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RESUMEN

Resumen

En las últimas decadas ha habido una evolución en el uso de la Inteligencia Artificial. AI,
y más espećıficamente Machine Learning, es la combinación de la informática y grandes
conjuntos de datos que entrenan una máquina para resolver problemas extensos o problemas
exigentes. En 1943 Walter Pitts (lógico estadounidense) y Waren McCulloch (neurólogo
estadounidense) introdujeron la primera red neuronal, un algoritmo de aprendizaje automático.
Estos estudios brindan a las máquinas la capacidad de recopilar datos y luego procesar lo que
se ha recopilado utilizando herramientas de aprendizaje automático y técnicas de predicción
para tomar decisiones.

Las redes neuronales son un tipo de algoritmo que hace uso de una base de datos para
hacer una clasificación, i.e. clasificar nuevos datos en diferentes categoŕıas a partir de lo
aprendido con la base de datos, o una regresión, predecir valores continuos. Como su nombre
indica las redes neuronales están inspiradas en el cerebro humano, imitando la forma en que
las neuronas biológicas se env́ıan señales entre śı.

En este informe se pretende explicar el funcionamiento de estas redes neuronales y comentar
varias de sus estructuras, aśı como obtener algunos resultados utilizando este tipo de algoritmos.
En la segunda mitad del trabajo se describe una base de datos que se ha utilizado para deducir
algunos valores de las constantes cosmológicas y astrof́ısicas Ωm, σ8, ASN1, ASN2, AAGN1 y
AAGN2 para diferentes regiones de universos simulados.

Una Red Neuronal consta de una capa de neuronas de entrada, unas capas de neuronas
ocultas y una capa de neuronas de salida. Las conexiones entre las diferentes neuronas se
llaman pesos, y describen con cuánta fuerza afecta el resultado de la neurona anterior. La
siguiente ecuación describe el resultado o valor que tiene cada neurona [39]:

hl
i = f

(
J∑

j=1

V l
ij · hl−1

j + T l
i

)
donde hl

i es el resultado obtenido de la neurona i en la capa l, f es la función de activación que
determina si la neurona es activada o no, J es el número de neuronas de la capa anterior l−1
que tienen conexión con la neurona i, V l

ij son los pesos de las conexiones entre la neurona j e

i, hl−1
j es el valor que sale de la neurona j y T l

i es el valor bias o valor umbral de cada neurona,
es decir, el valor mı́nimo para activar la neurona. A través de esta expresión la información
de entrada avanzará a través de la red neuronal para al final dar un valor de salida que, en el
caso de ser un problema de clasificación será una categoŕıa, y en el caso de ser un problema
de regresión será un valor. Para poder tener alta eficacia la red neuronal necesita aprender
utilizando una base de datos: lo que hace es calcular su valor de salida y compararlo con el
valor esperado calculando la llamada función de pérdida y minimizándola actualizando los
valores de los pesos y bias en cada iteración. Para conseguir esta minimización de la función
de pérdida se necesitan sus derivadas, que dependen de la función de activación y los valores
de los pesos. Por lo tanto, si los valores de estas derivadas o de los pesos son muy pequeños,
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o por el contrario muy grandes, podŕıan conducir al ”gradiente evanescente” y ”gradiente
explosivo” respectivamente. Según la ecuación 8:

V = V − λ
∂Ek

∂V

podemos comprobar que si las derivadas de la función de pérdida ∂Ek/∂V son muy pequeñas,
los pesos correspondientes no se actualizarán apenas y por lo tanto la red no aprenderá
correctamente. Con el gradiente explosivo pasa lo contrario. Si los valores de las derivadas
son demasiado grandes nos arriesgamos a que la red nunca encuentre los valores óptimos de
los pesos ya que da ”saltos” demasiado grandes al actualizarlos.

Para obtener los resultados hemos hecho uso de la base de datos CMD, Cosmology and
Astrophysics with MachinE Learning Simulation (CAMELS) Multifield Dataset (CMD) [36],
una colección de mapas 2D y 3D de diferentes regiones de universos simulados, generados
a partir de simulaciones magneto-hidrodinámicas y gravitacionales de N-cuerpos. Cada una
de estas simulaciones pertenece a uno de los siguientes subgrupos: IllustrisTNG, SIMBA y
N-body. Los mapas de todos estos grupos tienen asociados dos parámetros cosmológicos:
Ωm y σ8. Sin embargo, solo los mapas de las simulaciones de IllustrisTNG y SIMBA tienen
asociados los parámetros astrof́ısicos ASN1, ASN2, AAGN1 y AAGN2. A su vez, los mapas de
estos grupos pueden representar diferentes propiedades como la temperatura del gas cósmico,
su densidad, su metalicidad, etc.

Conclúımos este trabajo con la estimación de los parámetros anteriormente mencionados
con los mapas de temperatura del gas cósmico del conjunto de simulaciones IllustrisTNG a
través de MDNs (Mixture Density Functions) que, en vez de devolver directamente valores
espećıficos de los parámetros, devuelve la media y la varianza de una distribución gaussiana.
La precisión de los resultados no ha sido la esperada por el efecto del over-fitting, efecto que
ocurre cuando la red neuronal es muy efectiva prediciendo datos del set de entrenamiento
pero no tan buena al estimar datos que no forman parte del entrenamiento, y se deduce que
los resultados se podŕıan mejorar añadiendo mapas para el entrenamiento de la red.
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2 OBJECTIVES

Abstract

Neural Networks are a powerful resource to study problems that maybe other algorithms
cannot. In this report we will discuss the functioning of a neural network as well as some
of its most commonly used structures. With this knowledge we will study their applicability
in a simulation-based inference of cosmological and astrophysical parameters with Mixture
Density Convolutional Networks using only simulated images generated with data from The
Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) [36].

1 Introduction

Resumen

Muchos avances en astrof́ısica han sido
impulsados por la evolución tecnológica,
como la teoŕıa del Heliocentrismo de
Copérnico, que no pudo ser confirmada
hasta el uso del telescopio por Galileo
Galilei, en 1610. En las últimas decadas
ha habido una evolución en el uso de la
Inteligencia Artificial y el Machine Learning.

Major discoveries in astrophysics are
generally driven by technological developments.
An obvious example of these discoveries is
The Copernican Principle in 1543, in which
Nicolaus Copernicus stated that the earth is
not in a central position, in contrast to the
geocentrism. However, this theory was not
confirmed until Galileo Galilei turned his own
telescope towards the sky and observed the
phases of Venus in 1610, just how Copernicus
had foretold [13].

In recent times, there has been an evolution
in the use of Artificial Intelligence. AI, and
more specifically Machine Learning, is the
combination of computer science and large
datasets that train a machine in order to
solve extensive or demanding problems.

In 1943 Walter Pitts (american logician)

and Waren McCulloch (american neurologist)
introduced the first neural network, a
Machine Learning algorithm. Recent machine
learning research has focused on computer
vision, hearing, natural language processing,
image processing and pettern recognition,
etc. These studies provide machines with the
ability to collect data and then processing
what has been collected using Machine
Learning tools and prediction techniques to
make decisions [21].

2 Objectives

Resumen

Los principales objetivos de este trabajo
son: explicar el funcionamiento de las redes
neuronales y algunas de sus estructuras,
describir la base de datos CAMELS
(Cosmology and Astrophysics with MachinE
Learning Simulation) [36] y comentar
algunos resultados de la deducción de
parámetros cosmológicos y astrof́ısicos con
el CMD (CAMELS Multifield Dataset).

The key contributions of this report are listed
as follows:

Explaining the functioning of the
Artificial Neural Networks and some of
the architectures..
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Describing the CAMELS Multifield
Dataset [36], used for the inference
of cosmological and astrophysical
parameters.

Discussing some simple results of
the estimation of cosmological and
astrophysical parameters with the CMD
(CAMELS Multifield Dataset).

3 Methodology

Resumen

Los algoritmos de Machine Learning se suelen
clasificar en cuatro grupos: aprendizaje
supervisado, aprendizaje no supervisado,
aprendizaje semi-supervisado y aprendizaje
por refuerzo. Las redes neuronales se suelen
utilizar en el aprendizaje supervisado y no
supervisado; sin embargo en este trabajo
explicaré el funcionamiento de las redes
neuronales supervisadas, que utilizan pares
de datos para su entrenamiento. En la Figura
1 se puede ver una estructura t́ıpica de una
red neuronal. Consta de una capa de entrada,
varias capas escondidas (capas entre la capa
de entrada y salida) y una capa de salida.
A través de la ecuación 1 la información de
entrada atraviesa la red neuronal activando
neuronas con la función de activación que
tienen intŕınsecamente todas las neuronas,
para que al final haya uno o varios datos de
salida que, en el caso de ser un problema
de clasificación será una categoŕıa, y en el
caso de ser un problema de regresión será un
valor continuo. Esta función de activación se
elige dependiendo del problema que se quiera
resolver. Una de las más utilizadas es la
función ReLU (Rectified Linear Unit).

El objetivo de la red neuronal es que este
valor de salida sea el correcto, y para

eso necesita entrenarse. Con una base de
datos la red calcula los valores de salida
a partir de los valores de entrada y los
compara con los esperados, calculando la
función error. Para corregir el posible
error compara estos dos valores e intenta
minimizar la diferencia ajustando los
llamados pesos, asociados a las conexiones
entre las neuronas de las diferentes capas,
utilizando el enfoque de retropropagación
junto al descenso de gradiente, una técnica
que estima numéricamente dónde la función
error genera sus valores más bajos.

Para la inferencia de los parámetros se
usarán las Redes Neuronales Convolucionales
de Distribución Mixta. Las redes
convolucionales son redes cuyas capas difieren
de la red neuronal básica. Constan de una
capa de entrada, una capa de convolución,
que simplifica la imagen de entrada con unas
matrices pequeñas de pesos fijos llamadas
comúnmente filtros, una capa ’pooling’, que
generalmente coge solo el valor máximo de
la región que mapea, y una capa totalmente
conectada, cuyas neuronas están conectadas
con todas las neuronas de la capa previa y
posterior.

Las redes de distribución máxima, en vez de
calcular valores espećıficos de salida, calculan
una distribución de salida y devuelven los
parámetros que la definen, su media y su
varianza.

Por último se describe la CMD, CAMELS
multifield dataset [36], una base de datos
que contiene más de 800.000 mapas 2D y
3D generados con simulaciones de alrededor
de 2000 universos diferentes. Esta base de
datos contiene 3 juegos de simulaciones:
IllustisTNG, SIMBA, y N-body; cada
uno de ellos tiene mapas que describen
diferentes propiedades como la densidad
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3 METHODOLOGY

del gas cósmico, su temperatura, etc.

3.1 Algorithm types

Let’s begin by discussing some common
Machine Learning algorithms. ML algorithms
are generally classified in four main types:
Supervised learning, Unsupervised learning,
Semi-supervised learning, and Reinforcement
learning [21].

1. Supervised Learning : This technique is
based on the inference of a function
that assigns an output to an input
using a database of input-output pairs
[14, as mentioned in [30]]. Some
of the Supervised learning tasks are
Classification, that labels the data, and
Regression, that fits the data [30].

2. Unsupervised Learning: It is considered
unsupervised because the data used, the
input examples, are not class labeled [14].
This type of algorithms learns generic
features like patterns in the data and are
able to represent the data. This type
of learning can be used to automatically
detect radio frequency interference from
phones, satellites, aircrafts, etc. in Radio
Astronomy Observations minimizing the
need for human interaction [10].

3. Semi-supervised Learning: This type of
algorithms work with both labeled and
unlabeled data; therefore, they are a
combination of the ones mentioned above
[14]. The objective of Semi-Supervised
Learning is to get better predictions
than those inferred from only the labeled
data [30]. An interesting application of
Semi-supervised Learning in Astronomy
is the photometric classification of
supernovas by using light curves and

a spectroscopically confirmed training
set for developing a model capable of
predicting the type of the new supernovae
[27].

4. Reinforcement: This technique allows the
machine to learn from the interaction
with the environment to evaluate and
to perform with maximum efficiency [30,
21]. At each stage of the interaction,
the agent receives as input an indication
of the current state of the environment;
then the agent chooses an action to
generate as output, changing the state
of the environment. After this transition
the agent (intelligent program) learns
whether this action was a good choice
or not through a scalar reinforcement
signal. The agent should choose a
behavior that increases the long-term sum
of the reinforcement signal’s values [24].
Reinforcement learning has been used
to automate the process of calibration
of radio telescopes by selecting the best
settings for diverse observations, since
it is a tedious task to adjust by hand
the hyperparameters of the pipelines that
process the produced data [43].

3.2 Artificial Neural Networks

In this work we will be focusing on
Supervised Learning, particularly on Neural
Networks. On supervised Learning, this
type of algorithms require labeled data for
classification and regression. Let’s briefly
explain what these are all about.

Classification. In machine learning
it is considered a supervised learning
approach because the model needs a set
of data to train itself in order to predict
a discrete class label [14, as mentioned in
[30]].
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3.2 Artificial Neural Networks

Regression. Regression analysis
predicts a continuous output value Ym

based on the training dataset {(xk,yk)}
[14, as mentioned in [30]].

A neural network pretends to mimic the way
the neurons work in the human brain and
nervous system through a set of algorithms.

3.2.1 Structure

In 1943 McCulloch and Pitts created a model
of a neuron that depending on the total
weighted input calculated out of the different
inputs received from other neurons, activated
or remained inactive. This weight is the
analogue of the strength of a synapse1 in
the nervous system [20]. A Neural Network
consists of an input layer of neurons, some
hidden layers of neurons, and a layer of output
neurons, where the connections between the
different neurons are the weights, described
above.

The analytical expression of the outputs of
each neuron is [39]:

hl
i = f

(
J∑

j=1

V l
ij · hl−1

j + T l
i

)
(1)

where hl
i is the output of the neuron i in the

layer l, f() is the activation function, V l
ij are

the weights of the connections to the neuron
i in layer l, hl−1

j are the outputs of the nodes

in the layer l − 1, and T l
i are the threshold

terms of the hidden neurons in layer l.

Figure 1: Representation of the used notation
for a multi-layer neural network. From left to
right: Input Layer, Hidden Layers and Output
layer.

Let’s briefly explain what each of these
elements is:

Input layer: receives features as input
and brings the initial data into the
system.

Output layer: contains all the output
values.

Hidden layers: layers between the input
and output layers. These layers compute
all of the features entered through the
input layer and send the results to the
output layer.

Weights: the effect the signal has on the
neuron. Each connection has a different
weight.

Activation function: calculates a
weighted total and then adds a bias
to it in order to determine whether a
neuron should be activated or not. The
activation function’s goal is to enter
non-linearity into a neuron’s output.

1Structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron.
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3 METHODOLOGY

Some examples will be depicted in Section
3.2.3.

Output of the unit hi: calculated by
Equation 1. It is the output value of each
neuron.

Threshold value: also called bias or
offset, is the cut off value of the activation
function, the minimum required value to
activate the neuron. Each neuron usually
has a different Threshold value.

For the neural network in Figure 2 we have
the x1, x2, x3 and x4 inputs and there is a
connection between each of the neurons in the
consecutive layers.

Figure 2: Example of a fully-connected
four-layer neural network with activation
functions σ(), f() and g().

As said before each connection will have a
weight associated to it. For instance, the
connections between the Input Layer and
the first Hidden Layer will have the V 2

ij

weights associated to them, where i is the
index of the neurons in the first hidden
layer (i = 1, 2, 3) and n the index of the
inputs (n = 1, 2, 3, 4). Therefore the weights
associated with these first connections will be

V 2
11, V

2
12, V

2
13, V

2
14, V

2
21, V

2
22, V

2
23, V

2
24, V

2
31, V

2
32, V

2
33

and V 2
34; being V 2

11 the weight associated with
the connection between the input x1 and the
first hidden layer’s first neuron, and so on.
What would happen then? Well, let’s take
this first neuron from the first hidden layer.

Figure 3: First neuron in the first hidden layer
of the neural network represented in Figure 1.

The output of this blue neuron with index
i = 1 would be:

h2
1 = f(X2

1 ) (2)

where

X2
1 =

4∑
n=1

V 2
1n · xn + T 2

1 = V 2
11 · x1 + V 2

12 · x2

+ V 2
13 · x3 + V 2

14 · x4 + T 2
1

(3)

The output h2
1 depends on the activation

function f().

3.2.2 Training

The basic goal of a neural model is to
determine the optimal set of weights so that
the network provides an estimation of the
desired quantity Y [44]. As mentioned in
section 3.1, in a supervised learning algorithm
this is achieved by training the model with
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3.2 Artificial Neural Networks

input-output data pairs. First of all let’s
introduce some important terms that will be
mentioned in this section [5]:

The dataset is usually divided in groups
to simplify the training process. These
groups are called batches. The Batch
Size is the number of samples that are
in a batch. It also defines the number of
samples that pass through the net before
updating the weights.

The Epoch number determines how
many times the whole dataset passes
through the net.

For example, if:

The batch size is 64.

Our dataset has 3000 samples.

The epoch number is 20.

it will take around 47 batches (3000/64 ≈ 47)
to make up one full epoch, and this process
will be repeated 20 times.

Loss Function

In the training process the neural network’s
execution is estimated by using a metric that
quantifies the difference between the inferred
value and the real value. This is called
the Loss Function. This error can be given
by many functions, and depending on the
problem it could be more convenient to choose
one over the other. Here are some of the most
used ones [40]:

Square Loss function. It is one of the most
commonly used in Regression problems, it
calculates the square of the error between
the real value and the inferred value.
The gradient of square loss changes,
which contributes to the model’s quick

convergence and excellent accuracy [40].
It is expressed by [44]:

E =
1

2

K∑
k=1

M∑
m=1

(Ym(xk,V)− ykm)
2 (4)

Absolute Loss function. Usually used
for Regression problems, it is preferred
over the Square Loss function when there
are outliers because it does not increase
rapidly like the Square Loss function
does. One drawback of this function is
that near 0 it is not smooth2.

E =
K∑
k=1

|Ym(xk,V)− ykm| (5)

Cross-Entropy Loss function/Negative
Log Likelihood Function. It is the most
used Loss Function for Classification
problems. Its expression is [46, 47]:

E = −
K∑
k=1

M∑
m

ykm · log(fSM(XL
km)) (6)

where fSM(XL
m) is the SoftMax function,

mentioned in Section 3.2.3.

V are the weights of the neural network,
Ym is the output of the mth output node
for input xk and ykm is the real value
associated with xk. Let’s understand this
notation a little bit better: Supposing we
have a dataset of simulated universes’ maps
with a K number of input-output pairs
{(x1,y1), (x2,y2), ..., (xk,yk), ..., (xK,yK)},
xk would be the kth map of the dataset
and yk would be its output vector. The
xk vector contains all the pixels in the
kth map and the yk output vector could
contain a number of parameters describing
many different properties of cosmic gas, for

2A function is smooth when it is infinitely differentiable everywhere.
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3 METHODOLOGY

example.

In brief, the networks objective is to find
the optimal weights Vij so that this error
minimizes.

Back-Propagation and Gradient
Descent

In 1986 the Back-Propagation Algorithm
was proposed by Rumelhart, Hinton and
Williams [29, as mentioned in [44]], which
along with the Gradient Descent (GD)
(also called Batch Gradient Descent)
optimizes the weights by minimizing the error
function.

To get started, small random values of the
weights are set. In theory, throughout the
training process the whole dataset passes
through the net: the error Ek in Equation 12
is calculated for each sample, then the total
error E in Equation 11 is calculated by adding
all the Ek errors and finally the weights are
updated by following the Gradient Descent
in Equation 7 [44]:

Gradient Descent

V = V − λ
∂E

∂V
(7)

where λ is the learning rate3, until it reaches
the minimum value of the error E. This
equation is very intuitive: given the fact
that a gradient gives the direction of the
fastest increase of the function, in order to
minimize the error function, we must take
the negative direction.

We can anticipate that this is not how the

optimization goes in practice: there are ways
to reduce the training time and simplify the
computations. The Stochastic Gradient
Descent (SGD) is one of the most used
algorithms for the optimization task. It
greatly simplifies the general gradient descent
since it randomly takes one single data sample
to optimize the parameters in each iteration:
the batch size of the Stochastic Gradient
Descent is 1 [5]. So, instead of calculating
the errors of each sample and then adding
them up, only one error Ek of a random
sample (xk, yk) is needed to update the
weights [4]:

Stochastic Gradient Descent

V = V − λ
∂Ek

∂V
(8)

There is also the Mini-batch Gradient
Descent that instead of implementing
gradient updates per sample like SGD does,
or per epoch, like GD does, the parameters
are updated when all the samples in a batch
pass through the net [5]. So if the batch size
is 64, then 64 samples will pass through the
net and the errors Ek of each sample will be
added up to get the error E, with which the
weights will be updated:

Mini-batch Gradient Descent

V = V − λ
∂EB

∂V
(9)

where

EB =
1

2

KB∑
kB=1

M∑
m=1

(Ym(xkB
,V)− ykBm)

2 (10)

and KB is the number of samples in the batch
B. Briefly:

3It is a parameter that determines how much the model changes every time the weights are updated,
meaning that if λ is too small the training process will be very long and if it is big then it could be too short
[42].
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3.2 Artificial Neural Networks

Gradient Descent (or Batch Gradient
Descent): updates the weights per epoch,
after all the samples have passed through
the net. Batch size = total number of
samples in the dataset.

Stochastic Gradient Descent: updates
the weights after feeding-forward a single
random sample. Batch size = 1.

Mini-batch Gradient Descent: updates
the weights per batch, after all the
samples in the batch have passed through
the net. Batch size = up to the user.

The computation of the Back-Propagation for
a single training example goes like this: let’s
suppose we have the Square Loss function

E =
1

2

K∑
k=1

M∑
m=1

(Ym(xk,V)− ykm)
2 (11)

Having in mind that for a single training
example we have this cost or error function:

Ek =
1

2

M∑
m=1

(Ym(xk,V)− ykm)
2 (12)

where M is the total number of nodes in the
output layer; that the output values of the
nodes of the lth layer are given by:

hl
i = f(X l

i) = f(
1

2

J∑
j=1

V l
ijh

l−1
j + T l

i ) (13)

where hl−1
j and J are the output values and

the total number of neurons in the previous
layer respectively; and that the output values
of the nodes of the output layer are given by:

Ym = f(XL
m) = f(

1

2

J∑
j=1

V L
mjh

L−1
j + TL

m) (14)

where hL−1
j and J are the output values and

the total number of neurons in the previous

layer respectively.

Computing the back-propagation is basically
calculating the derivatives of Equation 12
[44]:

∂Ek

∂V l
ij

=
∂Ek

∂hl
i

· ∂hl
i

∂X l
i

· ∂X
l
i

∂V l
ij

(15)

being

∂hl
i

∂X l
i

· ∂X
l
i

∂V l
ij

=
∂f(X l

i)

∂X l
i

· hl−1
j (16)

The first step would be to initialize the
gradient descent in the output layer, therefore
Equation 15 would become:

∂Ek

∂V L
mj

=
∂Ek

∂Ym

· ∂Ym

∂XL
m

· ∂X
L
m

∂V L
mj

(17)

with
∂Ek

∂Ym

= (Ym(xk,V)− ykm) (18)

∂Ym

∂XL
m

=
∂f(XL

m)

∂XL
m

(19)

∂XL
m

∂V L
mj

= hL−1
j (20)

(remember that Ym = hL
i ).

The next step would be propagating this error
from layer l to layer l − 1 and so on [44].

∂Ek

∂hl−1
j

=

Il∑
i=1

∂Ek

∂hl
i

· ∂hl
i

∂hl−1
j

(21)

Practical example

For instance let’s take Figure 2 and let’s
calculate the ”updated” value of weight V 4

14

14
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for a single sample, supposing that g(XL
m) =

sigmoid(XL
m):

g(XL
m) =

1

1 + e−XL
m

(22)

After some random values for the weights are
set, the neural network will give an output.
Probably this output will make no sense since
it is a random calculation.
In the first iteration it will calculate the error
function:

Ek =
1

2

2∑
m=1

(Ym − ykm)
2 =

= EY1 + EY2 =
1

2
[(Y1 − yk1)

2

+ (Y2 − yk2)
2]

(23)

Then in the second iteration it will calculate
the impact of the weights in the error (the
derivatives) to know how to update the
weights [44]. For weight V 4

14:

∂Ek

∂V 4
14

=
∂Ek

∂Y1

· ∂Y1

∂X4
1

· ∂X
4
1

∂V 4
14

(24)

where [44]:

1.
∂Ek

∂Y1

= Y1 − yk1 (25)

2.
∂Y1

∂X4
1

=
∂g(X4

1 )

∂X4
1

= Y1(1− Y1) (26)

3.
∂X4

1

∂V 4
14

= h3
4 (27)

Therefore we have:

∂Ek

∂V 4
14

= (Y1 − yk1) · [Y1(1− Y1)] · h3
4 (28)

So now we can proceed with the calculation
of the ”updated” V 4

14 weight. Following

Equation 7:

V 4
14 updated = V 4

14 − λ
∂Ek

∂V 4
14

=

= V 4
14 − λ{V 4

14 − (Y1 − yk1)·

· [Y1(1− Y1)] · h3
4}

(29)

After doing the same for the weights V 4
ij we

would be able to propagate backwards to
correct the weights V 3

ij and so on. For V 3
43:

∂Ek

∂V 3
43

=
∂Ek

∂h3
4

· ∂h3
4

∂X3
4

· ∂X
3
4

∂V 3
43

(30)

with:

1.
∂Ek

∂h3
4

=
∂EY1

∂h3
4

+
∂EY2

∂h3
4

(31)

1.1
∂EY1

∂h3
4

=
∂EY1

∂X4
1

· ∂X
4
1

∂h3
4

(32)

1.2
∂EY2

∂h3
4

=
∂EY2

∂X4
2

· ∂X
4
2

∂h3
4

(33)

and

1.1.1
∂EY1

∂X4
1

=
∂EY1

∂Y1

· ∂Y1

∂X4
1

=

(Y1 − yk1) · [Y1(1− Y1)]

(34)

1.1.2
∂X4

1

∂h3
4

= V 4
14 (35)

2.
∂h3

4

∂X3
4

=
∂f(X3

4 )

∂X3
4

(36)

3.
∂X3

4

∂V 3
43

= h2
3 (37)

Putting it altogether:

∂Ek

∂V 3
43

={(Y1 − yk1) · [Y1(1− Y1)] · V 4
14+

+
∂EY2

∂h3
4

} · ∂f(X
3
4 )

∂X3
4

· h2
3

(38)
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(To develop
∂EY2

∂h3
4

we would need to calculate

the derivatives implied in the correction of
V 4
24).

V 3
43 updated = V 3

43 − λ
∂Ek

∂V 3
43

(39)

The whole process can be can be summed up
as follows:

1. Calculate the error with random weights.

2. Optimize weights.

(a) Calculate the corrected weights V 4
ij .

(b) Calculate the corrected weights V 3
ij .

(c) Calculate the corrected weights V 2
ij .

(d) Calculate the corrected weights V 1
ij .

3. Compute the output.

4. Determine the error.

5. Repeat steps 2, 3 and 4 until getting the
minimum error.

For this explanation we have taken the Square
loss function, as it is one of the most
used error functions, mainly in Regression
problems. However, depending on the task
there are some other loss functions which may
be more suitable.

Vanishing and Exploding Gradients

Training a neural network can be very
burdensome. This is mainly due to the
Vanishing gradient and the Exploding
gradient [25].

The vanishing gradient occurs when the
derivative ∂Ek/∂V l

ij in Equation 8 becomes

very small in the first layers. This derivative
depends on the product if multiple terms. If
these terms are numbers smaller than one,
when multiplying each other the derivative
will become even smaller. Taking this
into account, when updating weights in
the first layers, the derivative ∂Ek/∂V l

ij will
be vanishingly small, because due to the
back-propagation process it will depend on
many terms that are smaller than one. This
value of the derivative is in turn multiplying
the learning rate, which is as well a very small
number. The fact that the derivative is small
and that the learning rate is small results
in an almost not updated weight, because
the term that causes the weight to change is
vanishingly small. Equation 15 depends a lot
on the activation function just like equations
16 and 18 reflect; therefore, the vanishing
gradient problem may appear if the activation
function is a constant, or if it is a low-slope
function, since its derivative will be a small
number.

The exploding gradient problem is very
similar to the vanishing gradient one, but
it occurs when the terms in Equation 15
are larger than 1. This means that when
updating a weight in the first layers, instead
of barely changing its value as it happens
with the vanishing gradient problem, the net
will be changing it too much, and it probably
won’t ever reach its optimal value.

One solution to these problems is choosing
a proper Activation Function like ReLU or
LReLU, which will be mentioned in Section
3.2.3.

Batch Normalization

Another way of reducing the learning time
is normalizing the input data. Not only
that, but normalizing after each layer
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3 METHODOLOGY

is also recommended. This is called
Batch Normalization [17]. What Batch
Normalization does is normalize the output
(or input) values of each layer, either before
the activation function (what in this report
has been notated asX l

i) or after the activation
function (hl

i). For the sake of the explanation
we are going to assume that the net will
normalize the values after the activation
function. Below are the steps the net follows
when doing Batch Normalization:

1. Normalization by [17]:

ĥl
i =

hl
i − µl√
σ2
l + ϵ

(40)

where ϵ is the noise in case σ2
l = 0, and µl

and σ2
l are the mean value and variance

of the values in that layer [17]:

µl =
1

I

I∑
i=1

hl
i (41)

σ2
l =

1

I

I∑
i=1

(hl
i − µl)

2 (42)

What this operation does is make the
distribution of values have a mean value
equal to 0 ad a variance equal to 1:∑I

i ĥ
l
i = 0 and 1/I

∑I
i (ĥ

l
i)
2 = 1.

2. Sometimes it is of interest to have other
values for the mean and variance, so the
net can scale and shift these normalized
values with the Batch Normalization
Transform [17]:

H l
i = γĥl

i + β (43)

where H l
i is the final normalized output of

neuron i in layer l, and γ and β are two
trainable parameters [17].

When working with normalized values, the
neural network uses these new values of H l

i

when doing the back-propagation, and the
parameters γ and β as well as the weights
and biases update per batch.

3.2.3 Activation functions

The activation function affects greatly the
training of the network and hence it is crucial
to choose the optimal activation function for
the case at hand. The need of this function
relies on the fact that without it the output
signal would simply be a linear function,
easy to compute, but unable to learn and
recognize complex mappings from data. This
functions also need to be differentiable so that
we can apply the back-propagation process to
optimize the weights [31].

Therefore, for an activation function to be
successful it should satisfy these conditions:

They should be non-linear.

They should be differentiable.

The most commonly used functions are:

1. Sigmoid function

2. Tanh function

3. Rectified Linear Unit (ReLU) function

4. SoftMax function

Sigmoid Activation Function

It is widely used as it is a non-linear function
and it is also continuously differentiable [31].
When the X values are between 2 and +2,
it can be seen that the Y values are quite
steep. As a result, any change in X within
this range will result in a considerable change
in Y, hence the function has a propensity to
bring the Y values to either end of the curve,
improving the classifier by differentiating
predictions in an evident way [15, as cited in
[33]]. One drawback of Sigmoid Activation
Functions is that their output values are
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3.2 Artificial Neural Networks

always positive. One way of solving this is
re-scaling the function.

f(x) =
1

1 + e−x
(44)

Figure 4: Sigmoid Activation Function.

Tanh Activation Function

The tanh function resembles the sigmoid
function, however it is symmetric about zero.
As a result, the outputs from previous layers
will have different signs and that is one of
the reasons why the tanh function is preferred
over the sigmoid function, because they have
gradients that are not constrained to varying
in a certain direction [31]. The tanh function
can be rewritten as a function of the sigmoid
function:

f(x) = tanh = 2 · sigmoid(2x)− 1 (45)

Figure 5: Hyperbolic Tangent Activation
Function.

Rectified Linear Unit (ReLU)
Activation Function

The Rectified Linear Unit (ReLU) is currently
the most used activation function. Its appeal
lies on the fact that not all neurons are
activated at the same time [31] and that offers
diversity in the activation of the neurons.

f(x) = max(0, x) =

{
0 , x < 0
x , x ≥ 0

(46)

Figure 6: Rectified Linear Unit Activation
function.

Its derivatives are quite used as well, like the
Leaky ReLU (LReLU), in which the negative
values of x have very small values of f(x) [31]
instead of being 0, or the Parametrized ReLU,
where the slope is also very similar to the
LReLU he slope of f(x) for negative values
of x is also a trainable variable [31].

SoftMax Activation Function

The Softmax function is a sigmoid function
combination that returns probabilities of each
class [31]. It is used in multi-classification
problems and usually appears in the output
layers of deep learning architectures [19, as
mentioned in [23]]. Its expression is [31]:

f(Xi) =
eXi∑P
p=i e

Xp

(47)

where Xi is the weighted sum of the inputs
plus the bias of the neuron i, Xp are the
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weighted sums of the inputs plus the biases
of each of the neurons in the same layer as
the neuron i and P is the total number of
neurons in that layer.

3.2.4 Neural Network Architectures

As in any other Machine Learning algorithm,
there are many types of architectures. Here
are explained some of them:

Perceptron

A Perceptron is the basic unit of a Neural
Network. It consists of 3 layers, a layer of
inputs, a neuron and an output. It is only a
binary classifier, this is, a linear classifier as it
is only able to group data into two classes [11].

Practical example

For a better understanding let’s make an
example [18], whether we should buy an
ebook or not. A Perceptron can be described
with four basic constituents: inputs, weights,
a threshold or bias and an output. The
analytic expression of the output Y for
this example could be something like the
following:

Y = f

(
N∑

n=1

Vn · xn + T

)
=

f (V1 · x1 + V2 · x2 + V3 · x3 + T )

(48)

where the activation function f(x) for this
case is the sign function:

f(X) =

{
1 if

∑N
n=1 Vn · xn + T ≥ 0

0 if
∑N

n=1 Vn · xn + T < 0
(49)

We should have three factors:

1. If it’s more environmentally friendly.

Yes = 1.

No = 0.

2. If it has more durability.

Yes = 1.

No = 0.

3. If it saves money.

Yes = 1.

No = 0.

So for our example we will then have the
following inputs:

1. It is environmentally friendlier than a
conventional book → x1 = 1.

2. It is not more durable, technological items
tend to get obsolete → x2 = 0.

3. It is comfortable, it weights less than a
paperback → x3 = 1.

The weights would translate to the
importance of each of these factors:

1. You are an environmentalist → V1 = 5.

2. You have loads of money → V2 = 3.

3. You are strong and carry big bags→ V3 =
1.

If we assume a threshold value of 5 (bias =
−5) and take all this information into
consideration, we get:

Y = V1 · x1 + V2 · x2 + V3 · x3 + T =

= 5 · 1 + 3 · 0 + 1 · 1− 5 = 1
(50)

We then get that the output of the activation
function f(x) is 1. This means that we will
buy an ebook.
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Figure 7: Example.

Multi-layer Perceptron (MLP)

A Multi-layer Feed-forward network is a
neural network with multiple layers and units
each unit of layer l connects directly to a node
in the next layer l+1 and receives inputs from
other node or nodes in layer l − 1 [45]. They
belong to the Feed-forward Networks group,
when data is rigidly fed forward from input
to output units, there are no connections from
output units to other units in previous layers
[44, 45]. The functioning and training of this
kind of networks is basically what has been
explained in previous sections.

Convolutional Neural Network

The convolutional network differs from a
standard ANN in the layers they are
constituted by, the CNNs have convolutional
layers, pooling layers and fully connected
layers, which will be explained later on.
The input data is usually two-dimensional
so it is commonly utilized in a wide
range of applications, including image and
video recognition, image processing and
classification, medical image analysis, natural
language processing, and so on [30]. Let’s see
what these layers do:

Input Layer. As said before,
convolutional networks take 2D grids as
input. This means that the input of a
convolutional network will be something
like [N,M,Z], where N and Y are the
width and height (in pixels) of the image
respectively and Z the depth if the image,
this is, the color channels RGB [1].

Convolutional Layer. The objective of
this layer is to somehow simplify the input
image via what are called filters. This
filters are essentially small matrices with
fixed weight values that map the input
image and create much simpler feature
map. Depending on what these values are
the filter will detect different features like
shapes, edges and more.

Figure 8: Convolutional Layer. The purple
layer is the input image, the brown layer is the
filter and the blue layer is the feature image.

It is usual to have more than one
convolutional layer in order to make it
more beneficial [1]. There is this concept
called stride that determines how many
steps the filter moves when mapping the
image. This relation is given by:

O = 1 +
N − F

S
(51)

where O is the output size, N is the
width or height of the square input image,
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F the filter size and S the stride [1].

Figure 9: Examples of how a convolutional
layer works with different strides. On top,
the stride is 1, so the filter traverses per
slide 1 column of pixels. In the bottom the
stride is 2, so the filter traverses per slide 2
columns.

Due to this mapping the information
in the borders of the image is lost.
A solution to this problem is what is
called zero-padding. This involves
surrounding the image with 0s. An
additional benefit of this is that with
zero-padding the output image size can
be controlled. For instance for a stride
S = 1 we can set the zero-padding to

P =
F − 1

2
(52)

if we want the output size to be the same
as the input size [9].

The output in the next layer will then

be [1]:
hl
ij = f(X l

ij) (53)

where

X l
ij =

F−1∑
a=0

F−1∑
b=0

Vab · hl−1
(i+a)(j+b) (54)

where f is the activation function (usually
ReLU in Figure 6), F is the dimension of
the filter, Vab are the fixed weights of the
filter and hl−1

(i+a)(j+b) the outputs if the
previous layer.

For example in Figure 8 the filter colored
in brown would map the input grid in
purple and create a simpler feature map
in blue, h11 being:

h11 = f(V11 · x11 + V12 · x12 + V13 · x13+

V21 · x21 + V22 · x22 + V23 · x23+

V31 · x31 + V32 · x32 + V33 · x33)

(55)

Pooling Layer. In this step the network
reduces the resolution of the image
and the amount of parameters and
computation. One of the most commonly
used Pooling methods is Max-Pooling,
which returns the maximum value of the
region [1]. The most used pooling layers
have a 2x2 size and S = 2.

Fully-connected Layer. Lastly the
neurons of this layer are fully-connected
to all the neurons on the previous and
the output layer. It is the part where
the neural network spends most of its
time training, as it is a part with many
parameters.

Convolutional Neural Network have been
used in Astrophysics a number of times; for
instance the detection of the presence of fresh
impact craters on planetary bodies [38] or
analysis of strong gravitational lenses [16].
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Mixture Density Neural Networks

The Mixture Density Neural Networks are a
combination of a Feed-forward network and a
mixture model [3]. The main difference with
the neural networks mentioned above is that
instead of computing output values, Mixture
Density networks calculate probability
distributions. The output’s probability
density (Fig. 10), also called posterior, is
then given by [3]:

p(y|x) =
M∑
m

αm(x)ϕm(y|x) (56)

where M is the total number of mixture
components, are αm(x) are the weights

of the mixture components given by the
SoftMax function, which are called the prior
probabilities, and ϕm(y|x) the probability
distribution of y given a specific x for the
mth component of the mixture [3]. If we take
these ϕm(y|x) functions as Gaussians of the
form [3]:

ϕm(y|x) =
1

(2π)c/2σm(x)c
exp{−|y − µm(x)|2

2σm(x)2
}

(57)
where σm and µm are the variance and mean
values of the mth component and c is the
number of outputs the net would have if we
used it in the conventional way.

Figure 10: Representation of a Mixture Density Network [37]. The net takes as input a vector x
and returns as an output three parameters for each component of the mixture model,αm, σi and
µm with which it constructs the mixture distribution, p(y|x).

3.3 Simulation-based Inference

To study interesting events numerous
scientific fields have created elaborate
simulations. These simulations become
handy when dealing with complex
relationships between inputs and outputs, i.e.
when the objective is to estimate a value from

an input (for example an image) without the
analytic expression that relates them.Instead
of finding this relationship, which could be
a very complex task, we can simulate the
relation: many input-output pairs can be
simulated, and these simulated pairs will be
the inputs of our neural network, which then
will be able to estimate the value for any
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input.

Mind the difference between the simulations
and the inference: the simulation process
creates many input-output pairs with the
same relation. The inference process makes
use of these simulation pairs to create a model
which is able to estimate an output from any
input.

3.4 The cosmological model
and its parameters

Cosmology is the science that studies the
universe as a whole and it is mostly an
observational discipline, that is, it needs to
rely on theoretical models to understand the
obtained data. Electromagnetic radiation
and the observable portion of the universe
are the primary sources of information, with
which many projects like Euclid4, DESI5,
and Roman6 are trying to resolve some of
the biggest question marks in our present
cosmology, like: What is the nature of dark
energy?

The current accepted model that tries to
describe the behaviour and evolution of
our Universe is The ΛCDM (Cold Dark
Matter) Model, also called The standard
model. According to this model the
Universe originated from the Big Bang, is
composed by radiation, baryonic matter, dark
matter and dark energy, is spatially flat,
homogeneous and isotropic to a great degree
[28, 32]. This model derived from General
Relativity equations is determined by a
specific collection of cosmological parameters:

Matter density parameter Ωm: specifies
the total matter density, including the

baryonic matter and the dark matter [22].

Baryon density parameter Ωb: determines
the density of the normal baryonic
matter.

Hubble parameter H(z): controls
the time-dependent expansion of the
universe, and depends on the red-shift
z. The value of the Hubble parameter
now is given by the Hubble constant H0

[22].

Amplitude of fluctuations on scales of
8h−1Mpc−1 σ8: it measures the amplitude
of the mass density fluctuations [41].

Previous studies like Planck [26] and WMAP
[32] have determined the values of some
of these cosmological parameters studying
the CMB (Cosmic Microwave Background),
and using computer-based statistics such as
weak lensing, which is a non-observable light
deflection effect due to large masses [7], or
clustering of galaxies [2], for example.

In this report we are going reproduce some
results of Villaescusa-Navarro et al. [35] to
explore whether it is possible to estimate
the values of two of these cosmological
parameters: Ωm and σ8, by using other
baryonic fields and scales obtained from the
CAMELSMultifield Dataset [36] and Mixture
Density networks, as well as the astrophysical
constants that determine some astrophysical
effects such as supernova feedback and Active
Galactic Nuclei (AGN): ASN1, ASN2, AAGN1

and AAGN2.

4https://www.euclid-ec.org/
5https://www.desi.lbl.gov/
6https://roman.gsfc.nasa.gov/index.html
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3.5 The CAMELS Multifield Dataset

3.5 The CAMELS Multifield
Dataset

For the second half of this report I would
like to apply the theory explained above and
infer some cosmological and astrophysical
parameters using Mixture Density CNNs.
The input vectors given to the neural network
will be a collection of 2D maps and associated
parameters which have been provided by the
Cosmology and Astrophysics with MachinE
Learning Simulation (CAMELS) Multifield
Dataset (CMD). To explain this dataset I
am going to summarize the paper ”The
CAMELS Multifield Dataset: Learning
the Universe’s Fundamemtal Parameters
with Artificial Intelligence” by Francisco
Villaescusa-Navarro et al. [36].

This set of data contains 70 Terabytes of 2D
and 3D maps from about 2000 different
simulated universes at various cosmic
epochs, generated from Gravitational N-body
and hydrodynamic simulations. Each 2D
map covers an area of (25h−1Mpc)2, which
is equivalent to (7.714 · 1020h−1Km)2, that
is represented in a square of 256 x 256
pixels. Each map has a vector of 2 or 6
parameters associated to it: all data has
two cosmological parameters, and only
the data from hydrodynamic simulations
has another 4 astrophysical parameters.
As said before the CMD was created with
data from CAMELS. Each of the CAMEL
Simulation belongs to one of the following
subgroups:

IllustrisTNG. They contain magneto-
hydordynamic simulations.

SIMBA. They contain hydrodynamic
simulations.

N-body. They contain gravitational
simulations.

We have mentioned before that the
simulations of these 3 suites all have two
cosmological parameters:

Ωm the matter density parameter [34].

σ8 the galaxy fluctuation parameter [34].

Simulations in SIMBA and IllustrisTNG have
as well 4 astrophysical parameters associated
to them which, contrary to the cosmological
parameters, describe different properties in
each of the simulation types.

Therefore, making reference to what was
explained in Section 3.3, in this case the
simulated input-output pairs would be
the maps-parameter pairs, with which the
neural network will be trained in order to
estimate some cosmological and astrophysical
parameters.

3.5.1 IllustrisTNG

This suit contains 195.000 2D maps divided
in 13 groups: Mgas, Vgas, T, P, Z, HI, ne, B,
MgFe, Mcdm, Vcdm, Mstar and Mtot. These
will be discussed further later on. In these
simulations the astrophysical parameters hold
these meanings:

AAGN1 specifies the energy released per
unit of black hole accretion rate.

AAGN2 determines the ejection speed for
the kinetic mode of black hole feedback.

ASN1 gives information about the energy
emitted per unit of star formation rate.

ASN2 controls the speed of galactic winds.

3.5.2 SIMBA

In this group there are collected 180.000 2D
maps divided in 12 groups: Mgas, Vgas, T,
P, Z, HI, ne, MgFe, Mcdm, Vcdm, Mstar and
Mtot. The definitions of the astrophysical
parameters for this suit are below:
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AAGN1 determines the momentum flux of
kinetic outflows in quasar and jet-mode
AGN feedback relative to the black hole
accretion rate.

AAGN2 specifies the speed of the jet-mode
black hole feedback.

ASN1 controls the mass loading factor of
galactic winds relative to scalings derived
from the FIRE simulations7.

ASN2 gives information about the speed
of these galactic winds.

3.5.3 N-body

The data contained in the N-body simulations
is not affected by astrophysical effects —e.g.,
AGN and supernova feedback. This suit
contains 30.000 2D maps divided in two
groups: ’Mtot’ for IllustrisTNG and ’Mtot’
for SIMBA, and therefore it has double the
amount of maps that SIMBA or IllustrisTNG
has representing the total matter mass
density.

3.5.4 Fields

Here are the fields of the different simulations:

Gas Density. This field pictures the
spatial distribution of the cosmic gas’
density. In each pixel is allocated the
density of the gas in that spot. Its prefix
is ’Mgas’.

Figure 11: Gas density map nº 1000 of
the IllustrisTNG (left) and SIMBA (right)
simulations.

Gas Velocity. It represents the
spatial distribution of the modulus of
the peculiar velocity vector of cosmic has
vg = |v⃗g|. In each pixel is allocated
the mass-weighted modulus |v⃗g| of all gas
particles contributing in that spot. Its
prefix is ’Vgas’.

Figure 12: Gas velocity map nº 1000 of
the IllustrisTNG (left) and SIMBA (right)
simulations.

Gas Temperature. This field illustrates
the temperature of the cosmic gas in
that area. Each pixels stores the
mass-weighted temperature of cosmic gas

7https://fire.northwestern.edu/
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of all the particles contained in that pixel.
Its prefix is ’T’.

Figure 13: Gas temperature map nº 1000
of the IllustrisTNG (left) and SIMBA (right)
simulations.

Gas Pressure. The spatial distribution
of the cosmic gas’ pressure is represented.
Each pixel contains the mass-weighted
pressure of cosmic gas from all particles
contributing to that spot. Its prefix is ’P’.

Figure 14: Gas pressure map nº 1000 of
the IllustrisTNG (left) and SIMBA (right)
simulations.

Gas Metallicity. It represents the
spatial distribution of the metallicity8

of the cosmic gas. In each pixel is

allocated the mean metallicity of all the
gas particles in that spot. Its prefix is ’Z’.

Figure 15: Metallicity map nº 1000 of
the IllustrisTNG (left) and SIMBA (right)
simulations.

Neutral Hydrogen Density. The
spatial distribution of the neutral
hydrogen’s density. Its prefix is ’HI’.

Figure 16: Neutral hydrogen density map
nº 1000 of the IllustrisTNG (left) and SIMBA
(right) simulations.

Electron number density. Illustration
of the spatial distribution of the density
of electrons. Its prefix is ’ne’.

8Z = Mmetal/Mg, Mmetal being the mass in metals (in astronomy elements heavier than helium and
hydrogen) and Mg being the total gas mass.
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Figure 17: Electron number density map nº
1000 of the IllustrisTNG (left) and SIMBA
(right) simulations.

Magnetic Fields. This field pictures the
spatial distribution of de modulus of the
magnetic field B⃗ of the cosmic gas, |B⃗|.
Its prefix is ’B’.

Figure 18: Magnetic fields map nº 1000 of the
IllustrisTNG simulations.

Magnesium over Iron ratio.
Representation of the ratio between the
masses of magnesium and iron of the
cosmic gas. Its prefix is ’MgFe’.

Figure 19: Magnesium over Iron ratio map
nº 1000 of the IllustrisTNG (left) and SIMBA
(right) simulations.

Dark matter density. It represents the
dark matter density’s distribution. Its
prefix is ’Mcdm’.

Figure 20: Dark matter density map nº 1000
of the IllustrisTNG (left) and SIMBA (right)
simulations.

Dark matter velocity. Same as the Gas
Velocity but for dark matter. These maps
picture the peculiar velocity modulus of
of the dark matter | ⃗vdm|. Its prefix is
’Vcdm’.
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Figure 21: Dark matter velocity map nº 1000
of the IllustrisTNG (left) and SIMBA (right)
simulations.

Stellar Mass Density. It illustrates the
spatial distribution of the density of the
stellar mass. Its prefix is ’Mstar’.

Figure 22: Stellar mass density map nº 1000
of the IllustrisTNG (left) and SIMBA (right)
simulations.

Total matter mass. Representation
of the spatial distribution of the total
matter9 mass density. Its prefix is ’Mtot’.

Figure 23: Total matter mass density map nº
1000 of the IllustrisTNG (left), SIMBA (right)
simulations and their Nbody (bottom) match
respectively.

4 Discussion of results

Resumen

En este apartado se resumen los resultados
obtenidos con una red neuronal convolucional
de distribución mixta y la arquitectura de
ésta. Está constituida por varias capas
convolucionales con varios filtros de distintos
tamaños, capas de ’MaxPool’ y capas
normalizadoras.

Se discute que los resultados no han sido
los óptimos probablemente por la utilización
de pocos mapas para el entrenamiento
de la red. También se comparan los
resultados obtenidos con aquellos logrados
por Villaescusa-Navarro et al. (2021) [35].

9Total matter is the sum of gas, stars, dark matter and black holes.
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4 DISCUSSION OF RESULTS

In this section we will be discussing the
cosmological and astrophysical parameters’
estimation results obtained with the
IllustrisTNG Temperature 2D maps.

The used neural network is a Mixture Density
Convolutional network, which implements the
characteristics of both of these structures. It
has the following structure:

Input layer: 256 x 256 x 1 images.

Convolutional layer with 16 filters 4 x
4 and a padding that makes the output
have the same dimensions as the input.

– Input: 256 x 256 x 1 images.

– Output: 256 x 256 x 16 images.

Batch normalization.

– Input: 256 x 256 x 16 images.

– Output: 256 x 256 x 16 images.

MaxPooling Layer 2 x 2 with stride 2.

– Input: 256 x 256 x 16 images.

– Output: 128 x 128 x 16 images.

Convolutional layer with 32 filters 3 x
3 and a padding that makes the output
have the same dimensions as the input.

– Input: 128 x 128 x 16 images.

– Output: 128 x 128 x 32 images.

MaxPooling Layer 2 x 2 with stride 2.

– Input: 128 x 128 x 32 images.

– Output: 64 x 64 x 32 images.

Convolutional layer with 64 filters 2 x
2 and a padding that makes the output
have the same dimensions as the input.

– Input: 64 x 64 x 32 images.

– Output: 64 x 64 x 64 images.

MaxPooling Layer 2 x 2 with stride 2.

– Input: 64 x 64 x 64 images.

– Output: 32 x 32 x 64 images.

Flatten layer that puts in 1D all the
neurons in the previous layer.

– Input: 32 x 32 x 64 images.

– Output: 65536 neurons.

Dense Layer 128. A fully connected layer.

– Input: 65536 neurons.

– Output: 128 neurons.

Dense Layer 64. A fully connected layer.

– Input: 128 neurons.

– Output: 64 neurons.

Dense Layer 64. A fully connected layer.

– Input: 64 neurons.

– Output: 64 neurons.

Dense Layer 3 with gaussian distribution.
A fully connected layer with three nodes
that makes a gaussian distribution and
returns its mean value and variance..

– Input: 64 neurons.

– Output: 3 distributions.

Mixture distribution layer. Makes a
gaussian distribution and returns its
mean value and variance.

All Activation Functions are ReLUs except
for the second to last dense layer, whose
activation function is tanh, and the loss
function is the Negative Log Likelihood
Function.
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Figure 24: Obtained results for parameters Ωm, σ8, ASN1, ASN2, AAGN1 y AAGN2 with cosmic
gas’ temperature 2D maps from IllustrisTNG suite with their respective learning histories.
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4 DISCUSSION OF RESULTS

Preliminary results in Figure 24 where
obtained using 3000 training maps, 300
validation maps and 300 testing maps. We
can observe that the only parameter that
the net infers fairly well is the cosmological
parameter Ωm, with error bars of about 0.3,
but the other estimations are not accurate.
This is a result of over-fitting, which happens
when the model gets extremely effective
at classifying or predicting data from the
training set but not so good at identifying
data from the untrained set [6]. Another
approximation was tried in order to increase
the amount of maps for the training process,

but the convergence has not been achieved
and is currently under investigation.

Comparing with the results of Villaescusa-
Navarro et al. (2021) [35] in Figure 25,
we can observe that the estimation of the
astrophysical parameters that control AGN10

feedback has quite bad results as well. This
could happen because the net is not powerful
enough to retrieve that information from
these maps, or that the maps themselves
do not have much information about these
parameters [35].

Figure 25: Obtained results by Villaescusa-Vavarro et al. (2021) [35] for parameters Ωm, σ8,
ASN1, ASN2, AAGN1 y AAGN2 with cosmic gas’ temperature 2D maps from IllustrisTNG .

In Figure 24 learning histories of the net for
each parameters are also displayed. In the
deduction of parameter Ωm both the learning
and loss function are being minimized for each
epoch, what should happen. Validation data
is used to select the optimal model for the

inference of the output. A variety of networks
can be built, and the one with the best
accuracy in classifying the validation set is
chosen [12]. For this reason, the loss function
calculated with this data gives a hint whether
the model will be accurate or not. Looking at

10Active Galactic Nucleus.
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Figure 24 it is obvious that the validation loss
function is not being minimized, this is, the
trained model does not perform well with the
validation data, and therefore will not give
an accurate result.

Most probably using a larger training
dataset would drastically improve the results
obtained in Figure 24.

5 Conclusions

Resumen

Se concluye que las redes neuronales son
uno de los algoritmos más apropiados para
la resolución de problemas complejos por su
rápido procesamiento de datos y la capacidad
de aprendizaje a partir de una base de
datos, entre otras razones. Aún aśı, este
algoritmo tiene varias desventajas, como
la indeterminación a la hora de elegir la
estructura óptima del modelo (número de
capas y neuronas), la necesidad de un amplio
número de datos para su aprendizaje, y su
gran dependencia en los aleatorios valores
iniciales de los pesos y biases, ya que podŕıan
conducir a los problemas del ”gradiente

evanescente” y ”gradiente explosivo”.

Se ha hecho obvia la necesidad de una base
de datos grande al obtener los resultados ya
que no han sido lo suficientemente precisos.

In summary, neural networks have been
proved to be an state-of-the-art algorithm
to solve more complex tasks. They have
a number of distinguishing characteristics,
including fast processing rates and the
capacity to learn the answer to a problem
from a set of data, making this algorithm
part of the Supervised Learning algorithms.
However, it has some drawbacks as well,
such as the indeterminacy when choosing
the optimal structure of the net (number
of layers and neurons), the need of a huge
amount of data that is not easily obtained,
or the high dependency on the initial random
values of the weights and biases that could
originate the Vanishing or Exploding gradient
problems.

The need for a big training set has become
apparent in the results. As a result of using
only 3000 maps of the CAMELS Multifield
Dataset the inference of the parameters and
the results have not been accurate enough.
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