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“On the 16th of January (1833), when the Beagle was ten miles off the N.W. end of St.
Jago (Cape Verde), some very fine dust was found adhering to the under side of the

horizontal wind-vane at the mast-head; it appeared to have been filtered by the gauze
from the air, as the ship lay inclined to the wind. The wind had been for twenty-four
hours previously E.N.E., and hence, from the position of the ship, the dust probably
came from the coast of Africa. The atmosphere was so hazy that the visible horizon

was only one mile distant. During our stay of three weeks at St. Jago (to February 8th)
the wind was N.E., as is always the case during this time of the year; the atmosphere

was often hazy, and very fine dust was almost constantly falling, so that the
astronomical instruments were roughened and a little injured. The dust collected on the

Beagle was excessively fine-grained, and of a reddish brown colour; it does not
effervesce with acids; it easily fuses under the blowpipe into a black or gray bead.”

— Charles R. Darwin, The Quarterly journal of the Geological Society of London
[1846].
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Abstract

Feasibility study of artificial
intelligence techniques applied to

the prediction of dust

This end of degree project constitutes an introduction to the application of
Machine Learning techniques on the prediction of meteorological variables,
concretely, aerosols. It presents a bibliographic review of the role on
atmospheric phenomena played by dust, including not only its main sources,
but the fundamental production mechanisms as well. Furthermore, it presents
a combination of theoretical concepts of Machine Learning algorithms,
mainly based on the guidelines of the book “Hands-on Machine Learning
with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques
to Build Intelligent Systems” [Gér19], and on the courses of “Machine and
Deep Learning” of the University of Standford, taught online at Coursera
[Ng22]. The aim of this project is, therefore, to realize a first approach to
some of the basic algorithms of Machine Learning and put them into practice.
Particularly, after a preprocessing phase of the data, two models with different
artificial intelligence architectures were build up, training and testing them
with different periods. Furthermore, a study of the input variables and the
window sizes has been carried out in order to optimize the performance of
the models. Finally, several analysis of the results obtained from them have
been done, highlighting the strengths and weaknesses of each of them, in
addition to suggesting the basis for future projects in this field. Additionally,
and with the aim of increasing the transversality of this study, two dust
intrusion classifying models have been made, describing not only their main
characteristics, but also the results obtained and their possible improvements.

Keywords: Mineral aerosol, dust source, Machine Learning, Deep Learning,
dust forecast.
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Resumen

Estudio de la viabilidad del uso de
técnicas de inteligencia artificial

para la predicción de calima

El presente trabajo de fin de grado constituye una introducción a la
aplicación de técnicas de aprendizaje automático para la predicción de
variables meteorológicas, concretamente, aerosoles. En él, se presenta una
revisión bibliográfica acerca del papel desempeñado por el polvo en procesos
atmosféricos, sus principales fuentes y los mecanismos de producción
fundamentales. Además, se presenta una combinación de conceptos teóricos
sobre los que se fundamentan los algoritmos de inteligencia artificial, basados
principalmente en las directrices del libro “Hands-on Machine Learning with
Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems” [Gér19], ası́ como en los cursos de “Machine y
Deep Learning” de la Universidad de Standford, realizados online a través de
Coursera [Ng22]. El objetivo del proyecto es, por tanto, realizar una primera
aproximación a alguno de los algoritmos básicos de aprendizaje automático
y ponerlos en práctica. En particular, tras realizar un preprocesamiento de
los datos, se ha procedido a la creación de dos modelos aplicando dos tipos
de algoritmos diferentes, que han sido entrenados y testeados en diferentes
periodos de tiempo. Asimismo, se ha realizado un estudio de las variables de
entrada y de las ventanas de datos, con el objetivo de optimizar el rendimiento
de los modelos. Finalmente, se ha realizado un análisis de los resultados
obtenidos, destacando las bondades y defectos de cada uno de los modelos
aplicados, además de sugerir las bases de futuros proyectos en este campo.
Adicionalmente, y con objeto de aumentar la transversalidad de este estudio,
se ha procedido a crear dos modelos clasificadores de las intrusiones de polvo,
describiendo sus principales caracterı́sticas, los resultados obtenidos ası́ como
las posibles mejoras de los mismos.

Palabras clave: Aerosol mineral, fuentes de polvo, aprendizaje automático,
aprendizaje profundo, predicción de polvo.
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Preface

This work carried out by the undergraduate student Vı́ctor Galván Fraile
constitutes his Final Degree Project at the Physics degree of the University
of La Laguna. It has mainly been developed at the Faculty of Sciences
under the framework of a collaboration scholarship of the MECD (Ministry
of Education, Culture and Sport) carried out in the Earth and Atmosphere
Observation Group (GOTA) of the mentioned institution, under the mentoring
of Dr. Juan Pedro Dı́az González and Dr. Albano José González Fernández.

This project constitutes an approach to the application of Machine
Learning techniques in the prediction of meteorological phenomena.
Particularly, it presents the key role played by dust on the global climate
system and its impact on different fields such as meteorology, biology
and energy production, among many others. Once the real concern of
effectively predicting dust is introduced, a review of the state of the art of
the main dust sources and its production mechanisms is presented, along
with the ability of current models to predict its presence. Then, a revision
of the basic concepts behind Machine Learning is shown, in addition to
the main algorithms and techniques used, and finishing this part with a
brief explanation of the most common evaluation metrics. Consecutively, a
description of the meteorological variables used in this study is presented, as
well as a preprocessing of them. Finally, different Machine Learning models
(fully connected neuronal network and convolutional neuronal network) were
trained and tested, varying their input variables, window sizes and training
and testing periods. Therefore, the aim of this project is to settle the basis for
the application of artificial intelligence techniques to the prediction of dust
intrusions over susceptible lands, with special focus on the Canary Islands.
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Chapter 1

Global overview & state of the art

Resumen
En este capı́tulo se proporciona una breve introducción al concepto de polvo
mineral, incluyendo las principales zonas productoras ası́ como los procesos de
formación de dichas partı́culas. A continuación, se describen tanto los mecanismos
de levantamiento de polvo como los fenómenos meteorológicos que lo propician.
Finalmente, se detallan los tipos de modelos numéricos utilizados actualmente para
la predicción de polvo, sus principales caracterı́sticas e inconvenientes.

1.1 Introduction
Mineral dust is a highly abundant atmospheric aerosol, accounting

for about 35% of the total aerosol mass with diameter smaller than 10
µm [Van17]. It plays a key role in climate forcing by altering the overall
radiation balance in the atmosphere through the scattering and absorption
of radiation at both, solar (short-wave) and terrestrial (long-wave) portions
of the electromagnetic spectrum. Mineral dust could also affect climate
and meteorology by changing clouds formation and lifetime as well as
precipitation processes, acting as droplet or ice condensation nuclei. Dust
has also important implications regarding air quality and public health,
causing respiratory, cardiovascular and infectious diseases [Gri01]. It is
also a great source of iron (Fe), which has an effect on terrestrial and
marine ecosystems. Several studies have highlighted the link of the Amazon
rainforest productivity with the atmospheric deposition of dust emitted from
the Saharan desert ([Lov10], [Swa92]). Therefore, efficient forecasting of the
presence of dust is essential not only to alert the population of its danger, but
also, for instance, to take into account its impact on the production of energy
(i.e., photovoltaic energy).
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CHAPTER 1. GLOBAL OVERVIEW & STATE OF THE ART

Figure 1.1: Map of global dust sources, based on multiple years of satellite
imagery, derived from monthly mean frequency of occurrence (number of
days per month) where the TOMS absorbing aerosol index (AAI) is greater
than 0.7, using those months which best illustrate the configuration of specific
dust sources. Dark brown indicate a range of 21-31 days and yellow indicate
between 7 and 21 days. Additionally, blue arrows show typical dust transport
pathways, based on interpretation of MODIS imagery from Terra and Aqua
satellites [Kni14].

The World’s most important dust sources are located around the so called
“global dust belt”, reaching from northern Africa across the Middle East and
central Asia to northern India [Pro02] (see Figure 1.1). Although mineral
aerosols are in essence natural particles emitted through natural mechanisms,
part of their emissions are due to anthropogenic activities. Natural dust
sources globally account for 75% of emissions, while anthropogenic sources
yield the leftover. It has been estimated that the Saharan desert accounts
for 55% of the global dust emissions [Feu18]. However, only 8% of them
has anthropogenic origins, of which, the vast majority comes from the
Sahel region [Gin12]. Specifically, the Bodélé Depression in Chad has been
identified as the most active dust source in the Sahara, producing almost half
of the mineral aerosols emitted from North Africa [WI09].

Due to the fact that physical and chemical characteristics of mineral dust
are determined by their surface provenance, a huge effort has been made to
identify dust source regions, resulting into different identification techniques.

2



CHAPTER 1. GLOBAL OVERVIEW & STATE OF THE ART

The study of physical properties of dust deposits has been a great tool to
identify aeolian sources for many decades, specifically, the study of loess,
which is a sediment mainly formed by aeolian silt and clay [Muh14]. Other
technique broadly used is the mineralogy of the clay, smaller than 2 µm,
fraction. It has given great results when applied to the characterization of
dust coming from the African continent, due to its geographic origin, with
high illite contents at extratropical latitudes and high kaolinite contents in
tropical latitudes [Muh14]. Linked to this technique appears the geochemical
methods. However, both suffer significantly from temporal and spatial
variability, which means that results may differ when measures are taken at
different times or at different places. Another complementary technique to the
previous ones is the study of the isotopic composition, mainly Neodymium
(Nd), Strontium (Sr) and Lead (Pb), which suffers from the same drawbacks
as the previous techniques. Advances in back-trajectory analyses, which
basically means to analyze the atmospheric trajectories of parcels of air,
have improved the results of the aforementioned dust source characterization
techniques. Last but not least, the use of high-resolution Earth-orbiting
satellite imagery appears, which has played a key role in the identification of
contemporary dust sources. All these different approaches have concluded
that desiccated or ephemeral lakes, high and low relief alluvial and aeolian
systems, are the geomorphic settings most favourable to become dust sources
[Pro02].

The formation of dust-sized mineral particles can be classified into four
processes: volcanogenic, inheritance from fine-grained rocks, physical and
chemical mechanisms of coarse particle reduction [Muh14]. Nevertheless, the
two last processes are by far the most important ones. There is no doubt that
wind erosion only occurs in areas where there is a sufficient supply of sand
and dust. The formation of these sources is not only determined by aeolian
transport, but by weathering and fluvial processes as well [Sha08]. It has been
stated that almost all major present-day dust sources are located in arid or
semiarid geomorphical features, particularly centered over topographic lows
or lands adjacent to topographic highs [Pro02]. Fluvial processes had played
a key role on the formation of present-day dust sources, because they are an
effective producer of fine particles by pulling them apart from the soil matrix
and leading to its deposition in basins or alluvial plains [Sha08]. Indeed,
most dust sources are characterized by the presence of ephemeral rivers and
streams, alluvial fans, playas and salt lakes [Pro02]. As mentioned above,
the Bodélé Depression has been identified as the most persistent dust source
of the Earth. Its origin, as most dust sources, comes from the Pleistocene
(between 2 million to 10.000 years ago) when they were flooded and thick
layers of sediments were deposited during the pluvial phases. Concretely,
lake Mega-Chad occupied the region spanning from actual lake Chad to the
northern edge of the Bodélé Depression. As the waters receded, the silts

3



CHAPTER 1. GLOBAL OVERVIEW & STATE OF THE ART

Figure 1.2: Long-term mean TOMS AAI (x10) over Africa north of the
equator (filled contours) as well as long-term mean precipitation (black
isohyets). West African major dust hot spots are indicated as WA1, WA2 and
WA3; and the Bodélé Depression as BOD [Eng07].

and sediments resting on the lakebed were left to dry under the African sun
[bod22]. These small grains of the silty sand are the main responsible for
the constant dust production in the region. Another key characteristic of
present-day dust sources is that they are almost all located in regions with
annual rainfall under 200-250 mm [Pro02]. In Figure 1.2, the mean TOMS
Aerosol Index, see [NAS22b] for more information about NASA’s Total
Ozone Mapping Spectrometer (TOMS), is represented as well as the isohyets
over North Africa, highlighting the imaginary border of the 200 isohyet. The
results below this line are not accurate enough due to the noise introduced
by the biomass burning that occurs in the Sahel region in the winter months.
However, as the most intense dust sources (called “hot spots”) are located
in regions of the Sahara desert where rainfall is very low, it is very likely
that the annual dust cycle in these regions is, to a large degree, controlled by
changes in near-surface winds [Eng07].
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Figure 1.3: Comparison of different systems of particle-size definition
[Sha08].

1.2 Dust production mechanisms
Having studied the processes of dust-sized mineral particles formation, let

us continue by analyzing the mechanisms of dust production. But first, what
is the difference between sand and dust? Well, both refer to solid inorganic
particles that are derived from the weathering of rocks. While sand is defined
as mineral particles with diameters between 62.5 and 2000 µm, dust are the
particles with diameters smaller than 62.5 µm. The main difference between
them is that dust particles can be readily suspended by wind, whereas sand
particles are rarely suspended and are usually forming sand dunes and ripples
[Kok12]. They are collectively called bedforms, which basically means that
they form at the bottom of a basin at the contact between the sediment and
the air. A schematic view of soil-size distribution is presented in Figure 1.3,
where dust is formed by silt and clay particles.

Aeolian erosion is directly proportional to wind velocity. However, it
only occurs when a certain threshold is exceeded, which is due to the fact
that soil particles are roughly subjected to two forces that hold them to the
surface: their weight and the interparticle cohesion forces. The last one is by
far the most difficult to quantify, because it does not only depend on the type
of particles (Van der Waals and electrostatic forces), but also on the presence
of soil moisture (increasing the cohesive forces by increasing the presence of
water). The existence of non-erodible roughness elements that can partially
or totally cover the surface, could also increase the erosion threshold by
absorbing a fraction of the wind momentum.

5
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Figure 1.4: Scheme of the main modes of aeolian transport [Kok12].

Once this threshold is surpassed, the particles start to move. Their
transport by the wind depend predominantly on particle size and wind
speed, being controlled basically by the balance between their terminal
fall and vertical air velocities. As wind speed increases, the first particles
to be moved by the fluid drag are the ones with diameters near 100 µm.
When lifted over the surface, these particles hop along it, in a process called
saltation. It is crucial for aeolian transport because the impact of these
saltating particles over the surface is strong enough to overcome the binding
forces acting upon dust particles, leading to dust emission in a mode named
sandblasting. The ejected particles, which can also be originated in a process
called auto-abrasion (i.e., the disaggregation of the saltating soil grains), are
susceptible to turbulent fluctuations and generally get involved in short-term
(diameters between 20 and 70 µm) and long-term (diameters smaller than
20 µm) suspension [Kok12]. These long-term particles suspension are the
responsible for dust storms that can travel hundreds or even thousands
of kilometers away from their source regions. The saltating particles can
mobilize particles with diameters bigger than 500 µm, however, due to
their inertia, these particles do not saltate. Instead, they often do small hops
before settling down in the soil, in a mode of transport called reptation.
Alternatively, these big particles can roll along the surface pushed by the
saltating particles as well as the wind drag forces. This last transport mode
is named as creeping. See Figure 1.4 for a schematic view of the above
described transport modes.

Having seen the main actual sources of dust as well as the processes
of dust emission, we have concluded that wind plays a key role in the
way that its speed must surpass a certain threshold to initiate dust ejection.
Therefore, let us continue by describing briefly the atmospheric phenomena

6



CHAPTER 1. GLOBAL OVERVIEW & STATE OF THE ART

which generates these strong wind speeds, covering a wide variety of scales,
including local, regional, synoptic and mesoscale. Dust devils stand out on
the local phenomena, which are formed by turbulent circulations in the dry
convective daytime planetary boundary layer (PBL) over deserts, specially
during summertime [Kni14]. They can cause considerable dust emission
taking into account their reduced size, varying from 10 to 100 meters of
diameter. These characteristics make them very difficult to forecast and,
therefore, to include them on dust weather models. At the regional scale,
the main dust emitting phenomenon is the so called nocturnal low-level
jets (NLLJs). They are horizontal winds produced by the build-up and
decay of the PBL. With low surface winds taking place during the night,
the near-surface air layers are well stratified and, consequently, there is
absence of turbulence. Under these conditions, the air layers above the
near-surface are frictionally decoupled from it and therefore, high wind
speeds may take place. However, this stable stratified situation of the PBL
is broken by convective turbulence produced by the solar heating of the
surface, which takes place after dawn. With these air currents, the previous
decoupled layer, becomes frictionally coupled to the surface and mixes down
low-level jet momentum, reaching its most intense moment at midmorning
(Figure 1.5 a). The breakdown of nocturnal low-level jets has been estimated
to produce almost 60 % of total dust activity over the Sahara [Kok12],
typically occurring under clear skies and low surface wind speed conditions
with northeasterly trade winds (Harmattan flow). Cyclones govern on the
synoptic-scale, and the corresponding mechanisms can be divided into
first, the mobilization of dust by strong momentum from cyclonic surface
winds and, second, its upward mixture to high altitudes by strong turbulence
associated with cyclonic dynamics [Kok12]. This mechanism of dust
uplifting is mainly observed over the Sahara desert in spring months, due to
the presence of the highest temperature gradients between the North African
coast and the Mediterranean Sea. Other relevant synoptic-scale phenomena
are the so called African Easterly Waves (AEWs) as well as the lee-effect on
the mountains (Atlas and Hoggar Mountains). Finally, on the mesoscale, the
main dust emission is produced by deep moist convection and its associated
downdrafts of cold and humid air (Figure 1.5 b). These events are mainly
observed over Northwestern Sahara during the summer monsoon season,
and they are commonly called haboobs. Orography plays a key role in the
formation of this deep moist convection situation. The evaporative cooling of
cloud particles and precipitation can form large scale density currents, which
may be accompanied by high surface wind speeds and commonly, leading to
dust emission [Kok12].

Emission of dust from North Africa follows a seasonal cycle, controlled
by changes in the atmospheric phenomena discussed above, and the
consequently changes in wind regimes. In winter (from November to

7
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Figure 1.5: (a) This diagram shows the nocturnal low-level jet, including
the typical summertime central Saharan wind (solid blue) and potential
temperature (dashed gray) profiles at two different moments of the morning.
(b) This illustration shows the mechanics of a cold pool outflow associated
with a convective system [CHS19].
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February) dust is mainly transported by the northeasterly trade winds from
the north Saharan desert towards the Gulf of Guinea. This wintry transport
often occurs at low-level altitudes (between 1.1 and 3.7 km on average
[BA09]). Meanwhile, in summer, dust production becomes very active in
western Sahara, covering central Mali, Mauritania and southern Algeria.
During this season, dust is carried at higher altitudes (between 1.5 and 5.1 km
on average [BA09]). In Figure 1.6, the mean TOMS aerosol index is depicted
for each month, which highlights the seasonal pattern previously described.

Figure 1.6: Long-term monthly average TOMS AAI (x10) over North Africa
[Eng07].

1.3 Numerical dust models
Models of dust production, transport and deposition are not only used

to forecast the presence of this aerosol in a certain place at a certain
time, but also to study its effect on other meteorological and atmospheric
phenomena like cloud formation and radiative forcing. These models can
be divided into global models, which are commonly used to study the
large-scale patterns of atmospheric dust loads, or regional models, which
have a finer spatial resolution that enables them to capture better the synoptic
and even regional scale dust emission processes discussed above. However,
these models have troubles on representing small-scale features like moist
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convective events, what forces to make a parametrization to include them.
Although they have much higher spatial resolution than global models, they
are still unable to detect local events such as dust devils. Consequently,
the emission of dust may be underestimated in both models. They can
be improved by including soil surface information like surface roughness,
sediment availability, vegetation cover, etc. Due to the remoteness of dust
source areas, these data is mainly taken from satellite imagery, which highly
depends on the spatio-temporal resolution of the satellite as well as the cloud
cover of the study areas.
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Chapter 2

Introduction to Machine Learning

Resumen
En este capı́tulo se muestra una sucinta introducción al aprendizaje automático,
incluyendo los tres principales tipos de modelos y describiendo sus caracterı́sticas.
Seguidamente, se introducen tanto los árboles de decisión como las redes neuronales,
explicando su estructura y sus aplicaciones. A continuación, se detalla la técnica
del aprendizaje conjunto, distinguiendo los diferentes tipos y sus propiedades.
Finalmente, se exponen las diferentes métricas utilizadas para evaluar el desempeño
de cada modelo.

2.1 Machine Learning models
Machine Learning is defined as the field of study that gives computers

the ability to learn without being explicitly programmed [Sam59]. The global
scheme of a Machine Learning system is summarized in Figure 2.1. There
are many different types of Machine Learning systems, which are commonly
classified into three categories based on their supervision:

1. Supervised learning: The algorithm is fed with the features and their
corresponding labels in a process called training. During this process,
the algorithm gradually determines the relationship between features
and their labels. This relationship is called the model, which is no more
than mathematical functions that express the patterns between data and
labels, that are acquired during training and will be afterwards used to
make predictions on new data. Some examples of supervised learning
algorithms are: Linear Regression, Logistic Regression, Support Vector
Machines, Decision Trees, Random Forests and Neural Networks.
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Figure 2.1: Outline of the Machine Learning approach [Gér19].

2. Unsupervised learning: The algorithm is fed with unlabeled data
and its goal is to identify meaningful patterns on it. Some examples
of unsupervised learning algorithms are: k-means and Principal
Component Analysis.

3. Reinforcement learning: The learning system, called agent, observes
the environment, select and perform actions, and get rewards or
penalties in return. The goal is to learn by itself the best strategy, called
policy, to get the most reward over time [Gér19]. They can outperform
humans in playing games or even in driving.

There is a wide variety of Machine Learning applications, covering
from agriculture and crops management [GF20], economics [Nym20] to
meteorology and air pollution ([dG13],[Cho20], [GC21]), among many other
fields.

2.1.1 Decision Trees
A decision tree is a flowchart structure in which each internal node

represents a test on an attribute, each branch represents the outcome of the
test and each leaf node represents a class label. In Figure 2.5, various decision
trees inside another model, called Random Forest, are represented, whose
structure will be later explained . Tree models not only work with discrete
sets of target values (called classification trees), but also with continuous
target values (called regression trees). They are commonly used due to their
simplicity, flexibility and easy interpretable decisions. According to this last
characteristic, they are called white box models. However, their simpleness
could make them little useful for complex tasks.

12
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Figure 2.2: Schematic comparison of a human brain neuron and an artificial
neuron [DP19].

2.1.2 Artificial Neural Networks
The initial idea behind Artificial Neural Networks (ANNs) was to design

an algorithm able to mimic the nervous system of biological organisms. They
are based on a collection of connected units, called artificial neurons. Each
of these connections, called edges, can transmit a signal to other neurons,
like synaptic connections in a biological brain. An artificial neuron receives a
signal, process it and, likely, emits its own signal to other neurons connected
to it. This signal is no more than a real number, and the output of each
neuron is commonly computed by some non-linear function of its inputs. In
Figure 2.2, a comparison between biological and artificial neurons is depicted.
Neurons and edges have weights that are adjusted during training, and they
vary the strength of the signal on a certain connection. Neurons are typically
build up into layers, where the signal travels from the first one (called input
layer) to the last one (called output layer). If the neural network has more
layers than the input and output ones, which are named hidden layers, the
neural network is then called a multi-layer neural network. In Figure 2.3, a
diagram of a 1 hidden layer neural network is shown, including its forward
propagation steps.

Basic unit

Considering a certain neuron, which has x ∈Rn as input values and
w ∈Rn as weights, its output is given by

a = f (wx+b) (2.1)

being b ∈R the bias value and f a non-linear activation function.
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Activation functions

Selecting an appropriate activation function is one of the key parts
when building an ANN. The power besides the use of non-linear activation
functions is that a two-layer neural network can be used as an universal
function approximator. The most common activation functions are:

• Sigmoid: The sigmoid activation function is useful for binary
classification tasks, as it outputs a real value f (z) ∈ [0,1] following
the relationship

f (z) =
1

1+ e−z (2.2)

• ReLU: The Rectified Linear Unit (ReLU) activation function has the
advantage of being fast to compute, which is essential in training deep
neural networks. Its expression is given by

f (z) = max(0,z) (2.3)

There are more complex activation functions, such as the hyperbolic
tangent and the SoftMax (which is no more than a generalization of the
sigmoid function used in the output layer of classification tasks), among many
others.

Loss function and backward propagation

Having seen how the output of the ANN is computed (see Figure 2.3),
let us continue by evaluating how well is this prediction. For this purpose,
it is defined a loss function (also called cost function) over the training set
and update the weights of the different layers by minimizing it. This process
of update, called backpropagation, is based on the derivatives of the loss
function. As with the activation, there are different types of loss functions
and, depending on the particular task, one would be more appropriate than
others. The most common ones are the Mean Squared Error (MSE) for
regression tasks and the Cross-Entropy for classification tasks.

Let us sum up the whole training process: for each training instance, the
algorithm first makes a prediction (forward pass), measures the error, then
goes through each layer in reverse to measure the error contribution from
each connection (backward pass), and finally slightly tweaks the connection
weights to reduce the error [Gér19].

Dropout

Dropout is a commonly used regularization technique for deep neural
networks, which aims to reduce the overfitting of the training set. It is based
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Figure 2.3: Architecture of a 1 hidden layer artificial neural network. The
non-linear activation functions between layers are shown which, in a whole,
represent the feedforward process [DP19].

on “dropping out” some neurons at every training step with a probability
given by the hyperparameter p, which is called the dropout rate [Gér19]. It
can omit units from both, input and hidden layers, meaning that those units
will be ignored during the training step. However, when training has ended,
neurons do not get dropped anymore.

2.1.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a class of neural network that

emerged from the study of the visual cortex of the brain, which have been
widely used not only in image recognition, but in natural language processing
and time series analysis as well. They are multi-layer neural networks with,
at least, one convolutional layer. In Figure 2.4, a basic CNN architecture is
shown. The key idea behind this type of layers is that each neuron is not
connected to every single neuron in the previous layer (like on usual ANNs),
but only to those in its receptive fields. This architecture allows the network
to focus on low-level features at each layer, taking into account the spatial
relationships between separate features.
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Figure 2.4: Schematic illustration of a basic Convolutional Neural Network
architecture.

2.2 Ensemble Learning
Ensemble methods use multiple learning algorithms to obtain a better

predictive performance than the one that would be obtained from any of
its constituent learning algorithms alone. There are roughly three classes of
ensemble learning techniques:

2.2.1 Bagging & Random Forests
Bagging, which is the short of bootstrap aggregating, is an ensemble

learning technique that trains the same algorithm for every predictor, almost
always decision trees, training them on different random subsets of the
training set. The outputs made by each predictor are then combined using
statistics, such as voting or averaging. The general structure of this type of
algorithm is depicted in Figure 2.5. To generate the different random subsets
from the same training set, there are two main approaches: bagging and
pasting. The difference between them is just that with bagging, the sampling
is performed with replacement. Thus, in this case, each training instance
can appear several times for the same predictor. As mentioned above, a
Random Forest is an ensemble of Decision Trees, generally trained via the
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Figure 2.5: Diagram of the general structure of a Random Forest model.

bagging method. They outperform Decision Tree algorithms because they are
less likely to overfit the training set. Although their increased complexity in
comparison with their constituents, they maintain the capacity to measure the
relative importance of each feature.

2.2.2 Stacking
Stacked Generalization is an ensemble method that combines the

predictions from multiple Machine Learning models using the same dataset.
At first, the constituents algorithms are trained, then a combiner algorithm is
trained to make the final prediction using all the predictions made from the
other algorithms as inputs of it.

2.2.3 Boosting
Boosting is an ensemble method that, like the ones before, combines

several weak learners into a strong one. The general idea of it is to train
predictors sequentially, each one trying to correct the performance of its
predecessor. The most common ones are AdaBoost and Gradient Boosting.
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2.3 Performance metrics
Every Machine Learning task requires an evaluation metric in order to

assess the performance of the model. Due to the wide variety of algorithms,
the best performance measure may be different for each of them. Therefore,
it can be split into regression and classification tasks.

2.3.1 Regression metrics
Root Mean Square Error (RMSE)

It is the typical performance measure of a regression problem and gives
an idea of how much error the model makes in its predictions, emphasizing
with higher weight for large errors. It corresponds to the Euclidean norm (l2
norm) and the mathematical formula to compute it is given by

RMSE =

√
1
m

m

∑
i=1

(
y(i)− ŷ(i)

)2 (2.4)

where m is the number of instances in the dataset, ŷ(i) is the predicted value
for the ith instance in the dataset and y(i) is its corresponding label.

Mean Absolute Error (MAE)

MAE is another way to measure the distance between the vector of
predictions and the vector of target values. It is useful when small errors are
more important than large errors and corresponds to the Manhattan norm (l1
norm). The expression to compute this measure is given by

MAE =
1
m

m

∑
i=1

∣∣∣y(i)− ŷ(i)
∣∣∣ (2.5)

where the symbology is the same as for the previous metric.

2.3.2 Classification metrics
Accuracy

This metric consists in the ratio between the correct predictions and the
total number of predictions made. This correlation can be expressed by

accuracy =
# correct predictions

Total number of predictions made
(2.6)
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Confusion Matrix

Due to its simplicity, accuracy penalizes in the same way the errors
committed when misclassifying any of the two classes, which in some cases
will not be useful at all. Otherwise, a confusion matrix presents more detailed
and schematic information about the model performance. Its general structure
is depicted in Table 2.1.

Truth label
Positive Negative Total

Model Prediction Positive T P FP T P+FP
Negative FN T N FN +T N

Total T P+FN FP+T N

Table 2.1: Confusion matrix diagram where TP=true positive, FP=false
positive, FN=false negative and TN=true negative.
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Chapter 3

Methodologies

Resumen
En el presente capı́tulo, se muestra la localización del estudio ası́ como las
caracterı́sticas de las bases de datos utilizadas como entradas y validación de los
distintos modelos. Se describen tanto los datos de polvo como los de las distintas
variables meteorológicas utilizadas. Seguidamente, se realiza un análisis de la
variabilidad y estacionalidad de los datos de polvo. Posteriormente, se muestra
el mapa de erodibilidad de la zona en estudio [Gin01] ası́ como las condiciones
sinópticas propiciadoras de las invasiones de polvo en las Islas Canarias. Finalmente,
se describen las técnicas utilizadas para reescalar y dividir los datos, además de una
descripción de los modelos utilizados.

3.1 Study location & data
The study location is a point situated between the islands of Tenerife

and Gran Canaria (Spain), concretely, at 28ºN and 16.25ºW (see Figure
3.1). The election of this location is due to its position in the middle of the
Canary Islands, serving as a generalizer of dust concentrations in the whole
archipelago. For the aforementioned point both, the dust load on the whole
air column as well as the dust concentrations at two pressure levels (over the
surface and at 750 hPa) have been taken. These dust data have been obtained
from the Modern-Era Retrospective analysis for Research and Applications 2
(MERRA-2) [mer21]. The main advantages of this data set is that it provides
data since 1980 and it also has a relatively high spatial (½° latitude by ⅝°
longitude) and temporal (hourly) resolutions. In this study, daily mean time
series have been created from these data.

Reanalysis is essential due to the fact that there is a great abundance
of meteorological and geophysical data, obtained by modern observation
methods (weather stations, weather balloons, aircrafts, ships, satellites, etc).
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However, these observations are not evenly distributed around the globe.
Therefore, reanalysis combines observations with weather models, creating
a complete picture of the past weather. In this way, MERRA-2 reanalysis
is produced by combining GEOS-5 (Goddard Earth Observing System
v.5) atmospheric model with a 3D variational data assimilation algorithm
(3DVAR) to ingest observational data. In the case of aerosols, MERRA-2
assimilates aerosol optical depth (AOD) using data obtained by different
sensors on board satellites, such as, the Advanced Very High Resolution
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer
(MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and also from
ground-based remote sensing measurements, specifically, from Aerosol
Robotic Network (AERONET) data sets. To take into account aerosol
processes, GEOS-5 is radiatively coupled to the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) module.

Furthermore, data from ERA5 reanalysis [era21] have been taken as input
features to the model. ERA5 takes data since 1979 to present in a grid with
a horizontal resolution of 0.25º x 0.25º, at 37 different levels of vertical
resolution and with a temporal resolution of one hour. Concretely, in this
study, the variables taken from the ERA5 are:

• U-component of the wind [m/s]: Eastward component.

• V-component of the wind [m/s]: Northward component.

• Temperature [K]: Air temperature.

• Relative Humidity [%]: Water vapour pressure as a percentage of the
value at which the air becomes saturated, which is the point at which
water vapour begins to condense into liquid water or deposition into
ice.

• Total Precipitation [m]: Accumulated liquid and frozen water,
comprising rain and snow, that falls to the surface of the Earth.

• Total column vertically-integrated water vapour [kg/m2]: Total amount
of water vapour in a column extending from the surface of the Earth to
the top of the atmosphere.

Due to data availability of the two data sets, the study period comprises
from 1980 to 2020. In spite of the great amount of meteorological data
provided by ERA5 in the study region, the original spatial resolution has
been degraded to a 2º x 2º grid, as shown in Figure 3.1. Additionally, the
12:00 UTC value of ERA5 variables have been taken as representative for
each day.
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Figure 3.1: Map of the African continent with the grid of points from which
ERA5 data have been used as well as the study location, marked with a red
cross at 28ºN and 16.25ºW.

3.2 Data preprocessing
3.2.1 Dust measurements

As it was mentioned in Section 3.1, the dust concentrations data set
consists of measurements of this variable at two pressure levels. In Figure
3.2, a representation of the dust concentrations over the year 2020 is
displayed. There is a seasonal pattern of dust invasions, whilst in Winter
the dust is mainly transported at low altitudes, in Summer this tendency is
the opposite, carrying the dust mainly at high altitudes (over the inversion
layer, Saharan Air Layer). However, these trends are very generic and
could not be quite accurate, as can be seen in Figure 3.2 in some days
of the Summer months. To see the aforementioned trends, the monthly
mean dust concentrations over the whole data set (from 1980 to 2020) have
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Figure 3.2: Dust concentrations at two pressure levels on 2020 for the study
location.

been estimated and depicted in Figure 3.3, where this tendency is easily
distinguishable. As with the dust concentrations, the monthly mean dust
loads over the whole study period have been computed, getting the results
represented in Figure 3.4. The dust load trend is similar to the one of the 750
hPa dust concentration in the way that both reach their maximum during the
Summer months.

Huge efforts have been made to characterize the main dust sources. One
of the most relevant results was obtained by [Gin01], which took into account
both, topography and vegetation, to create a source function. Using it, the
source map shown as the base map in Figure 3.5 has been composed.

Wind speed

A typical synoptic condition of the surface wind on a dust day (23-2-2020)
is shown in Figure 3.5, where the strong easterly winds over the Saharan
region produces a high surface dust concentration peak on the Canary Islands,
which can be seen in Figure 3.2. Additionally, in Figure 3.6 is depicted the
image taken for the same day from the WorldView-2 satellite [NAS22a],
where the dust plume coming from West Sahara towards the Canary Island
can be clearly seen.
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Figure 3.3: Monthly average dust concentrations at two pressure levels for the
study location.

Figure 3.4: Monthly average dust load on the whole air column for the study
location.
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Figure 3.5: Surface wind map in the study region for the day 23-2-2020
(high dust intrusion) with the erodibility mask provided by [Gin01], where
the length and orientation of the arrows indicate the wind intensity and the
direction in which the wind blows, respectively.

3.2.2 Feature scaling
Most Machine Learning models are sensitive to feature scaling,

specifically those algorithms that make use of gradient descent as the
optimization technique. This is produced because the difference in ranges
of features may cause different step sizes for each of them, which will slow
down the process of converging to the minima. Normalization is a commonly
scaling technique in which values are shifted and rescaled, ending up with
values between 0 and 1, by using its maximum and minimum values. The
mathematical expression for this process is given by

x′ =
x− xmin

xmax− xmin
(3.1)
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Figure 3.6: WorldView-2 image [NAS22a] with the wind map of the day
23-2-2020 over Northwest Africa, where the wind speed scale is the same
as in Figure 3.5.

3.2.3 Data splitting
In Machine Learning models, the main reason to apply data splitting is to

avoid overfitting, which basically means that the model fits the training data
very well but fails to generalize them effectively, obtaining poor performances
on the test set. The original data are divided into:

• Training set: Is the portion of data used to train the model. In this
case, the training set ranges from the first date 1-1-1980 to 12-31-2009
(75%).

• Validation set: Is the data set used to tune the learning process
parameters and also serves as model selection. In this work, the
validation set ranges from 1-1-2010 to 31-12-2014 (10%).

• Test set: Is the portion of data used to test the final model. It acts as an
evaluation of the final model performance. In this project, the test set
ranges from 1-1-2015 to 31-12-2020 (15%).

There are other alternative split techniques such as k-fold cross-validation.

26



CHAPTER 3. METHODOLOGIES

3.3 Machine Learning models
Throughout this work, different Machine Learning techniques have been

applied, namely Decision Trees, Random Forests and Artificial Neural
Networks. Of all of them, deep neural networks proved to be the best
at predicting dust. Additionally, taking into account its relatively simple
structure, the results obtained with 2 different neural networks are shown
along this project. The first of them will be a classical ANN, while the other
will be another ANN with two convolutional layers. At a first stage, the
hyperparameters were chosen manually looking for the best performance of
the models. Subsequently, an automatic search was applied with the help of
the Keras-Tuner package, thereby obtaining more refined configurations.

3.3.1 ANN (Model 1)
The structure of this model is the one shown in Figure 2.3, adding to it

two additional hidden layers. Its main characteristics are the following:

• First hidden layer. This first hidden layer is formed by 64 neurons with
the ReLU activation function.

• Second hidden layer. The second hidden layer consists of 128 neurons
with the ReLU activation function and dropout (p[2] = 0.01).

• Third hidden layer. The third hidden layer composed of 64 neurons
with the ReLU activation function.

• Output layer. The output layer presents one or two nodes, depending
on if the model is intended to predict dust concentrations at the two
pressure levels mentioned or if it only predicts the dust load on the
whole air column.

Hence, this ANN is composed of 116,610 trainable parameters which
are updated using an Adam optimizer throughout 20 epochs, which are the
number of evaluations of the whole training set 1.

3.3.2 ANN with convolutionals (Model 2)
The specific structure of this model is depicted in Figure 3.7. Its main

characteristics are:

1All the neural networks shown in this project have been programmed in the
Keras-Tensorflow deep learning framework, with the use of the Scikit-Learn package as well.
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Figure 3.7: Model 2 architecture: ANN with two convolutional layers.

• First hidden layer. This first hidden layer is formed by a convolutional
layer with 64 neurons with the ReLU activation function.

• Second hidden layer. The second hidden layer consists of another
convolutional layer with 32 neurons with the ReLU activation function.

• Third hidden layer. This third hidden layer is composed of 64 neurons
with the ReLU activation function.

• Fourth hidden layer. The fourth hidden layer is formed by 128 neurons
with the ReLU activation function and dropout (p[2] = 0.01).

• Fifth hidden layer. The fifth hidden layer is made up of 64 neurons with
the ReLU activation function.

• Output layer. The output layer presents one or two nodes, depending on
if the model is intended to predict dust concentrations at the two levels
mentioned or if it only predicts the dust load on the whole air column.

Therefore, this ANN with convolutionals is composed of 283,362
trainable parameters which are updated using an Adam optimizer along 20
epochs.
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Chapter 4

Results

Resumen
En este capı́tulo se compara la capacidad de predicción de los modelos descritos en
la Sección 3.3 en diferentes periodos de tiempo (invierno, verano y año completo),
habiendo sido entrenados también en diferentes épocas. A continuación, se varı́a
tanto las ventanas de tiempo en las que el modelo toma variables de entrada, como
diferentes magnitudes fı́sicas, comparando los resultados de cada uno de ellos.
Posteriormente, se realiza una pequeña modificación en los mencionados modelos
con la finalidad de que predigan la concentración de polvo tanto en superficie como
en un nivel de presión de 750 hPa. Finalmente, se comparan los errores cometidos en
la predicción de estas dos concentraciones variando los periodos de entrenamiento y
testeo, ası́ como las variables de entrada.

4.1 Dust Load
As a first step, the models described in Section 3.3, fully connected

neural network (Model 1) and convolutional neural network (Model 2),
will be used to predict the dust load in the study location, using not only
different meteorological variables from the previously described data grid
(see Figure 3.1), but also three different training periods: year (whole year
data), winter (December, January, February and March) and summer (June,
July, August and September) as well as different window sizes. To easily
compare the performance of the two models, two statistical variables to
quantify the errors made by each model, which are the ones explained in
Section 2.3.1, will be given. Moreover, the window size refers to the number
of previous days from which data is taken as input features to the model.
The reason behind training the model with different periods is that, as seen
in Section 3.2.1, dust intrusions follow a clearly seasonal pattern, which
may affect the performance of both models. Bearing this in mind, in Figure
4.1, the forecast of both models, using only surface wind speed data for the
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Figure 4.1: Comparison of models performance on dust load forecast for
2015, including the winter and summer periods.

three aforementioned periods, is plotted. To effectively compare the models
accomplishment with different training periods, Table 4.1 has been created,
obtaining that the best whole year performances are achieved when the
models are trained with the whole year data, as expected. However, when
the models are trained with seasonal data (say winter or summer), a slightly
better performance on the same season is reached than the whole year model,
but it fails to generalize well on the other season, getting much worse results.
The large errors obtained when models are trained with summer data and
applied to winter series are remarkable, and more when they are compared
with just the opposite structure, that is, trained with winter data and tested
with summer series.

Afterwards, different window sizes have been tested (see Table 4.2),
obtaining that the best performances are reached when a window size of
5 days lag is taken. Finally, models prediction errors with different input
variables are compared in Table 4.3, where both, surface and 750 hPa wind
speeds as well as them with surface precipitation, seem to be the best entry
variables of the models in order to efficiently forecast the dust loads at the
study location. The worsening of the results for the summer period when
column water content or temperature are included is noteworthy.
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Model Training Period Testing Period RMSE MAE

Model 1

Year
Year 194.48 97.65

Winter 164.81 85.96
Summer 155.24 107.71

Winter
Year 228.98 126.14

Winter 156.54 78.90
Summer 292.12 236.48

Summer
Year 354.53 208.67

Winter 542.88 384.89
Summer 140.82 103.77

Model 2

Year
Year 183.52 89.41

Winter 153.19 76.90
Summer 145.48 97.78

Winter
Year 224.14 114.76

Winter 151.31 74.83
Summer 249.02 180.97

Summer
Year 290.68 161.79

Winter 412.37 262.43
Summer 148.08 106.45

Table 4.1: Comparison of models prediction errors on dust load forecasts on
different time periods with surface wind data and a window of 5 days, where
the given metrics are expressed in mg/m2.

Model Window Size Testing Period RMSE MAE

Model 1

6
Year 198.53 98.66

Winter 198.66 128.24
Summer 204.02 161.74

5
Year 194.48 97.65

Winter 164.81 85.96
Summer 155.24 107.71

4
Year 191.01 99.71

Winter 183.28 98.61
Summer 195.40 129.97

3
Year 251.17 140.82

Winter 231.00 130.82
Summer 263.37 178.30

2
Year 224.65 127.99

Winter 225.45 128.92
Summer 333.72 214.37

(Continues on next page)
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Model Window Size Testing Period RMSE MAE

Model 2

6
Year 188.54 94.14

Winter 180.50 108.81
Summer 172.94 133.48

5
Year 183.52 89.41

Winter 153.19 76.90
Summer 145.48 97.78

4
Year 189.21 96.52

Winter 183.01 97.77
Summer 199.78 130.27

3
Year 249.27 135.20

Winter 228.61 123.65
Summer 256.97 171.02

2
Year 229.01 124.89

Winter 224.33 125.99
Summer 346.91 221.25

Table 4.2: Performance of both models on dust load predictions trained with
surface wind data, the whole year period and different window sizes, where
the shown metrics are given in mg/m2.

Model Input Variables Testing Period RMSE MAE

Model 1

750hPa wind speed
Year 190.27 100.19

Winter 184.36 100.49
Summer 230.80 130.27

Surface and 750hPa
wind speeds

Year 163.74 83.05
Winter 148.36 75.17

Summer 168.16 109.24

Surface wind speed and
total column water content

Year 180.32 98.94
Winter 147.80 81.24

Summer 237.05 150.22

Surface and 750hPa wind speeds
and surface precipitation

Year 168.00 84.13
Winter 159.02 79.68

Summer 148.57 86.58

Surface and 750hPa wind speeds
and temperatures

Year 191.65 108.19
Winter 176.92 108.16

Summer 239.32 144.76

(Continues on next page)
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Model Input Variables Testing Period RMSE MAE

Model 2

750hPa wind speed
Year 184.01 93.27

Winter 176.35 93.70
Summer 223.98 122.32

Surface and 750hPa
wind speeds

Year 166.42 84.01
Winter 152.65 79.16

Summer 169.23 102.36

Surface wind speed and
total column water content

Year 172.87 89.17
Winter 146.82 79.61

Summer 226.74 131.42

Surface and 750hPa wind speeds
and surface precipitation

Year 168.62 84.10
Winter 159.64 79.46

Summer 162.86 97.25

Surface and 750hPa wind speeds
and temperatures

Year 182.89 97.62
Winter 167.71 96.71

Summer 228.70 131.36

Table 4.3: Models prediction accurateness on dust load forecasts trained with
different input variables, the whole year period and a window size of 5 days,
where the displayed performance measures are expressed in mg/m2.

4.2 Dust Concentration
The strong seasonal pattern in dust intrusions over the Canary Islands,

observed in Figure 3.3, suggests to predict the dust concentrations at two
different levels: surface and 750 hPa. For this purpose, the models described
in Section 3.3 have been slightly modified, by changing from 1 to 2 units in
the output layer. As an example, in Figure 4.2, the output dust concentrations
at the two levels for both models are depicted for the year 2019. The model
ability to distinguish the seasonal pattern on dust intrusions stands out, even
more when the lack of day information (for instance, month or julian day)
the model has, is taken into account.

Additionally, the best performances were achieved when a window size of
5 days was taken, as shown in Table 4.2. For this reason, all dust concentration
models have the aforementioned window size. Taking this into account, the
performance of both models on the three testing periods and with different
training periods and input variables are summarized in Table 4.4. As can be
observed, the models prediction accuracy at the two levels are quite similar.
The same seasonal results as with dust loads are obtained (see Section 4.1)
and again, the best global performances are achieved when models are trained
with the whole year. Regarding the input variables, good results are obtained
with all of them, specially with surface wind speed. When the models are
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Figure 4.2: Comparison of models performance on dust concentration
forecast for 2019 at two different pressure levels, including the winter and
summer periods.

trained with surface wind speed or relative humidities as inputs, the results
are similar. However, the simultaneous combination of both variables does not
improve the predictions using the tested models. When dust concentrations at
two different levels are considered, rather than the total column, the prediction
results for the winter season are not so bad when the models are only
trained on the summer data. The exceptional performances obtained with
very different physical input variables suggests the idea to create a global
model made up of specialized algorithms, applying any Ensemble Learning
technique, like those described in Section 2.2.
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Model Input Variables
Training Testing Surface 750 hPa
Period Period RMSE MAE RMSE MAE

Model 1

Surface wind speed Year
Year 55.77 22.94 53.53 23.02

Winter 83.99 35.19 80.69 32.47
Summer 45.39 22.86 46.26 24.37

Surface and 750hPa
wind speeds

Year
Year 57.85 23.06 57.06 22.67

Winter 83.73 33.79 81.36 31.65
Summer 42.45 21.17 43.14 22.05

Winter
Year 69.08 31.88 70.52 33.57

Winter 84.24 34.59 82.36 32.46
Summer 72.75 42.32 79.37 49.84

Summer
Year 75.98 35.33 74.99 35.35

Winter 117.49 61.32 115.17 59.66
Summer 43.05 21.92 43.49 22.97

Surface and 750hPa
relative humidities

Year
Year 60.54 24.55 59.89 24.75

Winter 88.90 35.21 86.99 33.51
Summer 45.73 23.16 46.28 24.90

Surface and 750hPa wind
speeds and relative humidities

Year
Year 56.14 22.40 55.29 22.45

Winter 88.81 33.95 85.05 33.25
Summer 47.97 24.57 47.88 25.51

Model 2

Surface wind speed Year
Year 54.56 22.97 52.67 22.98

Winter 85.45 36.35 76.73 29.52
Summer 43.44 20.97 48.16 26.24

Surface and 750hPa
wind speeds

Year
Year 59.02 23.12 55.58 22.35

Winter 86.06 35.32 77.63 28.96
Summer 41.26 19.84 44.53 23.70

Winter
Year 68.66 30.58 68.57 32.12

Winter 87.19 36.30 78.40 29.75
Summer 67.89 37.23 78.45 48.39

Summer
Year 76.56 33.88 74.14 36.86

Winter 119.60 59.31 112.52 61.75
Summer 41.46 20.48 45.26 24.84

Surface and 750hPa
relative humidities

Year
Year 61.73 24.84 58.52 24.47

Winter 92.51 37.61 82.50 30.74
Summer 43.83 21.72 48.52 26.78

Surface and 750hPa wind
speeds and relative humidities

Year
Year 57.22 22.92 53.93 22.16

Winter 90.36 37.33 81.02 30.41
Summer 45.93 22.65 51.10 28.01

Table 4.4: Performance of the models on dust concentration predictions at
surface and 750 hPa levels with different input variables, training periods and
a window size of 5 days, where the given metrics are expressed in µg/m3.
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Conclusions & Future Work

The goal of this project, based on meteorological data obtained from
reanalysis, was to develop an algorithm capable of predicting the dust
concentration or the dust load over the place of study, located between the
islands of Tenerife and Gran Canaria, in Spain. As a first step, a global
overview of the main dust sources around the world is given, also presenting
the key role that it plays in the Earth lithosphere, atmosphere and biosphere.
A succinct analysis of the dust production mechanisms was given by
reviewing the related literature, paying special attention to those occurring
in northwestern Africa. With this is mind, the fundamental concepts behind
Machine Learning were reviewed, describing the key components of some
of the algorithms as well as the metrics most used to easily compare their
performances on different tasks. Afterwards, the data used to train the models
were described, considering its spatial and temporal resolution, in addition to
the study location position and its importance. Once this step was completed,
it was followed by a preprocessing phase, where the seasonal pattern of dust
intrusions was analyzed. Hereunder, the techniques applied to the data set
were explained as well as the main characteristics of the models used. Finally,
different Machine Learning models were not only trained with different
periods, window sizes and input variables, but also tested on various seasonal
periods. The results obtained were then compared between the models, in
order to establish the best one either to forecast the dust concentration at
the two pressure levels studied or to predict the dust load. Furthermore, a
brief analysis of the use of neural networks acting as classifiers, rather than
regressors, is provided in the Appendix A.

The results obtained throughout this project led to the following
conclusions:

1. Despite the fact of having few meteorological variables as model
input data and no information about orography or lithology, the results
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obtained are remarkable. Specially, the ability of neural networks to
detect patterns in data seems quite impressive, and may lead to a better
understanding of dust events.

2. Surface wind speed has demonstrated to be the best meteorological
input variable to the models in order to predict dust loads.

3. Additionally for dust load, a window size of 5 days lag has resulted of
being the best option to achieve better performances.

4. Models trained with whole year data have turned out to be the ones
that have obtained the best global results. The models trained with
each of the seasons separately provide better results for that period,
but significantly worse results for the other one.

5. When it comes to predicting dust concentrations, both surface wind
speed and relative humidities at the two pressure levels, became the
more convenient input variables, when used independently, to obtain
the finest performances.

At the time of this work, neural networks have been broadly applied to
pollution aerosol forecasts ([dG13], [Cho20], [Pak20]), but few studies exist
on the application of these techniques to the prediction of dust ([GC21],
[Kan19]). However, the results obtained reveal the potential of these
algorithms on these tasks.

Future work of this project will be based on applying other Machine
Learning techniques like ensemble learning or recurrent neural networks, as
well as expanding the data grid to a better spatial and temporal resolution.
Having seen the good performance of the models in predicting dust over
the Canary Islands, it seems very promising that these models will also
achieve good performances in other places with very different meteorological
phenomena. In conclusion, the encouraging results obtained throughout this
project along with the chance of great future improvements on Machine
Learning algorithms, enable the possibility of creating new projects in this
line of research.
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Appendices

A Dust Events Classifier
Resumen
En este apéndice se muestra una breve descripción de uno de los centros regionales,
pertenecientes a la Organización Meteorológica Mundial (WMO), dedicados a la
predicción de aerosoles, concretamente, de polvo. A continuación, se muestra la
predicción realizada por uno de los algoritmos utilizados en dicha institución.
Seguidamente, se describe la estructura de los modelos usados en el presente
proyecto, además de mostrar sus predicciones y los errores cometidos en la
clasificación de los diferentes eventos de polvo.

A.1 General purpose
As it was briefly discussed in Section 1.3, nowadays dust numerical models

are not completely accurate, which may be understood by taking into account
the importance of small-scale features on dust production and the difficulty to
quantify them on global models. One of the leading centers on dust prediction
is the Barcelona Dust Forecast Center, located in the mentioned city, in Spain. It
forms part of the World Meteorological Organization (WMO) by being a Regional
Center specialized on Atmospheric Sand and Dust Forecast. Furthermore, it produces
dust predictions for Northern Africa, Middle East and Europe, which includes dust
surface concentration and dust load, among many other variables. In Figure A.1,
one example of a dust load forecast made by the Multiscale Online Nonhydrostatic
AtmospheRe CHemistry (MONARCH) model is depicted. Its predicted dust load
values are presented as 9 discrete ranges. Concretely, in Table A.1 the dust load
classes are summarized with their corresponding values, as well as the total count of
days in the data set in which each range is being measured. As there are no data from
classes 7 and 8, they will not be included in the following models.

A.2 Model description
Taking all of these into account, the aim of this section is to create a model

able to predict the dust intrusion class, taking the same ones as the MONARCH
model does. The general structure of the model is the same as described in Section
3.3. However, the output layer is changed to a new one made up of 7 neurons

41



Dust Load Dust Load Range Class Total
Class [mg/m2] Data

Class 0 0 - 100 10019
Class 1 100 - 200 1727
Class 2 200 - 400 1589
Class 3 400 - 800 1244
Class 4 800 - 1200 302
Class 5 1200 - 1600 64
Class 6 1600 - 3200 31
Class 7 3200 - 6400 0
Class 8 > 6400 0

Table A.1: MONARCH dust load classes with the total number of them on
the whole dust data set

Figure A.1: Dust Load Forecast for 16-3-2022 from WMO Barcelona
Supercomputing Center [OA22].
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Figure A.2: Comparison of models performance on dust load class forecast
for 2015.

with a different activation function called softmax. This new function generates a
probability of each output class, and then, the one that maximizes the probability is
taken as the predicted one.

Having seen in Section 4.1 that the best results were obtained when a window
size of 5 days lag was taken and trained with whole year data, these conclusions have
been extrapolated to this new model. Apart from these parameters, the surface wind
speed has been taken as input variable. In Figure A.2, the output of both models,
the fully connected neural network (Model 1) and the convolutional neural network
(Model 2), for the year 2015 is plotted. Due to the fact that the output in these
models are classes, the best way to easily compare them and see their accurateness
is to create the confusion matrices, with the structure explained in Section 2.3.2.

In Figures A.3 and A.4, the confusion matrices for models 1 and 2, are shown.
Apart from their main characteristics, the percentages on them corresponds to: the
ones shown inside the matrix (on the classes) refers to the portion of this class
over the total number of classes; the ones shown in green corresponds to the
correct predictions over the total measured (column) or the total predicted on the
corresponding class (row); finally, the red percentages are the complementary of the
ones in green, and has the same meaning but for the incorrect forecasts. By doing a
quick inspection of them, the following characteristics stand out:

• Both models (1 and 2) have an acceptable global accuracy: 72.71 and 73.95
%, respectively.

• The class 0 predictions are quite accurate in both models: 95.87 and 94.18 %.

• Forecasts of class 2 and, specially, class 1 days are the least precise.
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Figure A.3: Analysis of model 1 performance on dust load class forecast on
the test set.

• The class 3 forecasts accuracy is around 60 %, which is slightly lower than the
global one.

• Classes 5 and 6, are not even predicted neither by model 1, nor by model 2,
which could be due to the lack of training data from these classes.

Furthermore, despite the poor results obtained in some classes, the predictions of
them are almost always around. This means that, say the measured value belongs to
class 3, the model output may be between classes 2 and 4, in most cases. Additionally,
and due to the huge amount of class 0 days, the model fails to generalize well
on other less common classes. This problem of limited data of some classes could
be overcomed by applying regularization techniques, which penalizes the algorithm
when it makes certain incorrect predictions.
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Figure A.4: Review of model 2 performance on dust load class forecast on
the test set.
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