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Resumen

Las surveys de galaxias que están en marcha y los futuros representan una era dorada para
la investigación cosmológica y el estudio de la estructura a gran escala. Para poder extraer la
información cosmológica de estos datos es necesario idear y probar observables sólidos y fiables.
Recientemente, un nuevo observable basado en las fluctuaciones angulares de corrimiento al rojo,
o redshift (ARF por su siglas en inglés), demostró ser sensible a los campos de materia y de ve-
locidad peculiar. Además, este observable no muestra correlación con las fluctuaciones angulares
de densidad de las galaxias (ADF) y es robusto frente a errores sistemáticos. Consecuentemente,
es una herramienta promisoria para extraer información cosmológica de los surveys, como medir
la tasa de crecimiento de estructuras determinado por las distorsiones en el espacio de redshift.
Además, su caracter angular permite la comparación directa con predicciones teóricas. Sin
embargo, la aplicabilidad de este observable se encuentra limitada a grandes escalas donde la
teoría lineal, en la cual su formulación se basa, es válida. En este estudio se propone emplear
reconstrucción cosmológica para ampliar la aplicabilidad de las ARF a escalas menores. La
reconstrucción toma un campo evolucionado y deshace la gravedad para obtener el campo en una
época evolutiva previa. Por tanto, el campo se linearizaría implicando una validez más amplia
de las ARF. Esta idea se pone a prueba en catálogos simulados generados a partir condiciones
iniciales emparejadas. Los catálogos fueron evolucionatos hasta un redshift de z = 0.3, y la
reconstrucción se ejecutó hasta z = 3.0. A partir de la reconstrucción, el bias del catálogo
respecto a un mismo redshift comóvil disminuye (de b1 = 1.32 a b1 = 0.72) indicando que el
campo reconstruido es más sensible al campo de velocidades peculiares. El espectro de potencias
de las ARF y ADF fue calculado para los catálogos antes y después de la reconstrucción. Estos
fueron comparados con predicciones teóricas a partir de un modelo lineal obteniendo un buen
acuerdo lo cual implica una buena determinación de parámetros, principalmente el bias pre y
post reconstrucción. Finalmente, las ARF y ADF demostraron también ser más sensibles a la
velocidad peculiar después de la reconstrucción. Esto demuestra la viabilidad de combinar ambas
técnicas.
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Abstract

Ongoing and upcoming galaxy surveys represent a golden era in cosmology and large scale
structure research. In order to extract the cosmological information embedded in the data, strong
and reliable observables need to be devised and tested. Recently, Angular Redshift Fluctuations
(ARF) were proposed as a new observable that is sensitive to the matter density and peculiar
velocity field, it also showed to be uncorrelated to the projected galaxy angular density fluctuations
(ADF), and robust against systematic errors. Thus, it is a promising tool to extract cosmological
information from surveys, such as measuring the growth rate of structures determined by the
redshift space distortions. Furthermore, the angular character of the observable allows for direct
comparison with theoretical predictions. However, its applicability is limited to large scales
where linear clustering, in which its formulation is based, dominates. In this study, cosmological
reconstruction is proposed to expand the applicability of ARF to smaller scales. As the name
implies, reconstruction takes an evolved field and runs gravity back to obtain the field in a previous
evolutionary epoch. Therefore, linearizing the field would imply a broader applicability of ARF.
This idea is put to test on mock catalogues generated from a set of paired simulations evolved
up to a redshift of z = 0.3, and the reconstruction was run up to z = 3.0. From reconstruction,
the bias with respect to the same comoving redshift decreased (from b1 = 1.32 to b1 = 0.72)
meaning that the post reconstruction field is more sensible to the peculiar velocity field. ARF
and ADF power spectrum was calculated from the catalogues before and after the reconstruction
and compared to theoretical predictions following a linear evolutionary model. These power
spectra matched the theoretical predictions showing consistency and a good determination of the
parameters such as pre and pos reconstruction bias. Finally, ARF and ADF also showed to be
more sensible to the peculiar velocity after reconstruction. This demonstrates the feasibility of
combining both techniques.
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1. Introduction
Research on Cosmology and Large Scale Structure (LSS) of the Universe is currently in a golden
era. Particularly, ongoing and upcoming galaxy surveys will yield a vast amount of data from
which fundamental physics of the Universe can be explored. Such surveys map the positions and
velocities of galaxies at different epochs and, from the first surveys, they show that the Universe
is far from homogeneous but has a structure with over-dense (clusters) and sub-dense (voids)
regions. However, when going to larger scales (> 100 Mpc), the Universe turns to be more
homogeneous. It is at these larger scales that the Cosmological Principle, i.e. the universe is
homogeneous and isotropic, is based. In simpler terms, this principle states that we are not in
any special place in the universe.

Starting from this principle, models of the Universe and its evolution have been proposed
and tested. The model widely accepted and able to describe very accurately the Universe is the
so-called concordance or ΛCDM model. Such model tells that the universe is flat, expanding,
and has transitioned from being dominated by radiation at its earliest stages, to subsequent
matter domination with most of the matter being "dark" and "cold" (hence Cold Dark Matter,
CDM), to be ultimately dominated by the so-called cosmological constant, Λ, or "dark energy",
a component that accelerates the expansion. Although the model does well in describing the
Universe and its evolution, it brings some problems lying on the unknown nature of Λ and CDM,
and the evolution of structures under the action of gravity. Related to the latter, the generation of
initial conditions that subsequently evolved into structures also posed a problem that was solved
through the concept of inflation which consists of a rapid exponential expansion of the universe
whose origin is not understood. Inflation also solved other problems rising from how the Cosmic
Microwave Background (CMB) is homogeneous and isotropic, a problem connected to causality,
and why the Universe is flat, a problem of fine tuning of cosmological parameters.

It is the problem of the evolution of structures under the action of gravity that this manuscript
targets. In particular, the peculiar motions of galaxies, motions that deviate from the flow of
expansion, are sensitive to the nature of gravity and galaxy surveys permit to massively study
them as a function of cosmic history. Such peculiar motions cause distortions in the spatial
distribution of galaxies in relation with their redshift, so-called redshift space distortions (RSDs).
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Recently, a new technique to determine the growth rate, i.e. how fast density perturbations grow
into full cosmological structures, based on angular fluctuations in the redshift space has been
proposed. This technique has the advantage of being robust against systematics. Furthermore, its
angular character allows direct comparison with theoretical predictions. It nevertheless suffers
from one problem, its applicability is limited to large scales because it is sensible to the non-
linear clustering of small scales. One potential solution to this problem lies in cosmological
reconstruction. As the name implies, this consists of rolling back the motion of the galaxies,
driven by gravity, to an earlier epoch of the Universe. Thus, reconstructing the galaxy distribution
at that epoch which is more homogeneous. Having a more homogeneous distribution reduces the
non-linear clustering and, therefore, can expand the applicability of angular redshift fluctuations
(ARF) and angular density fluctuations (ADF) to smaller scales.

In this work, the latter idea is put to test with mock catalogues generated from cosmological
simulations. Firstly, the theoretical background in which both techniques are based is explained
in chapter 2. Then, the process to generate mock catalogues is pointed out in chapter 3 followed
by the reconstruction implementation and the obtained ARF and ADF statistics in chapters 4 and
5, respectively. Finally, the concluding remarks and outlook are developed in chapter 6.



2. Theoretical Background

2.1 Standard Cosmological Model

The standard cosmological model, so called ΛCDM model, has been the most successful in
explaining the formation of structures in the Universe. Its description includes a hot Big Bang
origin, current domination of dark energy in the form of a cosmological constant,Λ, and the matter
component dominated by the CDM. The model is supported and constrained observationally with
the CMB, and with cosmic distance determination through type Ia supernovae and quasar spectra1.
In the following, the basis and parameters of the standard model are described.

A homogeneous and isotropic Universe in the framework of general relativity (GR) can be
described with the Friedmann-Lemaítre-Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
, (2.1)

where t is the time coordinate, r, θ and ϕ are the spatial coordinates, a(t) is the dimensionless
scale factor, and k is the curvature constant defining the geometry of the Universe with k < 0,
k = 0, and k > 0 corresponding to an open, flat and closed geometry, respectively. a(t) is a
monotonically increasing quantity and can be used to refer to different ages of the Universe,
either past or future. Another parameter of interest is the cosmological redshift, defined as the
amount that the wavelength of an emitted photon has stretched due background expansion. It is
related to the scale factor, following

a0

a
=
λobs

λemit
= 1 + z. (2.2)

The subscript 0 refers to the present day value, and for the scale factor is normalized to be unity
a0 = a(t0) = 1.

Under the assumption of the cosmological principle, the smooth background can be described
as a perfect fluid with density ρ and pressure p. Plugging the metric, and the stress-energy tensor
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4 2.1. STANDARD COSMOLOGICAL MODEL

into the Einstein field equations leads to the Friedmann equations,

H2(a) ≡
( ȧ
a

)2

=
8πG

3
ρ −

k
a2 (2.3)

ä
a
= −

4πG
3

(ρ + 3p) . (2.4)

H(a) ≡ ȧ/a is the Hubble parameter and describes the expansion rate of the Universe. At present
day, the parameter is denoted as H0 and it is customary to express it in terms of the dimensionless
Hubble parameter h, i.e. H0 = 100h km s−1 Mpc−1.

Friedmann equations represent the energy and force balance of the universe. To complete
these equations and solve the evolution of the scale factor, an equation of state is needed, together
with the description of the components contributing to the total density. For each of the Universe’s
components the expression is p = ωρ, with ω a constant. Particularly, the values are ω = 0 for
non-relativistic collisionless matter, ω = 1/3 for radiation, and ω = −1 for cosmological constant.
Plugging the equation of state into (2.4) reveals that a has an accelerated expansion whenω < −1/3,
defining a more general equation of state for the dark energy. Following energy conservation, the
density evolution with the scale factor turns to be

ρ = a−3(1+ω), (2.5)

indicating that each component of the density evolves differently with time and there are epochs
where one component dominates the total density over the others.

Density parameters are defined by normalizing each component density by the critical density,
i.e. Ωi(z) = ρi(z)/ρcrit(z). This critical value is the total density for a flat geometry, solving from
equation (2.3)

ρcrit =
3H2

8πG
. (2.6)

Then a total density parameter is defined as the sum of all components parameters, i.e. Ωtot =

Ωm+Ωr+ΩΛ for matter (including CDM and "normal" baryonic matter,Ωm = Ωc+Ωb), radiation
and cosmological constant (with energy density ρΛ = Λ/8πG). If the curvature density is introduced,

ρk = −
3k

8πGa2 (2.7)
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equation (2.3) is simplified to
∑
Ωi + Ωk = Ωtot + Ωk = 1. Expressing it in terms of present day

parameters and remembering that k = 0 in the ΛCDM model, gives

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ

]
. (2.8)

Equation (2.8) gives then a simpler expression for the evolution of the Hubble parameter based
in present day values. This turns to be useful in determining comoving and angular cosmological
distances, that in the ΛCDM model are expressed by∗

Dc(z) =
∫ z

0

dz′

H(z′)
, (2.9)

DA(z) =
Dc(z)
1 + z

. (2.10)

Consequently, the standard ΛCDM model is described by a set of six parameters, seven if the
null curvature is counted. Their values, as measured by the Planck Collaboration2 are summed
in the table 2.1. In this section h, Ωbh2, Ωch2 where introduced. The following three, ns, τ, and
ln 1010As, are the primordial power spectrum index, reionization optical depth and the amplitude
of primordial curvature perturbations, respectively.

Parameter Description Value
h Dimensionless Hubble parameter 0.6774 ± 0.0046
Ωbh2 Baryon density at present day 0.02230 ± 0.00014
Ωch2 CDM density at present day 0.1188 ± 0.0010

ns Primordial, scalar power spectrum index 0.9667 ± 0.0040
τ Thomson scattering optical depth due reionization 0.066 ± 0.012

ln 1010As Primordial curvature perturbations amplitude 3.064 ± 0.023

Table 2.1: The six fundamental parameters of the ΛCDM model as measured by the Planck
Collaboration2 (Table 4, column TT, TE, EE+lowP+lensing+ext). Further parameters of the
model are derived from these.

∗Note that the angular distance expression is only valid for a flat geometry.



6 2.2. DENSITY PERTURBATIONS

2.2 Density Perturbations

A completely homogeneous Universe would not grow structures. Therefore, density fluctuations
must be taken into account. The overdensity field, or density contrast, in configuration or real
space is defined as,

δ(x) =
ρ(x) − ρ0

ρ0
(2.11)

with ρ(x) the density at x and ρ0 the mean density of some object of interest in the Universe.
From Fourier expanding (2.11), its expression in terms of the wavenumber, δ(k), is obtained:

δ(x) =
∑

k

δke−ik·x. (2.12)

However, a Fourier expansion of the density field in an infinite Universe is not well defined. Then,
it needs to be assumed that the field is periodic within some box of volume V = L3, restricting
the allowed wavenumbers to harmonic boundary conditions, i.e. ki = 2πni/L for i = x, y, z.

The homogeneity of the Universe implies that the statistical properties of δ(x) should also be
homogeneous. These can be studied via N-point correlators, ⟨δ1δ2 . . . δN⟩. Formally, ⟨. . . ⟩ refers
to an ensemble average. Nevertheless, there is only access to one realization of the ensemble, i.e.
our Universe. This is solved by taking advantage of the ergodicity of Gaussian fields and replacing
the ensemble average with a spatial one. Particularly, it is widely accepted that primordial density
fluctuations were generated by the inflationary scenario that predicts the initial density fluctuations
to be Gaussian3,4. Another characteristic of a Gaussian field is that its statistical properties are
fully specified by the two-point statistics, i.e. correlation function in configuration space or the
power spectrum in the Fourier space. The correlation function is defined as,

ξ(r) ≡ ⟨δ(x)δ(x + r)⟩. (2.13)

It proves how density perturbations at different locations are correlated giving a positive result
if both are over or under dense and negative if they are opposite. On the other hand, the power
spectrum is a measure of the variance of density fluctuations at a given scale,

P(k) = ⟨|δk|
2⟩. (2.14)
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Actually, (2.13) and (2.14) are closely related, Fourier expanding the δ’s in (2.13) gives

ξ(r) =
〈∑

k

∑
k′
δkδk′e−ik′·xe−ik(x+r)

〉
=

〈∑
k

∑
k′
δkδ

∗
k′e

i(k′−k)xe−ik·r
〉
=

V
(2π)3

∫
d3k |δk|

2e−ik·r.

In the second step, one of the δ’s was replaced by its complex conjugate, given that they are real,
and for the third step, all cross terms (k , k′) average to zero because of the boundary conditions.
Lastly, the final sum was expressed as an integral. Therefore, the correlation function is nothing
more than the Fourier transform of the power spectrum. Additionally, from isotropy, the power
spectrum and correlation function must also be isotropic, i.e. ⟨|δk|

2⟩ = |δk|
2. Then, the angular

part of the integral is immediate by noting that ξ(r) is real, therefore e−ik·r → cos(kr cos θ), and
from d3k = k2 sin θdkdθdϕ, the integral can be written as

ξ(r) =
V

(2π)3

∫
P(k)

sin kr
kr

4πk2dk. (2.15)

Here, sin(kr)/kr is acting as a window function, modifying the density field. This is a convolution
in the configuration space. There are other window functions widely used to filter out scales
smaller than a certain one thus smoothing the field, such as the top-hat or the Gaussian window
functions.

2.3 Linear Perturbation Theory

Large Scale Structure is interested in knowing the evolution of density perturbations, δ(x). At
initial times, baryons and photons were coupled as a fluid until recombination epoch and after
decoupling, baryons transitioned to behave as an ideal gas. Furthermore, CDM is believed to
behave as a collisionless fluid. Consequently, fluid equations are the ideal framework to describe
δ(k) evolution. Following a Newtonian approach, the corresponding equations are:

Continuity equation :
dcρ

dct
+ ρ∇r · v = 0, (2.16)

Euler equation :
dcv
dct
= −∇rΦ −

∇rP
ρ
, (2.17)

Poisson equation : ∇r
2Φ = 4πGρ. (2.18)
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with dc
dct =

[
∂
∂t + (v · ∇r)

]
being the convective derivative.

Continuity and Euler equations describe energy and momentum conservation, respectively.
Poisson equation describes the gravitational potential induced by the density distribution. These
equations are with respect to a physical coordinate system (r), it is convenient to account for the
expansion transforming them to a comoving system (x). Noting that r = ax, the velocity becomes

v = ṙ = ȧx + aẋ = Hr + au, (2.19)

where δv = au = aẋ is the peculiar velocity. Consequently, the nabla operator transforms as
∇r = ∇x/a. Then, the convective derivative is,

dc

dct
=
∂

∂t
+ (Hr + au) · ∇r =

∂

∂t
+ (Hr · ∇r) + (u · ∇x) =

d
dt
+ (u · ∇x) (2.20)

where d
dt =

[
∂
∂t + (Hr · ∇r)

]
is now the convective derivative but with respect to the comoving

frame.
Plugging the transformations (2.19) and (2.20), adding perturbations about the homogeneous

background (ρ = ρ0 + δρ = ρ0(1 + δ), P = P0 + δP, and Φ = Φ0 + δΦ), into the equations (2.16),
(2.17), and (2.18), and keeping terms up to first order leads to the set of linearized fluid equations
(demonstration in Appendix A):

dδ
dt
= −∇ · u, (2.21)

du
dt
+ 2Hu = −

1
a2

∇δP

ρ0
−

1
a2∇δΦ, (2.22)

∇2δΦ = 4πa2Gρ0δ. (2.23)

Note that δ = δρ/ρ0 and that, although the equations are with respect to the comoving frame, the
x subscript was omitted for simplicity.

An equation of state further simplifies one term. For an adiabatic expansion this is c2
s = ∂P/∂ρ

and the pressure gradient term then becomes ∇δP/ρ0 = (∇δρ/ρ0)(∇δP/∇δρ) = (∂δP/∂δρ)∇δ =
c2

s∇δ. Taking the negative divergence on equation (2.22), and substituting equations (2.21) and
(2.23) into the result leads to

−
d
dt

(∇ · u) − 2H∇ · u =
c2

s

a2∇
2δ +

1
a2∇

2δΦ ⇒ δ̈ + 2Hδ̇ =
c2

s

a2∇
2δ + 4πGρδ. (2.24)
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Finally, Fourier expanding δ as in equation (2.12) allows to easily perform the substitution
∇ → −ik in (2.24). This leads to an equation describing the evolution of the density perturbations
amplitude:

δ̈k + 2Hδ̇k = δk

(
4πGρ0 −

c2
sk

2

a2

)
. (2.25)

Note that this equation applies for a non-relativistic fluid. Nevertheless, a similar approach leads
to a similar expression for the relativistic case differing on the driving term factor at the r.h.s of
the equation, i.e. δ̈ + 2Hδ̇ = 32π/3Gρ0δ. See Peacock 5 for reference.

Ignoring the second term in the l.h.s of (2.25), it is evident that when 4πGρ0 > c2
sk

2/a2

the perturbation grows exponentially. On the contrary, the pressure term dominates and the
evolution is oscillatory, i.e. acoustic waves. This implies the existence of a limit scale given by
λJ = cs

√
π/Gρ0 separating both behaviours, this is called the Jeans length. Now, let’s take the

ignored term into account, and concentrate in scales much bigger than λJ. For a matter (radiation)
dominated Universe with Ωm = 1 (Ωr = 1). Noting that

matter dominated (a ∝ t2/3) : 4πGρ0 =
2

3t2 ,

radiation dominated (a ∝ t1/2) : 32πGρ0/3 =
1
t2 .

a power-law solution, i.e. δ ∝ tn is possible. There is no more exponential growth, therefore
this term, accounting for the Hubble expansion, acts as a drag force. The solution for matter
domination is n = 2/3 and n = −1 while for radiation domination n = ±1. This defines a growing
and a decaying mode, denoting a general solution† of the form

δ(t,k) = δk,+D+(t) + δk,−D−(t). (2.26)

Here, D+(t) is the growth function or factor. The decaying factor, D−(t), does not grow structure
and can be ignored so that it is safe to just denote D+(t) = D(t). This factor is normalized to unity
at present day value, i.e. D(t0) = 1.

An alternative way to look at the growing solution is to look for solutions in the form
u = −F(t)∇δΦa = F(t)g, with g = −∇δΦa the peculiar gravitational acceleration. From equation
(2.21) it follows that (See Appendix A for details)

δv = au =
2 f (Ω)
3HΩ

g, (2.27)

†For the expressions in the general case, refer to Peacock 5 .
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where f (Ω) = (a/δ)(dδ/da) = d ln δ/d ln a is the growth rate. An approximation for this
is f ≈ Ω0.6 given by Peebles 6 . Additionally, from Fourier expanding equation (2.23), i.e.
δΦ ∝ exp (−ik · x), and plugging in equation (2.27),

δv = −
ik
k2 f aHδ. (2.28)

This last equation implies that mapping the density and velocity fields gives a way of measuring
Ω through the growth rate function f (Ω).

2.4 Zel’dovich Approximation

The treatment and evolution from §2.3 is valid only on linear scales when δ ≪ 1. Zel’dovich 7

formulated a kinematical approach applicable to non-linear evolution and formation of structures,
up to some degree. It works out the initial displacement of a particle and assumes that it will
continue to move in the same initial direction. In terms of Lagrangian coordinates q, the real
space coordinate is

r = q +Ψ(q, t) = q + D(t)ψ(q). (2.29)

Then, at initial time, r = q and the first term expresses the Hubble expansion. The second
term is a perturbation over the expansion where D(t) scales the time-independent displacement
field ψ(q). Here, Ψ(q, t) ≃ D(t)ψ(q) comes from truncating the perturbative solution for the
displacement field at first order in the formalism of Lagrangian Perturbation Theory, i.e. Ψ =
Ψ(1) + Ψ(2) + Ψ(3) + · · · . From equation (2.22) it derives that pertubations are irrotational (see
Appendix A for demonstration) and, thus, the displacement field can be written as a gradient of
a scalar function, i.e. ψ(q) = ∇ϕ. Now, from mass conservation, ρ(r, t)d3x = ρ(q)d3q and noting
that ρ(r, t) = ρ0 + δρ(r, t) and ρ(q) = ρ0, it follows that

1 + δ(r, t) = J(q)−1 =

∣∣∣∣∣∣d3r
d3q

∣∣∣∣∣∣−1

=

∣∣∣∣∣∣δi j + D(t)
∂ψi

∂q j

∣∣∣∣∣∣−1

=

∣∣∣∣∣∣δi j + D(t)
∂2ϕ

∂qi∂q j

∣∣∣∣∣∣−1

, (2.30)

where equations (2.29) and ψ(q) = ∇ϕ were used. The term ∂2ϕ/∂qi∂q j defines a symmetric
deformation tensor, which can be diagonalized leading to the solution in terms of its eigenvalues
λ1,2,3(q)

1 + δ(r, t) =
[
(1 − D(t)λ1(q)) (1 − D(t)λ2(q)) (1 − D(t)λ3(q))

]−1
≃ 1 + D(t)δL(q). (2.31)
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For the last step, the equation was linearized allowing to define the linear density field in
Lagrangian coordinates, δL(q) = λ1(q) + λ2(q) + λ3(q). Similarly, linearizing equation (2.30)
leads to the Zel’dovich approximation:

δ = −D(t)∇ · ψ(q) = −D(t)∇2ϕ(q). (2.32)

Finally, the displacement field is related to the linear velocity field via v(r) = f aHψ(r), then
in Fourier space and from equation (2.28)

ψ(k) = −i
k
k2 δk. (2.33)

indicating that the displacement field can be obtained from mapping the matter density field.

2.5 Initial Conditions and Transfer Function

Soon after the Big Bang, inflation stretched out quantum fluctuations to form the initial density
perturbations that seeded cosmic structure formation. The predictions following inflation for
the initial conditions are that the initial density perturbations were Gaussian and adiabatic, fully
described by their power spectrum. Such primordial spectrum is nearly scale invariant and
described as a power-law

P(k) = Askns . (2.34)

Scale invariant translates to ns = 1, such power spectrum is known as the Harrison-Zel’dovich
power spectrum. Table 2.1 shows the constrain in this parameter from the Planck Collaboration,
showing a very close agreement with a scale invariant spectrum.

The subsequent evolution of the density perturbations is much more complicated than what
is introduced in §2.3 and §2.4 requiring perturbative solutions for the Einstein equations and
metric. However, a qualitative description can be sought. After inflation, the Universe expanded
increasing the size of the comoving horizon, i.e. the limit denoting causally connected regions.
Therefore, higher scale fluctuations keep on entering the horizon and modes inside the horizon
can evolve with time. Such evolution depends on the component dominating the Universe, for
radiation domination the growth is impeded by the radiation pressure while for matter domination
fluctuations can grow more substantially. This denotes a characteristic scale for this evolution,



12 2.6. BIAS

at the radiation-matter equality, k = keq. Fluctuations with k > keq had their growth impeded
because they entered the horizon before radiation-matter equality. Fluctuations with k < keq, on
the other hand, could grow soon after they entered the horizon. This denotes a turnover in the
power spectrum at keq. This evolution is encoded in the transfer function, T (k), that transforms
the primordial power spectrum to the power spectrum of evolved perturbations,

P(k, z) ∝ σ2
8D2(z)T 2(k)kns . (2.35)

The transfer function is a time-independent factor so that the time evolution is encoded in the
growth function. The normalization of the power spectrum is given by σ8 that expresses the
variance of density fluctuations today smoothed to a comoving scale of 8 h−1 Mpc. Analytic
approximations do exist for T (k), for instance the one from Eisenstein et al. 8 , however there are
also numerical solutions that solve the set of Einstein and Boltzmann equations, CAMB9 and
CLASS10 being widely used codes. It is useful to see the asymptotic behaviour,

T (k) ∝

 1 if k ≪ keq,

k−2 ln k if k ≫ keq,
(2.36)

meaning that scale dependence of the evolved power spectrum in large scales, i.e. small k, mimics
the one of the primordial spectrum.

2.6 Bias

Luminous matter in the universe, e.g. galaxies, does not represent the underlying matter density
field but acts as a biased tracer of it. Then, to take advantage of the information encoded in
the Large Structure of the Universe, it is fundamental to understand the relation between both
density distributions. The bias parameter expresses this relation; in a general form, the bias is a
functional of the matter density field11,

δg(x) = F[δ(x′)] (2.37)

with δg being the density field of the tracer. In principle, x = x′ is not necessary and the relationship
can be non-local. However, a common simplifying assumption is that the relationship is linear
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in sufficiently large scales giving δg = b1δ. Therefore, the two-point statistics are boosted by a
constant factor,

ξg(r) = b2
1ξ(r); Pg(k) = b2

1P(k). (2.38)

This simplification obviously breaks down at small scales, where non-locality and non-linearity
becomes important. Furthermore, the bias of a tracer, e.g. galaxies, can depend on the different
morphological types of the tracer. Discrete objects also contribute a level of stochasticity to
the tracer, ruling out this simplification. For the interests of this study, the linear assumption is
sufficient and will be used.

2.7 Redshift Space Distortions

Surveys do not look at the Universe in the configuration or real space, instead, they look in
the redshift space, where the radial direction is distorted. In fact, the third dimension, i.e. the
redshift, is not only sensible to the Hubble flow but also to the peculiar velocity field and does
not represent correctly the radial distance to objects. Actually, this distance is distorted leading
to the so-called Redshift Space Distortions (RSDs). On larger, i.e. linear, scales, objects fall into
overdensities, the ones on the side of the overdensity closer to the observer look farther while the
ones on the opposite side of it look closer. This results in an overall squashing effect, enhancing
the overdensity and is sourced by a coherent component of the peculiar velocity field. On the
smaller, i.e. non linear, scales, objects have random motion, from the dispersed component of the
peculiar velocity field, and two objects at the same distance will have slightly different redshift.
In result, the structures appear elongated along the line of sight of the observer forming the
so-called Fingers-of-God. Consequently, the power spectrum is enhanced at larger scales and
the opposite happening at smaller scales. An schematic of these effects is depicted in figure 2.1.
Since the peculiar velocity field is sourced by the gravitational potential, clustering in redshift
space contains an anisotropic signal with cosmological information about the growth rate of the
Universe.

RSDs where first fully described in Kaiser 12 , the transformation from coordinates in real
space, r, to coordinates in redshift space, s, is given by

s = r + vr = r +
u · r̂
aH

r̂. (2.39)
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Real Space Redshift Space

Linear
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Non linear
Regime

Power enhanced
on bigger scales

Power suppressed
on smaller scales

Figure 2.1: Redshift Space Distortions effect on large and small scales.

Note that the factor 1/aH serves to conciliate units of the peculiar velocity field, vr, to units of
length. Additionally, ulos = u · r̂ is the peculiar velocity along the line of sight. Here, the peculiar
velocity of the observer is assumed to be null. The Jacobian, under the assumption of a distant
observer so that second order terms vanish, is

d3s
d3r
=

(
1 +

1
aH

dulos

dr

)
. (2.40)

The second term in the r.h.s. can be further solved, noting a Fourier expansion, as

1
aH

dulos

dr
=

µ

aH
du
dr
=

µ

aH
(−ikµu) =

µ2

ah
(ik)2

k2 f aHδ = (−µ2 f δ),

where equation (2.28) was used and µ = k̂ · r̂. Also, noting that, δ̇ = iku (from equation (2.21)),
from the last steps above δ̇ = f aHδ is also derived. Now, from mass conservation it is evident
that δsd3s = δd3r. Plugging everything together leads to

δs = (1 + fµ2)δ. (2.41)

Furthermore, taking a biased tracer, δg = b1δ, the relation between tracer’s power spectrum in
redshift space and matter power spectrum in real space is derived from equation (2.41):

Ps
g(k, µ) =

[
1 + βµ2

]2
b2

1P(k). (2.42)
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Here, β ≡ f /b1 is defined as the linear RSD factor. Lastly, the expansion of (2.42) into Legendre
polynomials, Lℓ, is

Ps
g(k, µ) =

∑
ℓ=0,2,4

Pℓ(k)Lℓ(µ) = P0(k)L0(µ) + P2(k)L2(µ) + P4(k)L4(µ), (2.43)

meaning that linear RSDs can be fully described by the monopole (ℓ = 0), quadrupole (ℓ = 2),
and hexadecapole (ℓ = 4) multipoles. It is important to remark that measuring β and modeling
RSDs constrain the growth of structure in the Large Scale Structure.

2.8 Angular Redshift Fluctuations & Angular Density Fluctu-
ations

On basis of extracting the cosmological information included in RSDs, a new observable was
proposed by Hernández-Monteagudo et al. 13 . This observable, the Angular Redshift Fluctuations
(ARF), is based on the estimation of the average redshift of all galaxies on a given sky position/sky
pixel in an observation. The galaxies are assigned a Gaussian weight of the form

W j ≡ exp
(
−

(z j − zobs)2

2σ2
z

)
, (2.44)

with z j the observed redshift of the j-th galaxy, and zobs and σ2
z the chosen central redshift and

redshift width for the Gaussian kernel, respectively. On this basis, the ARF is computed like

δz(n̂) =
∑

j∈n̂ W j(z j − z̄)
⟨
∑

j∈n̂ W j⟩n̂

. (2.45)

Here, the numerator sum is over all galaxies into the pixel at n̂, z̄ = (
∑

j W jz j)/(
∑

j W j) is the
average redshift of the sample in the entire footprint of the survey, and ⟨. . . ⟩n denotes the angular
average over the same footprint. Particularly, the ARF field is shown to be sensitive to both matter
and radial velocity fields

z̄+ δz(n̂) = F [zH]+F
[
bgδ(zH − F [zH])

]
+F

[
u · n̂

c
(1 + zH)

(
1 −

d ln W
dz

(zH − F [zH])
)]
+O(2nd),

(2.46)
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with bg the galaxy bias, zH the redshift correspondent to the Hubble flow, and u the peculiar
velocity. Additionally, the kernel F [g] denotes the normalized integral of a function g under the
Gaussian redshift window

F [Y] =

∫
drr2n̄(r)W(zH, σz)Y(r)∫

drr2n̄(r)W(zH, σz)
=

1
N

∫
drr2n̄(r)W(zH, σz)Y(r).

Particularly, if the matter density or line of sight peculiar velocity are constant under the window,
they do not contribute to the ARF. Additionally, with small values of σz the kernels turn to be
orthogonal to the corresponding kernels of the number angular density fluctuations (ADF), i.e.
2D angular clustering, defined by

δg(n̂) = F [bgδ] + F
[
u · n̂

c
(1 + zH)

d ln W
dz

]
+ O(2nd). (2.47)

Therefore, ARF and ADF provide complementary information to each other. Interestengly, ARF
are highly correlated to the line of sight peculiar velocities allowing to characterize them and
combine with other observables for the peculiar velocity field. Furthermore, ARF are little
sensitive to systematics with the biasing being cancelled by the ADF. Then, these observables
constitute a very interesting tool to extract cosmological information from surveys, carrying
additional information to that of 2D angular clustering.

The angular power spectrum, i.e. ⟨δ(n)δ(n + θ)⟩n = C(θ) =
∑
ℓ

2ℓ+1
4π CℓPℓ(cos θ), can be

computed for both ARF and ADF. And it is shown to be given by‡

Cδz,δz
ℓ = b2

gC
δ,δ
ℓ + 2bgC

δ,ulos
ℓ +Culos,ulos

ℓ , (2.48)

having a density term, a line of sight velocity term and a cross term. Particularly, these spectra
are sensitive to the cosmological parameters bgσ8(z), from the density term, and E(z) f (z)σ8(z),
from the line of sight velocity term; note that E(z) ≡ H(z)/H0. Finally, it is worth to state that
these observables are based on the assumption of galaxies being a linear tracer of the matter field,
i.e. equation (2.38). Therefore, their applicability is somewhat limited to big, linear, scales where
this assumption is correct. Nevertheless, this represents a chance to combine these observables
with additional techniques and take advantage of them in non-linear scales.

‡For the detailed expressions of the factors Cα,β
ℓ

and ∆α
ℓ
(k) refer to Hernández-Monteagudo et al. 13 .



3. Generation of Mock Catalogues
In this section, the followed process to generate catalogues of mock data will be described. The
catalogues were built and analyzed using state-of-the-art LSS algorithms, some implemented
through the nbodykit14 toolkit. This tooolkit is written in Python, and therefore, the hard coded
procedures in the generation and analysis of the datasets were also written in Python. Additionally,
it is important to note that the cosmology used in the whole workflow comes from the last results
from the Plank collaboration2. Its main parameters are summarized in the table 2.1.

3.1 Paired Simulations

Cosmological simulations have the limitation of a sparse sampling of Fourier modes due to the
limited size of the box. This results on a poor sampling to the largest modes and implies a limit
on the inferences that can be made based on the simulations15. This is closely connected to
the cosmic variance, i.e. due to the limited volume covered by surveys there is an irreducible
source of error, that in the computational case can be suppressed until it is smaller than its
observational counterpart. This is done by simulating a large number of realizations implying
a huge computational cost. As an alternative, Angulo and Pontzen 15 proposed a method that
effectively suppresses the box variance with only two simulations that are paired to each other
achieving the accuracy from a large number of simulations.

The paired simulations are based on the generation of the initial conditions (ICs) density field.
First, an initial realization of a Gaussian density field, δG, based on the linear power spectrum PL

is performed. This power spectrum is the primordial one evolved to a desired redshift through
the transfer function, as in equation (2.35). Then the ICs for the paired simulations are defined
following

δ̂(k) =

√
PL(k)
PδG (k)

δG(k), (3.1)

where PδG (k) = ℜ[δG(k)]2 +ℑ[δG(k)]2 is the three dimensional power spectrum of the Gaussian

17
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field. Then, the two ICs are set by the inverse Fourier transform and its negative:

δ̂1(r) = IFT[δ̂(k)]; δ̂2(r) = −IFT[δ̂(k)]. (3.2)

This way, the two simulations use a fixed power spectrum equal to the one of the Gaussian
realization, and are paired meaning that chance phase correlations can be cancelled.

After generating the ICs, the workflow to generate the simulations is:

1. Convolution of ICs: A further modification needs to be included in the ICs in order to
seed non linearity into the input power spectrum. This, as done in the EZmocks16 code,
allows to model non linear clustering at two point statistics level. The ICs are convolved
with a kernel in the following form

δNL =

√
PNL(k)
PL(k)

⊛ δL, (3.3)

with δL being each of the linear paired ICs density field and PNL(k) is the non-linear power
spectrum which can be retrieved from a theoretical model including non-linear evolution or
from an N-body simulation evolved field. In this case, the latter was used since simulation
trials were at disposal.

2. Forward Zel’dovich evolution: From the convolved ICs field, the displacement field
can be calculated following equation 2.33. Starting from a mesh of uniformly distributed
particles, the displacement field is interpolated to each particle and the corresponding
displacement is applied to the particles. Consequently, new particle positions are obtained
defining the evolved matter density field δ.

3. Deterministic bias application: Tracers (e.g. galaxy or halos) are related to the underlying
matter field through a non-linear, non-local and stochastic relation17,18. To account for the
non-linearity, a deterministic bias can be applied to the matter density field. This follows
the procedure described in the PATCHY code19, where, neglecting non-local biasing, the
expected number of tracers in a cell i of the density field is

λi = ⟨Ni⟩ = γθ(δth)(1 + δi)α. (3.4)
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Here α controls the bias while γ controls the number density. θ(δth) is a step function based
on a overdensity threshold δth so that if the cell overdensity is higher, it can host galaxies.
In the opposite case, the cell will be empty.

4. Stochastic bias application: On the other hand, to account for the stochastic bias, a
Poisson realization of the expected number of tracer in the cell is performed, i.e. P(Ni|λi) =
(λNi

i /Ni!) exp (−λi). This way, obtaining the number of galaxies for the cell i.

5. Build galaxy catalogue: For each of the Ni galaxies determined for each cell, a random
position inside the cell is applied. The random position is determined by a realization of a
uniform distribution.

6. Add RSDs to the catalogue: Lastly, to simulate a real survey it is needed to move the tracers
position from the real space to the redshift space by applying the RSDs corresponding to
the peculiar velocity field, i.e. equation (2.39). The peculiar velocity field is comprised
of a coherent, leading to the large scale squashing effect, and a disperse, leading to the
small scale Fingers-of-God effect, components. Particularly, the coherent component is
proportional to the displacement field via equations (2.28) and (2.33). Therefore, from the
matter field δ the displacement field can be extracted, multiplied by a fiducial growth rate,
and projected to the line of sight unit vector defined by the observer position in the box20.

At the end of each simulation, two catalogues are obtained corresponding to the matter and
galaxies position and distribution.
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3.2 Mock catalogue description
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Figure 3.1: Power spectrum and density fields of the paired set of initial conditions. Note that the
power spectrum of each field is equal to the initial Gaussian realization and their opposite nature
in the over(under) densities corresponding to under(over) densities on the other field.

The target redshift of the linear power spectrum was set to z = 0.3. Then, the box size should
be a comoving distance of L = 1755 Mpc h−1 when placing the observer at the center of the
box, that is, to reach the same redshift when converting from cartesian to celestial coordinates
given the chosen cosmology. The mesh resolution is set to Nc = 900 cells per dimension.For the
deterministic bias application, the parameters are set to α = 1.3, δth = 0, and γ = 0.02. These
parameters showed to be the best to obtain an ELG survey-like catalogue. The galaxy number
density for the paired simulations is 3.5 × 10−3h3 Mpc−3.

The ICs paired fields and their power spectra can be seen in the figure 3.1. Particularly, it can
be verified the opposite nature of the fields and their fixed power spectrum with respect to the
Gaussian realization, something expected by construction.

From the matter and galaxy catalogues the power spectrum can be extracted and compared,
this is illustrated in the figure 3.2. As expected, the matter power spectrum P(k) and the ICs
one are the same at the largest scales (small k), only differing at the smallest ones (large k). The
galaxy power spectrum Pg(k) is higher in power as expected to, due the bias of the tracer. The
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Figure 3.2: Power spectrum of the ICs, matter field and halos field from the paired simulations.

bias of the galaxy catalogue can be computed, from modifying the equation (2.38)

b1 =

√〈
Pg(k)
P(k)

∣∣∣∣∣
low k

〉
⇒ b1,sim 1 = b1,sim 2 = 1.32, (3.5)

where the low k limit is due to the validity of the linear bias approximation to large, linear scales,
and ⟨. . . ⟩ is a normal average. The chosen range in k cannot be too low neither, to avoid cosmic
variance. In particular, plotting

√
Pg(k)/P(k) allows to define the range where the linear bias

applies and where the cosmic variance does not dominate, this is shown in the figure 3.3. Based
on this, the chosen range to evaluate the bias is 0.03 ≤ k ≤ 0.09, giving the results in equation
(3.5). This bias is similar to ELG galaxies∗, as explained before, this was expected from the
parameters of the deterministic bias application.

Finally, the distribution in real and redshift space can be compared as shown in the figure
3.4 with both the density field and power spectra. Particularly, giving that only the coherent
component is being simulated, the overall effect of RSDs is to enhance the power, i.e. squashing
effect in §2.7, as shown in both density field and power spectrum. This can be seen in the more
clumpy distribution of the density field in redshift space in the figure.

∗For instance, see Zhai et al. 21 .
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Figure 3.3: Square root of the ratio between tracer and matter power spectrum, at k ≲ 0.03 cosmic
variance dominates and at k ≳ 0.09 the linear bias approximation loses validity.
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Figure 3.4: Effect of RSDs over the halos distribution. In general, the squashing effect is
prominent as can be verified in both the power spectrum and density fields.



4. Reconstruction
Galaxy surveys look at an evolved state of the universe. At such state, non-linear evolution of
structures dominates making it difficult to extract cosmological information given that the theories
are better confronted to earlier epochs of the universe with a more homogeneous distribution.
One example of this statement is the measurement of the Baryon Acoustic Oscillation (BAO)
peak in the correlation function which is broadened due to non-linear gravitational structure
formation and RSDs22. However, Eisenstein et al. 23 showed that the peak is restored after
applying reconstruction, i.e. from the density field obtain the linear theory displacement field
and move the particles/galaxies in the opposite direction. As stated in §2.8, the determination
of the growth rate through ARF is limited to the large scales because it is sensible to non-linear
clustering. Then, in the interest of this study, reconstruction can be implemented in order to
improve the growth rate determination and expand its applicability towards smaller scales. In
this section, the reconstruction process and how it was implemented will be explained as well as
some tests performed in order to check the correctness of its application.

4.1 Implementation

Combining equations (2.29) and (2.39), the redshift space coordinate in terms of the Lagrangian
coordinate at a given redshift, is

s(z) = q +Ψ(q, z) + vr(r(q)) = q + D(z)ψ(q) + vr(q), (4.1)

thus, the Lagrangian coordinate is solved as q = s(z) − D(z)ψ(q) − vr(q). However, inferring
q turns to be a difficult task since it is needed to have prior knowledge of the density field and
peculiar velocity field, which depend on q, as explained by Kitaura et al. 24 .

If the positions of some tracers and their density field at an earlier redshift zhigh wants to be
known from the positions and density field at a later, or observed, redshift zlow one can substract
the Lagrangian coordinate in terms of zlow in the expression (4.1) at zhigh giving

s(zhigh) = s(zlow) − (D(zlow) − D(zhigh))ψ(q). (4.2)

23
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Algorithm 1 Iterative Reconstruction
i← 0
q← s
while (i < Niter) do

q′ ← s − (D(zlow) − D(zhigh))ψ(q) − vr(q)
q← q′

i← i + 1
end while
qs← s − (D(zlow) − D(zhigh))ψ(q)

Note that the peculiar velocity field gets cancelled by this operation. Equation (4.2) represents the
basic formulation of the reconstruction scheme to be used in this work. However, the displacement
field is defined from the matter distribution in Lagrangian coordinates, i.e. equation (2.33), and
prior to applying the reconstruction, the only information available is the distribution of the tracer
at redshift space. Then, it is needed to estimate the displacement field in base of this information.
Recalling the bias relation between the matter and tracer density fields, δg = b1δ, the matter
density field is estimated by dividing the tracer density field by the bias. Additionally, the field
is smoothed to filter out the small scales corrupted by nonlinearities22. The filter consists of a
Gaussian filter, defined as WR(k) ≡ exp (−1

2k2R2) in Fourier space, with a characteristic radius so
that smaller scales than R get smoothed. Therefore, the displacement field is estimated from the
distribution of the tracer in redshift space as

ψs(k) = −i
k
k2 WR(k)

δs
g(k)

b1
⇒ ψ(s) = IFT

[
ψs(k)

]
, (4.3)

In a similar way, vr(q) can be estimated from the tracer density field given that the linear
RSDs arise from the displacement field as f (Ω)(ψ(s) · ŝ)ŝ (with ŝ the radial direction in redshift
space)20,25,26, obtaining vr(s). Finally, the Lagrangian coordinate is estimated as

q′ = s(zlow) − (D(zlow) − D(zhigh))ψ(s) − vr(s), (4.4)

and with the estimated coordinates q′ the displacement field can again be computed to perform
the reconstruction in equation (4.2).
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Figure 4.1: Iterative reconstruction at the third iteration. The pre reconstruction power spectrum
used for reference is the one corresponding to real space.

To improve the accuracy in estimating q′, an iterative reconstruction can be implemented24,26.
This consists of the application of equation (4.4), updating q at each iteration to later apply the
equation (4.2), obtaining the tracer field at zhigh. The iterative process is detailed in the Algorithm
(1). From the density field of q′ at each iteration, the power spectrum can be retrieved to check
for convergence. Finally, the reconstructed position of the tracer in real space is q while qs is the
reconstructed position in the redshift space. It is important to note that the reconstructed field
in redshift space keeps the contribution of the peculiar velocity field, something fundamental in
order to obtain ARF.

In this case, the tracers are galaxies evolved up to a redshift zlow = 0.3 (§3), and the chosen
redshift to perform the reconstruction is zhigh = 3. For the Gaussian filter, the smoothing radius
is set to two mesh cells, i.e. R = 3.9 Mpc h−1, following a rule of thumb of the mesh cell being
∼ 2 − 4 times smaller than the smoothing radius14. Finally, the number of iterations was set
to three as the size and resolution of the simulation led to a considerable computational time
per iteration. Nevertheless, the convergence is sufficiently good at the third iteration as can be
checked in the figure 4.1. The reconstruction was performed on both of the paired simulations.
The bias post reconstruction can be evaluated in two forms, as in equation (3.5) meaning that
z = zlow is assumed, and assuming z = zhigh meaning that the matter power spectrum in equation
(3.5) should be scaled to z = zhigh by the corresponding growth functions , i.e. following equation
(2.35). The obtained biases are
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The same range for the bias estimate as in figure 3.3 is applicable. Note that the matter power
spectrum is scaled to zhigh for the brec

1 (zhigh) estimate.

brec
1 (zlow) =

√〈 Prec
g (k)

P(k)

∣∣∣∣∣∣
low k

〉
⇒brec

1,sim 1(zlow) = brec
1,sim 2(zlow) = 0.79, (4.5)

brec
1 (zhigh) =

√〈 Prec
g (k)

P(k, zhigh)

∣∣∣∣∣∣
low k

〉
=

√〈 Prec
g (k)D2(zlow)

P(k)D2(zhigh)

∣∣∣∣∣∣
low k

〉
(4.6)

⇒brec
1,sim 1(zhigh) = brec

1,sim 2(zhigh) = 2.12. (4.7)

As done in the catalogues generation §3, the range of k ensuring a good bias estimation should
be verified. This is shown in figure 4.2, demonstrating that the same range 0.03 ≤ k ≤ 0.09 keeps
being applicable.
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4.2 Reconstruction Tests

Once the reconstruction up to zhigh is performed, the first step to test whether its implementation
was correct is to inspect the resulting density field and power spectrum. In particular, it is expected
to have a more uniform and homogeneous field since the clustering is deconstructed. This is
clearly seen in figure 4.3, with a configuration that appears more random and the structures seen
pre-reconstruction, less prominent. This is also evident in the power spectrum showing less power
at every scale, for both real and redshift spaces. One interesting aspect to note on these power
spectra is the higher enhancement of the power spectrum from RSDs after the reconstruction in
comparison to the prior enhancement. In the pre reconstruction case, this enhancement is of
∼ 16% while after reconstruction it is ∼ 25% This implies that the tracers become more sensible
to RSDs at a reconstructed epoch, something appealing for ARF determination since it would
mean a stronger signal.

It also helps to analyze the distribution of the galaxy density field by means of a histogram
before and after the reconstruction. Particularly, it is expected that reconstruction gaussianizes
the distribution as underdense regions gets populated by the reconstruction process, this is clearly
seen in figure 4.4.

Nevertheless, these tests are just qualitative and far from accurate. A quantitative test can be
performed in terms of the bias. Particularly, following conservation in the number of tracers, the
bias follows a passive evolution described by11,27–29

b1(z′) = (b1(z) − 1)
D(z)
D(z′)

+ 1, (4.8)

allowing to translate a bias at some redshift, e.g. b1(zlow), into a bias at a higher redshift,
e.g. brec

1 (zhigh). Therefore, an expected value for brec
1 (zhigh) can be calculated from the bias pre-

reconstruction. Plugging in the calculated bias before the reconstruction b1,sim 1 = b1,sim 1 = 1.32,
leads to a expected value of brec

1 (zhigh) = 1.87. The value obtained for the catalogues after the
reconstruction is brec

1,sim 1(zhigh) = brec
1,sim 2(zhigh) = 2.12, therefore having a ∼ 13% difference.

Furthermore, an equation to have an expected value for brec
1 (zlow) can also be derived. Noting

that the matter power spectrum is equal to the linear one at low k, i.e. P(k) = PL(k)|low k, for a
given z the post reconstruction power spectrum is

Prec
g (k) = brec

1 (z)D2(z)PL(k, z = 0)|low k. (4.9)
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Figure 4.3: Halos power spectrum and density fields before and after the reconstruction process.
Note that the density field correspond to redshift space.
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Figure 4.4: Histogram representation of density fields before and after reconstruction. Note the
Gaussianization of the distribution with the reconstruction.

Then, having zhigh and zlow implies that brec
1 (zhigh)D(zhigh) = brec

1 (zlow)D(zhigh). Plugging this into
equation (4.8) leads to

brec
1 (zlow) = b1(zlow) − 1 +

D(zhigh)
D(zlow)

. (4.10)

Which, for b1 = 1.26,leads to a expected value of brec
1 (zlow) = 0.70. In this case, the value obtained

for the catalogues after the reconstruction is brec
1,sim 1(zhigh) = brec

1,sim 2(zhigh) = 2.12, again denoting a
∼ 13% difference.

This apparent difference between the expected and obtained bias values after reconstruction
comes from estimating the matter density field from the galaxy field. Since the displacement
field is defined from the matter density field, this brings an inevitable level on inaccuracy of
the displacement field. Indeed, if the same reconstruction is performed but calculating the true
displacement field from the generated matter catalogues, a more consistent result is obtained.
Specifically, the obtained values from this test are brec

1 (zhigh) = 1.94 and brec
1 (zlow) = 0.72, differing

now by only ∼ 3%. Therefore, the reconstruction approach demonstrates to be correct, leading
to the desired values of two point statistics.





5. ARF & ADF Angular Power Spectrum
After the reconstruction is implemented and validated ARF and ADF can be extracted from
the paired simulations. This is done for the two stages, before and after the reconstruction. The
reason is that it would allow to compare and determine whether the reconstruction implementation
enhances the contribution from RSDs, i.e. the peculiar velocity field, to the ARF. It is important to
note that it is at this stage that the the advantage coming from the paired simulations is taken into
account in order to suppress the effect of cosmic variance in the ARF and ADF determination. In
addition, theoretical ARF and ADF can be computed from theoretic numerical models, allowing
to compare and further test the method. Particularly, the ARF and ADF angular power spectrum
Cℓ from the paired simulations, i.e. the average from both simulations, is compared to the
theoretical power spectrum to test how well the data fit the model for the same set of parameters.
The set of parameters comprises the specific cosmology parameters and the bias.

The observer was placed in the center of the catalogues box. Then, from the box size and
cosmology used, the comoving distance to the boundaries corresponds to a redshift of ∼ 0.3,
defining the central redshift for the Gaussian kernel to evaluate ARF and ADF. The redshift width
for the kernel is set to σz = 0.01. The model used to obtain the theoretical power spectrum is one
modified from the CAMB9 linear evolution model to calculate ARF. The model is described in
Lima-Hernández et al. 30 .

The obtained power spectra, before and after the reconstruction, and their respective theoretical
counterpart are shown in the figure 5.1. Several things can be noted out from these results. First
of all, there is a direct correspondence between the theoretic Cℓ and the one coming from the
simulations in the case before and after the reconstruction, denoting that the properties of the
catalogues are consistent with the theory, and that the effective bias is well determined.It is
worth to note that the effective bias describing the Cℓ in this case corresponds to the comoving
redshift, i.e. b1, rec(zobs), defined by the observer position although the catalogue is in a previous
epoch, i.e. at zrec. In fact, although the passive evolution increases the bias with respect to a
higher redshift, the opposite happens if the evolution is respect to the same redshift. Therefore,
the effective bias is lowered (in this case from 1.32 to 0.72, taking the bias calculated from the
reconstruction performed with the displacement field mapped from the matter field) making the
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Figure 5.1: Angular power spectrum Cℓ from ARF and ADF. The curves correspond to the Cℓ

before and after reconstruction as well as the theoretic Cℓ computed from CAMB models for the
simulation parameters. Curves denoting the shot noise (SN) are also included.

post reconstruction catalogue more sensible to the peculiar velocities. Particularly, unravelling
gravity linearizes the field making it more sensible to RSDs. In fact, noting that the RSD
factor is β = f /b1, given that the bias decreases, the factor increases. This fact is fundamental
and demonstrates the feasibility of combining reconstruction techniques with ARF and ADF.
Actually, the contribution of velocity terms to the Cℓ amplitude can be evaluated. Particularly,
the ratio (Cℓ − Creal space

ℓ )/Cℓ is sensible to the relative contribution of the velocity terms, and
thus to f (z)σ8(z), to the ADF and ARF power spectra. The estimated ratio from the modified
linear CAMB model30 for the set of obtained parameters is shown in the figure 5.2. Particularly
it can be seen that the ARF contain more power sensible to the peculiar velocites than the
ADF. Additionally, reconstruction enhances the contribution of the terms generated from the
peculiar velocities. Therefore, not only the tracer field is more sensible to peculiar velocities after
reconstruction was applied but also ARF and ADF are more sensible, demonstrating the validity
of applying reconstruction to improve the applicability of ARF and ADF.
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Figure 5.2: Ratio of the angular power spectrum showing the sensibility of ARF and ADF to the
relative contribution of peculiar velocity terms.





6. Conclusions & Outlook
In this work a combination of methods, cosmological reconstruction with ARF and ADF de-
termination, was proposed and tested. Particularly, ARF and ADF are robust observables that
nevertheless suffer from being limited to bigger scales. Therefore, cosmological reconstruction,
taking an evolved epoch of the universe to a previous epoch, surges as a natural way to improve the
applicability of these observables. This was put to test on mock catalogues that were simulated
from two paired initial conditions so that the final results are not affected by cosmic variance.
The catalogues were evolved up to a redshift z = 0.3 and the reconstruction took these catalogues
to a higher redshift of z = 3.0.

Reconstruction showed to lower the bias of the catalogues with respect to the same comoving
redshift. This leads to the reconstructed field being more sensible to RSDs, which is evident by
comparing the power spectrum of the reconstructed field in redshift and real space. Additionally,
the obtained ARF and ADF power spectrum showed to be consistent with theoretical models
for the same set of parameters, implying the correctness of their determination and the higher
sensibility to RSDs after the reconstruction.

From the reconstructed field being more sensible con RSDs, it follows that ARF and ADF
become also more sensible to the peculiar velocity field. This represents the main conclusion of
this study, in fact, the peculiar velocity term of the ARF and ADF power spectra has a higher
contribution to the Cℓ amplitude as was demonstrated from the (Cℓ −Creal space

ℓ )/Cℓ ratio, which is
sensible to f (z)σ8(z). Accordingly, this demonstrates the feasibility of combining reconstruction
techniques with ARF and ADF determination. In fact, objects with a high bias, i.e. b1 > 1, could
have had lowered their bias up to and even bellow ∼ 1 by reconstruction allowing for a better
determination of cosmological parameters through ARF and ADF.

Finally, it is worth to state that in the constructed catalogues for this study, the RSDs are only
due to coherent peculiar velocity leading to the squashing effect. A more complete approach
would be to start from a catalogue including the dispersed component of the peculiar velocity,
leading to the Fingers-of-God effect and later apply a more robust reconstruction approach, such
as COSMIC BIRTH24, implementing a higher order sampling of the displacement field. This
would allow to better test the contribution of peculiar velocities to ARF and ADF in a more
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realistic approach, and potentially improve the correspondence of the Cℓ post reconstruction to
the theory, from a more accurate mapping of the displacement field. Additionally, a natural step
is to further test the method at higher redshifts and real survey data. And ultimately, to combine
the techniques on the potential aplications of ARF and ADF observables, e.g. tomographic tests
of observables with theoretical predictions or constrains in cosmological parameters.



A. Linearization of Newtonian fluids equa-
tions.
To start, recall the transformations in equations (2.19) and (2.20) to be implemented of the set of
equations (2.16), (2.17), and (2.18). Additionally, a perturbation over the smooth background is
applied in the form of ρ = ρ0(1 + δ) (δ = δρ/ρ0), P = P0 + δP, and Φ = Φ0 + δΦ.

Taking first the continuity equation (2.16) and plugging these changes:(
d
dt
+ u · ∇

)
ρ0(1 + δ) = −ρ0(1 + δ)∇r · (Hr + au),

(1 + δ)
dρ0

dt
+ ρ0

dδ
dt
+ ρ0(u · ∇)δ = −ρ0(1 + δ)(3H + ∇ · u),

where (u · ∇)ρ0 = 0 was applied (from isotropy and homogeneity), and ∇r · (Hr) = 3H. Addition-
ally, noting that ρ0 ∝ a−3 → ρ0 = ρ(0)a−3 and therefore dρ0

dt = −3ρ(0)a−4ȧ = −3Hρ0, the equation
becomes

dδ
dt
= −(1 + δ)∇ · u − (u · ∇)δ

1st order terms
=========⇒

dδ
dt
= −∇ · u.

and the linearized continuity equation (2.21) was obtained by keeping first order terms only.
Following the same process for the Euler equation (2.17) leads to

dv
dt
+ (u · ∇)v = −

∇rP
ρ
− ∇rΦ

d
dt

(Hr + au) + (u · ∇)Hr + (u · ∇)au = −
1
a
∇(P0 + δP)
ρ0(1 + δ)

−
1
a
∇(Φ0 + δΦ)

dHr
dt
+ ȧu + a

du
dt
+ auH + (u · ∇)au ≃ −

1
a
∇(P0 + δP)

ρ0
(1 − δ) −

1
a
∇Φ0 −

1
a
∇δΦ

≃ −
1
a
∇P0

ρ0
+
δρ

a
∇P0

ρ2
0

−
1
a
∇δP

ρ0
+
δ

a
∇δP

ρ0
−

1
a
∇Φ0 −

1
a
∇δΦ,

where the term (u · ∇)Hr is [u]ia[∇r]iH[r] j = aH[u]iδi j = aHu, and the first term in the r.h.s. was
approximated by a first order Taylor expansion. Recalling that the zeroth order Euler equation
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is dHr
dt = −

1
a
∇P0
ρ0
− 1

a∇Φ0, and dropping second order and negligible terms leads to the linearized
Euler equation (2.22)

a
du
dt
+ 2ȧu = −

1
a
∇δP

ρ0
−

1
a
∇δΦ ⇒

du
dt
+ 2Hu = −

1
a2

∇δP

ρ0
−

1
a2∇δΦ.

In the case of the Poisson equation (2.18), the process to its linearized equation (2.23) is
straightforward

∇2
r (Φ0 + δΦ) =

1
a2∇

2Φ0 +
1
a2∇

2δΦ =4πGρ0(1 + δ)

⇒ ∇2δΦ =4πa2Gρ0δ,

where the cancelled terms are due to the zeroth order equation.
Analyzing the peculiar velocity, u, from the linearized Euler equation (2.21) it can be separated

the parallel and perpendicular components, with respect to ∇Φ. Then u = u∥ + u⊥, particularly
the perpendicular component of equation (2.22) being

du⊥
dt
+ 2Hu⊥ = 0⇒ u⊥ ∝ a−2, δv,⊥ ∝ a−1,

meaning that it decays leading to the primordial vorticity getting erased, i.e. the peculiar velocity
today is expected to be curl-free.

Now, looking for a solution of the peculiar velocity of the form u = −F(t)∇δΦa = F(t)g, with
g = −∇δΦa the peculiar gravitational acceleration, from equation (2.21) it follows that

dδ
dt
= −∇ · u = F(t)

∇2δΦ
a
= F(t)4πGaρ0δ.

Where equation 2.23 was used. Plugging in the Friedmann equation at critical density, i.e.
equation (2.6), H2 =

8πGρ
3Ω , and solving for F(t):

F(t) =
dδ
dt

2
3H2Ωaδ

=
2

3H2Ωaδ
dδ
da

da
dt
=

2
3HΩ

dδ/da
δ

.

Then, defining f (Ω) = a
δ

dδ
da , the peculiar velocity is

δv = au = aF(t)g =
2 f (Ω)
3HΩ

g.
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Alternatively, in Fourier terms, having δΦ = δΦ,k exp (−ik · x) and δ = δk exp (−ik · x) then
equation (2.23) is − k2

a2 δΦ,k = 4πGρ0δk and the peculiar gravity becomes

g = −
∇δΦ

a
= ik

δΦ,k

a
exp (−ik · x) = −i

k
k2 4πGρ0aδk exp (−k · x)⇒ g = −i

k
k2

3H2Ωa
2

δ,

to finally have
δv = −i

k
k2 f aHδ.
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