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1 Abstract
A study of continuous measurement and quantum decoherence is presented in this work. Starting
from the Schrödinger- von Neumann equation and developing it, a set of stochastic equations will
be obtained such that they describe the behaviour of a system of few degrees of freedom affected
by a bath of many degrees of freedom that is interacting with it. The bath, interpreted here as a
measuring device, will make the system experiment quantum decoherence. The objective of this
work is to analyze the processes of evolution and decoherence of several studied systems, where
the Hamiltonian of the system and the measuring device play opposite roles in the evolution:

while the first tries to make the system evolve, the second one tries to make it collapse. A further
study will be made about the Master Equation of the system and the average final state of it,
which is called asymptotic average state. By doing this analysis the reader shall get a deeper

understanding of the concepts of quantum decoherence and continuous measurement.

2 Resumen
Este trabajo se centra en obtener las ecuaciones que describen sistemas cuánticos de pocos

grados de libertad en interacción con un baño de muchos grados de libertad. Las ecuaciones
expresan esta interacción con dos términos deterministas que presentan dependencia temporal y
de una variable de ruido aleatoria, los cuales se añaden al término del Hamiltoniano del sistema.
Se han elegido dos sistemas cuánticos, un oscilador armónico en el que se mide un observable
proporcional a la energía del sistema y un sistema de dos niveles en el que se miden las componentes
del spin, para ilustrar y estudiar el fenómeno de la decoherencia cuántica.

La decoherencia cuántica es el proceso por el cual un sistema cuántico pierde su coherencia y
pasa a poder ser descrito únicamente en términos clásicos. Este proceso va asociado al concepto
de medida continua, que es conveniente introducir antes de tratar la decoherencia en profundidad.
Típicamente, el tipo de medida que se trata en física cuántica es aquella en la que el sistema se
proyecta sobre uno de los autoestados de un observable dado. Esta clase de medida, denominada
comúnmente medida de von Neumann, es en realidad solo un caso especial de los múltiples tipos
de medidas posibles en física cuántica.
Mientras que una medida de von Neumann proporciona información completa sobre el sistema, es
posible realizar otro tipo de medida que reduzca la incertidumbre inicial acerca del observable que
está siendo medido sin llegar a eliminarla por completo. Suele referirse a esta clase de medidas
como POVMs, acrónimo de positive operator-valued measure, y su interés yace en que pueden
tomarse ciertos valores de parámetros del sistema de forma que éste siga evolucionando después de
la medición. Una medida “fuerte” será aquella en la que la incertidumbre sea baja, mientras que una
medida “débil” será aquella en la que la incertidumbre sea alta. Sabiendo esto es ppsible introducir
las medidas continuas, que consisten en medidas en las cuales se está extrayendo continuamente
información sobre el sistema.

Un sistema cuántico puede representarse a través de la matriz densidad, cuyos términos diagonales
se denominan poblaciones y corresponden, en cierto modo, a la parte clásica del sistema, ya que
equivalen a las probabilidades de hallar al sistema en el estado correspondiente. Los términos no
diagonales se denominan coherencias, y dan cuenta de la parte cuántica del sistema.

El término decoherencia proviene del hecho de que, al proyectarse un sistema sobre un autoestado,
las coherencias se hacen cero, de modo que el sistema pasa a poder ser descrito únicamente en
términos clásicos a través de las poblaciones. Es decir, cuando se realiza una medida fuerte de
un sistema, éste sufre un proceso de decoherencia por el cual sus coherencias, que dan cuenta de
las propiedades cuánticas del sistema, se anulan. Mediante la realización de una medida débil es
posible evitar la decoherencia y hacer que el sistema siga evolucionando después de la medida.

Los sistemas estudiados proporcionarán ejemplos de este tipo de mediciones, siendo posible
alterar sus parámetros para realizar medidas más o menos fuertes y para dar mayor o menor
fuerza al Hamiltoniano. De esta manera, es posible alcanzar puntos de equilibrio y estudiar las
combinaciones que se deseen entre medida fuerte y débil para que el sistema siga evolucionando
después de la medición o bien colapse completamente y se mantenga en el autoestado deseado.
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Previamente a este estudio se realizará el desarrollo de las ecuaciones que describen estos
sistemas, teniendo en cuenta las razones de ruido y las dimensiones de cada término, haciendo
modificaciones si procede para optimizar la obtención de una solución.

Además, se buscará la obtención del estado asintótico promedio, que proporciona las poblaciones
del sistema una vez las coherencias se han hecho cero. El hecho de hallar el estado asintótico
promedio equivale a realizar un cálculo estadístico de las veces que el sistema colapsa a un
autoestado u otro en relación al total. Este porcentaje es equivalente a las poblaciones de la
matriz densidad, que son las componentes no nulas el estado asintótico promedio.
El interés del estado asintótico promedio yace en que es posible alcanzar el resultado expuesto
previamente de forma analítica, evitando así un cáulculo estadístico farragoso. Además, el estado
asintótico promedio hace evidente aquellos casos en los que los parámetros del sistema se han
elegido de tal manera que pueden obtenerse resultados concluyentes, y aquellos en los que no.
Este hecho se debe a que si se da el caso de que el Hamiltoniano no conmute con el observable
que se está midiendo hará al sistema salir de cualquier estado en el que haya colapsado, de modo
que la información que haya podido obtenerse en una medición no es válida, ya que el sistema ha
evolucionado desde entonces. Ésto se refleja en el estado asintótico promedio como una distribución
equitativa de probabilidades entre todos los posibles estados del sistema, lo cual no proporciona
ninguna información de valor. En el caso contrario, cuando el Hamiltoniano conmuta con el
observable que se está midiendo, los autoestados de dicho observable son también autoestados
del Hamiltoniano, por lo que éste no es capaz de sacar al sistema de un autoestado al que haya
colapsado; el sistema permanecerá en el estado en el que colapse siempre que sea autoestado del
Hamiltoniano. En este caso la información que proporciona la medida sí que es de utilidad, ya
que el sistema no evoluciona fuera del autoestado. El estado asintótico promedio describe este
hecho mediante una distribución de probabilidades que no son necesariamente iguales para todos
los estados posibles, sino que dependen de la configuración inicial del sistema.

3 Introduction
Resumen

Se comenzará dando un marco teórico para poder trabajar con los conceptos de medida continua y
decoherencia. A continuación se realizará el estudio de dos sistemas diferentes, un sistema de dos

niveles y un oscilador armónico. En ambos casos se obtendrán las ecuaciones que describen el
comportamiento de dichos sistemas en interacción con un instrumento de medida, y a

continuación se resolverán numéricamente y se analizarán los resultados obtenidos. Para
completar el análisis se obtendrá el estado asintótico promedio, que proporcionará la estadística

de posibles configuraciones del sistema.

Usually when measurement is first introduced to students of quantum mechanics, it is done
without even mentioning the time that the measurement takes to be done; the measurements just
"happens". This concept is enough for a first approach, but it becomes insufficient in two situations:
the first one is when some aspect of the system is being continuously monitored. In this case it
becomes obviously important to know what happens while the system is being measured. The
second situation arises because nothing really happens instantaneously. Even the shortest one-shot
measurement will take some time, and if such time is not small compared to the dynamics of the
system, then it is relevant to understand the dynamics of the flow of information to the observer
and the effect of the measurement on the system.
It then becomes necessary to introduce the concept of continuous measurement, which is a kind of
measurement more general than the typical one-look at the system and that will be developed in
the following sections.
Continuous measurement opens up the possibility of studying and even controlling to some point
quantum decoherence, and it has become increasingly important in the last decades, due mainly to
its application in fields like feedback control in quantum systems, metrology, quantum information
and quantum computing [1-11]. Quantum decoherence is the process by which a system loses its
quantum characteristics (the terms that describe its quantum properties in the density matrix go
to zero) and it becomes possible to describe using classical probabilities. This phenomenon is bond
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to continuous measurement through the importance of both of them in understanding the quantum
to classical transition [12-18].

The structure of this work follows a simple scheme. Some concepts related to continuous
measurement need to be introduced as a base on which further work shall be done; this shall
be developed in section 5, where a general case of a Stochastic Schrödinger Equation will be
developed.
After doing so, two systems are being analyzed: a two level system in section 6 and a harmonic
oscillator in section 7. Both of them are in interaction with a bath of many degrees of freedom,
which can be interpreted as a measuring device as it is used to extract information about the
system. In each of the systems, a preliminary description of the treated system shall be done
first in order to describe general aspects of it, as its Hamiltonian or the observable that will be
measured. Then a quick look at some particular aspects of the equations of the system, as noise or
dimensions, might become necessary, after which such equations will be projected and developed
until they are gotten into a shape which eases their solution.
In both systems the solution is reached by a numerical procedure, and the results are exposed
graphically and explained in order to get to the conclusions, which shall be summarized in section
8.

4 Objectives
Resumen

El objetivo de este trabajo es la obtención de un sistema de ecuaciones que describa el
comportamiento de un sistema cuántico de pocos grados de libertad en interacción con un baño de
muchos grados de libertad para su posterior resolución. Se realizará un análisis de los reusultados

centrándose en los conceptos de medida débil y fuerte de forma que el lector obtenga una
comprensión más profunda de la decoherencia cuántica y del concepto de medida continua.

The obtainment of the equations that describe a quantum system of few degrees of freedom
in interaction with a Markovian bath of many degrees of freedom is the first objective of this
work. Such equation is usually called Stochastic Schrödinger Equation (SSE) or Stochastic Master
Equation (SME), depending on if the system is described with the state vector |ψ(t)⟩ or with the
density operator ρ(t). The equation obtained shall be projected onto the base of eigenstates of the
measured observable in each case: in the two level system the observable Sx, which corresponds
to the x-component of the spin, shall be measured, while in the harmonic oscillator the measure
will be proportional to the energy of the system; the observable measured will be aa†.

The analysis of the obtained results will be done graphically. By changing parameters of the
equations, it is possible to obtain weaker or stronger measurements. In particular, when the factor
k grows, the system will tend to collapse quicker, and the noise will be more noticeable. On the
other hand, the parameter ω (the frequency of the system) is related to the Hamiltonian, which
tends to make the system evolve from any state it is collapsed on.
The evolution of the system is like an aggressive tango where both dancers, the Hamiltonian and
the measuring device, try to prevail over their partner. This study will give the reader a further
understanding of continuous measurement and of how quantum decoherence works.
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5 Theoretical framework

Resumen

En este apartado se pretende establecer el marco teórico en el que se desarrollará posteriormente
el trabajo. Se pretende obtener una ecuación estocástica que describa el comportamiento del
sistema en contacto con un baño de muchos grados de libertad, para lo cual se partirá de la

ecuación de Schödinger- von Neumann. En el desarrollo que conducirá a la ecuación de
Schödinger estocástica se introducirán los conceptos de valor medio, medida continua, pureza,

medida débil y POVM, a parte de dar la definición de matriz densidad y hacer un breve análisis
de sus términos.

The objective of this section is to set the theoretical basis that will later allow to describe the
evolution of quantum systems as they interact with a measuring instrument. For doing so, some
important concepts must be introduced.

The process developed in this section has been extracted from Jacobs [19].

The starting point to obtain the equations required to study such behaviour shall be the
Schrödinger- von Neumann equation

∂tρ = − i

h̄
[H, ρ] . (1)

Equation (1) can be obtained by differentiating the density operator and employing the Schrödinger
equation ih̄∂t|ψ⟩ = H|ψ⟩. The use of the density operator allows to write more general evolution
equations than those implied by state-vector dynamics. The density operator ρ is defined as the
product

ρ = |ψ⟩ ⟨ψ| . (2)

In this case, the information content of the density operator is equivalent to that of the state vector
(except for the overall phase, which is not of physical significance).
The state vector can represent states of coherent superposition. The power of the density operator
lies in the fact that it can represent incoherent superpositions as well. For example, let |ψα⟩ be a
set of states without any particular restrictions. Then the density operator

ρ =
∑
α

pα |ψα⟩ ⟨ψα| (3)

models the fact that it is not known which of the states |ψα⟩ the system is in, but it is known that
it is in the state |ψα⟩ with probability pα. Another way to say it: the state vector |ψ⟩ represents
a certain intrinsic uncertainty with respect to quantum observables; the density operator can
represent uncertainty beyond the minimum required by quantum mechanics. Equivalently, the
density operator can represent an ensemble of identical systems in possibly different states. A
state of the form (2) is said to be a pure state. One that cannot be written in this form is said to
be mixed, and can be written in the form (3).

5.1 Expectation values
Expectation values can be computed with respect to the density operator via the trace operation.

The trace of an operator A is simply the sum over the diagonal matrix elements with respect to
any complete, orthonormal set of states |β⟩ :

Tr[A] :=
∑
β

⟨β|A|β⟩. (4)

An important property of the trace is that the trace of a product is invariant under cyclic
permutations of the product. For example, for three operators,

Tr[ABC] = Tr[BCA] = Tr[CAB]. (5)
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In the case of two operators, working in the position representation, the fact that
∫
d |x⟩ ⟨x| is the

identity operator can be used to see that

Tr[AB] =

∫
dx⟨x|AB|x⟩

=

∫
dx

∫
dx′ ⟨x|A|x′⟩ ⟨x′|B|x⟩

=

∫
dx′

∫
dx ⟨x′|B|x⟩ ⟨x|A|x′⟩

=

∫
dx′ ⟨x′|BA|x′⟩

= Tr[BA].

(6)

The reader shall note that this argument assumes sufficiently ’nice’ operators (it fails, for example,
for Tr[xp] ). Using this property, it is possible to write the expectation value with respect to a
pure state as

⟨A⟩ = ⟨ψ|A|ψ⟩ = Tr[Aρ]. (7)

This argument extends to the more general form of the density operator (3).

5.2 The density matrix
The physical content of the density operator can be seen more clearly when computing the

elements ραα′ of the density matrix with respect to a complete, orthonormal basis. The density
matrix elements are given by

ραα′ := ⟨α|ρ|α′⟩ . (8)

To analyse these matrix elements, the simple form of the density operator ρ = |ψ⟩⟨ψ| shall be
assumed, though the arguments generalize easily to arbitrary density operators. The diagonal
elements ραα are referred to as populations, and they give the probability of being in the state |α⟩:

ραα = ⟨α|ρ|α⟩ = |⟨α | ψ⟩|2. (9)

The off-diagonal elements ραα′ (with α ̸= α′ ) are referred to as coherences, since they give
information about the relative phase of different components of the superposition. For example, if
the state vector is written as a superposition with explicit phases,

|ψ⟩ =
∑
α

cα|α⟩ =
∑
α

|cα| exp (iϕα) |α⟩, (10)

then the coherences are
ραα′ = |cαcα′ | exp [i (ϕα − ϕα′)] . (11)

The reader shall notice that for a density operator not corresponding to a pure state, the coherences
in general will be the sum of complex numbers corresponding to different states in the incoherent
sum. The phases will not in general line up, so that while |ραα|2 = ρααρα′α′ for a pure state, for
a generic mixed state it is expected |ραα′ |2 < ρααρα′α′ (α ̸= α′) .

5.3 Purity
The difference between pure and mixed states can be formalized in another way. It is important

to notice here that the diagonal elements of the density matrix form a probability distribution: the
populations express probabilities. Proper normalization thus requires

Tr[ρ] =
∑
α

ραα = 1. (12)

It is possible to do the same computation for ρ2 and purity will be defined as Tr
[
ρ2
]
. For a pure

state, the purity is simple to calculate:

Tr
[
ρ2
]
= Tr[|ψ⟩⟨ψ | ψ⟩⟨ψ|] = Tr[ρ] = 1. (13)
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But for mixed states, Tr
[
ρ2
]
< 1. For example, for the density operator in (3) purity will be

Tr
[
ρ2
]
=

∑
α

p2α, (14)

if the states |ψα⟩are assumed to be orthonormal.
For equal probability of being in N such states, Tr

[
ρ2
]
= 1/N . Intuitively, then, it is possible to

see that Tr
[
ρ2
]

drops to zero as the state becomes more mixed, that is, as it becomes an incoherent
superposition of more and more orthogonal states.

5.4 Weak measurements and POVMs
In undergraduate courses the only kind of measurement that is usually discussed is one in

which the system is projected onto one of the possible eigenstates of a given observable. If these
eigenstates are written as {|n⟩ : n = 1, . . ., nmax}, and the state of the system is |ψ⟩ =

∑
n cn|n⟩,

the probability that the system is projected onto |n⟩ is |cn|2. In fact, these kinds of measurements,
which are often referred to as von Neumann measurements, represent only a special class of all the
possible measurements that can be made on quantum systems. However, all measurements can be
derived from von Neumann measurements.

One reason for which it is necessary to consider a larger class of measurements is so we
can describe measurements that extract only partial information about an observable. A von
Neumann measurement provides complete information: after the measurement is performed, it
is known exactly what the value of the observable is, since the system is projected into an
eigenstate. Naturally, however, there exist many measurements which, while reducing on average
our uncertainty regarding the observable of interest, do not remove it completely.

First, it is worth noting that a von Neumann measurement can be described by using a set of
projection operators {Pn = |n⟩⟨n|}. Each of these operators describes what happens on one of the
possible outcomes of the measurement: if the initial state of the system is ρ = |ψ⟩⟨ψ|, then the
nth possible outcome of the final state is given by

ρr = |n⟩⟨n| = PnρPn

Tr [PnρPn]
, (15)

and this result is obtained with probability

P (n) = Tr [PnρPn] = cn , (16)

where cn defines the superposition of the initial state |ψ⟩ given above. It turns out that every
possible measurement may be described in a similar way by generalizing the set of operators.
Suppose a set of mmax operators Ωm is picked, the only restriction being that

∑mmax

m=1 Ω†
mΩm = I,

where I is the identity operator. Then it is in principle possible to design a measurement that has
N possible outcomes,

ρr =
ΩmρΩ

†
m

Tr
[
ΩmΩ†

m

] , (17)

with
P (m) = Tr

[
ΩmρΩ

t
m

]
, (18)

giving the probability of obtaining themth outcome. Each of these more general measurements may
be implemented by performing a unitary interaction between the system and an auxiliary system,
and then performing a von Neumann measurement on the auxiliary system. Thus all possible
measurements may be derived from the basic postulates of unitary evolution and von Neumann
measurement [20,21]. These ’generalized’ measurements are often referred to as POVMs, where
the acronym stands for ’positive operator-valued measure’.

This will now be put into practice to describe a measurement that provides partial information
about an observable. In this case, instead of the measurement operators Ωm being projectors onto
a single eigenstate, they are chosen to be a weighted sum of projectors onto the eigenstates |n⟩,
each one peaked about a different value of the observable. It will be assumed now, for the sake of
simplicity, that the eigenvalues n of the observable N take on all the integer values. In this case is
chosen

Ωm =
1

N
∑
n

exp
[
−k(n−m)2/4

]
|n⟩⟨n|, (19)
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where N is a normalization constant chosen so that
∑∞

m=−∞ Ωt
mΩm = I. It has now been

constructed a measurement that provides partial information about the observable N .
This is illustrated clearly by examining the case where at the beginning there is no information

about the system. In such case the density matrix is completely mixed, so that ρ ∝ I. After
making the measurement and obtaining the result m, the state of the system is

ρr =
ΩmρΩ

t
m

Tr
[
ΩmρΩ

†
m

] =
1

N
∑
n

exp
[
−k(n−m)2/2

]
|n⟩⟨n|. (20)

The final state is thus peaked about the eigenvalue m, but has a width given by 1/k1/2. The larger
k, the less the final uncertainty regarding the value of the observable. Measurements for which k
is large are often referred to as strong measurements, and conversely those for which k is small
are weak measurements [22]. These are the kinds of measurements that will be needed in order to
derive a continuous measurement in the next section.

5.5 A continuous measurement of an observable
A continuous measurement is one in which information is continually extracted from a system.

Another way to say this is that when one is making such a measurement, the amount of information
obtained goes to zero as the duration of the measurement goes to zero. To construct a measurement
like this, time can be divided into a sequence of intervals of length ∆t, so that a weak measurement is
considered in each interval. To obtain a continuous measurement, the strength of each measurement
is made proportional to the time interval, and then taken the limit in which the time intervals
become infinitesimally short.
It is important to remark here that the measurement must be weak. If a strong measurement was
done in each time interval, and the time intervals were becoming smaller, eventually the system
would not be able to go out of any eigenstate once it had collapsed onto it. This block of the
system on the state once ∆t is small enough is called quantum Zeno effect.
To avoid the Zeno effect, the strength of the measurement is made proportional the time interval:
k ·∆t instead of k. By doing so when ∆t tends to zero, the measurement becomes weaker. Under
this conditions, the system has the possibility of evolving. It is, in summary, a very weak continuous
measurement.

In what follows, the measured observable will be denoted by X (i.e. X is a Hermitian operator),
and it will be assumed that it has a continuous spectrum of eigenvalues x. Eigenstates will be
written as |x⟩, so that ⟨x | x′⟩ = δ (x− x′). However, the equation that will be derived will be
valid for measurements of any Hermitian operator.

Time is now divided into intervals of length ∆t. In each time interval, it will be made a
measurement described by the operators

A(α) =

(
4k∆t

π

)1/4 ∫ ∞

−∞
exp

[
−2k∆t(x− α)2

]
|x⟩⟨x|dx . (21)

Each operator A(α) is a Gaussian-weighted sum of projectors onto the eigenstates of X. Here α is
a continuous index, so that there is a continuum of measurement results labelled by α. The fact
that the coefficient of the exponential has k∆t on it means that the Gaussian shall be shorter and
wider the weaker the measurement is, and taller and thinner the stronger the measurement is.
The inclusion of the product k∆t in the Gaussian is called weak measurement approximation or
Bohr approximation, and it implies that in perturbation theory the perturbation development is
be cut in the first term. This is the first approximation necessary to get to the desired equations.

The thing needed to know now is the probability density P (α) of the measurement result α
when ∆t is small. To work this out it is first calculated the mean value of α. If the initial state is
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|ψ⟩ =
∫
ψ(x)|x⟩dx then P (α) = Tr

[
A(α)†A(α)|ψ⟩⟨ψ|

]
, and

⟨α⟩ =
∫ ∞

−∞
αP (α)dα

=

∫ ∞

−∞
αTr

[
A(α)†A(α)|ψ⟩⟨ψ|

]
dα

=

√
4k∆t

π

∫ ∞

−∞

∫ ∞

−∞
α|ψ(x)|2 exp

[
−4k∆t(x− α)2

]
dx dα

=

∫ ∞

−∞
x|ψ(x)|2 dx = ⟨X⟩.

(22)

To obtain P (α) it is now written

P (α) = Tr
[
A(α)†A(α)|ψ⟩⟨ψ|

]
=

(
4k∆t

π

)1/2 ∫ ∞

−∞
|ψ(x)|2 exp

[
−4k∆t(x− α)2

]
dx.

(23)

If ∆t is sufficiently small then the Gaussian is much wider than ψ(x). This means it is possible to
approximate |ψ(x)|2 by a delta function, which must be centred at the expected position ⟨X⟩ so
that ⟨α⟩ = ⟨X⟩ as calculated above. Therefore:

P (α) ≈
(
4k∆t

π

)1/2 ∫ ∞

−∞
δ(x− ⟨X⟩) exp

[
−4k∆t(x− α)2

]
dx

=

(
4k∆t

π

)1/2

exp
[
−4k∆t(α− ⟨X⟩)2

]
.

(24)

α can also be written as the stochastic quantity

αs = ⟨X⟩+ ∆W

(8k)1/2∆t
, (25)

where ∆W is a zero-mean, Gaussian random variable with variance ∆t. This alternate representation
as a stochastic variable will be useful later. Since it will be clear from context, α will be used
interchangeably with αs in referring to the measurement results, although technically it would be
necessary to distinguish between the index α and the stochastic variable αs.

A continuous measurement results if a sequence of these measurements is made and the limit
taken as ∆t→ 0 (or equivalently, as ∆t→ dt ). As this limit is taken, more and more measurements
are made in any finite time interval, but each is increasingly weak. By choosing the variance of
the measurement result to scale as ∆t, it has been ensured that it has been obtained a sensible
continuum limit.

A stochastic equation of motion results due to the random nature of the measurements (a
stochastic variable is one that fluctuates randomly over time). This equation of motion for the
system can be derived under this continuous measurement by calculating the change induced in
the quantum state by the single weak measurement in the time step ∆t, to first order in ∆t (Bohr
approximation). Thus it will be computed the evolution when a measurement, represented by the
operator A(α), is performed in each time step. This procedure gives

|ψ(t+∆t)⟩ ∝ A(α)|ψ(t)⟩
∝ exp

[
−2k∆t(α−X)2

]
|ψ(t)⟩

∝ exp
(
−2k∆tX2 +X

[
4k⟨X⟩∆t+ (2k)1/2∆W

])
|ψ(t)⟩ .

(26)

The fact that |ψ(t+∆t)⟩ is proportional to A(α) |ψ(t)⟩ and not to any time previous to t means
that the future state of |ψ⟩, which is |ψ(t+∆t)⟩, is a function only of the state at time t. This
fact configures a Markovian approximation, which supposes that the state of the system at t+∆t
depends only on the state of the system at t and not on any previous state of the system. The
Markovian approximation is the second approximation done in order to get to the desired results,
and it can be interpreted as that once part of the energy of the system has gone into the bath, it
cannot go back to the system. If, for example, there was a decay where one photon was emitted,
the Markovian approximation assumes that the photon does never come back, so that it cannot

10



undo the decay; the evolution of the atom does not depend then on what happened to the atom
previously but on its actual state.
The exponential is now expanded to first order in ∆t, which gives

|ψ(t+∆t)⟩ ∝
{
1− 2k∆tX2

+X
[
4k⟨X⟩∆t+ (2k)1/2∆W + kX(∆W )2

]}
|ψ(t)⟩ .

(27)

Note that the second-order term in ∆W has been included in the power series expansion for the
exponential. It is necessary to include this term because it turns out that in the limit in which
∆t→ 0, (∆W )2 → (dW )2 = dt.
Because of this, the (∆W )2 term contributes to the final differential equation.
In order to take the limit as ∆t→ 0, it is set ∆t = dt,∆W = dW and (∆W )2 = dt, and the result
is

|ψ(t+ dt)⟩ ∝
{
1−

[
kX2 − 4kX(X⟩

]
dt+ (2k)1/2X dW

}
|ψ(t)⟩ . (28)

This equation does not preserve the norm ⟨ψ | ψ⟩ of the wave function, because before it was
derived it threw away the normalization. An equation that does preserve the norm can easily be
obtained by normalizing |ψ(t + dt)⟩ and expanding the result to first order in dt (again, keeping
terms to order dW 2 ). Writing |ψ(t + dt)⟩ = |ψ(t)⟩ + d|ψ⟩, the resulting stochastic differential
equation is given by

d|ψ⟩ =
{
−k(X − ⟨X⟩)2 dt+ (2k)1/2(X − ⟨X⟩)dW

}
|ψ(t)⟩ . (29)

This is the seeked equation: it describes the evolution of the state of a system in a time interval
dt given that the observer obtains the measurement result

dy = ⟨X⟩dt+ dW

(8k)1/2
(30)

in that time interval.
The measurement result gives the expected value ⟨X⟩ plus a random component due to the width
of P (α), and this is written as a differential since it corresponds to the information gained in the
time interval dt. As the observer integrates dy(t) the quantum state progressively collapses, and
this integration is equivalent to solving (29) for the quantum-state evolution.

The stochastic Schrödinger equation (SSE) in equation (29) is usually described as giving the
evolution conditioned upon the stream of measurement results. The state |ψ⟩ evolves randomly,
and |ψ(t)⟩ is called the quantum trajectory. The set of measurement results dy(t) is called the
measurement record.
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6 System 1: Two level system

Resumen

Una vez establecido el marco teórico, se procede a la obtención de las ecuaciones que describan el
primer sistema: un sistema de dos niveles. Tras una breve introducción en la que se establecen

las propiedades generales del sistema, se realizará un análisis del ruido relativo a la SSE y de sus
dimensiones. Una vez conocidas las dimensiones de cada término se redimensionalizará la

ecuación para hacerla adimensional, lo cual facilitará su posterior resolución. Tras proyectar la
ecuación redimensionalizada en la base de autoestados del observable medido se procederá a la

discusión de resultados. Entre la proyección de la ecuación y la discusión de resultados se realizó
un trabajo que no ha sido incluido en este apartado sino en los éndaipces, que es la resolución de

la ecuación mediante métodos numéricos utilizando un código de Python. Los resultados se
presentarán gráficamente y se analizarán para lograr la comprensión de los procesos que se están
observando y sus implicaciones. Por último se buscará obtener la ecuación maestra estocástica

(SME) y el estado asintótico promedio de forma analítica.

6.1 Introduction
The first system to be analyzed is a two-level system, with the Hamiltonian

H = ωSz , (31)

being ω the frequency of the system and Sz the observable related to the z-component of the spin.
Initially the work will be developed in the base of eigenstates of Sz

{
|+⟩ , |−⟩

}
with Sz acting like:

Sz |±⟩ = ± h̄
2 |±⟩. However, the measured observable shall be Sx, that describes the x-component

of the spin of the system and that does not commute with the Hamiltonian of the system, as
[Sx, Sz] ̸= 0.
Equation (29) was obtained for the observable X, but as mentioned in the beginning of section
5.5, the equation will work for any Hermitian operator, i.e. Sx. It is possible to use equation (29)
for describing the evolution of the system by just changing the observables:

d |ψ⟩ =
{
− i

h̄
Hdt− k(Sx − ⟨Sx⟩)2dt+ (2k)1/2(Sx − ⟨Sx⟩)dW

}
|ψ⟩ . (32)

The first term of the equation, the one with the Hamiltonian on it, gives the effect of the
Hamiltonian on the evolution of the system.. The second term (deterministic) expresses the effect
of the measuring instrument over the system. The third term is an aleatory term due to noise.

6.2 Obtainment of the equations
6.2.1 Noise

The intention is now to analyze the noise term, specifically dW . For dW to be equivalent to
noise two conditions must be imposed:

• ⟨dW ⟩ = 0

•
〈
(dW )2

〉
= ∆t

The reader shall notice that the second condition can be rewritten as:

V ar(dW ) = ∆t ; V ar(dW ) =
〈
(dW )2

〉
− ⟨dW ⟩2 , (33)

where for erasing the second term the first condition was used.
Let ξ be an arbitrary number generated randomly. By definition it will fulfill both ⟨ξ⟩ = 0 and〈

ξ2
〉
= 1. This will allow to re-define dW as

dW = (∆t)1/2 · ξ . (34)

This definition of dW matches in fact with the two conditions established at the beginning of the
section for any noise term:

i) ⟨dW ⟩ =
〈
(∆t)1/2ξ

〉
= (∆t)1/2 ⟨ξ⟩ = 0 (35)
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ii)
〈
(dW )2

〉
=

〈
∆tξ2 = ∆t

〈
ξ2
〉〉

= ∆t (36)

The fact that both conditions (35) and (36) are fulfilled will allow to use definition (34) from
now on in equation (32). This change is convenient as it allows to write the whole equation in
terms of dτ instead of both dτ and dW , which makes much easier its resolution.

6.2.2 Dimensions

A check of the dimensions of equation (32) seems convenient at this point to make sure the
changes done suit correctly. For doing so the three terms of the equation shall be analyzed
separately, taking into account that the three of them must have the same dimensions.

First term: − i
h̄Hdt.

It is known that h̄ has dimensions of energy per time: h̄[=]E · t thus:

− i

h̄
Hdt −→ ad. (37)

Second term: −k(A− ⟨A⟩)2 |ψ⟩ dt
As the first term is adimensional, the second and third terms must be so as well. Obviously
dt has dimensions of time so:

kA2dt[=]ad −→ kA2[=]t−1 . (38)

Third term: (2k)1/2(A− ⟨A⟩) |ψ⟩ dW
This term must be also adimensional. Knowing the dimensions of the second term it is
possible to deduce:

k1/2AdW [=]ad −→ dW [=]t1/2 . (39)

This fact agrees with the characteristics that were set for the noise term in section 5.5, where
(dW )

2
= dt.

6.2.3 Redimensionalizing the equation

A change in the dimensions of equation (32) is convenient now for further calculations. Knowing
the dimensions of it, it is possible to introduce the proper constants so that the terms of the equation
become adimensional, which again will make the calculations easier.

i. (d |ψ⟩)(1) = − i
h̄Hdt |ψ⟩ = − i

h̄ωSzdt |ψ⟩ As seen previously, h̄ has dimensions of E · t, while
ω · Sz has dimensions of energy and trivially dt has dimensions of time. Two dimensionless
quantities shall be introduced now:

S̃z = Sz

h̄

τ = ω · t

Substituting:
(d |ψ⟩)(1) = −iS̃zωdt |ψ⟩ = −iS̃zdτ |ψ⟩ . (40)

ii. (d |ψ⟩)(2) = −k (Sx − ⟨Sx⟩)2 dt |ψ⟩ where Sz has the same dimensions as h̄. The following
quantities are also introduced:

k̃ = h̄2·
k′ = k̃

ω

S̃x = Sx

h̄

Multiplying and dividing by ω and substituting the constants the result is the following:

(d |ψ⟩)(2) = −k (Sx − ⟨Sx⟩)2 dt |ψ⟩ ·
ω

ω
= − k̃

h̄2ω
(Sx − ⟨Sx⟩)2 dτ |ψ⟩ = (41)

= − k′

h̄2
(Sx − ⟨Sx⟩)2 dτ |ψ⟩ = −k′

(
S̃x −

〈
S̃x

〉)2

dτ |ψ⟩
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iii. (d |ψ⟩)(3) = (2k)1/2 (Sx − ⟨Sx⟩) |ψ⟩ dW Following the same procedure as before,this is, multiplying
by h̄/h̄:

(d |ψ⟩)(3) = 21/2k1/2
h̄

h̄
(Sx − ⟨Sx⟩) dW |ψ⟩ = 21/2k1/2h̄

(
S̃x −

〈
S̃x

〉)
dW |ψ⟩ (42)

= 21/2k̃1/2
(
S̃x −

〈
S̃x

〉)
dW |ψ⟩ .

It is convenient now to multiply by ω1/2/ω1/2 in the search for simplicity. Taking into account
that dW = (dt)1/2ξ (as seen in (34) ) and also remembering that τ = ω · t:

(d |ψ⟩)(3) = 21/2k̃1/2
ω1/2

ω1/2

(
S̃x −

〈
S̃x

〉)
(dt)1/2ξ |ψ⟩ = 21/2(k′)1/2

(
S̃x −

〈
S̃x

〉)
(dτ)1/2ξ |ψ⟩ .

(43)

The dimensions of the three terms of the SSE have just been modified to make them adimensional.
Joining them together it is possible to obtain the full redimensionalized SSE:

d |ψ⟩ =
{
−iS̃zdτ − k′

(
S̃x −

〈
S̃x

〉)2

dτ + 21/2(k′)1/2
(
S̃x −

〈
S̃x

〉)
ξ(dτ)1/2

}
|ψ⟩ . (44)

6.2.4 Development of the equations

Until now, the only specification done was the definition of the measured observable as Sx. It
is time now to introduce the information available about the system in the equation (44) in order
to get a set of equations that defines the behaviour of the two level system that is the objective
of study of this chapter. For getting such set of equations, a reasonable first step would be to
project 44 in the base of eigenstates of Sz, which is, as the reader will remember, not the measured
observable but part of the Hamiltonian. This means that the eigenstates of Sz are also eigenstates
of the Hamiltonian, as Sz and H commute.

{
d ⟨+|ψ⟩ = ⟨+| {(44)} |ψ⟩
d ⟨−|ψ⟩ = ⟨−| {(44)} |ψ⟩ (45)

where the notation (44) has been used to mark that the whole equation (44) is put between the
bra and the ket. It is convenient to introduce the also the notation

d ⟨+|ψ⟩ ≡ C+(t) (46)
d ⟨−|ψ⟩ ≡ C−(t) (47)

for simplicity reasons. The reader shall notice that |C±|2 is an expression of the probability of the
system to be in the states |+⟩ or |−⟩.

What has been obtained here is a system of two equations that reproduce how a two level
system behaves. The procedure to calculate the projection over the first equation in (45) can be
again divided in three terms:

dC+ = −idτ ⟨+| S̃z |ψ⟩ − k′dτ ⟨+| (S̃x −
〈
S̃x

〉
)2 |ψ⟩+ (2k′)1/2ξ(dτ)1/2 ⟨+| (S̃x −

〈
S̃x

〉
) |ψ⟩ . (48)

As (48) is written in the base of eigenstates of Sz, it is necessary to write Sx in terms of operators
that act directly on the base of eigenstates of Sz.

Sx =
1

2
(S+ + S−) ,

where:
S± |±⟩ = h̄ |±⟩ .

Taking this into account it is possible to proceed. The reader shall take into account that the
calculations below only include the projections in each term but not the constants on them, which
will be added later to the whole equation. This obviously does not mean that such quantities are
canceled unless it is indicated so.

i.
⟨+| S̃z |ψ⟩ =

1

h̄
⟨+| S̃z |ψ⟩ =

h̄

2h̄
⟨+|ψ⟩ = 1

2
C+(t) (49)
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ii.
⟨+| (S̃x −

〈
S̃x

〉
)2 |ψ⟩ (50)

(S̃x −
〈
S̃x

〉
)2 = S̃x

2
+
〈
S̃x

〉2

− 2S̃x

〈
S̃x

〉
=

1

4
(S̃+ + S̃−)

2 +
〈
S̃x

〉
− ( ˜S+ + S̃−)

〈
˜̃Sx

〉
As (S̃+ + S̃−)

2 = S̃+
2
+ S̃−

2
+ S̃−S̃+ + S̃+S̃−:

⟨+| 1
4
(S̃+ + S̃−)

2 |ψ⟩+ ⟨+|
〈
S̃x

2
〉
|ψ⟩ − ⟨+| (S̃+ + S̃−) |ψ⟩ =

=
1

4

[
������
⟨+| S̃+

2 |ψ⟩+������
⟨+| S̃−

2 |ψ⟩+ ⟨+| S̃−S̃+ |ψ⟩+������
⟨+| S̃+S̃− |ψ⟩

]
+
〈
S̃x

〉2

C+ −
〈
S̃x

〉 [
�����⟨+| S̃+ |ψ⟩+ ⟨+| S̃− |ψ⟩

]
=

=
1

4
C+ +

〈
S̃x

〉2

C+ −
〈
S̃x

〉
⟨−|ψ⟩ = 1

4
C+ +

〈
S̃x

〉2

C+ −
〈
S̃x

〉
C−

iii.

⟨+| (S̃x +
〈
S̃x

〉
) |ψ⟩ = ⟨+| S̃x |ψ⟩ −

〈
S̃x

〉
⟨+|ψ⟩ =

���������
⟨+| 1

2
(S̃+ − S̃−) |ψ⟩ −

〈
S̃x

〉
C+ =

=
1

2
⟨+| S̃− |ψ⟩ −

〈
S̃x

〉
C+ =

1

2
C− −

〈
S̃x

〉
C+

Joining the results obtained for each term and adding again the constants on each of them:

dC+ = − i

2
C+dτ−k′

[
(
1

4
+
〈
S̃x

〉2

)C+ −
〈
S̃x

〉
C−

]
dτ+(2k′)1/2ξ

[
1

2
C− −

〈
S̃x

〉
C+

]
(dτ)1/2 (51)

The result of the second equation in (48) can be obtained by operating in a similar way, taking
into account that Sz |−⟩ = − h̄

2 :


dC+ = − i

2C+dτ − k′
[(

1
4 +

〈
S̃x

〉2
)
C+ −

〈
S̃x

〉
C−

]
dτ + (2k′)1/2ξ

[
1
2C− −

〈
S̃x

〉
C+

]
(dτ)1/2

dC− = i
2C−dτ − k′

[(
1
4 −

〈
S̃x

〉2
)
C− −

〈
S̃x

〉
C+

]
dτ + (2k′)1/2ξ

[
1
2C+ −

〈
S̃x

〉
C−

]
(dτ)1/2

(52)

The upper (52) is a system of differential stochastic equations which solutions represent the
process of decoherence of a two level system in interaction with a measuring device, and with Sx

being the observable measured.
This system of equations has been solved numerically using a Python code, taking into account the
redimensionalization done in 6.2.3, that makes the job much easier. The code created reproduces
the behaviour of the system and shows both the evolution in time of C+ and C− and the evolution
of ⟨Sx⟩, which will both be analyzed in the following section.

The factor 1/2 in the first part of both equations (the Hamiltonian part) at equations (52) was
denoted as ω in the Python code, and it was used to modify the presence of the Hamiltonian in
the evolution of the system, as it will be shown in the next section.

From now on, the elements on equations (52) will be labeled without any accent marks for clarity
purposes, but the reader shall note that the redimensionalization done in section 6.2.3 is still valid
and that the parameters have not changed.

6.3 Discussion of results
The behaviour of the system is intended to be studied now. For making a clear comparison

between the possible cases, the discussion will be divided into the analysis of the case where H = 0
and the case where H ̸= 0.
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A quick look at the general behaviour of the system shall be gotten first:
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Figure 1: Projection of the state of the system in the base of Sz (red and green curves) and mean
value of Sx (cyan curve) for the studies system with an initial state C+ =

√
0.8, C− = −

√
0.2

The red and green lines represent the squared module of the projection of |+⟩ and |−⟩ over
the state of the system, respectively (C+ and C−),which represent the probabilities of the system
of being in each respective state. It is possible to observe that, in the case shown, after some
time fluctuating both lines get together at the value 0.5, which is, they end up having the same
probability of happening. The system has the same probability of going into |+⟩ than going into
|−⟩.
The cyan line represents ⟨Sx⟩, which fluctuates randomly due to the noise term.
The yellow line is the squared norm, which is represented here as a verification: if the calculus are
correct, the squared norm will always be 1.

The initial state here is a lineal combination of C+ and C−, specifically C+ =
√
0.8 and C− =

−
√
0.2.

The presence of both the Hamiltonian and the measuring device is quickly noted on the cyan
curve, that represents the expectation value of Sx. The system was collapsed onto ⟨Sx⟩ ≃ 0.5
for some time. At some point near τ = 3, the Hamiltonian made the system evolve and leave
⟨Sx⟩ = 0.5. A more detailed study of these processes will be done in the incoming sections.

6.3.1 H = 0

The fact that H = 0 implies that the energy of the spin is the same for the two possible values
of the spin.
From now on in this section, the Hamiltonian will be considered to be zero.
Let there the state of the system be at some time |ψ⟩ = |+⟩x, where Sx |+⟩x = h̄

2 |+⟩x. This is
equivalent to saying that the system is one of the eigenstates of Sx.
Obviously, Sx |ψ⟩ = h̄

2 |ψ⟩.
This will also mean that ⟨Sx⟩ = ⟨ψ|Sx |ψ⟩ =x ⟨+|Sx |+⟩x = h̄

2 . What happens to the system then?

d |ψ⟩ = −k
(
Sx − h̄

2

)2

|ψ⟩ dt+ (2k)1/2
(
Sx − h̄

2

)
|ψ⟩ dW .

The reader shall note that the Hamiltonian term has been eliminated as H = 0. Now, as Sx |ψ⟩ =
h̄
2 |ψ⟩:

d |ψ⟩ = −k(0)2 |ψ⟩ dt+ (2k)1/2(0) |ψ⟩ dW −→ d |ψ⟩ = 0 . (53)

The result obtained means that, for any state of the system |ψ(0)⟩, if the system evolves until
reaching a state alike |ψ⟩ ≃ |+⟩x at some time, then d |ψ⟩ = 0, which is the equivalent of saying
that the system does not evolve anymore, as the differential variation of the system is 0.
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Analogously, if |ψ⟩ ≃ |−⟩x −→ d |ψ⟩ = 0. When the system gets close to one of the eigenstates
of Sx, it will stay there. The eigenstates of Sx are the only values that make d |ψ⟩ = 0

In general, the measuring process has the shape:

(Â−
〈
Â
〉
)2 |ψ⟩ dt

(Â−
〈
Â
〉
) |ψ⟩ dW

where the first equation expresses a temporal dependence and the second one a noise dependence
related to the measuring device. When the system gets to a eigenstate of Â, then for the reasons
developed previously d |ψ⟩ = 0.
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Figure 2: Projections in the base of Sz (red and green lines) and mean value of Sx (cyan line) for
k » ω (a stronger presence of the measuring device), which is set by doing H = 0, for a two level
system with initial state C+ =

√
0.8, C− = −

√
0.2

The upper graphic matches the conclusions obtained: the system gets eventually established at
⟨Sx⟩ = −0.5, which is one of the eigenvalues of Sx. As H = 0, the system will stay there. This
is an example of strong measurement: the measuring device has much more presence than the
Hamiltonian in the system, which can be expressed as

k >> ω ,

where k is the factor that appear in the deterministic terms in equations (52) and ω is the factor
used while coding to modify the strength of the Hamiltonian, and that corresponds to the frequency
of the system as exposed in (31).

If the initial state of the system is changed, obviously the results might be different. For example,
it is possible to write the initial state as the symmetric combination of eigenstates of Sx, which
would be:

|ψ⟩ = 1√
2
|+⟩x +

1√
2
|−⟩x .

This initial state can be written in the base of eigenstates of Sz as |ψ⟩ = |+⟩.
The coefficients that must be written as initial values in the code to reproduce this state are
C+ =

√
1.0 and C− = −

√
0.0. The result is:
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Figure 3: Evolution of a two level system for H = 0 with initial state C+ = 1, which is equivalent
to the symmetric combination of eigenstates of Sx

In this case, ⟨Sx⟩ started at 0, just as it was expected as both of its eigenvalues, 0.5 and −0.5,
had the same chance of happening. In order words, the initial state was a combination of |+⟩x and
|−⟩x where both have the same weight.
In this specific run of the code, the system collapsed to ⟨Sx⟩ = 0.5, but it is important to note that
there is the same probability of the system collapsing onto ⟨Sx⟩ = −0.5, as shown below.
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Figure 4: Evolution of a two level system for H = 0 with initial state C+ = 1, with in this case the
system collapsing to ⟨Sx⟩ = −0.5

In both cases (Figures 3 and 4) the red line starts at 1.0 and the green one at 0, which is also
obvious as the initial state was |ψ⟩ = |+⟩.
However, note that the system does not stay in the initial state, as it was not an eigenstate of Sx,
so the process shown at (53) does not happen as the terms between the parenthesis do not get
canceled between them.

As an additional note, it is possible to observe how the measuring time (the time until the system
collapses totally) depends on k−1. For a bigger k, for example k = 5 being previously k = 1, the
system collapses much faster:
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Figure 5: Quick collapse of the two level system for a faster measuring time, with k=5 and initial
state C+ = 1

It is convenient to have a look at what would happen if the initial state was C+ =
√
0.5,

C− = −
√
0.5, that is

|ψ⟩ = 1√
2
|+⟩ − 1√

2
|−⟩ .

Such state of the system corresponds to exactly |−⟩x in the base of eigenstates of Sx. The
system is now expected not to evolve at all, as it is already at one of the eigenvalues of Sx at t = 0
(as shown in (53) ).
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Figure 6: Evolution of a two level system for the initial state |−⟩x, this is, the anti-symmetric
combination of eigenstates of Sx

Indeed, Figure 6 matches perfectly the results expected; the system does not evolve at all.

Obviously, for the initial state C+ =
√
0.5, C− =

√
0.5, which corresponds to |+⟩x in the base

of eigenstates of Sx, the system will stay collapsed at ⟨Sx⟩ = 0.5.
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Figure 7: Evolution of a two level system for the initial state |+⟩x, this is, the symmetric
combination of eigenstates of Sx

Some general conclusions can be obtained from this analysis.
First of all, it has become clear that forH = 0, if the system eventually gets to one of the eigenstates
of the observable measured (Ŝx in this case), it is not capable of further evolution and so it stays
there indefinitely.

However, it is possible to extract a further conclusion. In a general case where H ̸= 0, if the
system gets into an eigenstate of the observable that is being measured Â, the Hamiltonian makes
it evolve out of such eigenstate as it tries to get to the system to an eigenstate of H.

However, if H ̸= 0, but the observable measured Â commutes with H, then each time the system
got into a eigenstate of Â, H would not be capable of getting the system out of it and keep evolving,
as the eigenstate of Â is also an eigenstate of H.
Therefore, a more general statement has been obtained from this analysis:

If
[
H, Â

]
= 0, the system will stay at any eigenstate of Â he gets to.

It is easy to see that this statement involves the previous one, as if H = 0, the obviously it is
true that

[
H, Â

]
= 0.

A deeper understanding on this processes shall be obtained with the analysis done in the following
section.

6.3.2 H ̸= 0

The study detailed in the previous section made obvious that the presence of the measuring
device has the effect of making the system collapse into one of the eigenstates of the observable
measured.
The objective of this section is to analyze the effect of the Hamiltonian in this process. For doing
so, it is mandatory to have a Hamiltonian capable of getting the system out of an eigenstate of the
measured observable, so from now on on this section:

H ̸= 0 and
[
H, Â

]
̸= 0 (54)

To get started and make clear the influence of the Hamiltonian in the system, it might be good
to get a look at the evolution of the system for a random combination of C+ and C− as initial
state, with k = 0 , which is, with no presence of the measuring device.
The initial state chosen is C+ =

√
0.8, C− = −

√
0.2, the same which was used in the previous

section.
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Figure 8: Evolution of a two level system for k = 0 (no presence of the measuring device) and
initial system C+ =

√
0.8, C− = −

√
0.2, showing the projections in the base of Sz (red and green

curves) and the mean value of Sx (cyan curve)

The effect of the Hamiltonian is to make the system oscillate. The eigenstates of the Hamiltonian
are a lineal combination of the states of the observable being measured (Ŝx in this case), so the
Hamiltonian takes the system from one eigenstate of Ŝx to another without letting it stay on them.
In this case ⟨Sx⟩ is oscillating between +0.4 and −0.4. For this to change, it is enough to modify
the initial state.
If, for example, the initial state is set as |x⟩x, which would be C+ =

√
0.5, C− =

√
0.5, then:
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Figure 9: Evolution of a two level system for k = 0 and initial state the symmetric combination of
eigenstates of Sz, which is equivalent to |+⟩x

As expected, now the system starts at ⟨Sx⟩ = 0.5 and the Hamiltonian makes it keep evolving
from 0.5 to −0.5.
Again, the Hamiltonian is not letting the system stay at |+⟩x neither at |−⟩x but forcing it to keep
evolving periodically.

Taking this into account it is possible to make an approach to the case where H ̸= 0 and k ̸= 0
at the same time.
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Figure 10: Evolution of a two level system with presence of both the Hamiltonian and the measuring
device, being the initial state of the system |+⟩x

Figure 10 shows how the system experiments a mixture of the effects of the measuring device,
which tries to make it stay at one of the eigenvalues of Sx, and the Hamiltonian, that tries to take
it out from the eigenvalues of Sx and make it keep evolving.

This confrontation will be more tilted to one side or the other as far as weight is given to the
Hamiltonian term in the equations or to k (the measuring terms).
In a case where

k >> ω

the measure will have clear predominance, as shown in Figure 11.
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Figure 11: Evolution of a two level system for k >> ω, being the initial state of the system |+⟩x

Still it is possible to observe the effect of the Hamiltonian, which from time to time gets to take
the system out of the eigenvalue it is fixed on . However the measure makes it collapse quickly just
after.

In the opposite case, where
k << ω ,
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the system will oscillate from one value to the other with small perturbations in the oscillation due
to the effect of the measure. This effect is shown in Figure 12.
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Figure 12: Evolution of a two level system for k << ω, being the initial state of the system |+⟩x

This is an example of weak measurement: only partial information is obtained from the system,
which allows it not to collapse and to keep evolving.
This kind of measure does not usually provide useful information about the system, as it cannot
be guaranteed that the system will be at the state measured after some time.

In order to see better this phenomenon the difference between H and k can be made smaller, but
keeping H > k. The system will then oscillate with bigger perturbations and eventually collapse
into one eigenvalue and maybe stay close to it for some time, but the system will keep its evolution
after a certain time.
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Figure 13: Evolution of a two level system for k ∼ w. The Hamiltonian has a slightly stronger
presence than the measuring device and the initial state of the system is |+⟩x

As a summary, it can be said that the measuring device constantly tries to make the system
lose coherence while the Hamiltonian constantly tries to make it preserve coherence.

This can also be interpreted as the Hamiltonian "breaking" the measurement, meaning that the
system is weakly measured and some time later the state of the system is not the measured one
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anymore, because the Hamiltonian made the system evolve.

This will happen always that the conditions previously exposed are fulfilled:
[
H, Â

]
̸= 0 and

H ̸= 0.

6.4 Asymptotic Average State
The state of the system can be expressed using the density matrix ρ instead of |ψ⟩. The elements

of the density matrix have the shape

ραα′ = ⟨α| ρ |α′⟩ . (55)

By definition ρ = |ψ⟩ ⟨ψ|, its elements can be divided into populations and coherences, as mentioned
previously on section (5.2).

• The populations (diagonal terms) are related to the real part of the system and are equivalent
to the probabilities of finding the system in the state |α⟩.

ραα = ⟨α| ρ |α⟩ = | ⟨α|ψ⟩ |2 . (56)

• The coherences (non-diagonal terms) are the the non-diagonal terms of the density matrix;
the product between a state and its complex conjugate.

ραα′ = |cαcα′ |ei(ϕα−ϕα′ ) . (57)

The coherences are the the crossed terms in the density matrix; the product between a state
and its complex conjugate.

In a quantum system, both populations and coherences are non-zero. However, in the process of
decoherence, when a system collapses into one of the eigenstates of the observable that is being
measured, the coherences get to zero and the density matrix becomes diagonal.
As mentioned previously, the populations (the only non-zero elements in the density matrix once
the system has lost its coherence) represent the probability of the system of getting into one specific
state.
In order to obtain these values one could make an statistical study, running the Python code
multiple times and then calculating what percentage of the total the system collapsed to one
system or another.

There is, however, another method to obtain the populations, that will also be a verification
of the fact that populations are indeed the probability of finding the system in the corresponding
state.
This analytical method is focused on obtaining the asymptotic average state, which is a state of the
system composed by the states of it reached when the system collapses. The procedure to obtain
it is detailed in the following sections.

6.4.1 Development of the SSE

The SSE (32) can be described as giving the evolution of the state conditioned by the measurement
results.
This development has been extracted from Jacobs [19].
It is possible to write this SSE in terms of the density operator ρ instead of |ϕ⟩. Remembering that
all terms must be kept proportional to dW 2 (as exposed in (36) ) and defining ρ(t+dt) ≡ ρ(t)+dρ,
it is possible to obtain:

dρ = (d |ψ⟩) ⟨ψ|+ |ψ⟩ (d ⟨ψ|) + (d |ψ⟩) (d ⟨ψ|) (58)

=
i

h̄
[H, ρ]− k [Sx [Sx, ρ]] dt+ (2k)1/2 (Sxρ− ρSx − 2 ⟨Sx⟩ ρ) dW .

This is usually referred to as a stochastic master equation (SME ), which (as well as |ψ(t)⟩)
defines a quantum trajectory ρ(t). The advantage of using a SME over using a SSE is that a
the state vector |ψ⟩ only gives uncertainty with respect to quantum observables, while the density
operator represents, apart from this quantum uncertainty, uncertainty over the results of quantum
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trajectories, which can be seen as a classical uncertainty that could be due to, for example, a
mistake on the measuring device at the moment of writing down the result of the measurement.
All previous developments around the SSE have been done assuming efficient measurements, where
this classical uncertainty is considered zero. The reason for this approximation is simplicity: if the
efficient measurement approximation is valid, the SSE allows to solve the evolution of the system
with N+1 differential equations, being N the number of levels of the system (plus 1 because of
the ground level), while the density operator is a NxN matrix, which gives places to (N + 1)2

differential equations that must be solved to obtain the evolution of the system, which is obviously
harder to solve numerically.

The density operator at time t gives the observer’s state of knowledge of the system always that
the measurement record y(t) has been obtained until time t, where the measurement result is given
by

dy = ⟨Sx⟩ dt+
dW

(8k)1/2
. (59)

Since the observer has access to dy but not to dW , to calculate ρ(t) it is necessary to calculate
dW at each time step:

dW = (8k)1/2 (dy − ⟨Sx⟩ dt) . (60)

By substituting this expression in the SME (6.4.1), it is possible to write the evolution of the
system directly in terms of the measurement record, which is the natural thing to do from the
point of view of the observer. This is

dρ =
i

h̄
[H, ρ]− k [Sx [Sx, ρ]] dt+ 4k (Sxρ+ ρSx − 2 ⟨Sx⟩ ρ) (dy − ⟨Sx⟩ dt) . (61)

If the observer makes a continuous measurement, but throws away the information regarding
the measurement results, the observer must average over the different possible results.
Since ρ and dW are statistically independent, ⟨ρdW ⟩ = 0, where ⟨ρdW ⟩ denotes the average
previously mentioned. The result is then given by making zero all terms proportional to ρdW in
equation (6.4.1)

dρ

dt
=
i

h̄
[H, ρ]− k [Sx [Sx, ρ]] , (62)

where the density operator here represents the state averaged over all possible measurement results.
Equation (62) is a Master Equation (ME) (non-stochastic). The method used above to derive the
stochastic Schrödinger equation is an extension of a method initially developed by Caves and
Milburn to derive the non-stochastic master equation (62) [23].

6.4.2 Obtainment of the asymptotic average state

The intention is now to obtain the asymptotic average state ρasympt. For doing so, a base shall
be chosen and the evolution of all the elements of the density matrix ρ will be written in that base.
The base of eigenstates of Sx is a good choice for this.
Two options appear here, set by the previous discussion of results: H = 0 and H ̸= 0. Now, for
H ̸= 0 in the case treated here the Hamiltonian does not commute with the measured observable,
as seen before, which produces that the system keeps jumping from one state to another without
staying in any of them.
The asymptotic average state represents the average of results when the system has ceased to
evolve. For H ̸= 0 this average will not be determined by the initial state or other properties of
the system but for the noise term, which produces the stochastic behaviour of the system. Thus
the asymptotic average state for H ̸= 0 will be just an equal distribution of probabilities between
the possible outcomes of the measurement.
However, the behaviour for H = 0 is different, and will be developed and studied below. After
doing H = 0, equation (62) will have the shape:

dρ = −k [Sx, [Sx, ρ]] = −k
(
S2
xρ− 2SxρSx − ρS2

x

)
. (63)

At t = 0, ρ has the shape:
ρ(t) = |ψ0⟩ ⟨ψ0| , (64)

where
|ψ0⟩ = α |+⟩x + β |−⟩x . (65)
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However, at a later time t:

ρ(t) =

(
x ⟨+| ρ |+⟩x _x ⟨+| ρ |−⟩x
x ⟨−| ρ |+⟩x x ⟨−| ρ |−⟩x

)
(66)

Projecting each element of the matrix in equation (63):


dx ⟨+| ρ |+⟩x = 0

dx ⟨+| ρ |−⟩x = −k4 h̄2

4 x
⟨+| ρ |−⟩x

dx ⟨−| ρ |+⟩x = −k4 h̄2

4 x
⟨−| ρ |+⟩x

dx ⟨−| ρ |−⟩x = 0

(67)

It is known that in order to obtain ρasympt it is necessary to take dρ = 0. Therefore, equaling to
0 each equation in (67):


dx ⟨+| ρ |+⟩x = 0

−k4 h̄2

4 x
⟨+| ρ |−⟩x = 0 =⇒x ⟨+| ρ |−⟩x = 0

−k4 h̄2

4 x
⟨−| ρ |+⟩x = 0 =⇒x ⟨−| ρ |+⟩x = 0

dx ⟨−| ρ |−⟩x = 0

(68)

The first and fourth equations in (68) provide the information that x ⟨+| ρ |+⟩x neither x ⟨−| ρ |−⟩x
(the diagonal terms) change in time. As the diagonal terms are equivalent to the probabilities of
finding the system in |+⟩ and |−⟩ respectively, the fact that they do not change in time means
they are constant, which means they will keep their initial values.

On the other side, the non-diagonal terms, that correspond to equation 2 and 3 in (68), are 0.
Therefore the shape of the asymptotic average state will be:

ρasympt =

[
x ⟨+| ρ |+⟩x 0

0 x ⟨−| ρ |−⟩x

]
(69)

ρasympt defines the state of the system after it has lost its coherence, and shows the percentage
of probability of the system of being collapsed in one state or the other. The calculations done in
this section are the equivalent of doing a statistical average of a high enough number of results as
the ones obtained in section 6.3,and then doing the calculations of the percentage of times over
the total the system ended up in one eigenstate or another. Both methods are equally valid.

For obtaining such probabilities it is only necessary to take into account the shape (69) and
to know the initial state of the system. The coefficients corresponding to the terms on the initial
state will determine the sought probabilities.
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7 System 2: Harmonic Oscillator

Resumen

La estructura de este apartado es idéntica a la del anterior. Comienza con una introducción en la
que se describen las propiedades generales del sistema que se va a estudiar (un oscilador

armónico) y algunas características de los observables involucrados en el estudio que serán de
utilidad posteriormente. En el caso de este sistema los apartados de ruido, dimensiones y

redimensionalización de la ecuación (presentes en el sistema anterior) se han obviado, ya que son
idénticos al caso previo. La obtención de las ecuaciones pasa por proyectar la SSE en la base de

autoestados del Hamiltoniano, tras lo cual se procede a la discusión de resultados. Al igual que en
el sistema de dos niveles, se termina obteniendo el estado asintótico promedio para este sistema.

7.1 Introduction
The study made for the previous system can be extended to other systems, which will make

possible to establish comparisons and to find the differences between the behaviour of the systems.
In this second part the objective is to analyze the behaviour of a harmonic oscillator by measuring
its energy. The Hamiltonian of this system will be

H = h̄ω

(
â†â+

1

2

)
+ b

(
â+ â†

)
, (70)

where â and â† are the operators creation and annihilation respectively; acting together they are
proportional to the energy of the system and ââ† is the observable that will be measured in this
system. h̄ is again the Planck constant, ω the frequency of the system and b a real constant.
The first part of the equation is related to the energy of the system. The observable ââ† is
proportional to the energy of the system, and can be denoted as the number operator N̂ = ââ†.
The number operator act as:

N̂ |n⟩ = ââ† |n⟩ = n |n⟩ , (71)

where {|n⟩} , n = 0, 1, 2... is the base of eigenstates of the Hamiltonian of the harmonic
oscillator and n the eigenvalue associated to each eigenvector. The reader shall note that (71) is
fulfilled due to:

â |n⟩ =
√
n |n− 1⟩ (72)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (73)

Denoting H0 as the first term of the Hamiltonian, H0 = h̄ω
(
â†â+ 1

2

)
:

H0 |n⟩ = h̄ω

(
N̂ +

1

2

)
|n⟩ = h̄ω

(
n+

1

2

)
|n⟩ , (74)

where E = h̄ω
(
n+ 1

2

)
is typically the energy of a harmonic oscillator.

The second term in the Hamiltonian is proportional to the position X̂, and is interpreted as the
effect of the application of an external field which is proportional to position.
The reason of the addition of this term to the Hamiltonian is simple: ââ† is the observable that
will be measured in this case, but

[
H, ââ†

]
=

[
H, N̂

]
= 0. The fact that the number operator

and the Hamiltonian commute means that, when analyzing the behaviour of the system, the same
thing as in the section 6.3.1 will happen: as the eigenstates of the observable measured are also
eigenstates of the Hamiltonian, the Hamiltonian is not capable of taking the system out of a state
once it has collapsed onto it.
For avoiding this, the term b

(
â+ â†

)
is added, so that now

[
H, N̂

]
̸= 0 and the Hamiltonian can

take the system out of the eigenstates of N̂ when the system collapses to them.
Therefore, the cases studied for this system will be those where b = 0 and b ̸= 0, which is equivalent
to saying

[
H, N̂

]
= 0 and

[
H, N̂

]
̸= 0 respectively.
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7.2 Obtainment of the equations
Before getting to analyze the system it is necessary to obtain first the equations that describe

it. The starting point will be equation (32), as the procedure to get to it is identical independently
of the system.
The observable which is being measured in this case is N̂ , so equation (32) will now have the shape

d |ψ⟩ = − i

h̄
H |ψ⟩ dt− k

(
N̂ −

〈
N̂
〉)2

|ψ⟩ dt+ (2k)1/2
(
N̂ −

〈
N̂
〉)

|ψ⟩ dW . (75)

The process of redimensionalization is the same as showed in section 6.2.3. After so, it would
be obtained an equation alike

d |ψ⟩ =
{
−iHdτ − k′

(
Ñ −

〈
Ñ
〉)2

dτ + (2k′)1/2
(
Ñ −

〈
Ñ
〉)

ξ(dτ)1/2
}
|ψ⟩ , (76)

where the accents express redimensionalization. Knowing this, they will be skipped from now on
for clearness reasons, without this meaning a change in the dimensions of the redimensionalized
quantities.

The objective is to obtain a set of equations that describes the behaviour of the system and that
are possible to code in order to obtain numerical solutions. For doing so, the base of eigenstates
of H {|n⟩} will be projected on equation (76).

d ⟨n|ψ⟩ = −idτ ⟨n|H |ψ⟩ − k (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩)2 dτ + (2k)1/2 (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩) ξ(dτ)1/2
(77)

A notation will be introduced here for simplicity:

Cn = ⟨n|ψ⟩ . (78)

Cn is then the projection of the state of the system on the eigenstate |n⟩, and |Cn|2 will express the
probability of finding the system on such state. The reader shall note that, as Cn is proportional
to |ψ⟩, which defines the evolution of the system, then Cn presents time dependence.

Cn = Cn(t) (79)

The terms in equation (77) will now be analyzed separately.

i. −idτ ⟨n|H |ψ⟩

The form of the Hamiltonian (70) shall be introduced here:

⟨n|H |ψ⟩ = h̄ω ⟨n|N |ψ⟩+ h̄ω

2
⟨n|ψ⟩+ b ⟨n| a |ψ⟩+ b ⟨n| a† |ψ⟩ , (80)

where the operators N̂ , â and â† act as (71), (72) and (73) respectively. As in this case a
projection is being done, it is important to also take into account:

⟨n| a = ⟨n+ 1|
√
n+ 1 (81)

⟨n| a† = ⟨n− 1|
√
n (82)

⟨n|H |ψ⟩ = h̄ω · n ⟨n|ψ⟩+ h̄ω

2
⟨n|ψ⟩+ b

√
n+ 1 ⟨n+ 1|ψ⟩+ b

√
n ⟨n− 1|ψ⟩ . (83)

Using the notation introduced in (78):

⟨n|H |ψ⟩ = h̄ω Cn

(
n+

1

2

)
+ b

(√
n+ 1 Cn+1 +

√
n Cn−1

)
. (84)

The first term of equation (77) will then have the shape

− idτ

{
h̄ω Cn

(
n+

1

2

)
+ b

(√
n+ 1 Cn+1 +

√
n Cn−1

)}
. (85)

ii. −k (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩)2 dτ For this case it is important to remember that ⟨N⟩ is actually
a number (even though dependent of time) so it can be taken out of the bra-ket projection.

− kdτ (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩)2 = −k dτ Cn (n− ⟨N⟩)2 . (86)
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iii. (2k)1/2 (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩) ξ(dτ)1/2 The third and last term is similar to the previous
one:

(2k)1/2ξ(dτ)1/2 (⟨n|N |ψ⟩ − ⟨N⟩ ⟨n|ψ⟩) = (2k)1/2ξ(dτ)1/2 Cn (n− ⟨N⟩) . (87)

The equation obtained when putting the three terms together will be the result of the projection
of the base of eigenstates of H on the redimensionalized SSE.

dCn = −idτ
{
h̄ω

(
n+

1

2

)
Cn + b

(√
n+ 1 Cn+1 +

√
n Cn−1

)}
(88)

− k dτ Cn (n− ⟨N⟩)2 + (2k)1/2ξ(dτ)1/2 (n− ⟨N⟩)Cn .

The reader shall note that, as n = 0, 1, 2..., (88) is actually a set of infinite equations. This is
obviously impossible to code or represent, so when coding it was important to look for convergence:
for a given b, the system must not evolve over a certain n.

7.3 Discussion of results
The procedure for solving (88) is similar as the process followed in the study of the previous

system. In this case, (88) will be projected on the base of eigenstates of {|n⟩}. As there exist
a relation between an arbitrary Cn and Cn−1 and Cn+1, the equation for the first level dC0 was
programmed manually, while the other one were done in an iterative way.
It is important to keep an eye on convergence here. The fact that the equation for any Cn contains
a term for Cn+1 would be a convergence problem, so it is important to make sure that the number
of levels N chosen for the system is big enough for the value of b chosen such that the population
of the last level CN is empty and the system does not grow over this level. For making sure this
condition is fulfilled, the Python code included an alert that would spawn any time the population
of the last level grew over 0.001, so that the number of levels can be raised. As an extra check,
the evolution of the last level will be drawn in black in the correspondent graph so that it can be
easily seen that it does not raise over 0.

Three different graphs can be of interest in the case of this system: the expectation value of the
number of energy quanta ⟨N⟩, the evolution of the energy levels Cn(t) and the evolution of the
coherences CiC

∗
j .
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Figure 14: Evolution of some levels (C0, C1, C2 and C3), some coherences (C0 · C∗
1 , C1 · C∗

2 and
C2 · C∗

3 ) and the mean value of N for a harmonic oscillator of initial state C1 = 0.5, C2 = 0.5,
C3 =

√
0.5
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The parameters chosen here are as initial state where C1 = 0.5, C2 = 0.5, C3 =
√
0.5 while all

other Cn are zero, with both k and w being 1 and giving b a low value to guarantee convergence
(b = 0.2). The system was given 10 levels here, but only the lower ones were represented for clarity
reasons. It is important to take into account while coding that in general Cn is an imaginary
number. In this case, the expectation value of N stayed at ⟨N⟩ = 1 most of the time, which
means that the system stayed mostly in the first level (not level 0, but level 1). This fact can be
corroborated easily by just looking at Figure 14(a), where C1 stays most of the time at 1. As the
state of the system is normalized, this fact means that the probability of finding the system in the
first level is almost 1. However, there are some noticeable changes in the evolution of the system.
Approximately between τ = 2 and τ = 3, ⟨N⟩ increases, as well as the probability of finding the
system in the level 2, which can be noticed in the peak suffered in the curve that describes the
evolution of C2. More or less for that value of τ it is noticeable a change in the coherences, whose
values get further from zero as the system stops being collapsed at one single level and the state
vector begins to have presence of more than just one level. The coherences will be non-zero when
the system is evolving and zero when the system collapses to one of the eigenstates of N . This
represents the general behaviour of the system. Once understood, it might be convenient to go on
and have a look at the cases of interest.

7.3.1 b = 0

The discussion of results of the two level system led to a conclusion that is convenient to
introduce here: if

[
H, Â

]
= 0, being Â the observable that is being measured, then once the system

collapses onto an eigenstate of Â it will stay on it. However, if
[
H, Â

]
̸= 0, the Hamiltonian will

make the system evolve out of any eigenstate it collapses onto.
In this case, the first term of the Hamiltonian ω

(
a†a+ 1

2

)
commutes with the observable being

measured N = aa†, but the second term b
(
a+ a†

)
does not. This means that, for this system, the

difference in the behaviour of the system will be noticed for b = 0 and b ̸= 0, which are the cases
for which H commutes and not commutes with N respectively. For b = 0 the quantities represented
graphically look this way:
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Figure 15: Evolution of some levels (C0, C1, C2 and C3), some coherences (C0 · C∗
1 , C1 · C∗

2 and
C2 · C∗

3 ) and the mean value of N for a harmonic oscillator of initial state C1 = 0.5, C2 = 0.5,
C3 =

√
0.5 and b=0, which implies that [H,N ] = 0

where the initial state was the same as in the previous more general case. As expected, it is
noticeable here how the system eventually collapses onto one eigenstate of N (in this case C2) and
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stays there. C2 is now eigenstate not only of N but of H as well since b = 0, so the Hamiltonian
is not capable of taking the system out of one of its own eigenstates to make it continue evolving.
It is possible to observe a process of decoherence here. In Figure 15(b), initially the coherences were
non-zero. At the time when all Cn’s go to zero while C2 grows until 1, approximately for τ = 1.5,
the coherences of the system begin to decrease. By the time the system stays completely at C2,
the coherences are zero and the expectation value stays at 2.0 . The fact that some coherences
stay for some time under 0 is of no particular relevance.
For a longer time, it is possible to check that the system does not grow its coherences back; it stays
in the eigenstate it has collapsed onto indefinitely.
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Figure 16: Evolution of a harmonic oscillator showing the levels C0, C1, C2 and C3, which makes
obvious that once the system collapses it does not evolve out of the state it has collapsed onto.

7.3.2 b ̸= 0

Previously it has been studied the case where b = 0, which makes [H,N ] = 0. In the case where
b ̸= 0, the Hamiltonian H and the number operator N do not commute, so the eigenstates of N are
not eigenstates of H. This fact can be noticed in the following:
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Figure 17: Evolution of some levels (C0, C1, C2 and C3), some coherences (C0 · C∗
1 , C1 · C∗

2 and
C2 · C∗

3 ) and the mean value of N for a harmonic oscillator of initial state C1 = 0.5, C2 = 0.5,
C3 =

√
0.5 and b ̸= 0, which implies that [H,N ] ̸= 0

where b was given again the value b = 0.2.
The system has a clearly different behaviour now. At some points, like at τ = 1, it kind-of collapses
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to one eigenstate (C1 in this case) but it does not stay there but evolves out of it. This can be seen
in Figure 17(c), for the expectation value of N does not stay at any particular value but jumps from
one to another. Even for the moments when the system looks collapsed entirely onto one state,
the coherences are not entirely zero and the expectation value of N keeps having small oscillations.

For a change of parameters, for example a higher k, it is possible to see a similar behavior as in
the two level system.
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Figure 18: Evolution of some levels (C0, C1, C2 and C3), some coherences (C0 · C∗
1 , C1 · C∗

2 and
C2 · C∗

3 ) and the mean value of N for a harmonic oscillator of initial state C1 = 0.5, C2 = 0.5,
C3 =

√
0.5 and b ̸= 0, which implies that [H,N ] ̸= 0. The measuring instrument has a stronger

presence in this case (higher k)

A stronger k makes the system collapse quickly and the Hamiltonian can barely make it evolve.
The peaks the coherences draw over or under zero are due to the moments where the Hamiltonian
gets to take the system out of the level it has collapsed to.
In the same way, for a stronger Hamiltonian:
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Figure 19: Evolution of some levels (C0, C1, C2 and C3), some coherences (C0 · C∗
1 , C1 · C∗

2 and
C2 · C∗

3 ) and the mean value of N for a harmonic oscillator of initial state C1 = 0.5, C2 = 0.5,
C3 =

√
0.5 and b ̸= 0, which implies that [H,N ] ̸= 0. The Hamiltonian has a stronger presence in

this case (higher ω)

The presence of the system in the levels is much more mixed than in the previous cases, and it
can be seen that only after some time the system begins to have more weight in one level.

7.4 Asymptotic Average State
The concept of asymptotic average state developed in section 6.4 can be applied to a harmonic

oscillator as well. The procedure is the same: starting from equation (62), where in this case N is
the observable that is being measured

ρ̇ =
1

ih̄
[H, ρ]− k [N, [N, ρ]] . (89)

it is possible to obtain the asymptotic average state by projecting equation (89) on the base of
eigenstates of H. Two cases that could be treated appear here: the case for b = 0 and the case for
b ̸= 0. The second case, however, where b ̸= 0, does not provide any special information about
the system due to the fact that, as the Hamiltonian does not commute with the number operator,
the asymptotic average state will provide every state possible with the same fraction, equivalent
to the cocient 1

N+1 , being N the number of levels. The reason for adding one is the inclusion of
level zero. There is no information of interest that can be extracted from this conclusion, so for
the exposed reasons the author finds more interesting to develop the case where b = 0.

It is convenient to develop equation (89) in order to ease the later projection.

ρ̇ =
1

ih̄
(Hρ− ρH)− k

(
N2ρ− 2NρN + ρN2

)
, (90)

where, for b = 0,

H = h̄ω

(
a†a+

1

2

)
.

Each projection will have the shape

ρ̇nm = ⟨n| ρ̇ |m⟩ , (91)
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which, as there is a number N of levels, will give place to (N + 1)
2 equations. However, as the

density matrix is symmetric, some elements will be the complex conjugate of others and there will
be need to solve just (N+1)·N

2 equations. The value of N is an election of the reader; here some
of the first combinations for equation (91) will be solved in order to show the procedure and the
general scheme of the results that can be obtained.

ρ̇00 = ⟨0| ρ̇ |0⟩ =

1

ih̄
h̄ω

(
⟨0| a†aρ |0⟩+ ⟨0|0⟩ 1

2
− ⟨0| ρa†a |0⟩ − ⟨0|0⟩ 1

2

)
(92)

−k
(
⟨0|N2ρ |0⟩ − 2 ⟨0|NρN |0⟩+ ⟨0| ρN2 |0⟩

)
=
ω

i

(
1

2
− 1

2

)
= 0 ,

where the relations (71), (72), (73), (81), (82) have been used to solve the behavior of N, a† and a
over the eigenstates.

ρ̇01 = ⟨0| ρ̇ |1⟩ =
1

ih̄
h̄ω

(
⟨0| a†aρ |1⟩+ ⟨0|1⟩ 1

2
− ⟨0| ρa†a |1⟩ − ⟨0|1⟩ 1

2

)
(93)

−k
(
⟨0|N2ρ |1⟩ − 2 ⟨0|NρN |1⟩+ ⟨0| ρN2 |1⟩

)
= −k ⟨0| ρ |1⟩ = −kρ01

The equations for ρ̇11, ρ̇12, ρ̇02 andρ̇22 have been solved and included in Appendix III (10.3).
The result of all six projections must now be equal to zero in order to obtain the asymptotic
average state.

ρ̇00 = 0 = 0 (94)
ρ̇01 = −kρ01 = 0 =⇒ ρ01 = 0 (95)

ρ̇11 = 0 = 0 (96)

ρ̇12 = −
(ω
i
+ k

)
ρ12 = 0 =⇒ ρ12 = 0 (97)

ρ̇02 = −2
(ω
i
+ 2k

)
ρ02 = 0 =⇒ ρ02 = 0 (98)

ρ̇22 = 0 = 0 (99)

It is possible to observe that the projections on all diagonal terms ρ̇ii are zero. This means
that the change in time of those elements is zero, this is

ρasympt
00 = ρ00(0) . (100)

The populations of the density matrix stay as they were in the beginning, which means that
the probabilities of finding the system in one state or another do not change since its initial
configuration. On the other side, the non-diagonal elements ρij have as result ρij = 0. It is
important to note that this conclusion can be reached because, as k and ω are both real there is no
way for the elements between the parenthesis to cancel each other. The fact that the coherences of
the density matrix are zero in the asymptotic average state means, as in the case of the previous
system, that the system eventually suffers a process of decoherence that makes it collapse into one
of the eigenstates of N, making the coherences to be zero.
As in the previous case, the populations of ρasympt give the probabilities of the system to collapse
onto the eigenstate correspondent to each population, which is also given by the initial state of the
system. In this case of lose of coherence the system can be described in classical terms.

8 Conclusions
Resumen

La primera conclusión que puede obtenerse es la importancia de la conmutabilidad del
Hamiltoniano con el observable que se está midiendo. Si conmutan, el Hamiltoniano no será

capaz de sacar al sistema de un estado al que colapse, si no conmutan el Hamiltoniano sacará al
sistema de cualquier autoestado al que colapse y lo hará seguir evolucionando. Por otro lado, el
instrumento de medida tiende a hacer al sistema colapsar; el que tenga mayor presencia entre
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ambos, Hamiltoniano e instrumento de medida, determinará el comportamiento general del
sistema. Por último, cuando el sistema colapsa a un estado las coherencias de la matriz densidad
se hacen cero, haciendo que el sistema pueda ser descrito en términos probabilísticos clásicos a
través de las poblaciones. La medida continua y la medida débil son las herramientas de las que

se dispone para evitar este proceso de decoherencia.

Some conclusions can be drawn after the study over the systems done before. First of all, it is
clear that the commutation of the Hamiltonian with the operator that is being measured is crucial
for understanding the behavior of the system. If H commutes with the measured observable, then
the system will stay indefinitely at any state it has collapsed onto. If H does not commute with
the measured observable, the Hamiltonian will do the work of getting the system of out any state
it collapses onto and make it keep evolving.
This fact gives place to a second conclusion: it is possible to observe a fight between the Hamiltonian
and the many degrees of freedom bath the system is wrapped in, which in this work has been
interpreted as a measuring device. While (if not commuting with the measured observable) the
Hamiltonian makes the system evolve periodically over all possible states, the measuring device
makes the system collapse onto one eigenstate and stay there. Whoever of the two is the strongest
will determine the behaviour of the system.
The third conclusion to get to is the fact that, when the system collapses, it suffers a process
of decoherence where the coherences of the density matrix go to zero, such that the asymptotic
average state will have the probabilities of finding the system on each state in its diagonal and zero
in all non-diagonal terms. Such a system, having lost its coherence, can be described in classical
terms of probabilities. The concepts of continuous measurement and weak measurement are the
tool that can be used to obtain partial information about the system without forcing it to collapse
to one eigenstate.
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10 Appendixes

10.1 Appendix I: Python code for the first system

Figure 20: Python code for the two level system
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10.2 Appendix II: Python code for the second system

Figure 21: Python code for the harmonic oscillator (I)

Figure 22: Python code for the harmonic oscillator (II)
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10.3 Appendix III: Solving of some more projections

ρ̇11 = ⟨1| ρ̇ |1⟩ = 1

ih̄
h̄ω

(
⟨1| a†aρ |1⟩+ ⟨1|1⟩ 1

2
− ⟨1| ρa†a |1⟩ − ⟨1|1⟩ 1

2

)
− k

(
⟨1|N2ρ |1⟩ − 2 ⟨1|NρN |1⟩+ ⟨1| ρN2 |1⟩

)
= (101)

=
ω

i

(
ρ11 +

1

2
− ρ11 −

1

2

)
− k (ρ11 − 2ρ11 + ρ11) = 0

ρ̇12 = ⟨1| ρ̇ |2⟩ = 1

ih̄
h̄ω

(
⟨1| a†aρ |2⟩+ ⟨1|2⟩ 1

2
− ⟨1| ρa†a |2⟩ − ⟨1|2⟩ 1

2

)
− k

(
⟨1|N2ρ |2⟩ − 2 ⟨1|NρN |2⟩+ ⟨1| ρN2 |2⟩

)
= (102)

=
ω

i
(ρ12 − 2ρ12)− k (ρ12 − 4ρ12 + 4ρ12) ==

ω

i
(ρ12 − 2ρ12)− kρ12 = −

(ω
i
+ k

)
ρ12

ρ̇02 = ⟨0| ρ̇ |2⟩ = 1

ih̄
h̄ω

(
⟨0| a†aρ |2⟩+ ⟨0|2⟩ 1

2
− ⟨0| ρa†a |2⟩ − ⟨0|2⟩ 1

2

)
− k

(
⟨0|N2ρ |2⟩ − 2 ⟨0|NρN |2⟩+ ⟨0| ρN2 |2⟩

)
= (103)

= −ω
i
2ρ02 − k4ρ02 = −2

(ω
i
+ 2k

)
ρ02

ρ̇22 = ⟨2| ρ̇ |2⟩ = 1

ih̄
h̄ω

(
⟨2| a†aρ |2⟩+ ⟨2|2⟩ 1

2
− ⟨2| ρa†a |2⟩ − ⟨2|2⟩ 1

2

)
− k

(
⟨2|N2ρ |2⟩ − 2 ⟨2|NρN |2⟩+ ⟨2| ρN2 |2⟩

)
= (104)

=
ω

i
(2ρ22 − 2ρ22)− k (4ρ22 − 8ρ22 + 4ρ22) = 0
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