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Abstract

Numerical simulations within a cold dark matter (DM) cosmology form halos with a characteristic
density profile with a logarithmic inner slope of -1. Various methods, such as Jeans and Schwarzschild
modelling, have been used in an attempt to determine the inner density of observed dwarf galaxies,
in order to test this theoretical prediction. Here, we develop a convolutional mixture density neural
network (CMDNN) to derive a posterior distribution of the inner density slopes of DM halos. We train
the CMDNN on a suite of simulated galaxies from the NIHAO and AURIGA projects, inputting line-of-
sight velocities and 2D spatial information of the stars within simulated galaxies. The output of the
CMDNN is a probability density function representing the posterior probability of a certain slope to be
the correct one, thus producing accurate and complex information on the uncertainty of the predictions.

Themodel recovers accurately the correct inner slope of dwarfs: ∼82% of the galaxies have a derived
inner slope within ±0.1 of their true value, while ∼98% within ±0.3. We then apply our model to
four Local Group dwarf spheroidal galaxies and find similar results to those obtained with the Jeans
modelling based code GravSphere. Fornax dSph has a strong indication of possessing a central DM
core, Carina and Sextans have cusps (although the latter with a large uncertainty), while Sculptor shows
a double peaked PDF indicating that a cusp is preferred, but a core can not be ruled out.

Our results show that simulation-based inference with neural networks provide a innovative and
complementary method for the determination of the inner DM profiles in galaxies.
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Summary in spanish

El modelo cosmológico ΛCDM ha producido resultados muy satisfactorios a la hora de explicar la
estructura a gran escala del universo y las propiedades básicas de las galaxias que lo conforman (Guo
et al. 2016; Planck Collaboration 2016). Sin embargo, las observaciones en sistemas a escala galáctica
han mostrado varias discrepancias con las predicciones del modelo (Bullock and Boylan-Kolchin 2017).
En la literatura, estos problemas se han denominado tradicionalmente los problemas a pequeña escala
del modelo ΛCDM.

Uno de los principales y más antiguos de estos problemas es el llamado problema cusp/core. Las
simulaciones numéricas dentro del modelo ΛCDM forman halos de materia oscura (en los que habitan
las galaxias) con un perfil de densidad de masa característico que presenta una pendiente interna en
escala logarítmica de 𝛾 ∼ −1. Este perfil no concuerda con las observaciones de algunas galaxias
con curvas de rotación bien medidas, que prefieren ajustes con pendientes internas de densidad menos
fuertes, de 𝛾 ∼ −0.5 - 0 (p.ej. J. I. Read, Iorio et al. 2017; Simon et al. 2005; de Blok et al. 2008; Moore
1994). Tradicionalmente se ha llamado core a la parte interna de los perfiles de densidad con pendientes
internas más llanas, y cusp a la parte interna de los perfiles de densidad con las grandes pendientes
predecidas por el modelo ΛCDM.

Se ha demostrado que los cores pueden explicarse en el paradigma ΛCDM al considerar el efecto
que los bariones tienen sobre la materia oscura. Si una galaxia enana acreta lentamente gas y posterior-
mente este se elimina repentinamente a través de procesos como los vientos estelares o explosiones de
supernovas, la materia oscura se expande, disminuyendo la densidad de la misma en la parte central del
halo en la que se encuentra la galaxia y pudiendo llegar a formar un core si se dan ciertas condiciones
razonables (p.ej. Navarro, Eke et al. 1996; Gnedin and Zhao 2002; J. I. Read and Gilmore 2005; Pontzen
and Governato 2012). Este proceso ha sido exitosamente modelado en simulaciones hidrodinámicas de
galaxias que toman en consideración este feedback bariónico.

Aún así, existe mucha controversia dentro de la investigación del problema cusp/core, principal-
mente debido a la dificultad de obtener mediciones precisas de la distribución de materia oscura del
halo de las galaxias observadas, siendo habitual que las técnicas tradicionalmente utilizadas para in-
ferir los perfiles de densidad, como la modelización de Jeans (p.ej. Marel 1994; Battaglia, Helmi et al.
2008; Collins et al. 2021; J. I. Read, Walker et al. 2019), no permitan constreñir el valor de la pendiente
interna de manera que pueda descartarse o asegurarse la presencia de un core.

En este trabajo presentamos un modelo novedoso para determinar la pendiente interna del perfil de
densidad de los halos de materia oscura con una cuantificación robusta de la incertidumbre, haciendo
uso para ello de técnicas deMachine Learning. El objetivo de este trabajo es poder inferir las pendientes
internas de las galaxias utilizando únicamente información posicional y espectroscópica de sus estrellas.

Nuestro método utiliza redes neuronales convolucionales de densidad mixta (Convolutional Mixture
Density Neural Networks, CMDNNs) para modelar la subestructura compleja de las galaxias. Una red
neuronal supervisada puede ser entrenada con datos de simulaciones de galaxias, de las cuales cono-
cemos ya la pendiente interna de su perfil de densidad. Una vez entrenada, la red puede inferir la
pendiente interna de datos observacionales, haciendo uso del aprendizaje automático que ha realizado
al estudiar previamente las simulaciones.

Entrenamos nuestromodelo utilizando un gran conjunto de simulaciones hidrodinámicas de galaxias
enanas con halos con masas de 109 a 1011.5 M⊙ procedentes de los proyectos NIHAO y AURIGA (Wang
et al. 2015; A. A. Dutton et al. 2020; Grand et al. 2017), hasta un total de 183 galaxias diferentes. El
uso de diferentes modelos y parámetros físicos empleados en dichas simulaciones nos permite tener



un amplio rango de perfiles de densidad en galaxias con masas similares, incluyendo tanto cores como
cusps.

Hacemos únicamente uso de las velocidades y posiciones de las estrellas encontradas en las galaxias
enanas simuladas para construir funciones de densidad de probabilidad (Probability Density Function,
PDF) continuas de la distribución de dichas estrellas en dos espacios bidimensionales distintos:

• El espacio de fases de las distancias de las estrellas al centro de la galaxia y su velocidad en la línea
de visión, que presenta información sobre la relación entre la distancia al centro gravitacional y
la velocidad orbital asociada al perfil de densidad de materia oscura.

• El espacio de posiciones de las estrellas en el plano del cielo (x,y), que da cuenta de la forma y
tamaño de la galaxia.

Estos PDF bidimensionales, con los cuales definimos las galaxias que queremos evaluar, son los
inputs de nuestra red neuronal. La red va aplicando transformaciones a los PDF en diferentes capas
sucesivas con el objetivo de ir encontrando características de ordenes cada vez superiores según se
alcanzan profundidades mayores en la red. Finalmente se llega a una última capa que construye una
distribución de probabilidad, dando pues una función que indica la probabilidad de que la galaxia eval-
uada tenga una u otra pendiente interna.

Dichas transformaciones son alteradas y desarrolladas iterativamente durante el entrenamiento de
la red con las simulaciones, hasta llegar a un punto en el que se finaliza la construcción del modelo
cuando la red es capaz de inferir correctamente la pendiente interna de las simulaciones con las que
ha sido alimentada, dando fin así al entrenamiento. Dicho modelo es después capaz de evaluar datos
nuevos que nunca haya visto e inferir la pendiente interna para los mismos.

La pendiente interna de las galaxias simuladas es predecida por nuestro modelo con una desviación
media respecto al valor real de 𝜇 = 0.055. El modelo predice correctamente el valor de la pendiente
interna con un error por debajo de 0.1 (0.3) para el 82% (98%) de las galaxias del set de datos. Estas
predicciones presentan, además, incertidumbres con una desviación estándar media de 𝜎 = 0.108. La
precisión conseguida es suficientemente pequeña como para poder distinguir con claridad entre cores
y cusps en más del 95% de los casos.

Hemos también aplicado el modelo a cuatro galaxias enanas esféricas, obteniendo valores de pendi-
entes internas consistentes con los resultantes del uso del código demodelización de Jeans GravSphere.
Concretamente, encontramos que Fornax dSph presenta un fuerte indicio de tener un core, Carina y Sex-
tans tienen cusps (aunque esta última con una gran incertidumbre), y Sculptor muestra una distribución
de probabilidad con un doble pico que otorga mayor probabilidad a la presencia de un cusp, pero sin
poder descartar la posibilidad de un core. Estos resultados son consistentes con varias pendientes in-
ternas derivadas previamente para estas galaxias (p.ej. Goerdt, Moore, J. I. Read et al. 2006; Agnello and
Evans 2012; C. B. Brook and Di Cintio 2015; Walker and Peñarrubia 2011; Richardson and Fairbairn
2014; J. I. Read, Walker et al. 2019).

A la luz de estos resultados, queda claro que nuestro nuevomodelo es una herramienta prometedora
para el estudio de las propiedades de las galaxias enanas, y que la inferencia mediante el uso de redes
neuronales entrenadas con datos simulacionales proporciona un método innovador y complementario
a los ya existentes para la determinación de los perfiles de densidad de materia oscura en las galaxias.
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Chapter 1

Introduction

The ΛCDM model in cosmology is extremely successful in explaining the large-scale structure of the
universe and the basic properties of galaxies (Guo et al. 2016; Planck Collaboration 2016). In this model,
cosmic structure originates from primordial adiabatic fluctuations and grows through gravitational
instability in an expanding background. Galaxies are formed in dark matter halos: virialized concen-
tration of dark matter formed after the collapse of overdense regions of the Universe.

Even though its success, it has shown some problems at scales for collapsed objects with virial
masses below𝑀 ∼ 1011𝑀⊙, which correspond to halos with virial radius of𝑅 ∼ 150 kpc. Observations
of galaxies inhabiting these halos have shown several discrepancies with the predictions of the model
(Bullock and Boylan-Kolchin 2017). In the literature, these problems have been traditionally named
the small-scale problems of the ΛCDM model.

One of themajor and older of these problems is the cusp/core problem. PureDM structure formation
simulations in ΛCDM predict haloes that have an NFW density profile (Navarro, Frenk et al. 1996):

𝜌NFW = 𝜌0 (
𝑟
𝑟𝑠
)
−1
(1 + 𝑟

𝑟𝑠
)
−2
, (1.1)

where 𝜌0 is the central density and 𝑟𝑠 the scale length. This implies an inner profile 𝜌DM ∝ 𝑟−1. In
general, ΛCDM simulations that include only dark matter find inner profiles 𝜌DM ∝ 𝑟−𝛾 with 𝛾 ∼ 0.8
- 1.4 over distances new the center of small galaxies (Navarro, Ludlow et al. 2010), which implies a
steeply rise of density while approaching the center. This central profile disagree with observations
of some galaxies with well-measured rotation curves, which prefer fits with shallower inner density
slopes of 𝛾 ∼ 0 - 0.5 (e.g. J. I. Read, Iorio et al. 2017; Simon et al. 2005; de Blok et al. 2008; Moore 1994).
We call cored profiles these density profiles with shallow inner slopes, and cuspy density profiles to
step profiles similar to NFW.

The cusp/core problem has generated substantial interest over the past decades and there have been
numerous attempts to tackle it by focusing on changing the collisionless cold dark matter typically
assumed. Over the years several alternative dark matter models have been proposed that tackle the
cusp/core problem, like self-interacting dark matter, that invokes a new force acting purely in the dark
sector and could transform a dense cusp to a core through energy transfer between the DM particles
(e.g. Spergel and Steinhardt 2000; Kaplinghat et al. 2016; Robles et al. 2017), or warm dark matter (e.g.
Macciò et al. 2012; Schneider et al. 2017).

However, it has been shown that cores can be explained in the paradigm ofΛCDMwith collisionless
dark matter when considering the effect baryons have on dark matter. Navarro, Eke et al. 1996 showed
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that, if gas is slowly accreted onto a dwarf galaxy and then suddenly removed through processes such
as stellar winds or supernovae feedback, the DM expand, lowering its central density. This effect of DM
heating is small in realistic conditions (Gnedin and Zhao 2002), but J. I. Read and Gilmore 2005 showed
that if the effect repeats over several cycles of star formation, it accumulates leading to a complete core
formation. This core can be permanent if the outflows are sufficiently rapid (Pontzen and Governato
2012). Cores can also be formed by dynamical friction, causing dense gas clumps to impart angular
momentum to the inner density profile and flattening it (e.g. El-Zant et al. 2001; Goerdt, Moore, J. Read
et al. 2010; Cole et al. 2011), although Governato, C. Brook et al. 2010 showed that stellar feedback is
most effective at expanding low mass haloes.

Hydrodynamical simulations of dwarf galaxies that take into consideration baryonic feedback have
produced the creation of cores in certain conditions (e.g. Governato, C. Brook et al. 2010; Zolotov et
al. 2012; Tollet et al. 2016). Governato, Zolotov et al. 2012 showed that the inner slope flattens with
increasing stellar mass as an effect from the increase of available energy from supernovae, setting a
lower limit of stellar masses on the order of 107 𝑀⊙ for galaxies to be able to form cores by baryonic
feedback. On the other hand, Di Cintio, C. B. Brook, Macciò et al. 2014 showed that the deepened
potential in the central region of the haloes resulting from the increase of stellar mass opposes the
flattening process of the density profile, which prevents core formation in too massive galaxies. Di
Cintio, C. B. Brook, Macciò et al. 2014 proposed that 𝛾 depends on the stellar-to-halo mass ratio of
galaxies: at 𝑀𝑠𝑡𝑎𝑟/𝑀ℎ𝑎𝑙𝑜 ≲ 10−4 the supernovae energy is not enough to produce expansion of the
halo. At higher values, 𝛾 increases until reaching a maximum around 𝑀𝑠𝑡𝑎𝑟/𝑀ℎ𝑎𝑙𝑜 ∼ 3 − 5 ⋅ 10−3, to
be reduced again with increasing stellar-to-halo mass ratio as the outflow process becomes more and
more ineffective. In realistic galaxies, following the empirical relation between stellar and halo mass of
galaxies (Moster, Somerville et al. 2010), this corresponds to𝑀𝑠𝑡𝑎𝑟 ∼ 108.5 𝑀⊙ and𝑀ℎ𝑎𝑙𝑜 ∼ 1011 𝑀⊙.

Nevertheless, the cusp/core problem is far from being completely solved. There is continuous dis-
cussion around the presence or not of cores in several observed dwarf galaxies (e.g. Evans et al. 2009;
Lora et al. 2013; Genina et al. 2017), due to the difficulties of uncovering the underlying dark matter dis-
tribution in observed galaxies, which leads to flexible constraints that commonly allow for both cored
and cuspy fits.

Historically, mass modelling techniques and Jeans analysis has been used to infer the dark matter
density profile of galaxies using observational data (e.g. Marel 1994; Battaglia, Helmi et al. 2008; Collins
et al. 2021; J. I. Read, Walker et al. 2019): in rotating galaxies, starting from the total HI gas rotation
curve and subtracting the contribution of baryons it is possible to infer the dark matter density profile
of the halo, whereas in dispersion supported galaxies, once a stellar velocity dispersion is measured,
Jeans modelling allows to measure the density profile of galaxies.

Usually, a near-spherical stellar system is supposed, which is a reasonable approximation to spher-
oidal and elliptical galaxies. This allows the use of the spherically symmetric Jeans equation projected
along the line of sight (J. I. Read and Steger 2017):

𝜎2LOS(𝑅) =
2

Σstar(𝑅)
∫

∞

𝑅
(1 − 𝛽(𝑟)𝑅

2

𝑟2 )
𝜈(𝑟)𝜎2𝑟 (𝑟)𝑟
√𝑟2 − 𝑅2

𝑑𝑟, (1.2)

where 𝑟 is the radius, 𝜈(𝑟) is the tracer density, which describes the radial density profile of a population
of massless tracers moving in the gravitational potential of a spherical mass distribution, 𝛽(𝑟) is the
velocity anisotropy, which describes the orbital structure of the stellar systemwhere 𝛽 = 0 corresponds
to an isotropic distribution, 𝛽 = 1 is a fully radial distribution and 𝛽 = −∞ is a fully tangential
distribution. 𝜎𝑟(𝑟) is the radial velocity dispersion, Σstar(𝑅) denotes the tracer surface mass density at
projected radius 𝑅 and 𝜎LOS(𝑅) is the line-of-sight velocity dispersion of the tracers.
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Equation 1.2 shows that the velocity anisotropy 𝛽(𝑟), which can’t be directly determined, degen-
erates with 𝜎𝑟(𝑟) and, therefore, with the cumulative mass distribution 𝑀(< 𝑟). This is known as the
𝑀−𝛽 degeneracy (e.g. Mathieu and Merrifield 2000; Łokas and Mamon 2003; Diakogiannis et al. 2014).
Since the radial density profile 𝜌(𝑟) maps to the enclosed mass 𝑀(< 𝑟), this is also named the 𝜌 − 𝛽
degeneracy.

Several methods have been developed in the last decades to break the 𝜌 − 𝛽 degeneracy (e.g. Mer-
rifield and Kent 1990; van der Marel and Franx 1993; Saglia et al. 2000; Wojtak et al. 2009; Watkins
et al. 2013), which present a wide dispersion of conflicting results in the literature. For example, for the
Sculptor dSph, split populations methods (Saglia et al. 2000) favour a cored profile (e.g. Battaglia, Helmi
et al. 2008; Agnello and Evans 2012), whereas a VSP method (Merrifield and Kent 1990) indicates the
presence of a cusp (Richardson and Fairbairn 2014).

In this work we have developed an alternative method to recover properties of the dark matter
density profile of dwarf galaxies from observables without the need to employ Jeans modelling, directly
avoiding the problem of 𝜌 − 𝛽 degeneracy. In this project, we suggest the use of Machine Learning
methods to that end.

Thanks to the fast development of new methods and access to larger amounts of data, machine
learning (ML) techniques have been gaining more and more presence in astronomy and astrophysics,
from survey telescope scheduling through object detection and classification, to cleaning images and
making large simulations smarter and quicker (Szabó, R. et al. 2022). Recently, a suite of ML algorithms
has been used to reconstruct dynamical cluster masses. This class of methods often involves training a
neural network on a large data set of simulations-generated mock observations to then produce infer-
ence of unlabeled observations. For example, Ntampaka et al. 2016 introduced an ML method to infer
mass from the full LOS velocity distribution of cluster members, attempting to capture higher-order
features of the velocity distribution using a support distribution machine. On the other hand, Ho et al.
2019 tried to achieve the same by applying convolutional neural networks with satisfactory results.

Influenced by these works, this project aims to test if similar methods could be successfully used to
infer the inner slope of the dark matter density profile of halos from radial velocities and positions of
stars, and, in a greater scope, whether ML methods can be employed efficiently to derive inner density
profiles of real galaxies with small uncertainty.

I have built a neural network trainedwith hydrodynamic simulations of dwarf galaxies to determine
the inner slopes. I use a deep learning methodology based on the use of convolutional neural networks
(CNNs) to parameterize higher-order features from phase-space mappings of positional and dynamical
distributions of stars. The training of the neural network is done with a suite of 183 dwarf galaxies
from the NIHAO and AURIGA projects.

The work is organised as follows. In section 2 we describe the simulation data I have used for the
training of the neural network. In section 3 we explain how this data is treated and the ML method in
great detail. In section 4 we show and discuss the results of the trained model on a test sample, and then
we apply the model to four observed dwarf spheroidal galaxies; Fornax, Sculptor, Sextans and Carina
and we compare the result with those obtained with the Jeans modelling code GravSphere (J. I. Read
and Steger 2017).



Chapter 2

Data

We aim to train a neural network on a data set of simulated dwarf galaxies with known properties to
then produce inference on observations. Independently on themethods and architecture of the network,
the model will only be able to make correct inferences if the data it has been trained on corresponds to
and gives adequate information about the systems on which the inference is going to be done.

This means that any difference between the physics found in the simulations and that present in
the real galaxies will diminish the network’s ability to analyse those galaxies, as any features in the
observations that are not found in the set of simulations with which the network has been trained will
only constitute noise that will diminish the accuracy and correctness of its inferences. For the same
reason, it is necessary to have a large dataset covering as wide a variety of dwarf galaxies as possible.
The more examples we have, the better the network’s ability to ”understand” the physical relationship
between the input data and what we want it to infer. For example, if all the galaxies in the neural
network had a cuspy density profile, the neural network would not be able to make a proper inference
about the inner density profile of a cored galaxy, as it has not been exposed to that type of system. As
a general rule, increasing the number of simulated galaxies with different characteristics will improve
the predictive ability of the model.

In summary, we need a large number of high-resolution dwarf galaxy simulations that are as real-
istic and complete as possible to train our network.

We firstly include dwarf galaxies with the fiducial NIHAO (Numerical Investigation of a Hundred
Astrophysical Objects) model, ranging in halo mass from an order of 109 M⊙ to 1011.5 M⊙ and stellar
mass from an order of 105 M⊙ to 1010 M⊙. NIHAO is a set of 100 cosmological zoom-in hydrodynam-
ical simulations performed using the GASOLINE code (around 60 of them being dwarf galaxies), with
an improved implementation of the SPH algorithm (Wang et al. 2015), which stands out for offering
simulations of high spatial resolution over a wide range of halo masses. They are fully cosmological
simulations of galaxy formation run in a flat ΛCDM cosmology with parameters from the Planck Col-
laboration (Colaboration 2014).

The masses and force softenings of the dark matter particles of NIHAO simulations are chosen to
resolve the mass profile at ≲ 1 per cent of the virial radius, which results in ≈ 106 DM particles inside
the virial radius of all main haloes at 𝑧 = 0. The corresponding masses and force softenings for the gas
particles are a factor of Ω𝑏/Ω𝑑𝑚 = 0.182 and √Ω𝑏/Ω𝑑𝑚 = 0.427 lower (A. A. Dutton et al. 2020).

For the purposes of this work is very important to have simulations that handle as best as possible
the baryonic feedback effects. In GASOLINE, stars form from gas that is both cool (T < 15000 K) and
dense (𝜌 > 𝑛, being 𝑛 the star formation threshold). In the fiducial NIHAO simulations the star forma-
tion threshold is 𝑛 = 10 particles per cm−3, which is, for all the simulations with different resolutions
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levels, roughly the maximum density that can be resolved:

𝑛max ≈ 50𝑚gas/𝜖3gas, (2.1)

where𝑚gas is the gas particle mass, 𝜖gas is the gas gravitational force softening and 50 is the number
of SPH particles in the smoothing kernel (A. A. Dutton et al. 2020).

Thus, thermal feedback is employed in two epochs as described in Stinson et al. 2013. The first
epoch models the energy input from stellar winds and photoionization from bright young stars before
supernovae explode. The second epochmodels the energy input from supernovae and starts 4Myr after
the formation of the star. The parameters of the fiducial NIHAO simulations for feedback efficiency
in these two epochs are, respectively, 𝜖ESF = 0.13 and 𝜖SN = 1.0, which were calibrated against the
evolution of the stellar mass versus halo mass relation from halo abundance matching from Moster,
Naab et al. 2013 for a 𝑧 = 0Milky Way mass halo.

NIHAO galaxies have been proben consistent with a wide range of galaxy properties. They form
the right amount of stars (Wang et al. 2015), the masses and half-light sizes of the cold gas are consistent
with observations (Macciò et al. 2016), they follow the Tully-Fisher relations (A. Dutton et al. 2017), they
reconcile the conflict between the steep halo velocity function of ΛCDM and the shallow H1 linewidth
velocity function observed in the nearby universe (Macciò et al. 2016) and they emulate the MilkyWays
central stellar bar (Buck et al. 2019), among other successes. Given all of this success, they are a reliable
representation of real galaxies.

Even so, 60 galaxies are not enough to build a complete set of examples for network training. Fur-
thermore, the fiducial NIHAO galaxies have a density profile that depends on mass (Di Cintio, C. B.
Brook, Macciò et al. 2014), which would allow the machine learning code to infer information about
the inner density profile based on any indicator of total mass, rather than by the details of the stellar
dynamics.

For this reason, we also use simulations from A. A. Dutton et al. 2020 that use the same model,
but for different values of star formation thresholds 𝑛 from 0.1 to 100 particles per cm−3. The 𝑛 > 10
cases have smaller force softenings than the fiducial NIHAO simulations to allow the gas to clump
on smaller scales and this reach higher densities, as can be inferred from equation 2.1. Each value of
the star formation threshold has been recalibrated, changing the early stellar feedback efficiency 𝜖ESF
and/or the efficiency of star formation. Some examples of cored and cuspy galaxies from this expanded
NIHAO dataset can be seen in 2.1, along with their respective DM density profiles. For a more detailed
explanation of the simulation parameters and characteristics, see A. A. Dutton et al. 2020.

To increase the variety of galaxies in the training dataset and decrease the possibility that the neural
network learns characteristics of the simulations purely due to the particularities of the simulation code,
we have also included 10 simulated dwarf galaxies without baryonic feedback from the comparison set
of no-feedback simulations of NIHAO and 12 simulations from AURIGA project. AURIGA is another
suite of fully cosmological magneto-hydrodynamical zoom simulations, carried with a different code
than NIHAO; AREPO, a moving mesh code that utilizes a dynamic unstructured mesh that can be
transformed through a mesh reconstruction at any time-step, which is not the case for standard grid-
based methods like GASOLINEs (Grand et al. 2017).

These contributions add up to 183 simulated dwarf galaxies: 60 simulations from the fiducial NIHAO
suite Wang et al. 2015, 101 simulations from A. A. Dutton et al. 2020 with varying density thresholds
and varying density profile, 10 simulations without stellar feedback and 12 simulations from Grand
et al. 2017. We end up with a range of density profiles at every mass, including simulations that have
the same initial conditions but different input physics, which results in different profiles for galaxies
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Figure 2.1: Several cored and cuspy galaxies from the simulation dataset. Left: 3-color image of the stars in a
face on angle. Each row is a different galaxy. Center: 3-color image of the stars in a side on angle. Right: DM
density profile and the fit to a double-power law.
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Figure 2.2: Relationship between the stellar-to-halo-mass ratio and the inner slope of the DM density profile
(defined as the logarithmic slope at 150 pc) of the galaxies in the dataset. The green horizontal line marks the
value of 𝛾 for a NWF profile: -1.04.

with similar masses. The relationship between the stellar mass ratio and the inner slope of the profiles
for our dataset can be seen in Figure 2.2.

To increase even more the size of our simulation suite, we also use 3 different output timesteps: z=0,
z=0.112, and z=0.226. Each of the simulations is virialized at all these times, so this does not change
significantly the range of density profiles, but does change the position and velocities of the stars,
effectively increasing the sample of stars for each galaxy. This creates a final sample of 549 galaxy
snapshots.



Chapter 3

Methodology

In this chapter, we present the deep learning methodology used to acquire information about the in-
ner slope of the dark matter density profiles of galaxies from positional and kinematic information of
samples of stars. Our model uses the distribution of line-of-sight velocities and star positions projected
on arbitrary planes to train a deep neural network and make it able to produce probabilistic estimations
of the inner slope of a given galaxy when being fed with its spectroscopic samples.

3.1 Construction of the Data Set

3.1.1 Defining the inner slope

The dark matter density profiles of the galaxies have been realised taking 50 bins logarithmically spaced
between three times the softening length 𝜖 and the virial radius of the dark matter halo 𝑅vir of each
galaxy. Being 𝜌DM(𝑟) the density at a radial distance 𝑟 from the halo centre, we define the slope 𝑠 of
the density profile between points 𝑟1 and 𝑟2 as the slope of the straight line joining points 𝜌DM(𝑟1) and
𝜌DM(𝑟2) on the logarithmic scale:

𝑠 =
log10 (

𝜌DM(𝑟2)
𝜌DM(𝑟1)

)

log10 (
𝑟2
𝑟1
)

. (3.1)

We then define the inner slope to be the slope when 𝑟1 = 150 pc and 𝑟2 = 151 pc. To avoid the noise
effect of the calculated density profile in the innermost regions, we have fitted the density profiles
𝜌DM(𝑟) to an analytical density profiles ̄𝜌DM(𝑟). This profile follows a double-power law model (Di
Cintio, C. B. Brook, A. A. Dutton et al. 2014).

̄𝜌𝐷𝑀(𝑟) =
𝜌𝑠

( 𝑟
𝑟𝑠
)
𝛾
[1 + ( 𝑟

𝑟𝑠
)
𝛼
]
(𝛽−𝛾)/𝛼 , (3.2)

where 𝑟𝑠 is the scale radius, 𝜌𝑠 the scale density and (𝛼, 𝛽, 𝛾) free parameters of the model. 𝑟𝑠 and 𝜌𝑠
are values related to the mass and the time of halo formation (references), −𝛾 and −𝛽 are, respectively,
the logarithmic slope of the density profile in the inner and outer region of the halo and 𝛼 is related to
the smoothness with which the transition is made between the two (the higher the 𝛼, the greater the
sharpness in the transition).
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To make the fit we have calculated the coefficient of determination 𝑅2, defined as the square of
the Pearson correlation coefficient (i.e. the covariance between the points of the analytic profile and
the simulated profile divided by the product off their standard deviations), where the range of possible
values goes from −∞ to 1, with 1 corresponding to an exact correlation. The correlation coefficient 𝑅2
is greater than 0.995 for 98.4% of the galaxies and for none of them it is less than 0.99. We conclude,
therefore, that the ̄𝜌DM(𝑟) profiles appropriately represent the dark matter density profile of all the
galaxies of the sample.

3.1.2 Expanding the data set

One of the most important aspects of training a neural network is the number of input elements with
which it will be trained and the way in which these elements are defined.

From the positions and velocities of the stars in our 183 galaxies, each of which has a defined inner
slope value, we wanted to create a data set that

1. represents the galaxies with motion information of an arbitrary number of stars, to be able to
apply the model to any galaxy for whose stars we have motion information, regardless of their
number.

2. is made up of elements that we can construct from observational data.

3. has a uniform distribution of inner slopes, in order not to introduce a bias in the training process.

Currently, the number of stars for whichmotion information is available for the local group galaxies
is of the order of 103, but 78% of our observed galaxies have more than 104 star particles and 44% have
more than 105. It is therefore possible to multiply our data set by constructing subsets of galaxies
composed of 𝑁𝑖 < 𝑁𝑡 number of stars, being 𝑁𝑡 the total number of star particles available in each
randomly chosen simulation, so that the spatial distribution of the star particles is maintained. In this
way, the data set is expanded with 𝑁𝑡/𝑁𝑖 subsets of a given galaxy 𝐺𝑖. One third of the subsets for a
given galaxy is done on the simulation snapshot with redshift z = 0. The other two thirds are done on
the simulation data with redshifts z = 0.112 and z = 0.226 to add more variety to the data from each
galaxy. At this redshifts the galaxy is already virialized.

Each subset is composed of a different number of stars depending on the resolution of the original
simulation, so that condition 1 is fulfilled.

When observing galaxies, the only positional information we can obtain about the stars is their
projected position in the plane of the sky, and the only kinematic information we can obtain from a
spectroscopic data is their velocity in the line of sight, so to fulfill condition 2 our input elements must
be constructed from a sample of stars with three associated values: the two-dimensional coordinates
of their projected position in a plane and their projected velocity in the normal axis of that plane. In
recent years, accurate information on the proper motion of observed stars has been achieved in projects
such as GAIA Collaboration 2021, which constitutes a potential new source of exploitable information
in the future. However, the model built in this work will use only the line-of-sight velocity of the stars.

To take into account the different angles from which we can observe a given galaxy, we have made
projections in arbitrary planes of the different subsets. In this step we have fulfilled condition 3 by
oversampling the least represented slopes (making multiple projections to the same subset) and under-
sampling the most represented slopes (ejecting some of the subsets made from the dataset).
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3.2 Pre-processing

The inputs of our deep neural network model are continuous 2D probability density functions (PDFs)
of the distribution of stars in projected spaces, constructed with bivariate kernel density estimations
(KDEs). The mapping generated with KDEs allow to encapsulate the features of the original discrete
distributions in the same form even if each galaxy subset is represented by a different number of stars.

3.2.1 Kernel Density Estimation

The reason behind using KDEs to make smoothed and continuous PDFs to represent the distribution of
the stars in a defined space is the capacity they have to encapsulate the features of the original discrete
distribution in the same form even if each galaxy subset is represented by a different number of stars.
The PDFs resulting from applying a KDE to different sets of stars belonging to the same galaxy (each
with a different number of stars) will have similar characteristics to each other thanks to smoothing
and can be represented by matrices of the same dimension.

Let X1, X2, ..., Xn denote a sample of size 𝑛 from a random variable with density 𝑓, each variable
being a two-dimensional vector for the case of a bivariate KDE. The kernel density estimate of 𝑓 at the
point x is given by

𝑓ℎ(x) =
1

𝑛|H|1/2
𝑛
∑
𝑖=1

𝐾 [H−1/2(x − Xi)] , (3.3)

where K is a kernel function and H is a 2x2 bandwidth matrix. The KDE sums up the density con-
tributions from the collection of data points at the evaluation point x, so that data points close to x
contribute significantly to the total density, while data points further away from x contribute less. The
shape of those contributions is determined by K, and their width and orientation by H.

Usually the kernel function K is chosen to be a probability density symmetric about zero (Sheather
2004). In this work we use a 2D Gaussian kernel:

𝐾(u) = (2𝜋)−3/2|H|1/2𝑒𝑥𝑝 (−12u
𝑇H−1u) , (3.4)

where u = x − Xi. For the bandwidth matrix, a scaling factor 𝜅 is multiplied by the covariance matrix
of the data. For the selection of 𝜅 we use Scott’s Rule (Scott 1992), which, for equally weighted points
and two dimensions is

𝜅 = 𝑛
−1
6 , (3.5)

where 𝑛 is the number of data points. This leads to a fairly strong smoothing, which interested us to
reduce the relevance of the number of stars and strengthen the overall evaluation of the data as opposed
to individual stars.

3.2.2 Model inputs

From the projected information (positions in the x-y plane and 𝑣LOS) of the sample of stars representing
each galaxy we have made two maps:
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Figure 3.1: Model inputs for a cored and a cuspy galaxy, each one represented face-on and edge-on. The logar-
ithmic slope at 150 pc is 𝛾 = −0.20 for the cored galaxy and 𝛾 = −1.32 for the cuspy galaxy. From top to bottom:
A 3-color image of the stars in the galaxy; the PDF in the {x,y} space; and the PDF in the {𝑅̂proj, ̂𝑣LOS} phase space.

• A PDF sampled at 64x64 points with the distribution of stars in the {x,y} space, between -2 kpc and
2 kpc in each coordinate, in the reference system where (x,y) = (0,0) is the center of the galaxy.

• A PDF sampled at 64x64 points with the distribution of stars in the {𝑅̄proj, ̄𝑣LOS} phase space,
where 𝑅̄proj = √𝑥2 + 𝑦2/𝑅hlr is the radial position normalized with the half-light radius 𝑅hlr and
̄𝑣LOS = 𝑣LOS/𝑃98% is the line-of-sight velocity normalized with the 98% percentile of the absolute

value of 𝑣LOS of all the stars of the sample 𝑃98%. 𝑅̄proj range covers from 0 to 1, and ̄𝑣LOS covers
from -1 to 1.

So, the inputs for the neural networks are, for each galaxy subset, these two PDFs (normalized by
dividing all their elements by the maximum value of each PDF) and the value of its inner slope. An
example of the resulting PDFs for a cored and a cuspy galaxy can be seen in Figure 3.1.

3.3 The model

A neural network can be formally described as a trainable and flexible approximation of a model 𝕄 ∶
𝑑 → 𝑡. The networkmaps an input data 𝑑 to a prediction ̄𝑡 of the target 𝑡. This network is parameterized
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by a set of trainable weights and a set of hyperparameters. The weights are iteratively optimized during
training to minimize a particular loss function, which provides a measure of how close the network
prediction ̄𝑡 is to the target 𝑡.

In this work, we use convolutional neural networks (CNNs), a class of deep neural networks (DNNs),
to construct a model in which the input data 𝑑 are the two PDFs described in Section 3.2.2, and the
targets 𝑡 are the inner slopes of the galaxy subsets associated to those two PDFs. We then make a
convolutional mixture density neural network (CMDNN) by embedding a Gaussian density layer within
the CNN as the last layer.

3.3.1 Neural networks

Deep neural networks

Any neural network is conformed by a set of neuron layers, defined by the following function:

𝑓(x) = 𝑔(W ⋅ x + 𝑏), (3.6)

where x is the input of the layer, W the weight matrix (which each element being the weight of each
element of the vector x) and b is a vector called the bias parameter of the layer. g(z) is known as the
activation function, which purpose is to break the linearity between the input and the output of the
neuron.

A DNN is a neural network conformed by more than one neuron layer. The layers between the
input layer (the layer that takes as inputs the input data of the neural network) and the output layer
(the layer that gives as output the outputs of the neural network) are called hidden layers.

A feed-forward DNN is a DNN where the neuron layers are evaluated in sequence, passing inform-
ation from layer to layer without recurrence, which means we can describe the output h(𝑙) of the l-th
layer as

h(𝑙) = 𝑔(W(𝑙) ⋅ h(𝑙−1) + b(𝑙)). (3.7)

The training of the model is done by optimizing the weight matricesW(𝑙). A model is trained on a set of
input data 𝑑 for which the targets 𝑡 are known iteratively. In each iteration, the network performance
(the similarity between the outputs ̄𝑡 and the targets 𝑡) is evaluated using a loss function, and theweights
are actualized to minimize that function by an optimization algorithm. When the loss function stops
decreasing and converges to a certain value, the network is said to be optimized. The performance
evaluation is done, then, on a set of independent data the model has not seen during training.

Convolutional neural networks

CNNs are a particular type of DNNs especially suited for problems where spatially correlated informa-
tion is crucial. Themain feature of a CNN is the presence of convolutional layers, which are constructed
in a way that restrict neurons in one layer to receive information only from within a small neighbor-
hood of the previous layer. This allows neurons to extract simple features from subsets of the previous
layer, forming higher-order features in subsequent layers.

A convolutional layer is designed as follows: A convolutional kernel, commonly referred to as a
filter, of a given size, encoding a set of neurons, is applied to each pixel (in the case of 2D images
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as inputs) of the input image and its vicinity as it scans through the whole region. A given pixel in
a specific layer is only a function of the pixels in the preceding layer which are enclosed within the
window defined by the kernel, known as the receptive field of the layer. This yields a feature map
which encodes high values in the pixels which match the pattern encoded in the weights and biases
of the corresponding neurons in the convolutional kernel, which are optimized during training (Kodi
Ramanah, Wojtak and Arendse 2020).

A convolutional layer may be described as a linear operation with the discrete convolution imple-
mented via matrix multiplication. In terms of equation 3.7:

h(𝑙)𝑗 = 𝑔( ∑
𝑖∈𝑀𝑗

h(𝑙−1) × 𝑘(𝑙)𝑖𝑗 + b(𝑙)𝑗 ) , (3.8)

where 𝑘 is the convolutional kernel (the filter) and𝑀𝑗 is the receptive field of the neuron 𝑗. One convolu-
tional layer could have multiple filters, which repeat this operation with different kernels, constructing
many feature maps per layer, known as channels.

The receptive field is defined by the dimensions of the filter, the stride and the existence or not of
padding. The application of the filter can be described as a process of sliding it over the input image
of the convolutional layer. We call stride to the number and direction of pixels you move the filter at
each step, and padding to the addition of empty pixels around the edges with the purpose of alleviating
information loss around the edges.

Usually, and limiting ourselves to simple architectures, a CNN is a series of convolutional layers
followed by a pooling layer as a subsampling or dimensionality reduction step, a process which will
reduce the initial input image to a compact representation of features. Then, that representation is
reshaped as a vector, which is subsequently passed to a sequence of dense layers (LeCun et al. 2015).
This design allows the neural network to autonomously extract meaningful spatial features from the
input image. The stack of several convolutional layers builds an internal hierarchical representation of
features encoding the most relevant information from the input image. Stacking subsequent convolu-
tional layers naturally strengthens the sensitivity of the most internal layers to features on increasingly
larger scales, because the size of the receptive field becomes larger as we go deeper in the CNN.

Mixture density neural networks

A MDNN is a network with layers whose outputs follow a multi-dimension probability distribution,
called mixture density layers. This layers take as inputs 𝑛 nodes, with 𝑛 being the number of para-
meters in the desired distribution, transform their values to respect the parameter constraints of the
distribution and interpret them as those parameters to construct it. When used as the last layer of the
network, it allows joint optimization of the features from the DNN together with a bayesian posterior
backend, combining the advantages of deep feature extraction with probabilistic representation of the
results.

In this work we use a double gaussian 1D distribution:

𝑝𝑔(𝑥|𝜃) =
2
∑
𝑗=1

𝜙𝑗N(𝜇𝑗, 𝜎𝑗), (3.9)

where ℕ(𝑥, 𝜇𝑗, 𝜎𝑗) is the 𝑗 Gaussian with mean 𝜇𝑗 and standard deviation 𝜎𝑗 , 𝜙𝑗 is the weight of the

𝑗 Gaussian, so that∑2
𝑗=1 𝜙𝑗 = 1, and 𝜃 represents the vector of parameters of the distribution.
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3.3.2 Architecture of the model

The convolutional sequences are constructed using pairs of convolutional and pooling layers, followed
by a dropout layer and a flattening of its output.

The pooling layers downsample their input along its spatial dimension (in this case: height and
width). This could be done by several algorithms. In this work, we use the Max Pooling method, which
takes the maximum value over a certain input window for each channel. Amax pooling layer is defined,
as convolutional layers, by the shape of the input window (known as the pooling size), the stride and
the padding.

The dropout layer randomly sets input units to 0 with a certain frequency, and scales the rest such
that the sum over all inputs is unchanged (Chollet et al. 2015). This is done to prevent overfitting during
training; i.e. prevent the model from learning from details that can not be generalized and noise in the
training data, negatively impacting the performance on different data.

The final flattening transforms the output into a vector of neurons. Then, the vectors from each
convolutional sequence are concatenated and used as input to the joint sequence. The joint sequence
is constructed as follows: a normalization layer, two dense layers, a dropout layer, and a final dense
layer which elements that represent the parameters the output layer uses to construct the posterior
distribution.

The normalization layer applies batch normalization to the input. This normalization maintains the
mean of the output close to 0 and its standard deviation close to 1. It works differently during training
and during inference:

During training the layer normalizes the output using the mean and standard deviation of the cur-
rent inputs by the next function:

h(𝑙) =
𝛾 (h(𝑙−1) − 𝜇h(𝑙−1))

√𝜎h(𝑙−1) + 𝜖
+ 𝛽, (3.10)

where 𝜖 is a small constant, 𝛾 a learned scaling factor initialized as 1, 𝛽 a learned offset factor initialized
as 0, and 𝜇h(𝑙−1) and 𝜎h(𝑙−1) are the mean and standard deviation of the neurons of the layer h(𝑙−1),
respectively.

During inference (i.e. while using the trained model to makes prediction in some data) the layer
normalizes the input using a moving average of the mean 𝜇̄ and standard deviation ̄𝜎 of the inputs it
has seen during training. In the first iteration of the training, 𝜇̄ = 𝜇h(𝑙−1) and 𝜎̄ = 𝜎h(𝑙−1) . In subsequent
iterations they are updated in the following way:

𝜇̄𝑛+1 = 𝜇̄𝑛 ⋅ 𝑚 + 𝜇h(𝑙−1)(1 − 𝑚)
𝜎̄𝑛+1 = 𝜎̄𝑛 ⋅ 𝑚 + 𝜎h(𝑙−1)(1 − 𝑚). (3.11)

The use of themoving averages of the training during inferencemeans that the layerwill only normalize
its input if the evaluated data is similar to the inference data.

The output layer, which constructs the posterior, is a Gaussian density layer that outputs a mixture
distribution where all components are from different paramaterizations of a normal distribution.

All the convolutional and dense layers of the model use a non-linear activation function, except the
final dense layer of the joint sequence, which passes its neuron parameters directly to the output layer
as the parameters of the multivariate Gaussian distribution. The rest of the layers (pooling, dropout...)
have a linear activation, which doesn’t apply any transformation: 𝑓(𝑧) = 𝑧.
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Figure 3.2: Schematic representation of our double channel CMDNN architecture to infer inner slope of the DM
profiles (slope at 150 pc) of galaxies from their 2D phase-spacemappings of positional and dynamical distributions
of stars. The CMDNN extrats the spatial features from the phase-space mappings and gradually compresses into
high-order features until describing the input with only 6 parameters, which are used as parameters of a double
Gaussian corresponding to the probability density distribution for the inner slope.

The non-linear activation functions allow the network to learn complex structures in the data
without the restrains of purely linearly connected neurons. In this work, we use a rectified linear
unit (ReLU) in all the layers with a non-linear activation function. The ReLU function is given by
𝑓(𝑧) = max(𝑧, 0), which is linear for values equal or greater than zero, but returns zero if the input
is negative. This function is able to introduce non-linearity in the network while maintaining proper-
ties of a linear activation function that are desirable in gradient-based methods of optimization during
training (see section 1.3.4), and it has been shown to not saturate as much as other popular activation
functions (Glorot et al. 2010).

A schematic view of the architecture used in this work can be seen in Figure 3.2.

3.3.3 Training and evaluation

The training is done over a training set consisting on 10273 galaxy subsets with their respected inner
slopes, which function as targets. The loss function to minimize during the training is the negative
logarithmic likelihood of the training sample, defined as

𝐿 = − ln𝐿∗ = −
𝑁
∑
𝑖=1

ln [𝑝𝐺𝑀𝑀(𝑡𝑖|𝜃)] , (3.12)

where 𝑡𝑖 is the inner slope of the galaxy subset 𝑖 and 𝜃 the set of parameters of the gaussian distribution
𝑝𝑔. Note that, for a certain galaxy subset, the likelihood is the value of the probability density function
of the multivariate Gaussian in its real inner slope value; i.e the probability the model predicts for the in-
ner slope of the galaxy to be its correct value. Taking the logarithm allows to calculate the joint value by
taking sums instead of products, avoids having to calculate exponentials in the Gaussians, and elimin-
ates the potential problem of going below the floating point precision if the negative likelihood becomes
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too small during training. It is, so, more computationally efficient than using the joint likelihood dir-
ectly, while maintaining the capacity to function as the loss function, because 𝑥1 < 𝑥2 → ln𝑥1 < ln𝑥2.

The minimization of the loss function is done with the adaptative moment estimation (adam) optim-
izer, an algorithm for optimization that uses the gradient descent iterative technique. These techniques
take randomly initialized weights and make small steps in the direction of the slopes at each iteration
(epoch, from now on), looking for the global minimum of the loss function.

Adam updates the weights as

𝑤𝑖+1 = 𝑤𝑖 −
𝛼

√ ̂𝑣𝑖 + 𝜖
𝑚̂𝑖, (3.13)

where 𝑖 is the current epoch, 𝜖 a small constant to prevent division by zero, 𝛼 the learning rate and

𝑚̂𝑖 =
𝑚𝑖

1 − 𝛽1
, 𝑚𝑖 = 𝛽1𝑚𝑖−1 + (1 − 𝛽1) [

𝜕𝐿
𝜕𝑤𝑖

] ,

̂𝑣𝑖 =
𝑣𝑖

1 − 𝛽2
, 𝑣𝑖 = 𝛽2𝑣𝑖−1 + (1 − 𝛽2) [

𝜕𝐿
𝜕𝑤𝑖

]
2
,

where 𝛽1 and 𝛽2 are called the decay rates. In this algorithm, 𝑚𝑖 and 𝑣𝑖 are estimates of the mean and
the uncentered variance of the gradients, which are initialized as vectors of zeroes. This initialization
produces a bias towards zero in their values, which is handled in the bias-corrected estimates 𝑚̂𝑖 and
̂𝑣𝑖. Note that the terms 𝑚𝑖 produce larger updates for larger gradients. Its effect is accelerating the

optimization process towards the relevant direction, gaining faster convergence by giving momentum
to the weights: weights on a steep slope of 𝐿will gain more speed towards the minimum, while weights
near the minimum will be updated in the same iteration by a much smaller amount. The 𝑣𝑖 term, on
the other hand, produces an adaptative learning rate to each weight 𝛼/(√ ̂𝑣𝑖 +𝜖) because the difference
in the magnitudes of the gradients between different layers makes the appropriate learning rate vary
widely between different weights.

In this work we use the default values proposed by the designers of Adam: 𝛼 = 0.001, 𝛽1 =
0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. Between the popular learning-method algorithms, Adam is shown to
compare favorably in performance and computational cost (Kingma and Ba 2014).

The weights are updated several times in each epoch, only using a subset of the training dataset
for the calculation of the loss function in each update. For the epoch 𝑖, subsets of 𝑆 < 𝑁 elements,
where 𝑁 is the number of elements in the training dataset and 𝑆 is called the batch size, are randomly
selected from the complete training dataset, separating the training dataset into 𝑁/𝑆 batches. In one
epoch, these batches are passed sequentially through the model, which calculates the loss function and
updates the weights after each batch has passed. Training with different subsets in each epoch reduces
the risk of getting stuck at a local minimum, granting a more robust convergence while significantly
speeding up the training process.

In each epoch, after updating the weights, the model is evaluated on a validation dataset, composed
of galaxy subsets that are not in the training dataset. We consider the model has converged when the
loss function for the validation dataset hasn’t improved in the last 10 epochs.

Usually, the test dataset for the final evaluation of the converged model is constructed by randomly
taking a sufficient number of elements from the complete dataset to correctly represent all feature
variety in the data. In this work, due to the limited number of galaxies available, removing too many
galaxies with varying characteristics from the training dataset is expected to worsen the performance
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of the model, since we do not have many different examples of galaxies with similar characteristics to
each other. To properly evaluate the model, we have performed multiple complete training runs using
the projections of only 10 galaxies as validation and test datasets in each one, changing the galaxies
that would come out of the training dataset in each of the training runs to evaluate the network in
several projections of every galaxy. This allows us to analyse the consistency of the model training and
its performance in a large number of galaxies without compromising the train dataset.

3.3.4 Representing uncertainties

The output posterior distribution represents the random or aleatoric uncertainty in the slope prediction
of the final model, but it does not represent the uncertainty due to the stochastic nature of the weight
determination while training the neural network (epistemic uncertainty), which can lead to different
models for the same training conditions when dealing with limited data. We use the Monte Carlo
dropout method (MC-Dropout) (Gal and Ghahramani 2015) to approximate the epistemic uncertainty
which is based on the repeated evaluation of the same input, randomly setting to 0 the weights on some
layers while doing each inference, to construct a final evaluation with statistical information about the
epistemic uncertainty. Gal and Ghahramani 2015 showed that applying dropout during inference is
equivalent to an approximation to a probabilistic Deep Gaussian process. It means we can measure
the epistemic uncertainty by applying the dropout layer during inference for a statistically relevant
number of them, acquiring a predictive mean and variance for each point of the posterior distribution.
The constructed final posterior for each galaxy projection is the normalized mean of 100 multivariate
Gaussian posteriors inferred by the model with active dropout layers.
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Results

The goal of our work is to infer the slope of the mass density profile in the central region of a galaxy
(from now on: inner slope) from spectroscopic data of a random sample of its stars.

To do so, all simulated galaxies and their subsets of stars are randomly projected in several sky
planes, to simulate several viewing angles, and the neural network is trained to be able to determine
the inner slope of the galaxy from the positions and line-of-sight velocities of its stars. For each galaxy
the neural network outputs a probability density function which approximates the posterior probability
of the inner slope of the galaxy, given the observables and under the prior distribution of slopes with
which the neural network has been trained.

4.0.1 Predicting DM inner slopes

We define two different methods to construct the predicted slope value 𝛾 from the posteriors:

• by using the mode of the posterior distribution (i.e. the maximum of the PDF): 𝛾Pred,mode.

• by using the mean of the normalized posterior distribution: 𝛾Pred,mean.

The error 𝜖 of a prediction is defined as 𝜖𝑖 = 𝛾Real−𝛾Pred,i, where 𝛾Real is the real slope at 150 pc of the
DM profile of a galaxy simulation. The results for themodemethod can be seen in Fig. 4.1, which shows
the difference between the real and predicted slopes of our simulated dwarf galaxies, 𝛾Real − 𝛾Pred, as a
function of the real slope. Each point represents the mean error for every projection of each individual
galaxy, while the error bars indicate the minimum and the maximum value amongst every possible
projection of each galaxy. Shaded colored horizontal areas represent increasing uncertainty ranges,
from ±0.05 to ±0.4.

The mean global error on the predicted inner slope, for all the galaxies in our set, is of 𝜇𝜖 = 0.055
for the mode method and of 𝜇𝜖 = 0.068 for the second method. Note that while cuspy and ‘in between’
galaxies are scattered around 𝛾Real−𝛾Pred = 0, cored galaxies tending towards 𝛾 = 0 are necessarily only
scattered at 𝛾Real − 𝛾Pred ≥ 0, since by construction the maximum possible inner slope is 0.

In Table 4.1 we can see the percentages of correctly predicted inner slopes, taking into account
all the projections of every galaxy (middle column) and each galaxy individually (right column), for
our complete test dataset, within several uncertainty ranges. Roughly 82% of the galaxies recover the
correct, real inner slope within ±0.1, while 98% of them lie within |𝛾Real − 𝛾Pred| ≤ 0.3. These ranges
are clearly small enough to shed light on the discussion regarding the presence or not of cores in dwarf
galaxies.
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Figure 4.1: Real minus predicted value of DM profiles inner slopes (defined at 150 pc) vs real inner slope, for the
simulated galaxies used in this work, defining the predicted value as the mode of the posterior distribution.. Each
point represents the mean 𝛾Real − 𝛾Pred for all the projections of each individual galaxy, while error bars span the
range between the minimum and the maximum error amongst every possible projection of each galaxy. Colored
areas represent increasing error ranges, from 0.05 to 0.4.



Results 25

Error range (±X) % of projections with % of galaxies with
|𝜖| ≤ 𝑋 |𝜖| ≤ 𝑋

0.05 66.67 67.80
0.1 80.79 81.92
0.2 94.35 94.35
0.3 98.31 98.31
0.4 99.44 98.87

Table 4.1: Percentage of all the projections (central column) and of individual galaxies (right column) whose
predicted inner slope lies within a given error range X, i.e. |𝜖| = |𝛾Real − 𝛾Pred,mode| ≤ 𝑋 . Here, we used the mode
of the posteriors method to derive the inner slopes.

Finally, a histogram of the error distribution for every projection of each galaxy (i.e. 10273 in
total) can be seen in Fig. 4.2, indicating that the values of 𝛾Real − 𝛾Pred are peaked at and symmetrically
distributed around 0.0, except very cored galaxies that have by definition 𝛾Real − 𝛾Pred ≥ 0, as already
stated. We showed that our method predicts accurately the expected inner slope of galaxies regardless
of their actual real slope, with a mostly uniform scatter of 𝜎𝜖 = 0.075. This also explains the asymmetry
found in Fig. 4.2 which shows a higher degree of errors overestimating the slope of galaxies versus
underestimating the slope of galaxies.

The predicted values do not follow a Gaussian distribution around the real value: roughly 75% of the
points can be found within 1−𝜎, which is compensated by a decay in the probability of finding a predic-
tion at greater distances from the correct value less than would correspond to a Gaussian distribution
of errors for larger values of 𝜖.

4.0.2 Uncertainty in the inference

In Fig. 4.3 we show the standard deviation 𝜎pos of each posterior from every galaxy in the test dataset,
defined as the square root of the variance of the normalized posterior:

𝜎2pos = ∫
∞

−∞
(𝛾 − 𝜇pos)2𝑃(𝛾) 𝑑𝛾, (4.1)

where 𝑃(𝛾) is the normalized posterior distribution and 𝜇pos is the mean of the distribution:

𝜇pos = ∫
∞

−∞
𝛾𝑃(𝛾) 𝑑𝛾. (4.2)

The mean of all the 𝜎pos of the dataset, 𝜇𝜎pos
, is around 0.1 and only 8.99% of the projections have values

of 𝜎pos greater than 0.2, uncertainties that are small enough to clearly distinguish between cores and
cusps in the vast majority of cases. Fig. 4.3 shows that the standard deviation 𝜎pos of each posterior PDF
is uniform across the inner slopes values, i.e. the width of the PDFs does not depend on the inner slope
of galaxies, such that the model is not biased towards recovering with higher accuracy either cusps or
cores. The uncertainty of a single projection is dependent on the angle of observation. Greater differ-
ences are found in very cored galaxies, but in general this dependence doesn’t depend strongly on the
real slope. These differences between projections of a galaxy compared to the differences between in-
dividual galaxies imply that most of the angles of observation yield small uncertainties for the majority
of the galaxies, but some angles tend to increase uncertainty significantly.
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Figure 4.2: Distribution of 𝛾Real − 𝛾Pred,mode for every projection of each galaxy in our training set. The mean of
this distribution is 𝜇𝜖 = 0.055 and its scatter 𝜎𝜖 = 0.075.

Region % of projections for which 𝛾Real
is within region

1 − 𝜎pos 86.29
2 − 𝜎pos 97.57
3 − 𝜎pos 99.73

Table 4.2: Percentage of predictions within increasing 𝜎pos ranges X, defined as |𝛾Real − 𝛾Pred| ≤ 𝑋 .

Table 4.2 shows the percentage of the test dataset projections where the true value of the parameter
lies within different multiples of 𝜎pos. If we approximate the posteriors to single Gaussians (which
is a proper approximation for roughly 90% of the projections), a well calibrated uncertainty should
provide around 68% of the outputs within a confidence level of 1 − 𝜎pos. Our greater percentage (∼
86%) of projections within the confidence level of 1𝜎pos indicates that the model is over-predicting the
uncertainties 𝜎pos, yielding broader posteriors than it should. This can be an effect of a too high dropout
rate during training, which has been shown to have such a outcome on the results of probabilistic neural
network models (Ghosh et al. 2022). As it is, our model should be interpreted as conservative, since
a future, better calibrated CNN would provide even tighter uncertainties in recovering the true inner
slope of a galaxy.

4.0.3 Effect of viewing angle on the inference of DM slopes

Most of the posteriors for the different projections have an approximately normal distribution (the
second Gaussian disappearing or constituting a skewness correction to the main Gaussian), but several
of them have two distinct peaks. Specifically, around 30% of the galaxies have double peaks in more
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Figure 4.3: Standard deviation 𝜎pos of each posterior PDF vs 𝛾Real, for the simulated galaxies used in this work.
Each point represents the mean standard deviation of each posterior, for every projection of an individual galaxy.
The error bars range between the minimum and maximum standard deviation value of the posteriors of all the
projections of that galaxy.



28 Application to observed galaxies

than 10% of their posteriors. 54% of these galaxies are cored while 46% are cuspy, indicating that the
appearance of double peaks in the PDFs arises in both scenarios (here, we define as cored galaxies those
with inner slope −0.6 < 𝛾 < 0, and cuspy any galaxy with 𝛾 < −0.6).

In Fig. 4.4 and 4.5 we show the PDFs and posteriors of two galaxies at different observation angles,
spanning the range between a face-on and a edge-on view. Strikingly, these images show that the
width of the PDFs as well as the appearance of double peaks are strongly related to the viewing angle
of the galaxy. This indicates that the appearance of double peaks is a consequence of the fact that
some information on the underlying DM profiles is hidden when viewing the galaxy at some particular
angle, while it is released and efficiently passed to the network when looking at the galaxy from other
angles. For example, in Fig 4.5 we observe that the double peaks in the posterior distribution disappear
when the galaxy is seen edge-on, while a face-on configuration provides a second peak that mimics the
presence of a cusp. However, this is just an example, and we have several cases of galaxies in which the
double peaks appear in edge-on view and disappear in face-on, so that the appearance of these multiple
peaks is not related to a specific edge-on or face-on configuration.

4.1 Application to observed galaxies

We proceed to test our model with real observed galaxies, in order to ensure the applicability of the
model and to verify that the neural network is not detecting features of simulated galaxies that do not
correspond to any real physical system.

We selected a sample of four dSphs for which detailed spectroscopic samples of stellar-kinematic
data have been published. At this stage, we adopt only the catalogs by Walker, Mateo et al. 2009 to
directly compare our results with those obtained using the code GravSphere in ReadJustin19. These
galaxies are Carina, Sextans, Fornax and Sculptor, for which we further use the center position, velocity,
ellipticity and half-light radius (circularized as 𝑅′hlr = 𝑅hlr√1 − ell, where 𝑅hlr and ell are the half-light
radius and ellipticity) as compiled in Battaglia, Taibi et al. 2022.

To build our input PDFs, we considered only those stars with a 90% or higher probability of being
part of the galaxy and we take the mean value of the line-of-sight velocity for those stars with multiple
measurements. In total, we considered 460 stars for Carina, 1353 for Fornax, 809 for Sculptor and 327
for Sextans, and for each of these stars we used projected x-y positions and line-of-sight velocities.

4.1.1 Testing the similarity of training vs observational data

When training a neural networkwith simulations to then perform inference on real data, there is always
the risk that the network will detect and learn from specific features of the simulation code that do not
correspond to reality, and this would cause issues when interpreting observational data, as they have
different qualities than those used in the training set. We can test the degree to which our network sees
observational data as equivalent to the data it has been trained on by observing the parameter space
of the test dataset, defined as the set of all combinations of the six parameters corresponding to each
element of such dataset. Namely, our outputs are defined by themean, standard deviation andweight of
twoGaussians: this 6D parameter spacewill have regions populatedwith points and regions completely
empty, corresponding to the combinations of parameters that do not parameterise the characteristics
of any physical system found in the dataset. If the neural network does not see differences in the input
with respect to the data it has been trained on, the resulting parameters, coming from the evaluation
of observational data with our model, will fall within the populated regions of the parameter space of
the simulation dataset.
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Figure 4.4: Probability density distributions used by the neural network as input in the case of one simulated
galaxy subset seen at 0º (face-on), 45º and 90º (side-on), alongside with the Bayesian posteriors predicted by the
model. Left columns: PDFs in the {x,y} space. Central columns: PDFs in the {𝑅̂proj, ̂𝑣LOS} phase space. Right
columns: predicted Bayesian posterior in the space of inner slope of the DM profile (slope at 150 pc); shaded
regions represent the standard deviation of the posterior values for the MC-Dropout inferences at each slope
point, while the blue vertical line shows the mode (maximum) of the posterior distribution and the black one the
true value of the inner DM slope.
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Figure 4.5: Probability density distributions used by the neural network as input in the case of one simulated
galaxy subset seen at 0º (face-on), 45º and 90º (side-on), alongside with the Bayesian posteriors predicted by the
model. Left columns: PDFs in the {x,y} space. Central columns: PDFs in the {𝑅̂proj, ̂𝑣LOS} phase space. Right
columns: predicted Bayesian posterior in the space of inner slope of the DM profile (slope at 150 pc); shaded
regions represent the standard deviation of the posterior values for the MC-Dropout inferences at each slope
point. The red vertical line shows the primary maximum of the posterior distribution (the mode), the green one
the secondary maximum and the black one the true value of the inner DM slope. As a blue line, the mean between
primary and secondary maximum is shown, when two peaks exist (in the bottom panel, instead, the blue line
represents the unique maximum). This example shows how the appearance of double peaks in the posterior
distributions is strongly related to the viewing angle.
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To be able to visualize the 6D parameter space and test if this is the case, we use the Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) technique from McInnes
et al. 2018 to perform a dimension reduction from 6D to 2D, thus mapping each combination of means,
standard deviations and weights to only two adimensional parameters representing such ‘contraction’,
preserving the global structure of the original parameter space. This allows to visualize the parameter
space in 2D. The result of the dimension reduction process from the complete test sample can be seen in
Fig. 4.6, alongside with the position of the four observed dwarf galaxies shown in the same parameter
space, each indicated as colored star.

As expected, the spatial location of the points in the parameter space is strongly linked to the value
of their inner slope: points with a similar inner slope cluster together, showing that the network is
properly parameterizing the inner slope of galaxies during training. Interestingly, the four observed
galaxies fall into the regions occupied by the simulated ones, which indicates that the model is consid-
ering them as data of equivalent nature as the test data. However, the fact that all four are close to the
edges of the simulation input parameters could indicate the presence of some features that the model
has not found in the simulations.

4.1.2 Deriving central DM density slopes of dSphs with CNNs

We now infer the inner slope of the observed dwarfs. Fig. 4.7 shows the posterior distributions con-
structed by the model for each observed galaxy. Fornax presents a very narrow peak around 𝛾 = −0.38,
indicating that this galaxy has a large central DM core, while a secondary peak would give a 12% prob-
ability that the inner slope is around 𝛾 = −0.81. This is consistent with several previous works that
predict a cored profile for Fornax see Goerdt, Moore, J. I. Read et al. 2006; Walker and Peñarrubia 2011;
C. B. Brook and Di Cintio 2015; Pascale et al. 2018, amongst others. For the other three galaxies, a
cusp is predicted with varying degrees of certainty. The model has a clear peak around 𝛾 = −1.06 for
Carina, which roughly corresponds to the slope of a NFW profile at 150 pc.

Sextans presents a relatively large uncertainty in the inner slope value, as depicted by the quite
broad PDFs, with a broad peak around 𝛾 = −1.25 and a strong right wing that does not fall below
10% of the peak value until it reaches 𝛾 = −0.68. Finally, Sculptor peaks at 𝛾 = −1.08, but it has
a wide secondary peak, predicting a 18% probability of having a mild core with 𝛾 = −0.75. A small
core was derived for Sculptor by using kinematical data and a mass-dependent profile fit in C. B. Brook
and Di Cintio 2015, in agreement with the Walker and Peñarrubia 2011 and Agnello and Evans 2012
methods that, employing multiple stellar populations within a galaxy, also predicted a core in such
dwarf (see also Zhu et al. 2016). Other studies, however, surprisingly predict a cusp for Sculptor after
all (Richardson and Fairbairn 2014), highlighting the importance of deriving the DM density of this
dSphs with several different methods.

Our derived posterior distributions offer great versatility in interpreting the results, allowing for a
more complex analysis compared to models that only allow for uncertainty ranges around the inferred
value.

We compare the results of our model with the inner slopes inferred for these same galaxies at 150
pc using GravSphere, a non-parametric spherical Jeans analysis code, which make use of photometric
and kinematic data from the galaxies (J. I. Read, Walker et al. 2019). The inferred values, along with
their 68 per cent confidence intervals (in our case, taking the primary maximum as reference), are
listed in Table 4.3. The derived values are consistent between the two models, within their respective
uncertainty ranges, indicating that our neural network model is making predictions similar to those
obtained by Jeans analysis.
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Figure 4.6: Representation of the parameter space for the test data from simulated galaxies reduced to 2-
dimension with a Uniform Manifold Approximation and Projection (UMAP), color coded by the real expected
inner DM slope. Plotted as colored stars are the locations in the reduced parameter space of Carina, Sextans,
Sculptor and Fornax galaxies. Note that different inner slopes occupy different areas of the plot and, importantly,
observed dwarf galaxies fall well within the simulation region, indicating that the neural network model is not
seeing relevant differences between the simulated data with which we have fed it and the observational data.

𝛾𝐺𝑆 𝛾𝑁𝑁
Carina −1.23+0.39−0.35 −1.06+0.05−0.04
Sextans −0.95+0.25−0.25 −1.25+0.25−0.09
Fornax −0.30+0.21−0.28 −0.38+0.01−0.02
Sculptor −0.83+0.30−0.25 −1.08+0.08−0.04

Table 4.3: Inner slope of the DM profile (at 150 pc) for Carina, Sextans, Sculptor and Fornax galaxies predicted
by GravSphere (𝛾𝐺𝑆) and our Neural Network (𝛾𝑁𝑁 ), with their 68 per cent confidence intervals (for the Neural
Network posterior, taking the primary maximum as reference).
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Figure 4.7: Bayesian posterior distributions in the space of inner slope of DM profiles (slope at 150 pc) predicted
by our neural network model for the observed dSphs Carina, Sextans, Sculptor and Fornax. Shaded regions
represents the standard deviation of the posterior values for the MC-Dropout inferences at each slope point. In
each panel, the global maximum of the posterior distribution as well as the mean value are indicated, together
with primary and secondary peaks when they exist. Fornax has the strongest signature of a central DM density
core, while Carina has the strongest signature of having a NFW profile. Sextans is cuspy, though with a large
uncertanty, while Sculptor is cuspy with a secondary peak indicating a mild core.
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Compared to GravSphere and similar codes, the neural network approach is significantly faster.
In a modern laptop, GravSphere will need about half a day to run an analysis of one of these galaxies,
whereas the neural network can be trained with the amount of data used in this work in less than half
an hour on a standard GPU. Furthermore, the training and the evaluation are independent calculation
in a neural network model, which means that, once the model has been trained, its application to any
input data to construct the posterior distribution is nearly instantaneous. This feature will not change
no matter how much the model is expanded and complexified to perform more complete analyses of
the galaxy of interest.
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Conclusion

We present a novel model for the determination of the inner profile of dark matter halos with robust
uncertainty quantification using machine learning techniques. The goal of this work is to be able to
infer central density slopes (𝛾) of the dark matter density profile of galaxies by just using positional
and spectroscopic data of its stars. Our method uses convolutional mixture density neural networks
(CMDNNs) with a mixture density layer backend to model complex galaxy substructure. We use line-
of-sight velocities and positions of stars within simulated dwarf galaxies, employing Kernel Density
Estimations (KDEs) to construct continuous 2D probability density functions (PDFs) of the distribution
of such stars in {𝑅̂proj, ̂𝑣LOS} and {x,y} spaces, which serve as input to our neural network using a double
channel architecture (Fig. 3.1 and 3.2).

We train and evaluate ourmodel using a large set of fully cosmological simulations of dwarf galaxies
with halomasses of 109 to 1011.5 M⊙, and stellarmasses of 105 to 109.5 M⊙from theNIHAOandAURIGA
projects (Wang et al. 2015; A. A. Dutton et al. 2020; Grand et al. 2017). The use of different physical
models employed in such simulations allows us to have a diverse range of density profiles at each
particular galaxy mass, including both cores and cusps (Fig. 2.2). All simulated galaxies and their
subsets of stars are randomly projected in several sky planes, to simulate several viewing angles.

The loss function to minimize during the training is the negative logarithmic likelihood of the
training sample, defined as a multivariate Gaussian probability distribution, which is the output of our
Gaussian density layer backend. This allows a flexible probabilistic representation of the results, which
yields accurate and statistically consistent uncertainties. For each galaxy the neural network outputs
a PDF which gives the posterior probability of a certain slope to be the inner slope of the galaxy. The
main results of this work are listed here:

• The inner slope of simulated galaxies is predicted with a mean error of 𝜇𝜖 = 0.055 (where the
error is defined as 𝜖 = 𝛾Real−𝛾Pred, and the predicted inner slope, 𝛾Pred, is obtained from the mode
of the PDFs) and a standard deviation of 𝜎𝜖 = 0.075 for the whole sample (Fig. 4.1 and 4.2);

• 82% (98%) of the galaxies have their inner slope correctly determined within ± 0.1 (0.3) of their
true value (Table 4.1);

• The posteriors PDFs have a mean standard deviation of 𝜎pos = 0.108, showing no bias towards
more accuracy for cuspy or cored galaxies (Fig.4.3);

• While in most cases the output of the model is a single peaked PDF, in∼ 30% of the galaxies some
of their projections show a double peak: we demonstrated that this is associated to a particular
viewing angle, indicating the importance of properly determining the inclination of galaxies (Fig.
4.4 and 4.5);
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• When applied to a set of four observed dSphs, our model recovers their inner slopes yielding
values consistent with those obtained with the Jeans modelling codes GravSphere (Table 4.3);

• We found that Fornax dSph has a strong indication of having a central DM core, Carina and
Sextans have cusps (although the latter with a large uncertainty), and Sculptor shows a double
peaked PDF indicating that a cusp is preferred, but a core can not be ruled out (Fig. 4.7). These
results are in agreement with several previously derived inner slopes for these galaxies (Goerdt,
Moore, J. I. Read et al. 2006; Agnello and Evans 2012; C. B. Brook and Di Cintio 2015; Walker
and Peñarrubia 2011; Richardson and Fairbairn 2014; J. I. Read, Walker et al. 2019).

The current architecture could be used as a basis for building models that provide a more complete
output, such as a prediction of the full density profile of galaxies. The nature of the neural network
allows it to be constantly extended and improved. While we have implemented a network of relatively
low complexity, there are a series of interesting possibilities with a further level of sophistication that
are worth exploring. For example, the use of normalizing flows may yield to more robust results (Kodi
Ramanah, Wojtak, Ansari et al. 2020) while the use of a 3D convolutional network applied to PDFs
defined in the {x,y, ̂𝑣LOS} phase space has given good results in galaxy cluster masses inference (Kodi
Ramanah, Wojtak and Arendse 2020).

In the future, the architecture of this model could also be expanded with more input data, such
as proper motion of the stars from missions like GAIA (Gaia Collaboration 2021). Furthermore, the
inclusion of other spectroscopic samples present in the literature, as well as of those soon to be acquired
with upcoming facilities, will certainly be beneficial for this analysis.

Adapting the architecture and introducing more information may enable the network to improve
accuracy and reduce the range of variability of the results with respect to the angle of observation.

This newly developed neural network method is a promising tool for the study of properties of
dwarf galaxies. We have shown that deep learning techniques provide a innovative method for the
determination of the inner DM profiles in dwarf galaxies, complementary to the use of Jeans modelling.
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