44.2±1.0
HD15629 41.8±0.5 4.085±0.054 5.66±0.02 38.3±4.9 12.8±0.2
HD303308AB 41.1±0.9 3.945±0.089 5.52±0.03 38.6±6.5 11.5±0.1
HD168112AB 39.7±1.0 4.075±0.137 6.04±0.03 96.4±26.7 22.3±0.3
HD319699 41.2±0.8 3.940±0.078 5.49±0.02 36.3±6.1 11.0±0.1
HD46150 41.1±0.5 4.035±0.045 5.66±0.02 42.7±3.9 13.4±0.1
HD93204 39.2±0.7 4.013±0.068 5.27±0.02 22.5±4.3 9.5±0.2
HD101190AaAb 39.8±0.5 3.910±0.046 5.92±0.02 104.3±11.5 19.4±0.1
HD303311 40.1±0.7 3.893±0.067 5.51±0.02 41.4±5.3 11.8±0.2
CPD-592600 39.3±0.8 3.908±0.087 6.18±0.02 177.6±28.2 26.7±0.3
HD42088 40.0±0.5 3.808±0.046 5.31±0.02 32.1±3.3 9.4±0.1
HD322417 38.6±0.8 3.996±0.106 5.92±0.03 88.2±20.8 20.5±0.2
HD91572 38.8±0.5 3.905±0.083 5.40±0.02 31.8±5.7 11.1±0.1
HD167633 38.0±0.8 3.989±0.079 5.38±0.02 23.4±3.3 11.4±0.1
HD12993 39.2±0.6 3.873±0.075 5.11±0.02 17.7±2.9 7.9±0.1
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HD93222AB 36.8±0.7 4.023±0.115 5.65±0.02 44.0±10.4 16.5±0.2
HD91824 39.8±0.9 3.770±0.136 5.14±0.03 24.6±7.1 7.8±0.1
HD93146A 38.7±0.6 3.901±0.075 5.58±0.02 48.9±7.0 13.8±0.1
HD242926 39.0±0.7 3.684±0.114 5.42±0.02 56.9±13.9 11.3±0.1
HD152590 38.0±0.5 3.789±0.074 5.01±0.02 17.5±2.3 7.4±0.1
HD35619 37.7±0.6 3.755±0.123 5.62±0.02 77.7±20.1 15.3±0.2
HD135591 35.0±0.5 3.986±0.047 5.24±0.02 18.0±1.9 11.4±0.1
HD94024 34.8±0.5 3.996±0.056 5.20±0.02 14.5±2.4 11.1±0.1
HD97848 35.6±0.6 3.926±0.067 5.51±0.02 39.2±5.9 15.1±0.1
HD101223 35.2±0.5 3.956±0.056 5.20±0.02 17.7±1.7 10.7±0.1
HD191978 35.8±0.6 3.796±0.085 4.87±0.02 12.6±1.7 7.1±0.1
HD46966 35.9±0.5 3.770±0.074 5.34±0.01 38.1±6.4 12.2±0.1
HD298429 33.6±1.1 3.945±0.151 5.11±0.04 14.1±4.2 10.6±0.2
HD46149 36.9±0.5 3.428±0.083 5.17±0.02 54.9±11.3 9.3±0.1
TRUMPLER14-9 36.7±0.7 3.549±0.115 4.98±0.02 28.2±6.5 7.6±0.2
HD14633AaAb 35.0±0.5 3.776±0.084 5.24±0.02 28.3±4.8 11.4±0.1
HD93028 35.3±0.7 3.651±0.087 5.22±0.02 38.1±7.5 10.9±0.1
CPD-417733 34.2±0.5 3.866±0.074 5.16±0.02 19.8±3.0 10.9±0.1
CPD-592551 34.9±0.5 3.651±0.056 4.92±0.02 17.7±2.3 7.9±0.1
HD214680 35.2±0.5 3.686±0.047 4.51±0.02 7.5±1.8 4.9±0.1
HD216898 35.9±0.6 3.430±0.114 4.89±0.02 29.9±7.9 7.2±0.1
HD96622 33.3±0.6 3.800±0.114 5.06±0.02 18.5±4.4 10.2±0.1
HD46202 34.9±0.5 3.431±0.074 4.82±0.02 25.6±4.5 7.1±0.1
HD12323 34.2±0.9 3.576±0.186 4.74±0.03 15.7±6.2 6.7±0.1
HD93027 33.8±0.5 3.556±0.075 5.19±0.02 44.1±7.8 11.5±0.1
HD192001 33.0±0.5 3.634±0.057 5.01±0.02 24.1±3.3 9.8±0.1
HD155889AB 34.9±0.7 3.461±0.078 6.21±0.02 605.9±62.2 34.7±0.5
HD38666 33.9±0.5 3.591±0.048 4.50±0.02 7.9±1.8 5.2±0.1
HD34078 34.5±0.8 3.471±0.146 4.75±0.03 20.4±6.6 6.7±0.1
HD207538 32.0±0.5 3.611±0.048 4.70±0.04 11.6±2.0 7.1±0.1
HD36512 33.0±0.5 3.444±0.094 4.34±0.02 7.8±1.6 4.5±0.00

Table A.1: Parameter values used from the empirical
sample. The first columns refers to the name in the Henry
Draper catalog. These values were obtained by Holgado
et al. (2020).
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Figure A.2: Results of the global training analysis. These histograms show the relative error
for the inferred luminosity (log(L/L�)inf) and the value given by the models (log(L/L�)mod)
for the L-training. The bin size follows the Freedman-Diaconis rule (Freedman & Diaconis
1981).
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Figure A.3: Histograms representing the distribution of intrinsic uncertainties associated
with the inference of the radius using the three considered training sets. Red/blue distri-
butions represent the case of the stars located in the upper/lower part of the sHRD (see
Figure 3.1 right panel). In black results for the global sample.
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Figure A.4: Histogram representing the distribution of intrinsic uncertainties associated
with the inference of the luminosity using the L-training. Red/blue distributions represent
the case of the stars located in the upper/lower part of the sHRD (see Figure 3.1 right panel).
In black results for the global sample.
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Figure A.5: Results of the global training with added observational errors. These histograms
show the relative error of the inferred radius (Rinf) with respect to the input value given by
the models (Rmod) for the three types of training variable sets mentioned in Chapter 2. The
bin size follows the Freedman-Diaconis rule (Freedman & Diaconis 1981).

46



0.15 0.10 0.05 0.00 0.05 0.10 0.15
log(L/L )mod-log(L/L )inf

0

20

40

60

80

100

120

# 
st

ar
s

Figure A.6: Results of the global training with added observational errors. This histogram
show the relative error of the inferred luminosity (log(L/L�)inf) with respect to the input
value given by the models (log(L/L�)mod) for the three types of training variable sets men-
tioned in Chapter 2. The bin size follows the Freedman-Diaconis rule (Freedman & Diaconis
1981).
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Figure A.7: Representation of the relative error distribution of the radius for the L-training
and the L&L-training considering ∆log(L/L�) = 0.09. The bin size follows the Freedman-
Diaconis rule (Freedman & Diaconis 1981).
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Figure A.8: Relative error distributions of the added observational errors for the mass
inference, for the three types of training variable sets mentioned in Chapter 2. The bin size
follows the Freedman-Diaconis rule (Freedman & Diaconis 1981).
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Figure A.9: Relative error distributions of the added observational errors for the mass
inference, for the three types of training variable sets mentioned in Chapter 2. The bin size
follows the Freedman-Diaconis rule (Freedman & Diaconis 1981).
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Star Teff (K) log(L/L�) (dex) log(L/L�) (dex) V sini(km/h) M(M�) R(R�)
S1 47065 4.0389 5.860 25.688 66.30 12.840
S2 37008 4.1150 5.862 0 55.86 20.810
S3 30088 4.1162 5.572 17.597 28.60 22.560
S4 42043 3.8215 5.416 0 39.39 96.580
S5 34025 3.8898 5.349 64.020 28.84 13.650
S6 27663 3.9194 5.397 0 30.03 21.800
S7 34427 3.4699 4.787 69.232 20.78 69.800
S8 28800 3.6425 4.927 87.757 19.26 11.710

Table A.2: Parameter values of the 8 mock stars used in the local training analysis.
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