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durante este viaje, sin ellos no hubiese sido lo mismo. En especial mencionar a Adri, Amy y Maŕıa,
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EXTENDED ABSTRACT

La atmósfera solar presenta una estructura compleja debido a la multitud de fenómenos f́ısicos que
tienen lugar en escalas caracteŕısticas muy variadas. Además, al ascender en altura, las propiedades
del plasma cambian bruscamente. En la fotosfera, la presión del gas es la que domina el movimiento
del plasma, mientras que en la corona solar el movimiento está gobernado por el campo magnético.
Estas regiones están conectadas por medio de la cromosfera, la cuál está caracterizada por importantes
cambios en las propiedades del plasma. Estudiar en detalle esta capa es fundamental para entender
cómo se transporta la enerǵıa desde la parte baja de la atmósfera hasta regiones externas, de manera
que se produzca el calentamiento coronal observado.

En los últimos años, el estudio de ondas magnetohidrodinámicas (MHD) se ha convertido en uno
de los mejores candidatos para explicar el transporte de enerǵıa que tiene lugar en la atmósfera so-
lar. Son capaces de transportar enerǵıa a las capas superiores de la atmósfera, pudiendo liberarla y
calentar el medio a través de diferentes mecanismos, como por ejemplo la formación de choques. Este
tipo de perturbaciones se pueden generar tanto en regiones del Sol en calma (movimientos turbulen-
tos en la base de la fotosfera), como en regiones activas con fuertes campos magnéticos (manchas
solares). Durante su propagación, las ondas pueden experimentar diferentes procesos dependiendo de
la propiedades locales del plasma. La variabilidad de las escalas espaciales caracteŕısticas en la que
tienen lugar dificulta su estudio a nivel observacional.

Gran cantidad de códigos numéricos se han desarrollado en los últimos años con el fin de repro-
ducir los múltiples procesos que tienen lugar en la atmósfera solar, pudiendo compararse con datos
observacionales. En general, la resolución espacial utilizada en las simulaciones numéricas viene de-
terminada por la potencia computacional existente. De esta manera, se han llevado a cabo múltiples
intentos para aumentar la eficiencia computacional en los códigos numéricos. La implementación de
mallas no-uniformes o mallas adaptativas ha sido uno de los principales aspectos a mejorar, al reducir
significativamente las extensiones de las mallas utilizadas. Durante este trabajo hemos implementado
en el código MANCHA3D una malla fija no-uniforme en la dirección vertical, con el objetivo de reducir
la potencia computacional empleada.

En primer lugar, hemos desarrollado un algoritmo para la generación de una malla no-uniforme.
Utilizando una distribución uniforme pre-existente, se han reajustado los puntos de la malla a partir
de una serie de criterios. Nuestro objetivo ha sido aumentar la resolución de la malla en aquellas
regiones en las que la atmósfera solar presente importantes gradientes de temperatura, como la región
de transición. A su costa, la resolución espacial en zonas como la corona solar se ha reducido. Durante
el proceso de creación de la nueva malla, ha sido necesario limitar la distancia máxima entre puntos
adyacentes. En caso contrario, los métodos numéricos pueden volverse inestables y ser una fuente de
errores. De esta manera, presentamos distintas distribuciones dependiendo del número total de puntos
utilizado y la resolución máxima deseada.

A continuación, hemos analizado los distintos módulos del código MANCHA3D en los que inter-
viene la componente vertical. En concreto, se han llevado a cabo modificaciones en los módulos de
derivadas espaciales, difusividad, filtrado, cálculo del paso temporal y PML. Hemos llevado a cabo
un análisis en detalle de cuáles han de ser las modificaciones necesarias a introducir con respecto al

i



código original. Todos los cambios introducidos se ha realizado de manera que se mantenga una buena
compatibilidad con la estructura original del código, siendo posible su ejecución paralelo. Múltiples
tests se han llevado a cabo para verificar que la implementación de todas las modificaciones funcionan
correctamente.

Se ha estudiado la propagación de ondas acústicas y de Alfvén a lo largo de toda la atmósfera
solar. Para el caso de ondas acústicas, se han analizado simulaciones en régimen lineal y no-lineal,
de manera que dan lugar a la formación de choques. Estos resultados se han comparado con los
obtenidos al utilizar una malla uniforme de alta resolución. En todos los casos, el comportamiento de
las ondas en su evolución es prácticamente idéntico. Pequeñas diferencias numéricas se han observado
como consecuencia de emplear métodos diferentes. Para el caso de ondas de Alfvén se ha utilizado
una configuración similar a la de ondas acústicas. En este caso, ha sido necesario añadir un campo
magnético uniforme a lo largo de toda la atmósfera. Los resultados obtenidos por las mallas uniforme
y no-uniforme son muy similares. Además, se han utilizado expresiones anaĺıticas para comparar los
resultados. Se ha obsevado un acuerdo razonable con los resultados númericos en ciertas regiones, a
pesar de las limitaciones que presentan estas ecuaciones anaĺıticas. De esta manera, hemos verificado
que los cambios introducidos funcionan correctamente para simulaciones de ondas acústicas y de
Alfvén.

Finalmente, se ha realizado una comparativa de la eficiencia computacional que proporciona el
uso de una malla no-uniforme. Hemos tomado como referencia el tiempo de computación de la malla
uniforme utilizando el código original. Estos resultados, los hemos comparado con el tiempo empleado
por simulaciones con mallas no-uniformes. Se han estudiado mallas con distinto número de puntos
y resoluciones espaciales mı́nimas. En general, se observa una significativa mejora en la eficiencia
computacional que introduce este tipo de mallas. La mejora computacional se hace más notable
cuanto menor es la resolución espacial utilizada, suponiendo un gran ventaja.
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1 Introduction

The solar atmosphere presents a complex structure in which a multitude of physical phenomena take
place on a variety of scales. Its structure can be divided into four fundamental layers: photosphere,
chromosphere, transition region and solar corona. The properties of the plasma change abruptly
between each of these regions. In the photosphere the gas pressure dominates the motion of the
plasma, while the corona is dominated by the magnetic field. Chromosphere connects the photosphere
with the transition region and the lower corona, which make it a layer where the properties of the
plasma change strongly.

A detailed study of the chromosphere is essential to understand how energy is transported from
the photosphere to the corona in order to produce coronal heating. The magnetic field in this region
presents a complex structure, playing an important role on heating process and energy transport.
Besides, chromosphere shows a high variability and its fast temporal evolution makes it difficult
to study in detail. A large amount of observational and theoretical efforts have been devoted to
understand more in depth the physical processes that take place in this layer and the effect they have
on the solar atmosphere.

In recent years, magneto-hydrodynamic (MHD) waves have become one of the main candidates as
a mechanism for energy transport. This type of waves transport energy to the upper layers which can
release and heat the medium mainly through the formation of shocks. The quiet Sun, which covers
around 90% of the solar surface, is continuously perturbed by turbulent convection. This can produce
the excitation of waves which will travel across the solar atmosphere contributing significantly to the
heating of the outer layers (Muller et al. 1994; Trujillo Bueno et al. 2004; Mart́ınez González et al.
2010). MHD waves are also associated with the active regions sunspots where stronger magnetic field
are present. The complex structure of this magnetic field will lead to waves to experience different
physical processes which may affect to the evolution and dissipation of them (Khomenko & Cally 2012,
Tian et al. 2014, Grant et al. 2018).

During the wave propagation, several physical processes as mode-transformations, refraction and
reflection can take place. This will depend on the magnetic field strength and the local plasma proper-
ties such as the equipartition layer where plasma β = 1, the cut-off frequency or the steep temperature
gradient at the transition region. In addition, the plasma will experiment other processes such as re-
connection, viscosity or thermal conductivity. Each of these phenomena take place at a specific length
scale. In many cases, this introduces limitations when making ground-based observations, as the res-
olution of telescopes is limited. An alternative is the use of numerical simulations, which are based
on theoretical developments of each of these processes. This allows an unlimited replication of the
phenomena that take place, although this is limited by the current computational potential.

Several numerical codes that simulate the solar atmosphere have been developed in recent years
(e.g. MURaM (Vögler, 2004); MANCHA3D (Khomenko & Collados 2006; Felipe et al. 2010); Bifrost
(Gudiksen, B. V. et al., 2011); COBOLD (Freytag et al., 2012) and more). It has become clear
how important and realistic they are with respect to ground-based observations, even allowing the
generation of 3D simulations. Nevertheless, many simplifications have to be made in order to carry
out the numerical calculations, as well as the spatial resolution allowed is not infinite. The resolution

1



Mat́ıas Koll Pistarini 1 INTRODUCTION

used has to be controlled to make the simulations computationally feasible. In this sense, numerous
attempts have been made to improve the efficiency of numerical codes by reducing the number of
grid points used such as the algorithms of adaptive mesh refinement (Keppens et al., 2012) or the
usage of a non-uniform fixed grid (as used by Bifrost or COBOLD). The latter is in general simpler
to implement than the former, as it only requires the generation of a fixed non-equidistant mesh at
the beginning of the simulation, being able to increase the resolution in specific areas of the numerical
domain. Adaptive mesh refinement requires the calculation and refinement of a mesh in a dynamic
way, identifying at each iteration the regions with highest gradients in order to increase the spatial
resolution in these regions. In this way, this type of method is more complex to implement.

One of the most modern and versatile numerical codes today is MANCHA3D . This code allows
to perform simulations of the solar and other stellar atmospheres, being able to apply many realis-
tic phenomena such as ambipolar diffusion, Hall’s term and Biermann’s battery, radiative transfer
equation, realistic equation of state, etc. During this work, we will implement in MANCHA3D a
non-uniform fixed grid in the vertical direction to sample more accurately regions where small-scale
processes take place. In this way, it is intended to improve the precision of the results, as well as
the computational efficiency of the code. Numerous simulations will be carried out to compare the
implemented modifications with the original code.

1.1 MANCHA Code

MANCHA3D solves time-dependent equations of the MHD on a 3D Cartesian grid. It can solve either
full or linearized MHD equations, being the following system of equation written in conservative form
solved:

∂ρ

∂t
+∇ · (ρv) =

(
∂ρ

∂t

)
diff

,

∂ρv

∂t
+∇ ·

[
ρvv +

(
p+

B2

2µ0

)
I− BB

µ0

]
= ρg + S(t) +

(
∂ρv

∂t

)
diff

, (1)

∂e

∂t
+∇ ·

[
v

(
e+ p+

|B|2

2µ0

)
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µ0
+

(ηA + η)J⊥ ×B

µ0
− ∇pe ×B

eneµ0
+ q

]
= (ρg + S(t)) · v +QR +

(
∂e

∂t

)
diff

,

∂B

∂t
= ∇×

[
v ×B− ηJ− ηAJ⊥ +

∇pe
ene

− ηH
(J×B)

|B|

]
+

(
∂B

∂t

)
diff

.

where I is the identity tensor, ρ is the density, v is the velocity, p is the gas pressure, B is the
magnetic field, g is the gravitational acceleration and q is heat flux vector. The dot ′·′ represents the
scalar product of vectors, while the notation ′BB′ stands for the tensor product. The term S(t) in
the momentum and energy equations represents a time-dependent external force. The term QR is the
radiative energy exchange. Artificial diffusion terms have been added to all above equations to give
numerical stability to the simulations. It is possible to use either the ideal gas equation of state or a
more realistic equation of state containing a specific chemical mixture.
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All the variables of the code (except for the velocities) are split into two parts: equilibrium (sub-
index 0) and a perturbation (sub-index 1) as:

ρ = ρ0 + ρ1; p = p0 + p1; B = B0 +B1; v = v1 . (2)

The code assumes a strictly background magnetohydrostatic equilibrium, so that all time deriva-
tives and initial velocities are zero. In this way, the code actually solves the system of equations (1)
for the nonlinear perturbations of density, momentum, magnetic field and energy. The time step is
computed using an explicit fourth-order Runge-Kutta scheme.

The code is written in modern Fortran 90 language and fully parallelized using the MPI library.
MANCHA3D distributes data between a certain number of processors by a domain decomposition
scheme, with data contained in each processor located in an accessible memory partition. The whole
numerical domain is divided into a set of three dimensional subdomains, being the processors com-
municated with each other only through their common data boundaries. This communication is done
using ”ghost” layers, cells which send and receives data from the neighbours subdomains. Currently, a
fixed number of 5 ghost cells are used to avoid problems between the different modules implemented.
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2 Objectives

The main objective of this work is the implementation of a non-uniform fixed mesh in a single direction
within the MANCHA3D code. In this way we aim to study phenomena occurring at different scales in
the solar atmosphere by reducing the computational power required. In particular, we will focus on the
study of the propagation of acoustic and Alfvén waves through the solar atmosphere. Schematically,
the following objectives will be accomplished:

• To develop a method for the generation of the non-uniform grid. A series of criteria have to be
derived to obtain a mesh with a variable spatial step in the vertical direction, leading to different
spatial resolution along the solar atmosphere. The idea is to increase the resolution where the
solar magnitudes present large spatial gradients.

• Familiarisation with the code and the modular structure that it presents. Those modules in
which aspects of the numerical grid are involved in the vertical component will be analysed. In
this way we will have a clear idea of the parts of the code which need to be modified.

• Apply the necessary modifications within the code that affect the use of a non-uniform mesh.
These changes have to be implemented following the same structure as the current code presents,
in order to ensure backward compatibility. They must also be compatible to be run in parallel.

• Perform multiple tests to verify the correct implementation of the changes using the acoustic
and Alfvén wave samples. This will be done by comparing the results with those provided by
the original code.

• Analyse the computational efficiency of the new configuration compared to the original code.
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3 Methodology

In this section, the methodology used in order to achieve the proposed objectives is described. Firstly,
the background atmosphere model used will be discussed. From this, a new model containing a
non-uniform grid along the vertical component will be generated. Then, the main modules of the
MANCHA3D code that are necessary to modify will be described: spatial derivatives, filtering, diffu-
sivity, time step calculation and PML. A detailed description is given of how they have to be adapted
to take into account the non-uniform spacing in the vertical direction. Finally, some aspects of the
code implementation and parallelisation are addressed.

3.1 Background model

A background model for the solar atmosphere is needed which describes the initial temperature,
pressure and density distributions. This model is provided to the code and an initial perturbation is
added to it. As we want to study phenomena that happen through the whole atmosphere we create
this model in such a way that covers from the photosphere till the solar corona using an equidistant
grid in all directions, characterized by a constant dx, dy, dz. A vertical extension ranging from −75
km to 4 Mm is used to cover the main layers of the solar atmosphere.

The photospheric and chromospheric layers are described by the VALC model (Vernazza et al.,
1981) where the temperature distribution is interpolated to our uniform grid. An isothermal corona is
created with a temperature of 3·105 Kelvin. This temperature is not the actual temperature of the solar
corona (about 1 million K), but it is a good representation for the temperature gradient from the upper
layer of the chromosphere to the corona. This distribution has been used because the computational
time is reduced, since the time step depends on the sound speed across the whole domain. By using
this coronal temperature, the wave amplitudes in this region decreases slightly. Nevertheless, the
overall behaviour of the distribution is as valid as when using a more realistic temperature value. This
layer is connected smoothly by hand to the chromosphere forming the transition region, a layer with
a strong temperature gradient. Once the temperature distribution is created, we can compute the
pressure scale height H0 assuming the ideal gas equation:

H0 =
RgasT0

µg
. (3)

This quantity allows us to adjust the atmosphere to be in hydrostatic equilibrium. To that end,
we can compute the pressure along the vertical direction by integrating numerically the hydrostatic
equilibrium equation:

dp0
dz

+
p0
H0

= 0 , (4)

and then we are able to compute the density profile for the whole atmosphere:

ρ0 =
p0
gH0

. (5)
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Figure 1: Background distribution of the solar atmosphere magnitudes used for the simulations. Left
vertical axis gives temperature (blue) and pressure (red) values while the right vertical axis represents
the density profile (green). Both axis are in logarithmic scale.

Photosphere Chromosphere Corona

cs0 [km/s] 7 8.5 70
vA [km/s] 2 1000 15000

Table 1: Characteristics sound and Alfvén speed values in each of the main layers in the equilibrium
solar atmosphere.

Figure 1 shows the distribution of temperature, pressure and density that will be used as stra-
tification of the solar atmosphere. It can be seen the large temperature gradient in the transition
region, which is related to a large drop in density. This model of the atmosphere provides a good
representation of the actual distribution of these quantities on the Sun despite not using very accurate
values. An estimate of the sound speed in each layer can be computed from this model. The values
of the sound speed are given in Table 1. To compute them we assume a Hydrogen monatomic gas
with γ = 5/3 and µ = 10−3 kg along the whole atmosphere. This values will be of interest in the
propagation of acoustic waves in the vertical direction. Besides, a constant magnetic field could be
added to our hydrostatic model without breaking the hydrostatic equilibrium condition. In Section
4.2, Alfvén waves will be studied, for which a uniform magnetic field of 200 G has been used. Table 1
contains the characteristic Alfvén speeds for this particular situation. These values are far from being
realistic, especially for the upper layers of the atmosphere, as these regions do not have such strong
magnetic fields. Nevertheless, they are useful to test the code for the propagation of these waves in a
simple way.
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3.2 Non-Uniform grid

A non-uniform background model in the z direction has to be generated. To this end, we developed a
Python script to generate a non-equidistant grid, using an iterative process, based on the atmosphere
model described in the previous section . The main goal of this new grid is to have better resolution
(lower values of dz) in those regions with large temperature gradients, but keeping both the number
of points nz used and the total extent of the uniform atmosphere.

To locate those regions with large temperature gradients, like the transition region, we compute the
first spatial derivative of the background temperature distribution normalized to the local temperature.
It is more useful to have an adimensional quantity which contains the information of where the dz
should be increased or decreased. This can be reached just by multiplying the previous normalized
derivative by the constant dz, obtaining a scaled derivative. Following the basic relation dz = cs0dτ ,
where dτ is the time it takes for a perturbation to cross each grid point, we can add the information
of the scaled derivative to have a first approximation of the new dz as:

dznonu =
cs0 dτ ε

dT + ε
, (6)

where dT is the temperature scaled derivative and ε is a free parameter. The value of dT will
be higher in regions where the temperature gradient is larger, as is the case of the transition region.
In the solar corona, dT = 0 as the temperature is uniform, so there the expression (6) is reduced to
dz = cs0dτ . In this way, the value of dznonu will be decreased around the transition region, while in
the solar corona it will remains large enough, as a high resolution is not needed there. On the other
hand, ε is a variable and adimensional parameter which will change at each iteration. This is a small
parameter with respect to dT , as it is responsible for readjusting the final distribution of dz until the
initial constraints are fulfilled (number of points and atmosphere extension). ε is updated at each
iteration using a bisection method which is sufficiently efficient and simple for what is required. This
expression is valid for the study of acoustic waves, since we are using the value of the sound velocity
to determine the new spatial step. For the case of Alfvén waves, the equation (6) must be modified
to take into account also the Alfvén speed vA, characteristic of this type of perturbations.

The calculation of the new space steps should be controlled through a stretching factor ri, limiting
the difference between two adjacent cells. We set the ratio between two contiguous cells to be as
maximum ± 10%. Adding the stretching factor to the expression (6), the calculation of dznonu results:

dzinonu = 1.1 dzi−1
nonu, if dzinonu > 1.1 dzi−1

nonu , (7)

dzinonu = 0.9 dzi−1
nonu, if dzinonu < 0.9 dzi−1

nonu ,

dzinonu = dzinonu, Otherwise .

This parameter is quite important because having large differences in spatial steps between ad-
jacent cells introduces larger errors in the derivative schemes, as these are proportional to the grid
spacing.
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Figure 2: Example of how the non-uniform mesh generation algorithm works. A mesh with 2000
points and a minimum dz of 200 m is used. The spatial step up to 2 Mm has been kept constant.
Each colour represents the successive iterations until the final solution for the grid is reached. Left
panel shows the dz for the complete atmosphere, while the right panel plots a zoom in to the higher
resolution region.

Figure 2 shows an example of the process of generating the non-uniform grid from an initial
distribution given by (6). An initial ε parameter is needed to start the generation process. Besides,
the distribution will depend on the value of dτ , which takes a fixed value throughout the execution
of the algorithm. Larger values of dτ will produce larger spatial steps in the corona, as in this region
dz = cs0dτ . Thus, we can sample this region with a small number of points, concentrating more grid
points around the transition region, where the dz will be significantly smaller. We can see how ε
changes in order to fulfill the initial conditions of the problem. The distribution obtained may present
sharp changes in the calculated dz. Therefore, we have applied a filter to smooth the distributions
based on the calculation of the mean of two adjacent points on each side.

Photosphere and chromosphere are defined by the VALC model. As a result, the calculated dznonu
in these layers shows significant variability (see panel a of Figure 3). In general, having this variation
in the lower layers of the solar atmosphere is not of interest, since we are interested in increasing the
spatial resolution mainly in the transition region. In this way, it has been added the possibility to fix
the dz along the photosphere and chromosphere, forcing the variation in the transition region, as is
also shown in panel a of Figure 3.

In panel b of Figure 3, different distributions of dz are plotted for different dτ values. It can
be seen that decreasing dτ implies increasing the resolution in the corona, as discussed above. In
addition, a different number of points have been used in each of the cases. Increasing this number
allows to sample a larger area of the transition region, at the cost of increasing the computational
time. In this way, an agreement has to be reached between the number of points to be used and the
extent of maximum spatial resolution. For all of these cases, the maximum resolution (minimum dz)
is located over the transition region as it can be seen with the help of panel c of Figure 3.
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Figure 3: Panel a) shows two non-uniform dz distributions in the case of using a constant and variable
spatial step throughout the photosphere and chromosphere. Panel b) illustrates the effect of having a
different number of points (nz) used which implies a variation in the dτ value. The last panel shows
the temperature distribution for a better comparison between the regions with the larger temperature
gradients and the dz distributions computed in panels a) and b).
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3.3 Spatial Derivatives

One of the essential aspects to be implemented in the code is the numerical scheme for the calculation
of spatial derivatives. Currently, MANCHA3D allows the use of two different numerical schemes: a
centered, fourth order accurate, explicit finite difference scheme using five grid points (Vögler et al.,
2005); and a six order accurate explicit scheme using 10 grid points (Nordlund & Galsgaard, 1995).
Both schemes employ a three-dimensional Cartesian grid discretization of the spatial domain with a
constant spatial step in each dimension. These spatial derivatives are applied independently to each
of the spatial coordinates. This makes it possible to easily implement a new numerical scheme that
only affects one of the spatial dimensions, as it is the case we are interested in.

Developing an analytical expression of a numerical scheme for the non-uniform spatial derivatives
calculation is not trivial. Such expressions are often complex, and there are situations where it is not
even possible to find an analytical solution, depending on the order of accuracy required. This is why
we have chosen to implement a flexible method for calculating derivatives of different orders and with
a given order of accuracy. The basis of this method relies on Taylor series expansions, as discussed in
Taylor (2016). The higher the number of points used, the higher the order of accuracy of the numerical
scheme. As an example, the procedure for the calculation of the numerical scheme using a five-point
stencil is described below. The idea is to compute a set of coefficients {A,B,C,D,E} for each of the
grid points used:

(
∂f

∂z

)
i

= Afi−2 +B fi−1 + C fi +Dfi+1 + E fi+2 , (8)

where fi−2 denotes a variable at a point f(zi−2) = f(zi − (dzi−2 + dzi−1)), being dzi = zi+1 − zi
the non-equidistant step. The same notation follows for rest of the terms. It is possible to develop by
Taylor series each of these f terms around zi as follows:

f(zi−2) = f(zi)− f ′(zi)(dzi−2 + dzi−1) +
f ′′(zi)

2
(dzi−2 + dzi−1)

2 − f ′′′(zi)

6
(dzi−2 + dzi−1)

3 + ... ,

f(zi−1) = f(zi)− f ′(zi)dzi−1 +
f ′′(zi)

2
dz2i−1 −

f ′′′(zi)

6
dz3i−1 + ... ,

f(zi) = f(zi) , (9)

f(zi+1) = f(zi) + f ′(zi)dzi +
f ′′(zi)

2
dz2i +

f ′′′(zi)

6
dz3i + ... ,

f(zi+2) = f(zi) + f ′(zi)(dzi + dzi+1) +
f ′′(zi)

2
(dzi + dzi+1)

2 +
f ′′′(zi)

6
(dzi + dzi+1)

3 + ... .

As in this case we are using five grid points, it will be necessary to expand the Taylor series to the
fourth-order derivative term. This is because we want to calculate five coefficients and this requires
the use of five independent equations (from zero to fourth order). Taking into account the expression
(8), a set of coefficients {A,B,C,D,E} which nullify the terms f(zi), f

′′(zi), f
′′′(zi) and f ′′′′(zi) is

10
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searched, as in this case we are interested in the first order derivative. In such a way, the following
matrix equation can be constructed:


1 1 1 1 1

−(dzi−2 + dzi−1) −dzi−1 0 dzi (dzi + dzi+1)
(dzi−2 + dzi−1)

2 dz2i−1 0 dz2i (dzi + dzi+1)
2

−(dzi−2 + dzi−1)
3 −dz3i−1 0 dz3i (dzi + dzi+1)

3

(dzi−2 + dzi−1)
4 dz4i−1 0 dz4i (dzi + dzi+1)

4



A
B
C
D
E

 =


0
1
0
0
0

 . (10)

By calculating the inverse matrix of the left-hand matrix of the above expression, it is possible to
directly obtain the required coefficients. This procedure can be performed for a stencil with either an
even or odd number of points, as well as for any derivative order. In the case of using an even number
of points (as is the case of the diffusivity module, see Section 3.4), the generated matrix will not be
equally symmetric to that of expression (10). Thus it is necessary to indicate the direction in which
an extra point is taken, i.e. forward or backward, while the rest of the procedure is the same.

It is possible to show that in the case of using a uniform grid with dzi = h, the known analytical
expressions are recovered. Applying this to the previous case, we would have to obtain the same
fourth-order scheme used by MANCHA3D . In this way, the matrix system results:


1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

−8 −1 0 1 8
16 1 0 1 16



A
B
C
D
E

 =
1

h


0
1
0
0
0

 . (11)

Computing the inverse matrix of the left-hand side matrix and multiplying it by the right-hand
side term, this set of coefficients are obtained:

A = 1/12 ; B = −8/12 ; C = 0 ; D = 8/12 ; E = −1/12 , (12)

which are exactly the same coefficients of the numerical scheme implemented in the original code.

3.3.1 Derivative in the borders

The calculation of the derivatives at the borders of the domain requires a special treatment. This is
because the number of points on either side of the point over which the derivative is to be evaluated
is not the same. MANCHA3D currently uses a specific numerical scheme according to the number of
points that can be used. Exactly at the border of the domain a forward or backward formula of first
order will be used. In any other point close to the border that does not contain enough points on each
side to apply the chosen numerical scheme, a centered derivative of second order of accuracy will be
used (see Figure 4 (left)).

11
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Figure 4: Left: current numerical schemes used by MANCHA3D in the border of the domain. Right:
specific numerical schemes by computing a new set of coefficients with a different number of points in
each case. In both plots it is represented the bottom part of the domain in z, being SLZ the initial
point.

We can compute a specific numerical scheme for each situation by determining a new set of
coefficients following a similar procedure as described above. For instance, if we use a numerical
scheme with five grid points, the derivative at the border of the domain would be calculated by
considering just three grid points forwards or backwards, depending whether it is at the bottom or
the top of the domain. The adjacent point will use four grid points which leads to a new numerical
scheme and so on. This idea is what it is illustrated in Figure 4 (right) particularised to the bottom
z domain.

Analysing the behaviour of these derivatives, it has been seen that the results are less stable than
those obtained through the fixed numerical schemes currently used by MANCHA3D . The use of these
schemes produces more ringing in these regions, which is undesirable. This is why we keep using the
simple numerical schemes with known analytical expressions.

3.4 Diffusivity

In the solar atmosphere, different processes take place on a variety of spatial scales. In some cases,
these phenomena have very small characteristic length scales, such as viscosity, magnetic diffusivity or
thermal conductivity. To solve these scales in numerical simulations is still a computational challenge
today. Therefore, an alternative strategy is used: to replace these physical terms by artificial quantities
that simulate their effect. This philosophy is followed by MANCHA3D , solving the equations (1)
where artificial diffusivity terms were introduced. These quantities have their physical equivalents in
the momentum, energy and induction equations, but not in the continuity equation. The purpose of
these terms is to give stability to the code against small-scale oscillations, which are not resolved by
the spatial resolution of the grid.

Following a methodology similar to that proposed by Stein & Nordlund (1998), Caunt & Korpi
(2001), Vögler et al. (2005), three artificial diffusivity terms are considered: constant, variable (hyper)
and shocks. For a certain variable u (scalar or vector) and in a spatial direction i (x, y, z) the total
diffusivity can be written as a sum of these three terms:

12
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νi(u) = νctei (u) + νhypi (u) + νshki (u) . (13)

Constant diffusivity means a constant in time diffusion coefficient and it is defined as:

νctei (u) = ccte(u) (cs0 + vA0)∆xi F
cte(x, y, z) , (14)

where ccte(u) is a coefficient of proportionality which is set in the control file and it can be different
for each of the primary variables, increasing or decreasing the diffusivity intensity. cs0 and vA0 are
the equilibrium sound and Alfvén speeds, respectively. The function F cte(x, y, z) is a spatial variable
profile which can be used to increase diffusivity in a specific region. ∆xi represents the constant spatial
step in the i direction.

As this coefficient is defined independently for each spatial direction, the non-uniform case im-
plementation becomes simple. Modifying only the spatial step on the vertical component z by the
corresponding value on the non-uniform grid, the new expression for the constant diffusivity is ob-
tained:

νctez (u) = ccte(u) (cs0 + vA0) dznonu F cte(x, y, z) . (15)

The sound and Alfén speeds and the F cte(x, y, z) profile are already evaluated on the non-uniform
mesh, so they do not require any change when computing this constant diffusivity.

An analogous procedure has been followed for the shock diffusivity term. In this case, the
diffusivity is applied where there are strong gradients with sudden variations in the velocity between
nearby points. It is only non-zero in those regions where there are converging flows, being defined as:

νshki (u) = cshk(u) (∆xi)
2 |∇ · v| if ∇ · v < 0 ,

νshki (u) = 0 if ∇ · v ≥ 0 ,
(16)

where cshk(u) is also a coefficient of proportionality which is set through the control file for each
variable u. This term can be modified to the non-uniform case by just changing the spatial step, same
as in the constant diffusivity term. The divergence of the velocity is computed using the numerical
schemes described in the previous section, so no further changes are necessary. Therefore, the shock
diffusivity term in the z direction can be written as:

νshkz (u) = cshk(u) (dznonu )2 |∇ · v| if ∇ · v < 0 ,

νshkz (u) = 0 if ∇ · v ≥ 0 .
(17)

Variable (Hyper) diffusivity shows a higher complexity to adapt it to the non-uniform configu-
ration than the two previous cases. The idea of this term is to apply a higher diffusivity in the regions
of higher fluctuation, damping them more. To detect these regions, this term is defined proportional
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to the ratio of the third derivative to the first derivative of the variable u, so the diffusivity may be
different for each quantity u. In such a way, it is defined as:

νhypi (u) = chyp (u) (v + cS + vA)∆xi
max3∆

3
iu

max3∆1
iu

F hyp(x, y, z) , (18)

where again chyp is a scaling factor and F hyp(x, y, z) has the same purpose as F cte(x, y, z). The
term (v + cs + vA) is computed from the current flow, sound and Alfvén velocities and thus it will
change from one time instant to another. As in the previous cases, ∆z must be changed by dznonu
to take into account the non-uniform distribution. The ratio (max3∆

3
iu/max3∆

1
iu) represent a

proportionality to the ratio between the third and first derivative, but they are computed as absolute
third (∆3

i ) and first (∆1
i ) differences. They can be calculated as:

(
∆3

iu
)
j+1/2

= |3 (uj+1 − uj)− (uj+2 − uj−1)| ,(
∆1

iu
)
j+1/2

= |uj+1 − uj | ,
(19)

being the j-th value a symmetric combination of the terms
(
∆3

iu
)
j−1/2

and
(
∆3

iu
)
j+1/2

. The max3
indicates the maximum over 3 adjacent points.

To generalise this diffusivity term to the non-uniform case, it will be necessary to compute the
absolutes third and first differences taking into account that the u variable is not uniformly distributed.
Thus a new set of coefficients must be calculated using the methodology described in the previous
section. In particular, two set of coefficients are needed for both third and first absolute differences,
one for point j − 1/2 point and one for j + 1/2.

When computing these coefficients by using the non-uniform derivative scheme, we are not calcu-
lating the coefficients of the absolute differences, but we actually obtain these coefficients divided by
the spatial step at each point. Therefore, the set of coefficients computed from the matrix inversion
are multiplied by the spatial step at each j point. This multiplication is performed using the maximum
dznonu in the 4-point stencil to increase the diffusivity in those regions where dznonu changes (mainly in
the transition region). The same strategy is done for the first absolute difference, where it is only used
2 points. As an example, this is how the absolute third difference terms look like for the z direction:

(
∆3

zu
)
j+1/2

= |Afwd uj−1 +Bfwd uj + Cfwd uj+1 +Dfwd uj+2| ,(
∆3

zu
)
j−1/2

= |Abwd uj−2 +Bbwd uj−1 + Cbwd uj +Dbwd uj+1| ,
(20)

where the set of coefficients are {A,B,C,D} = {A′, B′, C ′, D′} × dz3nonu, being the primed coeffi-
cients the resulting values of the derivative calculation. The fwd and bwd notation stands for forward
and backward in order to differentiate if we are computing the derivative taking into account the
forward (j + 1/2) or the backward (j − 1/2) point with respect j. For the first order differences, the
coefficients are only multiplied by dznonu since the power depends on the derivative order. Using these
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new expressions, equation (18) can still be used by simply changing the spatial step to dznonu when
using the vertical direction.

3.5 Filtering

In some simulations, it is not possible to apply high diffusivity values, as in the case of wave prop-
agation. This is because the diffusivity affects the amplitude of the waves, resulting in less accurate
results. By reducing this artificial term, small-scale high-frequency oscillations start to develop, which
amplify over time, making the simulation unstable. An alternative mechanism is therefore used to
damp this type of fluctuations: the filtering. Following the method described by Parchevsky & Koso-
vichev (2007), a sixth-order digital filter is applied in order to remove the unresolved short-wavelength
components in this way:

ufilt (xj) = u(xj)−
3∑

m=−3

dmu(xj +m∆x) (21)

where u is a variable before filtering and ufilt is after filtering. The coefficients dm are computed
by the Fourier analysis, assuming a constant spatial step; they are symmetric and take the following
values:

d0 =
5

16
, d1 = d−1 = −15

64
, d2 = d−2 =

3

32
, d3 = d−3 = − 1

64
. (22)

This filtering function can be applied independently to each of the three spatial directions. This
is an advantage when implementing a non-uniform filtering only in the vertical direction. Instead of
computing a new set of dm coefficients for each point over the non-uniform grid, the values of u can be
interpolated into a uniform mesh keeping the same dm coefficients. This uniform grid is constructed
using the minimum dznonu within each 7-point stencil. The values of u in this new mesh are obtained
through a linear interpolation:

uinterp (zj+m) = αm u(zj+m) + βm u(zj+m+1), if m = −3,−2,−1 ,

uinterpzj = uzj , if m = 0 ,

uinterp (zj+m) = αm u(zj+m−1) + βm u(zj+m), if m = 1, 2, 3 ,

(23)

where αm and βm are the interpolation coefficients which satisfies the relation αm + βm = 1 and
only depend on the distribution of the z array, independently of the variable u to filter. This set of
coefficients can be computed as:

αm =
zj+m+1 − zunifj+m

zj+m+1 − zj+m
, if m = −3,−2,−1 ,

αm =
zj+m − zunifj+m

zj+m − zj+m−1
, if m = 1, 2, 3 ,

(24)
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where zunif is the local uniform grid which is created from the minimum dznonu . In this way, the
same filtering expression can be applied to these new values:

ufilt (zj) = u(zj)−
3∑

m=−3

dmu
interp (zj+m) , (25)

These two steps can be merged into one, reducing the number of operations to be calculated and
preserving the same structure as in the uniform filtering. To this end, a new set of coefficients is
defined to take into account the interpolation as well as the uniform filtering with the dm coefficients:

ufilt (zj) = u(zj)−
3∑

m=−3

Cmu(zj+m) , (26)

where the new Cm coefficients have been defined as:

Cm = αm dm, if m = −3 ,

Cm = αm dm + (1− αm−1) dm−1, if m = −2,−1 ,

Cm = αm+1 dm+1 + dm + (1− αm−1) dm−1, if m = 0 ,

Cm = αm+1 dm+1 + (1− αm) dm, if m = 1, 2 ,

Cm = (1− αm) dm, if m = 3 .

(27)

3.6 Time step

The time step used by MANCHA3D is the minimum value of three terms: the advective and diffusive
time step, and the time step set by the user in the control file. The advective time step for the MHD
non-linear system of equations is a modified CFL condition, which depends on the characteristic
speeds. It can be approximated by:

∆tadv = cadv

[
1

1/∆x2 + 1/∆y2 + 1/∆z2

]1/2 1

vmax
, (28)

where cadv is a proportionality coefficient and vmax is the maximum value of the sound or Alfvén
speeds or the computed velocity perturbation in each of the three spatial directions. In the non-
uniform configuration, the computation of the time step should be modified. As we have a specific
value of dz at each point in space, we have to evaluate the above expression locally. In addition, we
will have to differentiate this expression for each of the velocities, so that we have a value of the time
step for each point in space and for each of the velocities. If these changes are not taken into account,
the advective time step would be underestimated, making the time step significantly smaller than
necessary. This is because the region with minimum dznonu does not necessarily have to be located
where the maximum velocity is reached. Thus, we compute the time step as:
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∆tcs,vA,vi
adv = cadv

[
1

1/∆x2 + 1/∆y2 + 1/dz2nonu

]1/2 1

(cs, vA, vi)
, (29)

where the sub-index i denotes each of the three spatial directions. In order to ensure that during
the whole simulation the CFL condition is verified, the minimum time step of the 5 above values is
used:

∆tadv = min(∆tcsadv,∆tvAadv,∆tviadv) (30)

The diffusive time step is computed as the minimum diffusion time across the three directions.
Besides, it takes into account the time step imposed by the Ohmic, ambipolar, Hall and battery
diffusion terms. For these four terms, it is only necessary to consider the minimum dznonu in the whole
domain to implement them in the non-uniform configuration. The diffusion time through each spatial
direction are defined as:

∆tdiff = cdiff min

(
∆x2

νx
,
∆y2

νy
,
∆z2

νz

)
, (31)

where νx,y,z are the artificial diffusion coefficients defined in (13) and cdiff is a scale factor. The
same strategy has been followed as for the advective time step. In this case, it is only necessary
to evaluate locally the diffusivity time step in the vertical direction (dz2nonu/νz). Therefore, for the
non-uniform configuration, the diffusion time step can be set as follows:

∆tdiff = cdiff min

(
∆x2

νx
,
∆y2

νy
,min

(
dz2nonu
νz

))
. (32)

3.7 PML

The Perfect Matched Layer (PML) method is used by MANCHA3D on all boundaries of the simulation
domain (Berenger (1994); Hu (1996); Parchevsky & Kosovichev (2007)). This technique is used to
absorb perturbation at boundaries using a certain number of grid points; for the waves simulations
it is used to prevent spurious wave reflections. The MHD equations in the borders are modified to
introduce new terms which will damp the perturbation that reach the boundaries in each direction.
These terms depend on the following damping coefficients:

σx = a
cS0 + vA0

∆x

(
x− xPML

xPML

)2

,

σy = b
cS0 + vA0

∆y

(
y − yPML

yPML

)2

,

σz = c
cS0 + vA0

∆z

(
z − zPML

zPML

)2

,

(33)
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where a, b and c are constants controlling the damping amplitude, and xPML, yPML and zPML

are the thickness of the PML domain in each spatial direction. This is assuming a uniform grid in
which all points of the PML grid are spaced by an amount of ∆z. In a rigorous way, the non-uniform
configuration should consider that all the points of the grid are separated by a varying dz. In wave
propagation simulations we are interested in using PML at the upper edge. As seen in section 3.2, the
value of dz in the solar corona is essentially uniform. In some configurations it may slightly change
because of adjustments in the grid generation so that the total extent of the atmosphere remains
unaffected. However, in none of the configurations used, the difference between the dz in the corona
is greater than 5% and it can be considered almost uniform. Therefore, the damping coefficient in the
vertical direction at the top has been set as the maximum dznonu of the corona:

σz = c
cS0 + vA0

max(dznonu )

(
z − zPML

zPML

)2

. (34)

The same philosophy can be applied to the bottom part of the domain. As a constant dz is used in
the photosphere and chromosphere (as discussed in Section 3.2), this value can be used for the PML
coefficient in that region of the domain.

3.8 Code implementation

All modifications have to be implemented following the parallel design of MANCHA3D to preserve
back compatibility in the code. An important feature is the reading and writing of the data which
are also done in parallel from h5 files. MANCHA3D reads the background model generated from a
Python or an IDL script that contains the distribution of magnitudes discussed in Section 3.1 and
other general parameters of the simulation such as the number of points in each spatial direction,
the spatial step, simulation time, etc. These data are distributed between the different processors
following a memory spacing which depends on the subdomain location respect to the whole domain.
When writing data to the h5 files, each processor writes their data following the same spacing in
memory, so that all the information is reconstructed into a single array. This allows to analyse the
results in a simple way for post-processing.

As it has been seen in Section 3.2, the generation of the non-uniform grid is also performed from
an external script to MANCHA3D . The information of the non-uniform array in the vertical direction
has to be added to the h5 files together with the rest of the magnitudes, as the code is not able to
generate this distribution. Besides, this data is included in the h5 output files in order to analyse
the results in a more efficient way. In contrast with the rest of the magnitudes, this new dataset is
one-dimensional, which means that the distribution among the rest of the processors has to be done
in a different way.

When decomposing the total domain of the simulation, each of the subdomains can be identified
by three values representing their coordinates over the total domain. Figure 5 shows an example of
a 3D domain decomposition, indicating the global coordinates of each subdomain. The values of the
non-uniform z array must be distributed along the vertical direction. That is, subdomains with the
same global coordinate value in z must contain the same portion of the array, regardless of their x
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Figure 5: 3D domain decomposition when using nx x ny x nz = 12 processors. Each processor is
identified by three coordinate number. The z-array illustrates how data is distributed and sent to
each processor according to its z-coordinate (represented by different colors).

and y coordinates, which is also illustrated in Figure 5. Thus, memory spacing must be treated with
care when distributing the data during reading.

In addition, the PML module requires each processor to store the complete z-array for some calcu-
lations. From each processor, this array has to be reconstructed. To do this, a new MPI communicator
has been created that transfers information only along the processors that have the same global coor-
dinates of x and y, i.e. along the vertical direction of each of the columns in Figure 5. In this way each
one sends and receives each part of the complete array in z. This is done because it is more efficient
than each processor reading a much larger array and then distributing the information to each of the
subdomains.

Another important issue is the computational time. The changes have to be implemented in such
a way that they do not introduce an excessive number of operations, while keeping the efficiency of
the code. The spatial derivatives, diffusivity and filtering modules now require the calculation of a
set of coefficients. These coefficients are computationally expensive as they involve the inversion of a
matrix during their computation, but their values depend only on the distribution of the non-uniform
z grid. Thus, it is possible to compute them only once during the initialisation process. Apart from
keeping the number of operations almost invariant during each iteration, the general structure of the
code in each of these modules is preserved.
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4 Results and Discussion

In this section we present and discuss the results obtained after all the modifications of the previous
section have been applied. First, we check that all the changes done have been well implemented by
comparing the results with those of the original code. Then, simulations of acoustic and Alfvén waves
which propagates along the vertical direction are performed. Different initial configurations have been
studied and compared with the results obtained using high resolution uniform meshes. In addition, an
analysis of the computational efficiency of the non-uniform configuration with respect to the uniform
one has been carried out.

4.1 Acoustic Waves

Acoustic waves are longitudinal waves, so the velocity vector u is parallel to the direction of propaga-
tion k. Our interest is to study the variation with height of the velocity field, so we will only analyse
waves that propagate along the vertical direction z in 1D. These waves start at the bottom part of the
atmosphere as a perturbation to the equilibrium conditions. In the control file, the initial amplitude
and period of the wave can be selected. We have studied waves with periods of 50 and 180 s and
initial amplitudes of 0.01 and 10 m/s to see how the code behaves with this type of waves.

We differentiate the wave propagation between two regimes: linear and non-linear (shock for-
mation). The studied regime will depend on the initial conditions of period and velocity of the
perturbation selected. In both cases we are using an atmosphere stratified by gravity and with a non-
uniform temperature distribution (same as in Figure 1). There is no analytical solution for acoustic
waves under these conditions. Nevertheless, the solutions of the linear case can be compared with
the analytical expression for an acoustic wave in an isothermal medium stratified by gravity. This
expression for a wave, that propagates along the vertical direction, is known from Ferraro & Plumpton
(1958). The vertical velocity in this situation for a wave of frequency ω = 2π/P is given by:

vz(z, t) = V0 e
z/2H0 sin

[(√
ω2 − ω2

c

cs

)
z + ω t

]
, (35)

where ωc = γg/(2 cs) is the cut-off frequency, H0 is the pressure scale height and V0 is initial
amplitude of the wave. From this expression, it can be seen that the amplitude of the waves increases
with height, as long as the frequency of the wave is above the cut-off frequency.

4.1.1 Code Verification

Firstly, it has been confirmed that all the modifications introduced work correctly. For this purpose,
the same uniform grid has been used, applied on both configurations of the code: the uniform one,
i.e. the original code; and the non-uniform one, after all the changes of the previous section have been
applied. In this way, differences introduced by the new methods can be detected.

In order to check this, a sample of 1D acoustic waves that propagate along the vertical direction
has been analysed. A uniform grid with nz = 800 points and dz = 5 km is used. In this case, we study
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Figure 6: Comparison between the results of the acoustic wave sample in the linear regime with initial
amplitude of 0.01 m/s and P = 50 s using both setups: uniform (red dashed line) and non-uniform
(black solid line). The same grid distribution is used in both configurations. Top panel shows the
amplitude wave distribution at different time steps. Bottom panel contains the differences between
both solution in logarithmic scale. The vertical dashed blue line illustrates the location of the transition
region.

the evolution of a wave in the linear regime with an initial amplitude of 10 m/s and period P = 50 s.
For the calculation of spatial derivatives, the fourth-order numerical scheme has been used.

Figure 6 shows the results of this comparison for different time instants. Lower panels show that
the difference between the two configurations is small in relation to the amplitudes of the waves. At
the initial stages, the differences are of numerical origin as a consequence of using different methods.
These differences increase as the wave advance, since these numerical errors are accumulated over
time. It is possible to see that the differences between the two solutions become more accentuated
once the wave crosses the transition region. This is reasonable as this is a region where the calculation
of derivatives, filtering and diffusivity is more critical, allowing higher numerical fluctuations.

The resolution used is not sufficient to resolve the behaviour of the waves as they pass through
the transition region, so it will be necessary to sample this region with more precision in order to
resolve their evolution correctly. Nevertheless, we can say that the modification of all modules for the
implementation of the non-uniform grid is correct. In the following sections, different simulations with
higher resolutions in uniform and non-uniform configurations will be analysed in order to correctly
solve the transition region.
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Figure 7: Time evolution of acoustic waves in linear regime for an initial amplitude of 0.01 m/s. Left
panels contains the solutions for a wave of P = 50 s, while right panel for a wave with P = 180 s.
The numerical results using a non-uniform grid (black solid lines) are compared with the results of an
uniform grid in the original code (red dotted lines).

4.1.2 Linear case

Figure 7 shows the time evolution of two acoustic waves of initial amplitude 0.01 m/s and with periods
of 50 and 180 s. These results have been obtained using a uniform grid with nz = 20000 points and
constant dz = 200 m for the original code; and a non-uniform grid with nz = 4000 points and
dzmin = 200 m for the modified code (equal to the green distribution in Figure 3).

The results are almost identical in the two configurations used for both waves. Although we are
using 5 times less points in the non-uniform mesh, the wave behaviour is the same. The resolution
used only in the transition region for the non-uniform grid is the same to that used in the uniform
mesh for the whole domain. When this region is not well sampled, strong jumps appear in the velocity
distribution, modifying the actual behaviour of the waves as they cross the transition region (as it can
be seen in Figure 6). The non-uniform grid allows to correctly simulate waves propagating from the
photosphere to the solar corona, reducing significantly the computational time required. In particular,
computation with the uniform grid takes around 13 hours, while the non-uniform grid with the minimal
dz to be same as with the uniform grid (dzmin = 200 m) takes only 6 hours, i.e. a time reduction of
more than 50%.

In this case we study the wave propagation in linear regime. For this, a sufficiently low initial
amplitude in velocity has been used, in order to prevent shock formation. Although the initial ampli-
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Figure 8: Top panel shows the numerical solution using the non-uniform grid and the analytical
solution from equation (35). An initial amplitude of 0.01 m/s and a period of 50 s has been used in
both cases. Middle panel contains the absolute difference between the numerical and the analytical
solution in logarithmic scale. Bottom panel illustrates the temperature distribution of the photosphere
and the lower chromosphere (black line). The red dashed line is the uniform temperature used for the
analytical solution.

tudes are the same for both waves, the velocities differs significantly with time due to the difference in
periods. This is because shorter period waves tend to increase faster their velocity profile than longer
period waves (Ulmschneider, 1971). Once the waves cross the transition region, there is a significant
increase in velocity. This is due to the large temperature gradient that present this layer. Nevertheless,
in both cases the linear regime is preserved when waves reach the solar corona.

The number of points used in PML is different between the two setups. For the wave with P = 50
s, the uniform case uses 500 grid points, while the non-uniform case only 80 grid points were required.
This is due to the difference in size of the dz because we want to cover 0.1 Mm of extension in the
upper boundary for both simulations to dump the waves. Thus, the number of points needed to absorb
the waves at the borders of the domain have been reduced.

We can compare these results with those of analytical equation (35) (see Figure 8). This expression
assumes an isothermal atmosphere, so we will limit the comparison up to 1 Mm in the vertical direction.
In this region the temperature variation is not as extreme as in the whole atmosphere. We have used
a uniform temperature value of 3800 K since it is an intermediate value to the one in the region
considered. It can be seen that the analytical solution reproduces the results till the photosphere
(about 0.5 Mm). After that, the differences between both solutions start to increase. This difference
is explained because the numerical solution does not have a uniform temperature distribution. It can
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Figure 9: Time-distance diagram of the longitudinal velocity showing the complete evolution of the
perturbation in the whole domain. The velocity is scaled by a factor

√
ρ0cs0 which gives an idea of the

energy carried out by the waves. Left panel shows the evolution of the P = 50 s wave and the right
panel is for the P = 180 s wave. The black dotted line shows the location of the transition region.

be seen that the analytical solution is faster than the numerical solution after 0.5 Mm, since the fixed
value of temperature used is higher than the temperature of the numerical solution in that region.
It also explains why the velocity of the analytic solution is higher than the numerical one. When
reaching the chromosphere, the opposite happens, so the analytical solution is delayed with respect
to the numerical one.

Figure 9 shows the complete time evolution of the longitudinal component of the velocity for both
acoustic waves. In this case, the velocity has been scaled by a factor

√
ρ0cs0 for a better visualisation

(same as used by Santamaria et al. (2015)). This quantity gives an approximation to the energy
contained by the waves. The simulations have been run up to t = 500 s so several oscillations reach
the domain boundary.

The slope of the lines in the figures reflect the propagation speed of the waves. The steeper the
slope, the faster they are. It can be seen that the slope is nearly constant until the transition region
is reached. In this region, due to the high increase in temperature and the drop in density, the waves
increase significantly in speed. It can be seen that the results are perfectly sampled in this region
as the transition between the chromosphere and the corona is quite smooth. Hereafter, the waves
continue travelling with a constant velocity (due to the uniform coronal temperature) until they reach
the edge of the domain where they are absorbed by PML. Furthermore, it is verified that PML works
correctly, since it does not produce any type of reflection in the results.

When the wave front reaches the transition region, a wave reflection happens due to the strong
change in the properties of the medium. This produces a perturbation which travels in the opposite
direction, towards the interior of the solar atmosphere. This perturbation interferes with the waves
that continue travelling in the vertical direction, so a clearly visible interference pattern is generated
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in the wave of P = 50 s. This effect is less visible in the P = 180 s because a smaller number of
reflections are produced due to the longer wave period. In addition, the slope of the reflected waves
is constant, so that they all travel at the same speed. The reflection of the waves always happens in
the same region regardless of the time instant.

4.1.3 Non-Linear case

For the study of non-linear effects in wave propagation, we use a similar methodology to the previous
case. The same grids have been applied as in the linear case. However, the initial amplitudes of the
wave have been set to 10 m/s. In this way, the amplitudes are intended to grow sufficiently during
the propagation of the wave to form shocks. As we are using the same grid as in the linear case, the
variation in computational time is the same of the previous section.

Figure 10 shows the comparison of the time evolution of two waves with periods of 50 and 180 s.
It can be seen that the results between both configurations are nearly identical. The regions of shock
formation are well resolved on both grids, despite the strong changes in these regions. When crossing
the transition region, there is a large jump in velocity. In this region we have the highest grid resolution
in the non-uniform grid to properly resolve the strong variations that take place. Thereafter, the shock
continues propagating to the boundary of the domain with constant velocity, since the temperature
gradient in the corona is zero. PML cells absorb the waves perfectly despite of being more energetic
than in the linear case.

The higher frequency wave starts to develop non-linearities around 1.2 Mm, while for the lower
frequency wave this occurs at a greater height, close to the transition region (2 Mm). This is the
same phenomena observed in the linear case, as shorter period waves tend to form shocks earlier than
longer period waves. For this situation there is no analytical expression to verify the results. Given
the small differences between the uniform and non-uniform mesh, all modifications can be considered
valid for this type of waves.

Figure 11 shows the same time-distance diagram as in the previous section (Figure 9). This allows
to analyse the complete temporal evolution of the waves as they pass through the different layers of the
atmosphere. The general behaviour is similar to the linear case, except for some differences. The waves
travel at constant speed until they develop non-linearities. At this point the slope increases slightly
and continues travelling up to the transition region. In this layer a reflection happens, generating a
wave that propagates into the solar interior. The amplitude interference pattern shown in the figure
differs in structure from the linear case. This is because the wave hitting the transition region is a
shock wave, making the shape of the reflected wave sharper than in the linear case.

These waves carry more energy than those studied in the linear case. They can push the transition
region each time a shock wave hits it. This phenomenon is visible in the high-frequency wave, since
there are more shocks per unit time. From Figure 10, it can be clearly seen that reflections are
produced each time at higher layers of the atmosphere. The transition region is moving upward
because it is continuously hit by shock waves. This is not observed in the 180 s period wave, as a less
number of reflections take place, avoiding the transition region to shift back to the equilibrium state.
In both cases it is observed that the PML cells works properly as they correctly absorb waves that
reach the boundaries of the domain without generating reflections.
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Figure 10: Same as Figure 7 but for waves in non-linear regimen. An initial amplitude of 10 m/s is
used.

Figure 11: Same as Figure 9 but for waves in non-linear regimen. An initial amplitude of 10 m/s is
used.
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4.2 Alfvén Waves

Alfvén waves are transverse waves oscillating in the direction perpendicular to the direction of the
background magnetic field. In this section we will study the propagation of this type of waves along
a uniform magnetic field contained in the vertical direction. In particular, we have that k || B0 and
u ⊥ k. We can add a constant magnetic field throughout the whole atmosphere, without breaking the
hydrostatic equilibrium condition. Besides, a transverse velocity perturbation is added at the bottom
of the domain which will be evolved in time.

A comparison of the results between the uniform and non-uniform configurations have been carried
out. For the uniform setup, we use a uniform grid with nz = 800 and dz = 5 Km, while for the non-
uniform configuration a non-equidistant grid with nz = 400 and dzmin = 5 Km have been generated
using a constant dz = 10 km for the photopshere and chromsophere. This values are quite different
from those used in the acoustic wave section. When studying Alfvén waves, the time step is essentially
determined by the maximum Alfvén speed (VA ∝ B/

√
ρ). For these simulations, a uniform magnetic

field of 200 Gauss has been used. Besides, the value of the density is highly variable, being of the
order of 10−15 g/cm3 in the corona. This leads to very large Alfvén velocities, producing a very small
time step (as seen in equation (29)). Thus, a low number of grid points has been used in order to be
able to carry out the simulations in a reasonable time. Specifically, for the uniform grid it required
around 8 hours to reach t = 500 s, while for the non-uniform grid it took about 7 hours. This small
difference in time will be discussed further.

Figure 12 shows the results of the time-distance plots for both configurations. In this case, we
use an initial amplitude of 100 m/s and P = 100 s. Left panels represents the longitudinal velocity
while right panels shows the transverse velocity. The behaviour in both configurations is quite similar
despite of using different grids. The main difference is in the intensity of the energy waves. This is
because, in lower layers, the spatial step is the double of that in the uniform case, which means that
precision can be lost when generating the initial perturbations. Nevertheless, the same reflections and
refractions occur throughout the domain.

Initially there is only velocity in the transverse component of the perturbation. The velocity of
the waves is constant, but as they approach the equipartition layer (cs = vA), they increase gradually
their velocity (steeper slope). In this layer, the waves experience a reflection associated with a mode-
transformation. Part of the energy of the waves continues propagating into the upper layers, while part
of the energy travels in the opposite direction. The interference pattern at the bottom of the figures is
a consequence of these reflections. After the equipartition layer, the slope in the diagrams is constant
and purely vertical until the edge of the domain. A drop in the wave energy can be observed when
crossing the transition region. This is due to the strong drop in density in the transition region, since
the velocity of the waves is actually constant. On the other hand, we observe that a small component
of the longitudinal velocity has been generated (left panels of Figure 12). The development of this
perturbation is a consequence of non-linear effects in the equations. These waves evolve in a similar
way to the acoustic waves studied in the previous section. They experience reflections both in the
equipartition layer and in the transition region, generating waves that propagate into the solar interior.
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Figure 12: Time-distance plot for Alfvén waves using a uniform and non-uniform grids. Longitudinal
(left panels) and transverse (right panels) velocities are scaled by

√
ρ0cs0 and

√
ρ0VA, respectively

in order to have a better visualization of the results. The upper plots shows the results of using a
uniform grid, while the bottom panels shows the same for a non-uniform grid. An initial amplitude
of 100 m/s and P = 100 s have been used. The lower dotted line represents the equipartition layer
and the upper one represents the location of the transition region.
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These results can also be compared with theoretical expressions. An analytical solution for an
isothermal atmosphere stratified by gravity was developed by Ferraro & Plumpton (1958), and, ac-
cording to Khomenko et al. (2003), the solution for the horizontal velocity can be written as:

vy(z, t) = iξ0ω
√
J2
0 + Y 2

0 exp

[
i

(
ωt+ arctang

Y0
J0

)]
(36)

where ξ0 is the initial amplitude and J0 = J0(η) and Y0 = Y0(η) are the Bessel function of first
and second kind, respectively. η = 2ωH/VA being VA the Alfvén speed. This expression will be used
to compare the numerical results with the theoretical ones (see Figure 13). We have compared both
results around the photosphere, since in this region the temperature does not present high spatial
gradients (as we did in the acoustic wave section). It can be seen that initially, the numerical solution
(using the non-uniform mesh) and the analytical one agree quite well. From 0.1 Mm both results
start to deviate, as a consequence of the limitations of the analytical expression. The temperature
and pressure variations of the atmospheric model we are using are not appropriate for this type of
expression. Nevertheless, the general evolution and the amplitudes are slightly analogous, becoming
equal in the lower part of the domain.

Figure 13: Top panel shows the numerical solution (black solid line) using the non-uniform grid and
the analytical solution (red dotted line) from equation (36). An initial amplitude of 100 m/s and a
period of 100 s has been used. Bottom panel contains the absolute difference between the numerical
and the analytical solution in logarithmic scale.
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4.3 Computational time

We perform an analysis of the computational efficiency of the code comparing the non-uniform con-
figuration with the uniform one. For this purpose, uniform meshes of different resolutions have been
used to obtain a reference of the computational time of the original code. Then, we measure the com-
putational time for different grid sizes using the non-uniform configuration. For each of them, different
values for the minimum dz have been used. All the simulations have been run with 4 processors in a
virtual machine of a laptop with Intel Core i7 Processor (4x 2.6 GHz) and 10 GB DDR4 RAM.

Figure 14 shows the results of this analysis. A significant improvement in the computation time
used by the non-uniform setup can be observed. This setup allows to sample with high resolution
specific regions of the numerical domain, without the need to use such resolution in areas where it
is not necessary. In this way, the number of points used is considerably reduced, resulting in an
improvement in computational time. We observe that the reduction in computational time is more
accentuated when a lower minimum dz is used, because the number of points needed when using a
uniform grid grows proportionally to the desired resolution. By using a similar number of points, e.g.
just twice, the differences in computation time are not as important, as it is observed from Figure 14
for the case of a minimum resolution of 1 km. The same effect was found in the case of Alfvén waves.

In the previous sections it has been seen that the results of using a uniform and a non-uniform
mesh are very similar, as long as the regions with large gradients are sampled with the appropriate
resolution. But there is a compromise between the number of points used and the minimum resolution
imposed. As seen in Figure 3, using a low number of mesh points with a high resolution in dz is not
convenient, since the region of minimum dz would have a very small extension. This might introduce
errors in the results. Thus, it is necessary to pay attention to the configuration of the generated grids.

Figure 14: Comparison of the improvement in computation time when using a non-uniform grid (blue
and orange lines) and using a uniform grid (black dotted line). The computation time is plotted
against the minimum dz used in each distribution, being constant for the uniform grid simulations.
The time shown is the time taken by each of the simulations to reach 500 s. Axes are in log scale.
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5 Conclusions and Future work

The study of the propagation of MHD waves is fundamental to understand the energy transport and
the heating of the different layers of the solar atmosphere. As they propagate to the outer atmosphere,
these perturbations experience different processes, such as reflection or refraction, which cause them
to change their properties. Such phenomena occur at different scales, requiring high computational
power to study them properly. During this work we have used the MANCHA3D code to simulate
such waves and study their evolution. In order to improve the computational power required, we have
implemented a fixed non-uniform grid along the vertical component. In this way it is possible to solve
spatial structures of different scales without the need to use a high resolution over the whole domain.

We have developed an algorithm to generate a non-uniform distribution from a previous uniform
model. Our interest has been based on increasing the spatial resolution in areas with large gradients
of solar magnitudes. In particular, we have paid special attention to achieve a proper sampling over
the transition region, where the temperature gradient and the density drop happen in a small region
of the space. At the expense of this, the resolution of the solar corona has been reduced, since it is a
region with a uniform temperature distribution and there is no need to sample it carefully. Different
grid models can be generated based on the number of grid points provided and the desired minimum
dz. An agreement between these two quantities has to be reached, as to sample the transition region
accurately, it is necessary to use a sufficient number of points. Otherwise, the benefits of the non-
uniform mesh would not be fully exploited.

Several modifications have been carried out to the code for the use of the non-uniform grid in
the vertical direction. Among them, we modify the spatial derivatives, diffusivity, filtering, time step
calculation and PML. All modifications have been introduced following the same structure as the
code in order to ensure compatibility. In addition, the number of numerical operations performed by
the code is practically the same. In this way, the computational efficiency is not affected. We have
performed multiple tests to verify that all the implementations work properly. In particular, we have
studied the propagation of acoustic and Alfvén waves. For this purpose, uniform grids have been used
within the non-uniform configuration of the code. This has allowed us to directly compare the results.
In all cases, we have seen that the differences introduced are mainly numerical. These differences
increase as the simulations evolve, since the errors accumulate over time. Moreover, it has been
observed that when crossing the transition region, the differences become more accentuated, as in this
region the calculation of derivatives is more critical. These small differences do not introduce significant
changes in the results of the simulations, so we have validated all the modifications introduced in the
code.

A study of the propagation of acoustic and Alfvén waves from the photosphere until the corona
have been carried out. We analyze acoustic wave in linear and non-linear regime. No major differences
have been observed between the uniform and non-uniform configurations in both regimes. Phenomena
such as wave reflection, refraction or mode-conversion have been observed in all of the test. The regions
where this processes take place should have a higher spatial resolution, as is the case of the transition
region. For the Alfvén wave similar processes have been observed. In this case it has been observed
that waves experience a reflection in the cut-off layer. Besides, the original transverse perturbation
gives rise to a longitudinal velocity component as a consequence of non-linear effects. For both
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types of waves, we have compared the results using the analytical solutions constrained to the solar
photosphere. The limitations of such expressions when considering an atmosphere with a non-uniform
temperature distribution are shown.

The computational improvement introduced by the use of the non-uniform grid has been analysed.
We compared the execution times of simulations of uniform meshes with those of non-uniform meshes
of different resolutions. The numerical results in both cases are very similar, but the computational
time has been greatly reduced. This is essentially because we can significantly reduce the number of
grid points used in the simulations without losing precision due to the resolution used. This is an
important step forward in the future of MANCHA3D , as numerical simulations are becoming more
expensive due to the computational power required.

With a view to continuing this work in the future, several aspects can be improved and imple-
mented. One of them is the algorithm for generating the non-uniform grid. It would be convenient to
implement it in such a way that it is possible to select a larger or smaller range over which to increase
the resolution, since now this width can only be controlled according to the minimum dz used. In
addition, it would be interesting to implement the generation of the non-uniform mesh within the
Fortran code, to avoid using external files for its generation. Throughout this work we have been
working with a distribution for the solar atmosphere which is not completely accurate to the actual
distribution. Thus, it would be convenient to perform simulations with more realistic values in order
to be able to compare the results with observations. On the other hand, we have only focused on the
study of wave propagation. The tests performed in this work would have to be carried out on other
types of simulations such as Kelvin Helmholtz or Rayler Taylor instabilities or convection simulations.
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