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Abstract

In this work we analyze the main aspects related to the appearance and development of bosonic
string theory from an introductory point of view and with the knowledge obtained during the degree.
First, we present the tools that modern physics uses to solve problems, the Principle of least action,
and we work on some examples such as the action of the free particle with the aim of establishing
the knowledge for the resolution of the movement of the relativistic particle, and study later the
movement of the relativistic string. We carry out a brief review of the events that gave rise to
this theory of bosonic strings as well as other theories that emerged with the aim of unifying the
four forces: the gravity force, the electromagnetic force, the weak force and the strong force. We
continue the study looking for symmetries and conserved quantities that will significantly reduce the
complexity of the problem at hand. We carry out two types of quantization in our theory: canonical
and light cone quantization, and we obtain the mass spectrum for bosonic strings. Finally, we discuss
the current situation of string theory, the problems it has solved and the ones it intends to solve in
the future.

Resumen

En la presente memoria analizamos los principales aspectos relacionados con la aparición y desa-
rrollo de la teoría de cuerdas bosónicas desde un punto de vista introductorio y con los conocimientos
obtenidos durante el grado. Primero presentaremos las herramientas que utiliza la física moderna pa-
ra la resolución de problemas, el Prinicipio de mínima acción, y trabajaremos algunos ejemplos como
el de la acción de la partícula libre con el objetivo de asentar los conocimientos para la resolución
del movimiento de la partícula relativista, para posteriormente, estudiar el movimiento de la cuer-
da relativista. Llevaremos a cabo un breve repaso por los acontecimientos que dieron lugar a esta
teoría de cuerdas bosónicas así como otras teorías que surgieron con el objetivo de unificar las cua-
tro fuerzas: la fuerza de la gravedad, la fuerza electromagnética, la fuerza débil y la fuerza fuerte.
Continuamos el estudio buscando simetrías y cantidades conservadas que reducirán notablemente la
complejidad del problema que nos ocupa. Llevaremos a cabo dos tipos de cuantización en nuestra
teoría: la cuantización canónica y la del cono de luz, obtendremos el espectro de masas para cuerdas
bosónicas. Finalmente, discutimos la situación de la teoría de cuerdas actualmente, los problemas
que ha resuelto y los que pretende resolver en el futuro.
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Chapter 1

Principle of Least Action

En la física moderna, el procedimiento habitual al tratar de resolver un problema es desarrollar el
Principio de Mínima Acción para dicho problema, es decir, minimizar la acción para obtener poste-
riormente las ecuaciones de Euler-Lagrange que darán la dinámica del sistema. Por ello, en primer
lugar determinaremos, entre algunos ejemplos, la acción de una partícula libre relativista, las ecua-
ciones de Maxwell, las ecuaciones de la relatividad general de Einstein y, por último, la ecuación de
Schrödinger.

First, we define the Principle of Least Action. This principle establishes that for each mechanical
system there is a certain integral S, called the action, which takes its minimum value for the real
movement, so that its variation, δS, is equal to zero1.

1.1 Action for a free relativistic particle
Let us determine the action integral corresponding to a free material particle, i.e., to a particle not
subjected to any external force. Let us observe for this that the integral cannot depend on the chosen
reference system, that is, it must be invariant under Lorentz transformations. Hence it follows that it
must depend on a scalar. Furthermore, it is clear that the integrand must be a first order differential,
but the only scalar of this type that can be constructed for a free particle is the interval ds or α ds,
where α is a certain constant.

Therefore, for a relativistic free particle, the action must be of the form

S = −α
∫ b

a

ds,

where
∫ b
a
is an integral along the world line of the particle between the two events that represent its

arrival at the initial position and at the final position at given instants t1 and t2, that is, between
two given points of the universe; α is a certain constant that characterizes the particle and must be
positive.

The integral,
∫ b
a
ds, reaches its maximum value along a world line, so by integrating along a curved

world line, we can make the integral as small as we like. The integral,
∫ b
a
ds, taken with a positive

sign cannot therefore have a minimum. On the other hand, if we take it with the opposite sign, it
1The Principle of Least Action states that the integral must be a minimum only for infinitesimal lengths of the

integration path. For paths of any length, we can only say that S must have an extremum, not necessarily a minimum,
[8].
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evidently reaches its minimum value along a straight world line.

The action can be represented as an integral with respect to time

S =

∫ t2

t1

Ldt,

where the coefficient L represents the Lagrange function of the given mechanical system.

Following the expression

dt′ =
ds

c
= dt

√
1− v2

c2
,

we get that

S = −
∫ t2

t1

αc

√
1− v2

c2
dt,

where v is the velocity of the material particle. Therefore, the Lagrange function of the particle is

L = αc

√
1− v2

c2
.

In classical mechanics each particle is characterized by its massm. We will determine the relationship
between α and m. This relation arise from the condition that, for c → ∞, the expression obtained
for L must be reduced to the classical expression L = mv2/2. To carry out this step, we will expand
L in series of powers of v/c. Ignoring higher-order terms, we find

L = −αc
√

1− v2

c2
' −αc+

αv2

2c
.

The constant terms in the Lagrange function do not appear in the equations of motion. Ignoring the
constant αc, we obtain L = αv2

2c
, while in classical mechanics it is L = mv2

2
. Therefore, α = mc.

To sum up, the action for a free material point is

S = −mc
∫ b

a

ds (1.1)

and the Lagrange function is written

L = −mc2
√

1− v2

c2
.

1.2 Quadripotential of a field
The action corresponding to a particle moving in a electromagnetic field is given by the action for a
free particle and a term that describes the interaction of the particles with the field. This last term
must contain magnitudes that characterize the particle and magnitudes that characterize the field.

The properties of a particle with respect to its interaction with the electromagnetic field turn out
to be determined by a single parameter, the charge of the particle, which can be a positive, negative
or zero quantity2. The properties of the field, on the other hand, are characterized by a quadrivector

2Note that we are considering a classical theory and not a quantum one, and therefore, effects linked to the spin of
the particles are not taken into account.
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Ai, the quadripotential, whose components are functions of the coordinates and the time. These
magnitudes appear in the action function as a term of the form

− e

c

∫ b

a

Aidx
i, (1.2)

where the functions Ai are fixed at points on the world line of the particle. The factor 1/c has been
introduced for convenience.

Therefore, the action function corresponding to a charge in an electromagnetic field is

S =

∫ b

a

(
−mc ds− e

c
Aidx

i
)
.

The three spatial components of the quadrivector Ai form a three-dimensional vector A called the
potential vector of the field. We will write the time component of the quadrivector Ai in the form
A0 = φ. The quantity φ is called the scalar potential of the field. We have, Ai = (φ,A).

The action integral can, therefore, be written in the form

S =

∫ b

a

(
−mc ds+

e

c
Adr− eφdt

)
,

or, introducing the velocity of the particle v = dr
dt

and taking t as a variable of integration,

S =

∫ t2

t1

(
−mc2

√
1− v2

c2
+
e

c
Av− eφ

)
dt.

The integrand is precisely the Lagrange function of a charge in an electromagnetic field

L = −mc2
√

1− v2

c2
+
e

c
Av− eφ.

This expression differs from the Lagrange function of a free particle in the terms e
c
Av − eφ that

describe the interaction of the charge with the field.

1.3 The action function for the electromagnetic field
The action function S for the electromagnetic field and their particles have three contributions

S = Sf + Sm + Smf ,

where Sm is the part of the action that depends only on the properties of the particles, i.e., it is the
action that corresponds to free particles. The action for a free particle is given by (1.1). For more
than one particle, the total action is given by the sum of the actions corresponding to each of the
particles,

Sm = −
∑

mc

∫
ds.

The last contribution, Smf , depends on the interaction between the particles and the field. For a
system of particles we have the sum of (1.2),

Smf = −
∑ e

c

∫
Akdx

k.
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In each term of this sum, Ak is the potential of the field at the point in space and time where the
corresponding particle is found. The sum Sm + Smf is the action of a charge on a field.

Last, Sf only depends on the properties of the field itself, i.e., Sf is the action that corresponds
to a field when there are no charges. Until now, since we were only interested in the movement of
charges in a given magnetic field, the magnitude Sf , which does not depend on the particles, had
not to be taken into account, since this term cannot affect the movement of the particles. However,
this term becomes necessary when trying to find equations to determine the field itself.

The action for the field, according to [8], is of the form

Sf = − 1

16πc

∫
FikF

ikdΩ, Ω = c dt dx dy dz,

where
Fik =

∂Ak
∂xi
− ∂Ai
∂xk

.

Three-dimensionally is

Sf =
1

8π

∫
(E2 −H2)dV dt.

This expression is obtained more detailed in Appendix A.1.

The action corresponding to the system formed by the field and the particles is

S = −
∑∫

mcds−
∑∫

e

c
Akdx

k − 1

16πc

∫
FikF

ikdΩ.

Note that the charges are not assumed to be small, as was done in deriving the equations of motion
for a charge in a given field. Therefore, Aik and Fik correspond to the total field, that is, to the
external field and the field produced by the particles themselves; Ak and Fik now depend on the
positions and velocities of the charges.

1.4 Motion of a particle in a gravitational field
The motion of a particle in a gravitational field has to be determined according to the Principle of
least action in the same way. In a gravitational field the particle moves in such a way that its point
of the universe runs through an extreme, as it is often said, a geodesic of space with four dimensions
x0, x1, x2, x3. However, since space-time is not Galilean in the presence of the gravitational field,
this line will not be a straight line and the actual motion of the particle in space is neither rectilinear
nor uniform, [8].

We proceed to derive the equation of motion:

d2x

ds2
+ Γikl

dxk

ds

dxl

ds
= 0.

From the principle of least action, δS = −mc δ
∫
ds = 0, in a general curvilinear space-time charac-

terized by the metric tensor gik,

δds2 = 2dsδds = δ(gikdx
idxk) = dxidxk

∂gik
∂xl

δxl + 2gikdx
idδxk.
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Thus

δS = −mc
∫ {

1

2

dxi

ds

dxk

ds

∂gik
∂xl

δxl + gik
dxi

ds

dδxk

ds

}
ds

= −mc
∫ {

1

2

dxi

ds

dxk

ds

∂gik
∂xl

δxl − d

ds

(
gik
dxi

ds

)
δxk
}
ds.

In the second term of the integral, we substitute the index k for the index l. Setting equal to zero
the coefficient of arbitrary variation δxl,

1

2
uiuk

∂gik
∂xl
− d

ds
(gilu

i) =
1

2
uiuk

∂gik
∂xl
− gil

dui

ds
− uiuk ∂gil

∂xk
= 0.

Noting that the third term can be written in the form

−1

2
uiuk

(
∂gil
∂xk

+
∂gkl
∂xi

)
,

and introducing the Christoffel symbols,

Γl,ik = Γi,lk =
1

2

(
∂gik
∂xl

+
∂gil
∂xk
− ∂gkl
∂xi

)
,

we get

gil
dui

ds
+ Γl,iku

iuk = 0,

or
d2xi

ds2
+ Γi kl

dx2

ds

dxl

ds
= 0.

1.5 The action function of the gravitational field
To find the equations that determine the gravitational field it is necessary, in the first place, to
determine the action Sg of the field. The equations we are looking for are obtained by varying the
sum of the actions of the field and the material particles.

As in the case of the electromagnetic field, the action Sg must be expressed in the form of a scalar
integral ∫

G
√
−g dΩ

extended to all space and to all values of the time coordinate between two given values. This
calculation is carried out in A.2.
We get

δSg = − c3

16πk
δ

∫
G
√
−g dΩ = − c3

16πk
δ

∫
R
√
−g dΩ,

where k is a new universal positive constant and the magnitude G is

G = gik
(
Γmil Γ

l
km − ΓlikΓ

m
lm

)
.

The components of the metric tensor are the quantities that determine the gravitational field. There-
fore, the Principle of least action that corresponds to it, the quantities that are varied are the gik.
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1.6 Gravitational field equations
Now, we proceed to deduce the equations of the gravitational field. These equations are obtained
from the Principle of least action δ(Sm+Sg) = 0, where Sg and Sm are the actions of the gravitational
field and matter, respectively.

For the variation of the action corresponding to matter we can write

δSm =
1

2c

∫
Tikδg

ik
√
−gdΩ,

where Tik is the energy-momentum tensor of matter.

Following the Principle of least action, δSm + δSg = 0, we get the expressions,

Rik −
1

2
gikR =

8πk

c4
Tik,

or in mixed components

R k
i −

1

2
δkiR =

8πk

c4
T ki.

These are precisely the gravitational field equations, the fundamental equations of the general theory
of relativity, also known as the Einstein equations.

Contracting the last expression with respect to the indices i and k, we find:

R = −8πk

c4
T, T = T ii .

Therefore, the field equations are

Rik =
8πk

c4
(Tik −

1

2
gikT ).

1.7 Schrödinger equation
In this section, we aim to find the Schrodinger equation for a particle in an external potential V .
According to [4], we can write, for the Schrödinger equation as

L =

∫
d3rL ,

where the function L is called the Lagrangian density, is a real function of the fields ψ and ψ∗,
time-derivatives ψ̇ and ψ̇∗ and also of the partial derivatives (∂iψ and ∂iψ∗, with ∂i = ∂x, ∂y, ∂z)

L =
i~
2

(ψ∗ψ̇ − ψ̇∗ψ)− ~2

2m
∇ψ∗∇ψ − V (r)ψ∗ψ,

where ψ(r) is a classical complex field and r can take all the possible values.

Note that the action S is the time integral of the Lagrangian. Because of how the Lagrangian
density has been postulated it can be written as

S =

∫ t2

t1

dt

∫
d3rL (ψ, ψ̇, ∂iψ).
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The principle of least action does not change; S is an extremum when ψ corresponds to the movement
of the field between times t1 and t2. So, we study now how S changes when the field varies by an
amount δψ with respect to the path for which S is extreme. Stating that S is an extremum gives the
Lagrange equations, which can be written in the form

d

dt

∂L

∂ψ̇
=
∂L

∂ψ
−
∑
i=x,y,z

∂L

∂(∂iψ)
.

Now we make the generalization for the complex field case. Let be a Lagrangian L and a La-
grangian density L dependent on the complex fields ψ and ψ̇. Since L must be real, L must depend
on ψ∗ and ψ̇∗. Thus,

L =

∫
d3kL (ψ, ψ̇, ∂iψ, ψ

∗, ψ̇∗, ∂iψ
∗).

Following the same procedure that was followed for the previous case, we establish two Lagrange
equations relative to ψ and ψ∗

d

dt

∂L

∂ψ̇
=
∂L

∂ψ
−
∑
i

∂i
∂L

∂(∂iψ)

d

dt

∂L

∂ψ̇∗
=
∂L

∂ψ∗
−
∑
i

∂i
∂L

∂(∂iψ∗)
. (1.3)

Let’s get the Schrödinger equation of the lagrangian L . For this, we calculate the partial derivatives
of the Lagrangian density that appear in the Lagrange equation

∂L

∂ψ̇∗
= −i~

2
ψ,

∂L

∂ψ∗
=
i~
2
ψ̇ − V (r)ψ

∂L

∂(∂jψ)∗
= − ~2

2m
∂jψ.

Substituting these expressions in (1.3), we get

−i~
2
ψ̇ =

i~
2
ψ̇ − V (r)ψ −

∑
∂i

(
−~2

2m
∂iψ

)
which lead us to the Schrödinger equation of a particle of mass m in a potential V(r),

i~ψ̇ − V (r)ψ +
~2

2m
∆ψ = 0.

Calculating ∂L /∂ψ̇ leads us to the complex conjugate equation.



Chapter 2

An introduction to the Bosonic String
Theory

En este capítulo desarrollaremos los acontecimientos que llevaron a la aparición y desarrollo de la
Teoría de Cuerdas, veremos que aparece como solución a la interacción fuerte. Para entender por
qué es tan importante hoy en día, veremos también los problemas que trata de resolver. Para ello in-
troduciremos las Supercuerdas, la Teoría M, el Modelo Estándar y las Teorías de Gran Unificación.
Al final de este capítulo desarrollaremos el Principio de mínima acción para una cuerda bosónica
relativista, obteniendo así las acciones de Nambu-Goto y Polyakov.

2.1 Motivation for String Theory
Nowadays it is understood that physics can be described by four forces:

G Gravity : it was first described by Isaac Newton but was Albert Einstein who reformulated it
in the theory of General Relativity. This is a classical theory of gravitation and has not been
formulated as a quantum theory yet.

G Electromagnetic force: this force is well described by Maxwell’s equation. Electromagnetism
is formulated as a classical theory of electromagnetic fields. However, Maxwell theory is fully
consistent with special relativity.

G Weak force: it is responsible for beta decay. The strength of this force is measured by the Fermi
constant. Weak interactions are much weaker than electromagnetic interactions.

G Strong force: this force binds quarks, the constituent of neutrons, protons, pions and many
other subnuclear particles.

Sting Theory pretends to be a theory that unifies these four forces in a single quantum mechanical
framework. Currently there are quantization methods that allow to turn a classical theory into a
quantum theory, i.e., a theory that can be calculated using the principles of quantum mechanics.

The quantum version of classical electrodynamics is Quantum Electrodynamics (QED). The theory
of weak interactions is also a quantum field theory. The unified theory is the quantum electroweak
theory. In the case of the strong color force the resulting theory is the Quantum Chromodynamics
(QCD). This two theories together (electroweak and QCD) form the Standard Model of particles
physics. However there is not real unification between this two forces even though some particles
feel both types of forces. The Standard Model has two significant shortcomings: it does not include
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gravity and has 23 parameters that can not be calculated within its framework.

It is believed that the Standard Model is only a step towards the formulation of a complete theory
of physics. It is also suspected that some unification of weak and strong forces into a Grand Unified
Theory (GUT), will prove to be correct. With this unification, we obtain new particles not detected
yet.

Another possibility is Supersymmetry, a more complete version of the Standard Model. A symme-
try that relates bosons to fermions. This symmetry unifies matter and forces since matter particles
are fermions and force carriers are bosons. However, since in the Standard Model this property does
not appear, this supersymmetry must be spontaneously broken in nature if it exists.

On the other hand, the effects of the gravitational force are important on a macroscopic scale.
Therefore gravity must be included into the particle physics framework. Nevertheless, there is a
major problem when attempting to incorporate gravitational physics into the Standard Model. This
is because the Standard Model is a quantum theory while Einstein’s General Relativity is a classical
theory. Gravity must be turned into a quantum theory. However many difficulties are encountered
in the quantization procedure. It is observed that gravity goes wrong at scales shorter than the
Planck length1 because is not renormalizable, the resulting quantum theory is impractical or totally
unpredictable, [14]. For processes at energies of the order of the Planck mass it is found that it is
necessary more parameters to absorb the infinities that occur in the theory. In fact, we need and
infinite number of parameters to renormalize the theory at these scales, [15]. Also, for each parameter
that gets renormalized we must make a measurement. Therefore, it is necessary to formulate another
theory.

2.2 A brief introduction to String Theory
String theory is a quantum theory that includes gravitation. For that reason, it is an excellent can-
didate for an unified theory of all four forces and all forms of matter in nature. So, it has become a
focal point for physical and philosophical discussions.

String theory emerged in the late 1960s, as a attempt to describe the physics of strong interactions
outside the framework of quantum field theory, in the called Dual Resonance Model. Later, around
the mid-1970s it was reinterpreted as a quantum theory of gravity unified with the other forces, and
its successive developments until reaching the superstring revolution in 19842.

In this theory each particle is identified as a particular vibrational mode of an elementary micro-
scopic string. The modes of vibration of this fundamental string can be recognized as the different
particles known. There are two types of string, open and closed strings. The first ones have two
endpoints while the closed strings have no endpoints. We are going to study both types, with the
difference of the boundary conditions.

Another division in string theories is between bosonic string and superstring theories. Bosonic
strings live in 26 dimensions and all the modes of vibration represent bosons. These kind of theories
are not realistic since the lack of fermions. However they are easier to work with than the Super-
strings, which include fermions. Most of the important concepts in String Theory can be explained

1In 1899, Max Planck proposed a set of units to simplify the expression of physics laws. The Planck mass, length,
and time are equivalent ways to describe the Planck scale. They are constructed from the three fundamental constants
of physics: the speed of light in a vacuum, c, the gravitational constant, G,and the quantum of angular momentum, ~.

2More information of the beginnings of the String theory in [2].
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with bosonic strings. On the other hand, Superstrings live in a ten dimensional spacetime and boson
and fermions are related by supersymmetry. The Superstring theories can be formulated in more
than these ten dimensions, not in less, although they are no longer consistent. They are called the
critical dimensions of the theory. We will calculate the critical dimension of bosonic string theory in
Chapter 5.

Due to the fact that Superstrings live in a ten dimensional spacetime, one dimension of time and
nine of space, it is necessary that these extra spatial dimensions are small enough to not have been
detected experimentally. If the extra dimensions are the size of the Planck length, lp, they will remain
beyond direct detection. Indeed, lp ∼ 10−33cm, this distance is many orders of magnitude smaller
than the smallest distance that has been explored with particle accelerators, 10−16cm. Moreover,
our three dimensional space emerges as a hypersurface embedded inside the nine-dimensional space.
This hipersurface is called a D-brane. In this model, the gauge bosons and matter particles emerges
from vibrations of open strings. The D-branes hold the endpoints of the open strings. The lowest
vibrational modes could represent the particles in the Standard Model.

By the mid 1980s five other consistent string theories were established, which include fermions:
Type I, Type IIA, Type IIB, Heterotic SO(32), Heterotic E8 × E8. It turns out that these all five
theories are assumed to be parts of a still unknown theory, which relates them through dualities.
Moreover, another theory was discovered by taking a certain strong coupling limit of one of the
Superstrings. This theory is eleven-dimensional and has been dubbed M-theory. It has now become
clear that the five Superstrings are only facets of different limits of a single unique theory, the M-
Theory3.

Finally, it should be said that there has been no experimental verification of String theory. It is
still at an early stage of development. Now it is time to ask if the Standard Model emerges from
String Theory. It must be so since String Theory emerges as a unification theory of all interactions.
However, it has not yet been possible to prove this in detail.

2.3 The Bosonic String Action
In spacetime, as a particle traces a line, a string traces a surface. The line traced out by the particle
is called the worldline while the two dimensional surface traced out by a string in spacetime is called
the worldsheet, as we can see in Figure 2.1. A closed string will trace out a tube and an open string
will trace out a strip. Following with the analogy of the particle, the proper length of the worldline is
defined as the proper time multiplied by c. This is the Lorentz invariant. For strings, it’s defined the
Lorentz invariant proper area of a worldsheet. The relativistic action is proportional to this proper
area and it’s called the Nambu-Goto action.

On the other hand, a p− brane is defined as a p dimensional object moving through a D dimen-
sional spacetime, where D ≥ p. A 0−brane is a point particle, a 1−brane is a string and a 2−brane
is a membrane, for example.

We want to generalize the notion of an action for a point particle, 0-brane, to the case of a p-brane.
The generalization of the action for a point particle

S0 = −m
∫
dS

3The term M-theory was introduced to refer the quantum theory in eleven dimensions whose leading low-energy
effective action is eleven dimensional supergravity. More information on page 238 in [15].
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Figure 2.1: The traces of different objects according to their dimension.

to a p-brane in a D dimensional spacetime (D ≥ p) is

Sp = −Tp
∫
dµp,

where Tp is the tension of the p-brane (has units of mass/volume) and dµp is the (p+ 1) dimensional
volume element:

dµp =
√
−det(Gαβ(X))dp+1σ.

The induced metric of the worldsurface is Gαβ and is given by:

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
gµν(X); α, β = 0, 1, . . . p,

where σ0 ≡ τ and σ1, σ2, . . . σp are the p spacelike coordinates for the p+1 dimensional world surface
mapped out by the p-brane. This metric, Gαβ, arises from the embedding of the string into the D
dimensional background spacetime. This embedding of the string is given by the functions, or fields,
Xµ(τ, σ), as we can see in Figure 2.2. From now on we will consider 1-branes.

Figure 2.2: Embedding of a string into a background spacetime, [15].

The fields Xµ(τ, σ), which are parameterized by the worldsheet coordinates gives how the string
propagates and oscillates through the background spacetime. The propagation of the particles
throught spacetime is defined with the fields Xµ(τ), parameterized by the worldline coordinate τ .
Note that if σ is periodic, the embedding gives a closed string in the spacetime.
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Now, assuming that the background space time is Minkowskian:

G00 =
∂Xµ

∂τ

∂Xν

∂τ
ηµν ≡ Ẋ2

G11 =
∂Xµ

∂σ

∂Xν

∂σ
ηµν ≡ X ′2

G10 = G01 =
∂Xµ

∂τ

∂Xν

∂σ
ηµν ≡ ẊX ′

This gives us

Gαβ =

(
Ẋ2 ẊX ′

ẊX ′ X ′2

)
and

det(Gαβ) = Ẋ2X ′2 − (ẊX ′)2.

So the previous action reduces to:

SNG = −T
∫
dτdσ

√
(ẊX ′)2 − (Ẋ2)(X ′2)

this is know as the Nambu-Goto action. This action can be interpreted as providing the area of the
worldsheet mapped out by the string in spacetime.

In order to get rid of the square root an auxiliary field can be introduced hαβ(τ, σ), this is another
metric living on the worldsheet. The resulting action is given by:

Sσ = −T
2

∫
dτdσ

√
−h hαβ ∂X

µ

∂α

∂Xν

∂β
gµν , where h ≡ det(hαβ),

and is called the Polyakov action or the string sigma-model. Note that this action holds for a general
background.

Theorem 2.3.1. The Polyakov action Sσ is equivalent to the Nambu-Goto action SNG4.

4Proof on page 22 in [15].



Chapter 3

Symmetries and Field Equations of the
Bosonic String

En física las cantidades conservadas, debido a las propiedades de simetría, vía el teorema de Noether,
reducen la complejidad del problema que nos ocupa. Nuestro objetivo a continuación es buscar las
simetrías globales y locales de nuestra teoría. Luego, con esta información obtendremos las ecuaciones
de campo para la acción de Polyakov, previamente obtenidas, para la cuerda bosónica cerrada y
abierta, aplicando las condiciones de contorno. Después, haremos una expansión en términos de los
modos normales.

3.1 Global Symmetries of the Bosonic String Theory
In this chapter we will discuss the invariance of this theory under the Poincaré group, but first
we will define global and local transformations and their consequences. We begin by describing a
global transformation in some spacetime, this is a transformation whose parameter/s do not depend
on where in the spacetime the transformation is being performed. A local transformation in some
spacetime does, however, depend on where the transformation is begin performed in the spacetime.
Note that invariance of a theory under global transformations leads to conserved currents and charges
via Noether’s theorem1, while invariance under local transformations, or gauge transformations, is a
sign of redundant degrees of freedom in the theory. First, we will discuss the Poincaré transformations
which are global transformations.

Poincaré Transformations

These are global transformations of the form

δXµ(τ, σ) = aµνX
ν(τ, σ) + bµ, (3.1)

δhαβ(τ, σ) = 0,

where fields Xµ(τ, σ) are defined on the worldsheet and aµν is antisymmetric, aµν = −aνµ and cor-
respond to spatial rotations and boost. We can see that the transformations do not depend on the
worldsheet coordinates, σ and τ . Now, we will show that the aµν generate the Lorentz transforma-
tions.

Its known that the speed of light is the same in all inertial frames. Thus, if (t,Xi) is the spacetime
position of a light ray in one inertial frame and (t′, X ′i) in another, then the relation between the two

1Noether’s theorem states that if the Lagrangian of a system has a continuous symmetry, then there exists a
conserved quantity by the system, and vice versa.
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is given by
ηµνX

µXν = −c2t2 +XiX
i = −c2t′2 +X′iX

′i = ηµνX
′µX

′ν

The linear transformations, denoted by Λ, which preserve this relation are called Lorentz transfor-
mations

X
′µ = Λµ

νX
ν .

Infinitesimally, the above transformation is given by

Λµ
ν = δνµ + aµν (3.2)

The infinitesimal form of the Lorentz transformation says that

X
′µ = Xµ + aµνX

ν ,

which implies that the variation of X, under the Lorentz transformation, is given by

δXµ = aµνX
ν .

Now, if we impose that under a Lorentz transformation the spacetime interval vanishes

δ |L.T. (ηµνX
µXν) = 0,

then we have that

δ |L.T. (ηµνX
µXν) = 2ηµν(δX

µ)Xν = 2ηµν(a
µ
kX

k)Xν = 2akνX
kXν = 0.

The most general solution to this is to have aµν = −aνµ, and thus we have that aµν defined in (3.1)
is equivalent to (3.2).

The next step is to ask if our Polyakov action is invariant under the Poincaré Transformation2.
In order to see this, we consider

δSσ = −T
∫
dτdσ

√
−hhαβ∂α(δXµ)∂βX

νgµν ,

where we have used the fact that hαβ is invariant under the transformation, δhαβ = 0, and symme-
try of the metric in its indices. Plugging the infinitesimal Poincaré transformation (that includes
translations), δXµ = aµkX

k + bµ, we get that

δSσ = −T
∫
dτdσ

√
−hhαβ∂α(aµkX

k + bµ)∂βX
νgµν .

This can be simplified by noting that aµk and bk are spacetime independent and thus we can drop
the bk term and pull the aµk out of the parentesis

δSσ = −T
∫
dτdσ

√
−hhαβaµk∂αXk∂βX

νgµν .

Now, using the metric gµν to lower the upper index on amuk,

δSσ = −T
∫
dτdσ

√
−h [aνk]︸︷︷︸

antisym

[hαβ∂αX
k∂βX

ν ]︸ ︷︷ ︸
symmetric

.

This is the the integral of the product of an antisymmetric part with a symmetric part, and thus
equal to zero. We have proved that the variation in the Polyakov action is zero, δSσ = 0, under a
Poincaré transformation. So, this action is invariant under these transformations.

2This means to be invariant under space and time translations and under Lorentz transformations.
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3.2 Local Symmetries of the Bosonic String Theory
Local symmetries, also called Gauge symmetries, lead to a reduction in the number of degrees of
freedom. The next question to ask is what local symmetries does our bosonic string theory has.
These are transformations whose parameters depend on the worldsheet coordinates, we will see two
of them:
1. Reparametrization invariance (diffeomorphisms3): This is a local symmetry for the worldsheet.

The Polyakov action is invariant under the change of the parameter σ to σ′ = f(σ) since the
fields Xµ(τ, σ) transform as scalars while the auxiliary field hαβ(τ, σ) transforms as a 2-tensor.
Thus, our bosonic string is invariant under reparametrizations.

2. Weyl Symmetry: these are transformations that change the scale of the metric,

hαβ(τ, σ) −→ h′αβ(τ, σ) = e2φ(σ)hαβ. (3.3)

Under a Weyl transformation the variation of Xµ(τ, σ) is zero, δXµ(τ, σ) = 0. This is a lo-
cal transformation since the parameter φ(σ) depends on the worldsheet coordinates. Since our
theory is invariant under Weyl transformations this implies that the stress-energy tensor asso-
ciated with this theory is traceless, hαβTαβ = 0. This is proved in Appendix B.1 as well as the
invariance of our theory under Weyl transformations.

Since this theory has local, or gauge, symmetries, the theory has a redundancy in its degrees of
freedom, we can use these symmetries to cope with these redundancies, a procedure which is known
as gauge fixing. In order to simplify the bosonic string theory, we will show that if our theory is
invariant under these two particular transformations, we can fix a gauge so that our metric, hαβ,
becomes flat.

First, note that since the metric is symmetric:

hαβ =

(
h00 h01
h10 h11

)
,

there are only three independent components, h00(X), h11(X), and h10(X) = h01(X). Now, a diffeo-
morphism, or reparametrization, allows us to change two of the independent components by using
two coordinate transformations to fix h10(X) = 0 = h01(X) and h00(X) = ±h11(X) (the ± depends
on the signature of the metric).

Because our theory is diffeomorphism invariant, we can see that the two dimensional metric
hαβ(X) is of the form h(X)ηαβ. Now, using a Weyl transformation, we get that hαβ(X) = ηαβ. If
our theory is invariant under diffeomorphisms and Weyl transformations4, then the two-dimensional
intrinsic metric, hαβ(X), can be gauged into the two-dimensional flat metric,

hαβ(X) = ηαβ =

(
−1 0
0 1

)
.

Note that this is only valid locally since we cannot, in general, extend hαβ(X) to the whole world-
sheet, since gauge symmetries are local symmetries.

The Polyakov action, in terms of the gauge fixed flat metric, becomes:

Sσ =
T

2

∫
dτdσ((Ẋ)2 − (X ′)2),

where Ẋ ≡ dXµ/dτ and X ′ ≡ dXµ/dσ.
3A diffeomorphism is an invertible function that maps one differentiable manifold to another such that the function

and its inverse are differentiable. In this case, the transformations and their inverses are differentiable.
4Their combinations are called conformal transformations.
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3.3 Field Equations for the Polyakov Action
Once we have seen the symmetries through the Euler-Lagrange equations of the string action, we
obtain the equations of our field in particular. To do this, we make use of the Principle of least action
and expand to first order, thereby we obtain our Euler-Lagrange equations.

First, we will assume that our worldsheet topology allows for the gauge fixed locally defined flat
metric hαβ to be extended globally. The field equations for the fields Xµ(τ, σ) on the worldsheet
come from setting the variation of Sσ with respect to Xµ → Xµ + δXµ equal to zero. This leads to

δSσ =
T

2

∫
dτdσ(2Ẋ∆Ẋ − 2X ′δX ′).

Integrating both terms by parts, we deduce the equations that give the dynamics

T

∫
dτdσ[(−∂2τ + ∂2σ)Xµ]δXµ + T

∫
dσẊµδXµ |∂τ

−
[
T

∫
dτX ′δXµ |σ=π + T

∫
dτX ′δXµ |σ=0

]
.

We set the variation of X at the boundary of τ to be zero, i.e. δXµ |∂τ = 0, and are left with the
field equations for Xµ(τ, σ) for the Polyakov action,

(−∂2τ + ∂2σ)Xµ − T
∫
dτ [X ′δXµ |σ=π +X ′δXµ |σ=0]

The σ boundary terms tell us what type of strings we have, either closed or open strings:

G Closed Strings: We take σ to have a periodic boundary condition,

Xµ(τ, σ + n) = Xµ(τ, σ), (3.4)

which implies that the boundary terms appearing in the variation of Sσ vanish since if Xµ(τ, σ+
n) = Xµ(τ, σ) then δX(τ, σ = 0) = δX(τ, σ + n). Thus, we have the following field equations
for the closed string

(∂2τ − ∂2σ)Xµ(τ, σ) = 0, (3.5)

The fields satisfy the wave equation in two dimensions with the boundary conditions (3.4).

G Open Strings (Neumann Boundary Conditions): We set the derivative of Xµ, by σ, at the σ
boundary to vanish, i.e.

∂σX
µ(τ, σ = 0) = ∂σX

µ(τ, σ = n) = 0. (3.6)

Under these boundary conditions the boundary terms over σ also vanish and the field equations
become

(∂2τ − ∂2σ)Xµ(τ, σ) = 0,

with the boundary conditions (3.6). Note that the Neumann boundary conditions preserve
Poincaré invariance since

∂σ(X ′µ) |σ=0,n = ∂σ(aµνX
ν + bµ) |σ=0,n = aµν∂σX

ν |σ=0,n = 0.

G Open Strings (Dirichlet Boundary Conditions): We set the value of Xµ to a constant at the
σ boundary,

Xµ(τ, σ = 0) = Xµ
0 , (3.7)

Xµ(τ, σ = n) = Xµ
n (3.8)
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where Xµ
0 and Xµ

n are constants. This also makes the σ boundary terms vanish and so the field
equations are

(∂2τ − ∂2σ)Xµ(τ, σ) = 0,

with the boundary conditions (3.7) and (3.8). The Dirichlet boundary conditions do not preserve
Poincaré invariance, this does not invalidate the theory. We have that the extremes are in the
branes, therefore we must include the dynamics of the brane

(X ′µ) |σ=0,n = (aµνX
ν + bµ) |σ=0,n = aµνX

ν
0,n + bµ 6= Xµ

0,n.

Thus, under a Poincaré transformation the ends of the string actually change.

Finally, note that the resulting field equations for the open and closed strings are equivalent, but
with different boundary conditions. In addition, we must impose the field equations, which result
from setting the variation of Sσ with respect to hαβ equals to zero. This field equations are given by

0 = Tαβ = ∂αX · ∂βX −
1

2
hαβ h

γδ∂γX · ∂δX,

and gauge fixing hαβ to be flat, we get that the fields equations transform into

0 = T00 = T11 =
1

2
(Ẋ2 +X ′2) (3.9)

0 = T01 = T10 = Ẋ ·X ′. (3.10)

We have seen that gauge symmetry gives redundant degrees of freedom that give rise to constraints.
The expression (3.5) and the constraints (3.9) and (3.10) give the dynamics of the fields.

3.4 Expansion in normal modes
As in any classical string, the solution is expressed in normal modes. The oscillations of this string
will represent particles. It will be a string that moves and also oscillates so, it will be expressed as
the sum of a translation and an oscillation.

First, we will assume that we can extend the gauge fixed flat metric to a global flat metric,
hαβ → ηαβ, on the worldsheet. Now, we will solve the system of equations by introducing light-cone
coordinates for the worldsheet

σ± = (τ ± σ),

which implies that τ = 1
2
(σ+ + σ−) and σ = 1

2
(σ+ − σ−). The derivatives, in terms of light-cone

coordinates, become

∂+ =
1

2
(∂τ + ∂σ),

∂− =
1

2
(∂τ − ∂σ),

and since the metric transforms as

η′α′β′ =
∂σγ

∂σα′
∂σδ

∂σβ′
ηγα

the metric, in terms of light-cone coordinates, is given by

ηαβ|l−c c = −1

2

(
0 1
1 0

)
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and so,

ηαβ|l−c c = −2

(
0 1
1 0

)
In terms of the light-cone coordinates, the field equations (3.5) become

∂+∂−X
µ = 0.

The most general solution to the field equations for Xµ(σ+, σ−) is given by a linear combination
of two arbitrary functions whose arguments depend only on one of the light-cone coordinates,
Xµ(σ+, σ−) = Xµ

R(σ−) +Xµ
L(σ+).

Now that we have the general form of the solution to the field equation in terms of the worldsheet
light-cone coordinates, we want to map this solution to the usual worldsheet coordinates, τ and σ.
Since σ− = τ − σ and σ+ = τ + σ, the arbitrary functions Xµ

R(σ−) and Xµ
L(σ+) can be thought of as

left and right moving waves which propagate through space

Xµ = Xµ
R(τ − σ)︸ ︷︷ ︸

right mover

+Xµ
L(τ + σ)︸ ︷︷ ︸

left mover

.

Now, we apply the boundary conditions for the closed and open string:

G Closed String: Applying the conditions Xµ(τ, σ + n) = Xµ(τ, σ) gives the particular solution
(mode expansion) for the left and right movers as

Xµ
R =

1

2
xµ +

1

2
l2s(τ − σ)pµ +

i

2
ls
∑
n6=0

1

n
αµne

−2in(τ−σ)

Xµ
L =

1

2
xµ +

1

2
l2s(τ + σ)pµ +

i

2
ls
∑
n 6=0

1

n
α̃µne

−2in(τ+σ)

where xµ, the center of mass of the string, is a constant, pµ, the total momentum of the string,
is a constant, ls, the string length is also a constant. We can see that Xµ = Xµ

R + Xµ
L satisfies

the boundary conditions.

Now that we have solved the field equations for the closed string boundary conditions we study the
solutions obeying the open string boundary conditions, both Neumann and Dirichlet.

G Open String (Neumann Boundary Conditions): Recall that the Neumann boundary con-
ditions imply that the derivative, with regard to σ, of the field at the σ boundary is zero,
∂σX

µ(τ, σ)|σ=0,π = 0 (we have set n = π for the boundary conditions). The general solution to
the field equations is given by 5

Xµ(σ, τ) = a0 + a1σ + a2τ + a3στ +
∑
k 6=0

(bµke
ikσ + b̃µke

−ikσ)e−ikτ ,

where ai i = (1, 3), bk and b̃k are constants and the only constraint on k in the summation is
that it cannot equal to zero. Now, when we apply the Neumann boundary conditions we get

5For a hint of how to get to this, see Problem 4.2, [15].
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the specific solution, here we have introduced new constants to resemble the closed string mode
expansion,

Xµ(σ, τ) = xµ + lsτp
µ︸ ︷︷ ︸

c.o.m. motion of the string

+ls
∑
m 6=0

1

m
αµme

−imτ cos (mσ),︸ ︷︷ ︸
oscillation of string

where c.o.m. is center of mass.

G Open String (Dirichlet Boundary Conditions): The Dirichlet boundary conditions say that at
the σ boundary the field assumes the value of a constant, Xµ(τ, σ = 0) = Xµ

0 and X(τ, σ =
π) = Xµ

π . The solution to the field equation obeying the Dirichlet boundary conditions is given
by,

Xµ(τ, σ) = xµ0 +
σ

π
(xµπ − x

µ
0)︸ ︷︷ ︸

c.o.m motion of the string

+
∑
m6=0

1

m
αµme

−imτ sin(mσ).︸ ︷︷ ︸
oscillation of string

We can see, following the study of non relativistic strings, that Dirichlet boundary conditions
arise if string endpoints are attached to some physical objects. In this case of relativistic strings, the
endpoints must lie in objects that are characterized by the number of spatial dimensions that they
have. This objects are the D-branes.

(a) Dirichlet Boundary Conditions (b) Neumann Boundary Conditions

When the open strings endpoints have free boundary conditions along all spatial directions, we
have a space-filling D-brane. Since open strings endpoints can be anywhere on the D-brane, open
strings endpoints are completely free, [16]. When analyzing the motion of open string points two
important properties emerges: the endpoints move with the speed of light and the endpoints move
transversely to the string.

Now, we need to impose the constraints (3.9) and (3.10). In the worldsheet lightcone coordinates
σ±, these become,

(∂+X)2 = (∂−X)2 = 0.

These equations give constraints on the momenta pµ and the Fourier modes αµn and α̃µn.

More generally, the periodic solution can be expanded into Fourier modes as

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n6=0

1

n
α̃µne

−inσ+

, (3.11)

Xµ
R(σ+) =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n6=0

1

n
αµne

−inσ− , (3.12)
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Since Xµ is real, it requires that the coefficients of the Fourier modes, αµn and α̃µn, obey

αµn = (αµn)∗ α̃µn = (α̃µn)∗

So, the constraint (3.9) can be written as

(∂−X)2 =
α′

2

∑
m,p

αm · αpe−i(m+p)σ− =
α′

2

∑
m,n

αm · αn−me−inσ
−

≡ α′
∑
n

Lne
−inσ− = 0

where we have defined the sum of oscillator modes,

Ln =
1

2

∑
m

αn−m · αm,

with the zero mode defined to be

αµ0 ≡
√
α′

2
pµ.

We can do the same for the left-moving modes, the sum of operator modes is

L̃n =
1

2

∑
m

α̃n−m · α̃m,

with

α̃µ0 ≡
√
α′

2
pµ.

We see that αµ0 = α̃µ0 . The Ln and L̃n are the Fourier modes of the constraints. Any classical solution
of the string of the form (3.11) must further obey the infinite number of constraints,

Ln = L̃n = 0, n ∈ Z. (3.13)



Chapter 4

Canonical Quantization

En este capítulo procederemos a realizar una cuantización canónica de la teoría. Para ello bus-
caremos cantidades conservadas y escribiremos primero el hamiltoniano y el tensor energía-impulso
para cuerdas cerradas y abiertas en la teoría clásica. Obtendremos así la expresión de masa clásica.
Para cuantificar la teoría introduciremos las álgebras de Witt y Virasoro; y cambiaremos los parén-
tesis de Poisson a conmutadores y los generadores Lm a operadores. La elección del orden normal
introducirá una constante arbitraria y términos de corrección en la fórmula de masa. Por último
caracterizaremos los estados físicos en términos de los generadores de Virasoro. Esto nos va a per-
mitir calcular representaciones del álgebra de Virasoro que se relacionarán con representaciones del
grupo de Lorentz con el objetivo de ver a qué tipo de partícula corresponde nuestro estado físico.

Now, our aim is to analyze the conserved currents and charges. Due to Emmy Noether’s theorem,
we know that associated with any global symmetry of a system, the worldsheet in our case, there
exists a conserved current, jµ, and a conserved charge, Q,

∂αj
α = 0,

d

dτ
Q =

d

dτ

(∫
dσj0

)
= 0.

We will use this result to construct an algorithm for finding these currents and charges for any
symmetry.

4.1 Conserved Quantities
In order to verify that the charge, defined as the spatial integral of the zeroth component of the
current, is conserved we consider the following

d

dτ

(∫
dσj0

)
=

∫
dσ

d

dτ
(j0) = −

∫
dσ∂σj

σ = −jσ |πσ=0 = 0,

where the substitution in the second equality comes from the current being conserved and the third
equality follows from Stoke’s theorem. So, the charge is indeed conserved.

Now we ask how to actually construct a current from a given symmetry. Let φ be a field, then
if there exists a global symmetry for the theory under this transformation, f : φ → φ + δφ, where
δφ = εf(φ) and ε is infinitesimal, the variation in the action δS is equal to zero (the equations of
motion do not change). To construct the corresponding current to this transformation we proceed as
follows: First, consider ε to be a local parameter, its derivative with respect to spacetime coordinates
does not vanish. Now, since ε is infinitesimal, the only contributing part to the variation of S will be
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linear in ε. Then, the transformation δφ = εf(φ) leads to a variation in the action S which is given
by

δS =

∫
dτdσ(∂αε)j

α.

Integrating this by parts gives

δS = −
∫
dτdσε(∂αj

α).

If this transformation is a symmetry then this variation vanishes for all ε and thus ∂αjα = 0.
We shown that the current is conserved. To construct this current we plug the variation of the
transformation, εf(φ), into the variation of the action and then the current will be given by all the
terms which multiply the ∂αε term.

4.2 The Hamiltonian and Energy-Momentum Tensor
The Hamiltonian that generates the Worldsheet time evolution is defined by

H =

∫ π

σ=0

dσ(ẊµP
µ − L),

where P µ is the canonical momentum and L is the Lagrangian. In the case of the bosonic string
theory, we have that the canonical momentum is given by P µ = TẊµ while the Lagrangian is
L = 1

2
(Ẋ2 ·X ′2). So, the bosonic string Hamiltonian is

H = T

∫ π

σ=0

dσ(Ẋ2 − 1

2
(Ẋ2 ·X ′2)) =

T

2

∫ π

σ=0

dσ(Ẋ2 +X ′2),

where Ẋ2 ≡ ẊµẊ
µ. To express the Hamiltonian in terms of an open or closed string we need to

expand the above in terms of the mode expansions for the fields Xµ(τ, σ). So, for a closed string
the Hamiltonian becomes

H =
∞∑

n=−∞

(α−n · αn + α̃−n · α̃n),

we have defined αµ0 = α̃µ0 = 1
2
lsp

µ. While for open strings we have that

H =
1

2

∞∑
n=−∞

α−n · αn,

with αµ0 = α̃µ0 = lsp
µ.

Note that H is conserved, d
dτ

(H) = 0, since neither α or α̃ depend on τ . Also, these results only
hold in the classical theory, when we quantize the theory we will have order ambiguities.

Now, we will see the mode expansion for the stress-energy tensor in terms of a closed string theory
(the open string version follows analogously). The components of the stress-energy tensor are given
by

T−− = (∂−X
µ
R)2; T++ = (∂+X

µ
L)2; T−+ = T+− = 0.

For a closed string, we can plug in the mode expansions for Xµ
R and Xµ

L to get

T−− = 2l2s

∞∑
m=−∞

Lme
−2im(τ−σ)

T++ = 2l2s

∞∑
m=−∞

L̃me
−2im(τ−σ),
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where we have defined
Lm =

1

2

∞∑
n=−∞

αm−n · αn, (4.1)

L̃m =
1

2

∞∑
n=−∞

α̃m−n · α̃n

These expressions only hold for the classical case and must be modified in the quantization. We can
write the Hamiltonian in terms of the newly defined quantities Lm and L̃m; for a closed string we
have that

H = 2(L0 + L̃0),

while for an open string
H = L0.

We can use the expression for the Hamiltonian and the stress-energy tensor in terms of the modes
to derive a mass formula for both the classical open and closed string theories.

4.3 Classical Mass Formula for a Bosonic String
Recalling the mass-energy relation

M2 = −pµpµ.

We have for our bosonic string theory that

pµ =

∫ π

σ=0

dσP µ = T

∫ π

σ=0

dσẊµ =

{
2αµ0
ls
, for a closed string,

αµ0
ls
, for an open string.

and so

pµpµ =

{
2α2

0

α′
, for a closed string,

α2
0

2α′
for an open string,

where α′ = l2s/2.
In the case of an open string, we have the following mass formula,

M2 =
1

α′

∞∑
n=1

α−n · αn.

For the closed string we have to take into account both left and right movers and thus we must use
both the condition (3.13). So, the closed string mass formula is given by

M2 =
2

α′

∞∑
n=1

(α−n · αn + α̃−n · α̃n).

These are the mass-shell conditions for open and closed strings and they express the mass corre-
sponding to a certain classical string state. These expressions are only valid classically.

4.4 Witt Algebra
Let {Lm} be a set of elements with the multiplication given by

{Lm, Ln}P.B. = i(m− n)Lm+n (4.2)
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where {·, ·}P.B. is the Poisson bracket. This set with the operation forms an algebra called the Witt
algebra or the classical Virasoro algebra. Note that the elements Lm defined before satisfy (4.2), so
they form the algebra. Now we will study the physical meaning of the {Lm}.

We gauge fixed the metric hαβ to the flat metric ηαβ. However, this does not completely gauge
fix the diffeomorphism and Weyl symmetries. For instance, consider the transformations given by

δDη
αβ = −(∂αξβ + ∂βξα),

δWη
αβ = Ληαβ,

where ξα is an infinitesimal parameter of reparametrization, Λ is an infinitesimal parameter for
Weyl rescaling, δDηαβ gives the variation of the metric under reparametrization and δWηαβ gives the
variation under a Weyl rescaling. Combining these two transformations we get

(δD + δW )ηαβ = (−∂αξβ − ∂βξα + Ληαβ). (4.3)

Finding the most general solution for ξ and Λ such that (4.3) is zero, we get additional symmetries
for the system. To solve (4.3) for ξ and Λ we will use the light-cone coordinates:

ξ± = ξ0 ± ξ1

σ± = τ + σ.

So, in terms of the light-cone coordinates, the equation (4.3) becomes

∂αξβ + ∂βξα = Ληαβ.

In order to solve this, we consider:

1. α = β = +: Noting that η++ = 0. Thus, we have to solve

∂+ξ+ + ∂+ξ+ = Λη++ ⇒ 2∂+ξ+ = 0⇒ ∂+ξ+ = 0.

The solution is given by some arbitrary function whose argument is only a function of σ−, we
denote it as ξ−(σ−).

2. α = β = −: In this case η−− = 0, so

∂−ξ− + ∂−ξ− = Λη−− ⇒ 2∂−ξ− = 0⇒ ∂−ξ− = 0.

which has as its solution some arbitrary function of σ+. This solution is denoted by ξ+(σ+).

3. α = +, β = −: We have that

∂+ξ− + ∂−ξ+ = Λη−+ ⇒ ∂+ξ− + ∂−ξ+ = 2Λ.

So, we have found another set of gauge transformations that let our bosonic string theory invariant.
These are the local transformations which satisfy:

δσ+ = ξ+(σ+),

δσ− = ξ−(σ−),

Λ = ∂−ξ+ + ∂ + ξ−

The infinitesimal generators for the transformations δσ± = ξ± are given by

V ± =
1

2
ξ±(σ±)

∂

∂σ±
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and a complete basis for these transformations is given by

ξ±n (σ±) = e2inσ
±
, n ∈ Z.

In the case of the open string the infinitesimal generators are given by

V ±n = einσ
+ ∂

∂σ+
+ einσ

− ∂

∂σ−
, n ∈ Z.

In the next section we will look at the quantized theory.

4.5 Canonical Quantization
First, we will quantize the bosonic string theory in terms of canonical quantization and later we will
study the light-cone gauge quantization of the theory.

In the canonical quantization procedure, we quantize the theory by changing Poisson brackets to
commutators,

{·, ·}P.B. → i[·, ·],
and we promote the field Xµ to an operator in our corresponding Hilbert space. This is equivalent
to promoting the modes α, the constant xµ and the total momentum pµ to operators. In particular,
for the modes αµm , we have that (dropping the i factor)

[α̂µm, α̂
ν
n] = mηµνδm,−n

[ ˆ̃αµm, ˆ̃ανn] = mηµνδm,−n,

[α̂µm, ˆ̃ανn] = 0.

Defining this new operators âµ ≡ 1√
m
α̂µm and âµ† ≡ 1√

m
α̂µ†−m for m > 0, they satisfy

[âµm, â
ν†
n ] = [ˆ̃aµm, ˆ̃a

ν†
n ] = ηαβδm,n, for m,n > 0.

For µ = ν = 0, we obtain a negative sign due to the signature of the metric,

[â0m, â
0†
n ] = η00δm,n = −δm,n.

This negative sign in the commutators leads to the prediction of negative norm physical states, or
ghost states. We will discuss this in Chapter 5.

Next, we introduce the ground state, denoted by |0〉, as the state which is annihilated by all of
the lowering operators âµm,

âµm |0〉 = 0, for m > 0.

In the other hand, physical states are states that are constructed by acting on the ground state with
the raising operators âµ†m,

|φ〉 = âµ1†m1
âµ2†m2
· · · âµn†mn |0; kµ〉 ,

which are eigenstates of the momentum operator p̂µ, p̂µ |φ〉 = kµ |φ〉. Note that this is first quantiza-
tion, and all of these states, including the ground state, are one-particle states.

In order to prove the claim of negative norm states, we consider the state |ψ〉 = â0†m |0; kµ〉, for
m > 0, and calculate

‖ψ‖2 = 〈0| â0mâ0†m |0〉 = 〈0| [â0m, â0†m ] |0〉 = −〈0|0〉 .
If we set 〈0|0〉 to be positive then we will get some negative norm states, but if we define 〈0|0〉 to
be negative then there will be other states with negative norm (in particular any state not of the
same form as |ψ〉). These negative norm states are a issue because they are unphysical. In Chapter
5, we will see that these negative norm states can be removed but that will put a constraint on the
number of dimensions of the background spacetime in which our theory is defined.
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4.6 Virasoro Algebra
In the previous section we saw that when we quantize the bosonic string theory the modes α become
operators. This implies that the generators Lm will also become operators, since they are constructed
from the α. However, we must be careful because we cannot just say that L̂m is given by (4.1), but
we must normal order1 the operators, because they are non-commuting operators. We will see when
this ordering introduces ambiguities. Thus, we define Lm to be

L̂m =
1

2

∞∑
n=−∞

: α̂m−n · α̂n : .

For m = 0, L̂0 is given by

L̂0 =
1

2
α̂2
0 +

∞∑
n=1

α̂−n · α̂n.

We get the commutation relations for the operators L̂m in terms of the commutation relations for
the operators α̂

[L̂m, L̂n] = (m− n)L̂m+n +
c

12
m(m2 − 1)δm,−n,

where c is called the central charge. We will see that in the bosonic string theory, c is equal to the
dimension of the spacetime where the theory lives, and it must take the value c = 26 in order to no
have negative norm states. Also, note that for m = −1, 0, 1 the c term drops out, we get that the
set {L̂−1, L̂0, L̂1} along with the relations

[L̂m, L̂n] = (m− n)L̂m+n,

becomes an algebra which is isomorphic to SL(2,R)2.

4.7 Physical States

Classically we have seen that L0 = 0 but when we quantize the theory we cannot say that L̂0 = 0,
this is because when we quantize the theory we have to normal order the operator L̂0 and so we
could have some arbitrary constant due to this normal ordering. Thus, after quantizing we get that
for an open string, the vanishing of the L0 constraint transforms to

(L̂0 − a) |φ〉 = 0,

where a is a constant. This is called the mass-shell condition for the open string. For a closed string,
we have that

(L̂0 − a) |ψ〉 = 0, (4.4)

( ˆ̄L0 − a) |ψ〉 = 0, (4.5)

where ˆ̄L is the operator corresponding to the classical generator L̃.

1Normal ordering is defined to be

: αi · αj :=

{
αi · αj when i ≤ j,
αj · αi when i > j.

2SL(2,R) is the group of all linear transformations of R2 that preserve oriented area.
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Normal ordering also adds correction terms to the mass formula. For an open string theory, the
mass formula becomes

α′M2 =
1

α′

∞∑
n=1

: α̂−n · α̂n : −a = N̂ − a,

where the number operator N̂ is

N̂ =
∞∑
n=1

: α̂−n · α̂n :=
∞∑
n=1

n : â†n · ân : .

We can use the number operator to compute the mass spectrum, for example,

α′M2 = −a, ground state n = 0

α′M2 = −a+ 1, first excited state n = 1

α′M2 = −a+ 2, second excited state n = 2.

...

For a closed string we have the mass formula

4

α′
M =

∞∑
n=1

: α̂−n · α̂n : −a =
∞∑
n=1

ˆ̃α−n · ˆ̃αn : −a, (4.6)

or
N̂ − a = ˆ̄N − a,

where N̂ is the number operator for right movers and ˆ̄N is the number operator for left movers.
Also, note that if we subtract the left moving physical state condition, (4.4), from the right moving
physical state condition, (4.5), we get that N̂ = ˆ̄N .

Virasoro Generators and Physical States

We have shown that, classically, Lm = 0 for all m which does not hold for L̂0. If Lm |φ〉 = 0 for all
m 6= 0 then we would have that, if we take n in such a way that n+m 6= 0,

[L̂m, L̂n] |φ〉 = 0.

Plugging this in the commutation relations we get

(m− n)L̂m+n |φ〉+
c

12
m(m2 − 1)δm,−n |φ〉 = 0

and since the first term vanishes, because we are assuming L̂m |φ〉 = 0 for all m 6= 0, we see that
it must be that either m = −1, m = 0 or m = 1, for c 6= 0. Thus, we must restrict our Virasoro
algebra to only {L̂−1, L̂0, L̂1}. Instead of doing this, we will only impose that Lm |φ〉 = 0 = 〈φ| L̂†m
for m > 0. Physical states are then characterized by

L̂m>0 |φ〉 = 0 = 〈φ| L̂†m>0 (4.7)

and the mass-shell condition
(L̂0 − a) |φ〉 = 0.

Equivalently, one could replace (4.7) by

〈φ| L̂m = 0 = 〈φ| L̂†m, for all m < 0.
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Classically, the Lorentz generators or charges, Qµν , are given by the spatial integral of the time
component of the current corresponding to the Lorentz transformations, jµνα , i.e.,

Qµν =

∫ π

σ=0

dσjµν0 .

This can be rewrite as
Qµν = T

∫ π

σ=0

dσ(XµẊν −XνẊµ),

which can be expanded into modes as

Qµν = (xµpν − xνpµ)− 1
∞∑
m=1

1

m
(αµ−mα

ν
m − αν−mαµm).

We can quantize the expression since this does not have any normal ordering ambiguities,

Q̂µν = (x̂µp̂ν − x̂ν p̂µ)− 1
∞∑
m=1

1

m
(α̂µ−mα̂

ν
m − α̂ν−mα̂µm).

Now we have an operator expression for the Lorentz generators. Computing the commutator
[L̂m, Q̂

µν ] we see it is equal to zero. This implies that physical states, defined in terms of the Virasoro
generators, appear in complete Lorentz multiplets. This allow us to calculate representations of the
Virasoro algebra and be able to relate them to representations of the Lorentz group with the aim of
seeing what type of particle our physical state corresponds to.



Chapter 5

Removing Ghost States and Light-Cone
Quantization

En este capítulo construiremos el espacio de Fock donde se desarrolla nuestra teoría. Sin embargo,
hay un problema con este espacio, no tiene norma positiva. Para deshacernos de los estados físicos
normales negativos, los llamados estados fantasma, introduciremos los estados espurios. Por último,
proponemos cuantizar la teoría de cuerdas bosónica siguiendo la cuantización del cono de luz en lugar
de la cuantización canónica realizada anteriormente. Obtendremos la condición de concha de masa
para cuerdas bosónicas abiertas, así como el espectro de masas para cuerdas bosónicas abiertas y
cerradas.

The physical Hilbert space for the theory is given by taking the Fock space1 generated by vectors
|ψ〉 of the form

|ψ〉 = âµ1†m1
âµ2†m2
· · · âµn†mn |0; kµ〉 , (5.1)

and then modding out by the subspace formed from the constraint L̂m>0 |ψ〉 = 0. More precisely,
we had that the physical states |φ〉 were defined as |φ〉 = âµ1†m1

âµ2†m2
· · · âµn†mn |0; kµ〉 , which obeyed the

following constraints

(L̂0 − a) |φ〉 = 0, (5.2)

L̂m>0 |φ〉 = 0. (5.3)

However we saw that some of the states defined in (5.1) may have negative norm. We will see that
one can get rid of these negative norm physical states by fixing the constant a, appearing in (5.2),
and by also fixing the central charge c of the Virasoro algebra.

We will also get a constraint on the allowed dimensions for the background. We will study physical
states of zero norm which satisfy the physical state conditions. To do this, we must introduce spurious
states.

5.1 Spurious States
Definition 5.1.1. A state |ψ〉 is said to be spurious if it satisfies the mass-shell condition,

(L̂0 − a) |φ〉 = 0

and is orthogonal to all other physical states,

〈φ|ψ〉 = 0, for all physical states |φ〉 .
1More information of Fock spaces in [1].
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In general, a spurious state can be written as

|ψ〉 =
∞∑
n=1

L̂−n |χn〉 , (5.4)

where |χn〉 is some state which satisfies the mass-shell condition given by

(L̂0 − a+ n) |χn〉 = 0.

Now, since any L̂−n, for n ≥ 1, can be written as a combination of L̂−1 and L̂−2 the general expression
for a spurious state (5.4) can be simplified to

|ψ〉 = L̂−1 |χ1〉+ L̂−2 |χ2〉

where |χ1〉 and |χ2〉 are called level 1 and level 2 states, respectively, and they satisfy the mass-shell
conditions (L̂0 − a+ 1) |χ1〉 = 0 and (L̂0 − a+ 2) |χ2〉 = 0.

To see that a spurious state |ψ〉 is orthogonal to any physical state |φ〉 consider

〈φ|ψ〉 =
∞∑
n=1

〈φ| L̂−n |χn〉 =
∞∑
n=1

(〈χn| L̂n |φ〉)∗ =
∞∑
n=1

(〈χn| 0 |φ〉)∗ = 0,

where the second equality follows from the fact that L̂†−n = L̂n and the third equality follows from
the fact that since |φ〉 is a physical state it is annihilated by all L̂n>0.

Since a spurious state |ψ〉 is perpendicular to all physical states, in particular, if |ψ〉 is both
physical and spurious state then it must be perpendicular to itself,

‖ |ψ〉 ‖2 = 〈ψ|ψ〉 = 0.

Thus, we have constructed physical states whose norm is zero, these are the states we need to
study in order to get rid of the negative norm physical states in our bosonic string theory2.

5.2 Removing Ghost States
Now, we will study physical spurious states in order to determine the values of a and c that project
out the negative norm physical states, called ghost states. In order to find the corresponding a value
we should start with the spurious state,

|ψ〉 = L̂−1 |χ1〉 ,

with |χ1〉 satisfaying (L̂0− a+ 1) |χ1〉 = 0. Now, if |ψ〉 is physical then it must satisfy the mass-shell
condition for physical states,

(L̂0 − a) |ψ〉 = 0,

along with the condition
L̂m>0 |ψ〉 = 0.

2Since the set of spurious-physical states is at the boundary of physical and non physical states, there is ambiguity,
since this boundary must have a “contamination” of these two kind of states. If we show that this boundary only
contain physical states, we can state that there is no elements with negative norm, these are, non physical states.
Furthermore, for the theory to be consistent we must impose values for a and c.
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So, if L̂m>0 |ψ〉 = 0 then this holds for, in particular, the operator L̂1, i.e. L̂1 |ψ〉 = 0 which implies
that 0 = L̂1(L̂−1 |χ1〉) = ([L̂1, L̂−1] + L̂−1L̂1) |χ1〉 = [L̂1, L̂−1] |χ1〉 = 2L̂0 |χ1〉 = 2(a − 1) |χ1〉. Since
2(a− 1) |χ1〉 must be zero (since |ψ〉 is physical), we have a = 1. This tells us that a = 1 if |ψ〉 is a
physical spurious state. This is part of the boundary between positive and negative norm physical
states.

In order to determine the appropriate value of c for spurious physical states we need to look at a
level 2 spurious state. These states are given by

|ψ〉 = (L̂−2 + γL̂−1L̂−1) |χ2〉

where γ is a constant, that will be fixed to insure that |ψ〉 has a zero norm and |χ2〉 obeys the
relations

(L̂0 − a+ 2) |χ2〉 = 0,

L̂m>0 |χ2〉 = 0.

Now, if |ψ〉 is to be physical, and thus have zero norm, then it must satisfy L̂m>0 |ψ〉 = 0 and, in
particular, L̂1 |ψ〉 = 0. This implies that γ = 3

2
, (obtained in [15]).

With the previous results, any general level 2 physical spurious state is of the form

|ψ〉 = (L̂−2 +
3

2
L̂−1L̂−1) |χ2〉

Now, since L̂m>0 |ψ〉 = 0, we have that, in particular, L̂2 |ψ〉 = 0 which yields

L̂2

(
L̂−2 +

3

2
L̂−1L̂−1

)
|χ2〉 = 0;(

[L̂2, L̂−2 +
3

2
L̂−1L̂−1] + (L̂−2 +

3

2
L̂−1L̂−1)L̂2

)
|χ2〉 = 0;(

[L̂2, L̂−2 +
3

2
L̂−1L̂−1]

)
|χ2〉 = 0;(

13L̂0 + 9L̂−1L̂1 +
c

2

)
|χ2〉 = 0;(

−13 +
c

2

)
|χ2〉 = 0⇒ c = 26.

Finally, we have obtained a = 1, γ = 3/2 and c = 26 in order to project out the negative norm
physical states. Note that since the central charge c is equivalent to the dimension of the background
space-time for our bosonic string theory, then our theory is only physically acceptable for 26 dimen-
sions, this is called the critical dimension.

Next, we want to quantize the theory in a different manner, it will no longer have negative norm
physical states, but it will not be Lorentz invariant. However, this can be fixed constraining the
constants a and c.

5.3 Light-Cone Gauge Quantization
There are different ways to quantize, we propose to quantize the bosonic string theory in another
way, instead of the canonical quantization previously carried out. When we impose that our theory
be Lorentz invariant we will see that this forces a = 1 and c = 26. We get that, even after we choose



5.3. LIGHT-CONE GAUGE QUANTIZATION 35

a gauge such that the space-time metric hαβ becomes Minkowskian, the bosonic string theory still
has residual diffeomorphism symmetries. In terms of the worldsheet light-cone coordinates σ+ and
σ−, this residual symmetry corresponds to being able to reparameterize these coordinates as

σ± → σ′± = ξ±(σ±)

without changing the theory, the bosonic string action is invariant under these reparametrizations.
So, we have the possibility of making an additional gauge choice, and if we choose a particular non-
covariant gauge, the light-cone gauge, it is then possible to describe a Fock space which has not ghost
states. To proceed, we will first define the light-cone coordinates for the background spacetime in
which our bosonic string is moving.

In general, the light-cone coordinates for a spacetime can be defined by taking linear combinations
of the temporal coordinate along with another transverse, or spacelike, coordinate. In our case, we
will pick the D − 1 spacetime coordinate. Thus, the light-cone coordinates for the background
spacetime, X+ and X−, are defined as

X+ ≡ 1√
2

(X0 +XD−1)

X− ≡ 1√
2

(X0 −XD−1)

So, the spacetime coordinates become the set {X−, X+, X i}D−2i=1 .

In this light-cone coordinate system the inner product of two vectors V and W is given by

V ·W = −V +W− − V −W+ +
D−2∑
i=1

V iW i.

While raising and lowering of indices goes as

V+ = −V −; V− = −V +; Vi = V i, i = 1, . . . , D − 2.

Note that since we are treating two coordinates of spacetime differently from the rest, namely X0

and XD−1, we have lost manifest Lorentz invariance and so our Lorentz symmetry SO(1, D − 1)
becomes SO(D − 2).

We know that the residual gauge symmetry corresponds to being able to reparameterize σ± as
σ± → ξ±(σ±) without changing the theory. This implies that we can reparameterize τ and σ, since
they are given by linear combinations of σ+ and σ−, as

τ → τ̃ =
1

2
(σ̃+ + σ̃−) =

1

2
(ξ+(σ+) + ξ−(σ−)),

σ → σ̃ =
1

2
(σ̃+ − σ̃−) =

1

2
(ξ+(σ+)− ξ−(σ−))

From the form of τ̃ , we can see that it is a solution to the massless wave equation,

∂+∂−τ̃ = (∂2τ∂
2
σ)τ̃ = 0. (5.5)

We can take a particular τ̃ that satisfy (5.5) and simplifies the theory. However, once we pick τ̃ then
we have fixed σ̃.

In [15] we find the following result: one can express the bosonic string theory in terms of transverse
oscillators only and so a (critical) string only has transverse oscillations, just as massless particles
only have transverse polarizations.
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5.3.1 Mass-Shell Condition for Open Bosonic Strings

The mass-shell condition in light-cone coordinates is given by

−pµpµ = M2 = 2p+p− −
D−2∑
i=1

pipi

Also, for n = 0 we have that, by expanding P µ in modes (calculation done in [15]),

M2 =
2

l2s
(N − a).

So, in the light-cone gauge we have that the mass-shell formula for an open string is given by

M2 =
2

l2s

D−2∑
i=1

∞∑
n=−∞

: αi−nα
i
n : −a =

2

l2s
(N − a).

5.3.2 Mass Spectrum for Open Bosonic Strings

Note that in the light-cone gauge all of the excitations are generated by transverse oscillators (αin).
Before, in the canonical quantization, we had to include all the oscillators in the spectrum which
lead to negative norm states. Now, the commutator of the transverse oscillations no longer have the
negative value coming from the 00 component of the metric and so we do not have negative norm
states in the light-cone gauge quantization.

The first excited state, αi−1 |0; kµ〉, belongs to a (D − 2)-component vector representation of the
rotation group SO(D − 2)3 in the transverse space. Lorentz invariance implies that physical states
form a representation of SO(D − 1) for massive states and SO(D − 2) for massless states. Since
αi−1 |0; kµ〉 belongs to a representation of SO(D − 2) it must correspond to a massless state.

Lets consider the result of acting on the first excited state by the squared mass operator,

M2(αi−1 |0; kµ〉) =
2

l2s
(N − a)(αi−1 |0; kµ〉) =

2

l2s
(1− a)(αi−1 |0; kµ〉).

And so, in order to have an eigenvalue of 0 for the mass operator, and thus to be in agreement with
Lorentz invariance, we must impose that a = 1.

Now, that we have a value for a, we want to determine the space-time dimension D (or c). Let
us try to calculate the normal ordering constant directly. Recall that the normal ordering constant
a arose when we had to normal order the expression

1

2

D−2∑
i=1

∞∑
m=−∞

αi−mα
i
m.

So, we get
1

2

D−2∑
i=1

∞∑
m=−∞

αi−mα
i
m =

D−2∑
i=1

∞∑
m=−∞

: αi−mα
i
m : +

(D − 2)

2

∞∑
m=1

m, (5.6)

3SO(n) is a normal subgroup, called the special orthogonal group in dimension n. It is also called the rotation
group.
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since [αim, α
i
−m] = mδij. The second sum on the right hand side is divergent and we will use Riemann

ζ-function regularization to take care of this problem. So, first consider the sum

ζ(s) =
∞∑
m=1

m−s s ∈ C, Re(s) > 1.

The zeta function, ζ(s), has a unique analytic continuation to s = −1, for which it takes the value
ζ(−1) = −1/12. Thus, plugging this into (5.6), the second term becomes

1

2

D−2∑
i=1

∞∑
m=−∞

: αi−mα
i
m : −(D − 2)

24
.

Now, inserting the normal ordering constant back in, as in (5.6) with n = 0,

1

2

D−2∑
i=1

∞∑
m=−∞

: αi−mα
i
m : −a,

which gives
D − 2

24
= a,

and since we already know a = 1, for Lorentz invariance, we get that D = 26.

5.3.3 Analysis of the Mass Spectrum

Finally, we will analyze the spectrum of a single free bosonic string.

Open Strings

Lets see the physical states of the open string for first few mass levels:

G For N = 0, the ground state |0; kµ〉 has mass imaginary mass, α′M2 = −1, where α′ = l2s/2. It
is a tachyon. The ground state is unstable due to the imaginary mass. One can think that these
particles travel faster than the speed of light but this is not the right interpretation. Suppose
a field in space-time, whose quanta will give rise to this particle. The mass squared of the
particle is the quadratic term in the action. The negative mass-squared is telling us that we
are expanding around a maximum of the potential for the tachyon field. However, once we
introduce fermions, supersymmetry eliminates the closed and open string tachyon. Therefore a
tachyon is an unstable vacuum.

G For N = 1, the first excited state. There is a vector boson αi−1 |0; kµ〉 which, due to Lorentz
invariance, is massless. This state gives a vector representation of SO(24). According to [14],
these group decompose into three irreducible representations:

traceless symmetric ⊕ anti-symmetric ⊕ singlet.

To each of these modes, there is associated a massless field in spacetime such that the string
oscillation can be identified with a quantum of these fields. The fields are Gµν(X), Bµν(X) and
Φ(X). These three massless fields are common to all string theories and the scalar field is called
the dilaton.

G For N = 2 the states are αi−2 |0; kµ〉 and αi−1α
j
−1 |0; kµ〉 with α′M2 = 1. These have 24 and

24 × 25/2 states, respectively. Thus, the total number of states is 324. This would be a huge
mass state. We have that for higher states, even greater masses.
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Closed String

For the closed string one must take into account there are both left-moving and right-moving modes.
The mass of the states in the closed string spectrum is given by (4.6),

α′M2 = 4(N − 1).

The physical states of the closed string at the first two mass levels are:

G For N = 0, the ground state |0; kµ〉 has mass α′M2 = −4 and is again a tachyon.

G For N = 1, there is a set of 242 = 576 states of the form |Ωij〉 = αi−1α̃
j
−1 |0; kµ〉, corresponding

to the tensor product of two massless vectors, one left mover and one right mover. The part of
|Ωij〉 that is symmetric transforms under SO(24) as a massless spin-2 particle, the graviton.

An infinite spectrum of masses comes out but they increase in mass and energy, so they are very
difficult to produce.

Note that all of the states for open and closed strings either fall into multiplets of SO(24) or
SO(25). This depends whether the state is massless or massive, because for a massive state it can
Lorentz transform to a state of the form

|E, 0, 0, . . . , 0︸ ︷︷ ︸
25 times

〉 .

Now, the set of all transformations that leave this state unchanged is the set of rotations in 25
dimensions, i.e. the Little group4 is given by SO(25), and so the massive state corresponds to some
representation of the rotation group, SO(25). While for a massless state the Lorentz transformation
transforms into the state of the form

|E,E, 0, 0, . . . , 0︸ ︷︷ ︸
24 times

〉 ,

and so massless states have a Little group given by SO(24). Thus, the massless states corresponds
to some representation of SO(24).

As we have already mentioned, the main difference between the bosonic string theory and the
superstring theory is the addition of fermionic modes on its worldsheet. The resulting worldsheet
theory is supersymmetric.

While the bosonic string is unique, there are a number of discrete choices that one can make when
adding fermions to the worldsheet. This gives different perturbative superstrings theories. Although
later developments reveal that they are all part of the same framework which goes by the name of
M theory, as we mentioned in Section 2. So, whether we add fermions in both the left-moving and
right-moving sectors of the string, or whether we choose the fermions to move only in one direction,
usually taken the right-moving, this leads to two different classes of string theory: Type II, strings
have both left and right-moving worldsheet fermions and Heterotic, strings have just right-moving
fermions. In both cases, there is then one further discrete choice that we can make. This leaves
us with four superstring theories: Type IIA, Type IIB, Heterotic SO(32) and Heterotic E8 × E8.
It is sometimes said that there are five perturbative superstring theories in ten dimensions. The
remaining theory is called Type I and includes open strings moving in flat ten dimensional space as
well as closed strings, [14].

4Given a point x ∈ X we set Gx := {g ∈ X|gx = x}. Gx is called the stabilizer or little group of x, [11].



Chapter 6

Conclusions

Throughout this study we have seen that String Theory is a theory of quantum gravity and provides
new and surprising methods to understand aspects of quantum gauge theories. Also, it provides new
results in mathematics, the most well know is mirror symmetry1, a relation between topologically
different Calabi-Yau manifolds2, [14].

String Theory has also begun to address some of the deeper questions of quantum gravity, in
particular the quantum mechanics of black holes, the collapsed remnants of large stars or the mas-
sive central cores of many galaxies, [10]. In 1976, Stephen Hawking proposed that black holes are
associated with information loss, [6]. Physically, we can associate information with pure states in
quantum mechanics. What Hawking found was that pure quantum states evolved into mixed states3.
The implication is that perhaps a quantum theory of gravity would drastically alter quantum theory
to allow for non-unitary evolution4. However, string theory is a fully quantum theory so evolution
is unitary and using this theory it is possible to count the microscopic states of a black hole and
compare this to the result obtained using the laws of black hole mechanics5. It was found that there
is an exact agreement using this two methods, [15].

String Theory and the different dimensions that arise from it and in the other theories that we
have seen has also led to physical and philosophical debate. With the intention of explaining why we
live in the world in which we live, the anthropic principle (weak and strong) postulated by Brandon
Carter in 1974 arises, [3]. The anthropic principle refers to the position that human occupies in the
universe, is based on the reflection on how delicate the necessary conditions are for there to be life
in the universe and the fact that life could not have appeared if any of the constants of nature had
a slightly different value. Stephen Hawking states that the anthropic principle consists in stating
that we see the universe the way it is because we exist [9]. An essential hypothesis of the anthropic
principle is the existence of an enormous number of universes, each with different physical laws. The
collection of all these universes is called the multiverse6.

Now, to finish the study, we will review some problems that have appeared and some that have
been solved in String Theory over the years. In the mid-1980s, when String Theory became a hot

1Mirror symmetry is an example of a general phenomenon known as duality, which occurs when two different
physical systems are isomorphic in a non-trivial way, [7].

2A Calabi-Yau manifold is a compact, complex, Kähler manifold which has SU(d) holonomy. An equivalent
statement is that a Calabi-Yau manifold admits a Ricci-flat metric. This information is in more detail in [5].

3In ordinary quantum physics, it is not possible for a pure quantum state to evolve into a mixed state. This is
because of the unitary nature of time evolution.

4This is a disadvantage because non-unitary transformations do not preserve probabilities.
5Black hole mechanics state that entropy is proportional to area, S = A/4G.
6More information about multiverse on page 212 in [13].
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subject, some of the problems and questions that came up were as follows, [12]:

G Hundreds of Calabi-Yau manifolds were known. Now we know that there are many thousands.
So, which one of them, if any, is the right one?

G Why are there four other consistent Superstring theories? Are some of them inconsistent, or
else, could some of them somehow be equivalent?

G What ensures that the vacuum energy density or dark energy is sufficiently small, namely of
order 10 − 120 in Planck units? In 1985 it was generally believed to be zero, so the idea was
to look for a symmetry principle that would enforce this. Nowadays, we know that the vacuum
energy density is not exactly zero.

G What does String Theory have to say about cosmology?

Later it was shown that there is just one theory, moreover, new objects, called branes, arise non
perturbatively, where p is an integer that represents the number of spatial dimensions of the brane.
Stable branes carry conserved charges and satisfy generalized Dirac quantization conditions. There
are also unstable branes that do not carry conserved charges. The main categories of stable branes are
D-branes, M-branes, and NS5-branes. It has been seen that D-branes are characterized by Dirichlet
boundary conditions for open strings7.

Introducing Supersymmetry we are able to eliminate the tachyon, corresponding to the ground
state, which would be unstable (due to the negative mass of the particle). This theory makes use of
supersymmetry that relates the properties of bosons to fermions, As we have already mentioned in
Chapter 2. For example, the analogous particle to the graviton (boson) is be the gravitino (fermion).
Because fermions are included in the theory, all matter is represented. Also the dimensions of space-
time are reduced from 26 to 10. However, Superstring theory is still under development and has
problems to solve as well.

As we have been able to observe throughout this study, String Theory still lacks much development,
although it has been seen that it is a great solution to the quantization of Einstein’s theory, in addition
to the importance of addressing some of the most deeper questions of the quantum mechanics of black
holes.

7More information about the problems that arise in [12].



Appendix A

A.1 The action function for the electromagnetic field
In order to establish the form of the action that corresponds to the electromagnetic field, we will
start from the following property of magnetic fields: the electromagnetic field obeys the Principle of
Superposition. This principle states that if one charge produces a certain field and another charge
produces a second field, the field produced by the two charges results from the simple composition of
the fields produced by each of them individually. According to this, the sum of any number of such
fields must be a field that can exist in nature, that is, it must satisfy the equations of the field. We
know that for linear homogeneous differential equations the sum of any number of solutions is also
a solution. Then the field equations must be homogeneous linear differential equations.

From this discussion we have that the integrand corresponding to the action Sf must be a quadratic
expression in the components of the field. Only in this case the equations will be linear, since the
equations of the field are obtained by varying the action.

The potentials cannot appear in the expression of the action Sf , since they are not uniquely deter-
mined. Therefore, Sf must be the integral of a certain function of the tensor of the electromagnetic
field Fik. But the action must be a scalar and therefore an integral of a certain scalar. This can only
be the product FikF ik.

Therefore, Sf must be of the form:

Sf = a

∫ ∫
FikF

ikdV dt, dV = dxdydz,

where the integral extends over all space and all time between two given instants; a is some constant
and

Fik =
∂Ak
∂xi
− ∂Ai
∂xk

.

In the integrand there appears FikF ik = 2(H2 − E2). The field E contains the derivative ∂A
∂t
,

but it is easy to see that (∂A/∂t)2 must appear in the action with a positive sign (and, therefore,
E2 must also have a positive sign). Indeed, if (∂A/∂t)2 appears in Sf with a negative sign, a suffi-
ciently rapid change in potential with time (in the time interval considered) could always make Sf
a negative quantity of arbitrarily large absolute value. Under these conditions, Sf could not have a
minimum, contrary to what is required by the principle of least action. Therefore, it must be negative.

The numerical value of a depends on the choice of units to measure the field. Note that once
a value for a and the units for the field measurement have been chosen, the units for the field
measurement, the units for all other electromagnetic quantities are determined. In what follows we
will use the so-called Gaussian system of units; in this system a is of zero dimension and equal to− 1

16π
.
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So, the action for the field is of the form

Sf = − 1

16πc

∫
FikF

ikdΩ, Ω = c dt dx dy dz,

three-dimensionally,

Sf =
1

8π

∫
(E2 −H2)dV dt.

The Lagrange function of the field is

Lf =
1

8π

∫
(E2 −H2)dV.

A.2 The action function of the gravitational field
To determine this scalar we will assume that the equations of the gravitational field must contain
derivatives of the ”potentials” of order not higher than the second (in a similar way to what happens
in the case of the electromagnetic field). Since the equations of the field are obtained by varying the
action, it is necessary that the integrand G contains derivatives of the gik of order not higher than
the first; therefore G must contain only the tensor gik and the quantities Γikl.

However, it is impossible to construct a scalar from the quantities gik and Γikl alone. It goes without
saying that, by a suitable choice of coordinate system, we can always reduce all Γikl quantities at a
given point to zero. There is, however, the scalar R (the curvature of four-dimensional space), which,
although it contains, in addition to the gik and its first derivatives, the second derivatives of the
gik, is linear with respect to them. Thanks to this character, the invariant integral

∫
R
√
−g dΩ can

be transformed, through Gauss’s theorem, into the integral of an expression that does not contain
second derivatives.

Indeed,
∫
R
√
−g dΩ can be represented in the form:∫

R
√
−g dΩ =

∫
G
√
−g dΩ +

∫
∂(
√
−gωi)
∂xi

dΩ,

where G contains only the tensor gik and its first derivatives, and the integrand of the second integral
has the form of the divergence of some magnitude wi. According to Gauss’s theorem, this last integral
can be transformed into an integral extended to a hypersurface surrounding the quadvolume in which
the integration of the other two integrals takes place. When the action is varied, the variation of the
second term of the second member vanishes, since in the principle of least action the variations of
the field in the limits of the integration region are equal to zero. Consequently, we can write:∫

R
√
−g dΩ =

∫
G
√
−g dΩ.

The first member is a scalar; therefore, the expression that appears on the second member is also a
scalar.
The magnitude G fulfills the previously imposed condition, since it contains only the gik and their
first derivatives. We can therefore write

δSg = − c3

16πk
δ

∫
G
√
−g dΩ = − c3

16πk
δ

∫
R
√
−g dΩ,

where k is a new universal constant. As in the case of the action of the electromagnetic field, it can
be seen that the constant k must be positive. The constant k is called the constant of gravitation.
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The dimensions of the action are g cm2s−1; it can be considered that all the coordinates have the
dimensions of a length and that the gik are magnitudes of null dimension, so the dimensions of
R are cm−2. It turns out, then, that the dimensions of k are cm3g−1s−2. Its numerical value is
k = 6.67× 10−8cm3g−1s−2. Note that we could have set k equal to unity. However, this would have
fixed the value of the unit of mass. We can calculate the magnitude

G = gik
(
Γmil Γ

l
km − ΓlikΓ

m
lm

)
.

The components of the metric tensor are the quantities that determine the gravitational field.
Therefore, the Principle of least action that corresponds to it, the quantities that are varied are the
gik. However, we cannot now say that in a really existing field the action integral presents a minimum
(and not just an extremum) with respect to all possible variations of the gik. This is linked to the
fact that not every change in the gik corresponds to a change in the space-time metric, that is, to a
real change in the gravitational field. The components gik also change in a simple transformation of
coordinates linked merely with the passage from one system to another in the same space-time. Each
of these coordinate transformations is, roughly speaking, a set of four independent functions (one
per coordinate). In order to exclude such changes in the gik, changes that are not associated with a
change in the metric, we can impose four supplementary conditions and require that these conditions
be fulfilled in the variation process. Thus, when a gravitational field is applied, the Principle of
Least Action states only that it is possible to impose additional conditions on the gik such that,
when fulfilled, the action presents a minimum with respect to the variations of the gik.



Appendix B

B.1 Bosonic String Theory invariance under Weyl transforma-
tion

Lets show that our bosonic string theory is invariant under Weyl transformations. First, we preceed
transforming

√
−h and

√
−h hαβ.

√
−h′ =

√
−det(h′αβ) = e2(2φ(σ))/2

√
−det(hαβ) = e2φ(σ)

√
−h

Expanding (3.3) in φ yields that

h′αβ = e−2φhαβ = (1− 2φ+ · · · )hαβ

Thus, the variation infinitesimally of hαβ is given by

δhαβ = −2φhαβ.

Now, for
√
−h hαβ, we have

√
−h′h′αβ =

√
−he2φ(σ)e−2φ(σ)hαβ =

√
−hhαβ.

Thus, under a Weyl transformation Sσ is invariant, which implies that the variation of Sσ under
a Weyl transformation vanishes. This says that our bosonic string theory is invariant under Weyl
transformations. We will now show that since our theory is invariant under Weyl transformations
this implies that the stress-energy tensor associated with this theory is traceless, hαβTαβ = 0, , where
the stree-energy tensor is given by

Tαβ = − 2

T

1√
h

δSσ
δhαβ

. (B.1)

This implies that under a generic transformation of the field hαβ, the variation of Sσ can be written
as

δSσ ≡
∫

δSσ
δhαβ

δhαβ = −T
2

∫
dτdσ

√
−h δhαβTαβ.

Restricting to a Weyl transformation,

Sσ = −T
2

∫
dτdσ

√
−h δhαβTαβ

= −T
2

∫
dτdσ

√
−h(−2φ)hαβTαβ

This is equal to zero since there is not variation in Sσ under a Weyl transformation. Since
√
−h and

φ are arbitrary,
hαβTαβ = 0.
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