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The main goal of this work is the design of a coarse-grained theoretical model of minimal resolution for

the study of the physical properties of icosahedral virus capsids within the linear-response regime. In

this model the capsid is represented as an interacting many-body system whose composing elements

are capsid subunits (capsomers), which are treated as three-dimensional rigid bodies. The total

interaction potential energy is written as a sum of pairwise capsomer-capsomer interactions. Based

on previous work [Gomez Llorente et al., Soft Matter, 2014, 10, 3560], a minimal and complete

anisotropic binary interaction that includes a full Hessian matrix of independent force constants is

proposed. In this interaction model, capsomers have rotational symmetry around an axis of order

n > 2. The full coarse-grained model is applied to analyse the low-frequency normal-mode spectrum

of icosahedral T = 1 capsids. The model performance is evaluated by �tting its predicted spectrum to

the full-atom results for the Satellite Tobacco Necrosis Virus (STNV) capsid [Dykeman and Sankey,

Phys. Rev. Lett., 2008, 100, 028101]. Two capsomer choices that are compatible with the capsid

icosahedral symmetry are checked, namely pentamers (n = 5) and trimers (n = 3). Both subunit

types provide fair �ts, from which the magnitude of the coarse-grained force constants for a real

virus is obtained. The model is able to uncover latent instabilities whose analysis is fully consistent

with the current knowledge about the STNV capsid, which does not to self-assemble in the absence

of RNA and is thermally unstable. The straightforward generalisability of the model beyond the linear

regime and its completeness make it a promising tool to theoretically interpret many experimental

data such as those provided by the atomic force microscopy or even to better understand processes

far from equilibrium such as the capsid self-assembly.

1 Introduction

Viruses are the simplest biological systems that are complex
enough at the molecular scale to exhibit intricate behaviours such
as self-assembly and self-replication. These systems are charac-
terised by the presence of a capsid, i.e. a protein shell that en-
closes and protects the genetic material (RNA or DNA), and plays
an essential role in the delivery of this material in the host cell.
This capsid has a well defined geometrical structure. It is formed
by copies of a small number (just one in the simplest cases) of
coat proteins.

One of the most remarkable features of viruses, which is rele-
vant in their life cycle, is their capability to self-assemble forming
regular capsids with well defined size and geometry. This pro-
cess can be also observed in vitro without the genetic material1–3.
Noteworthly, a given capsid architecture can be shared by many
widely different viruses4, which allows their collection as a par-
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ticular family or class. All these features evince the existence of
universal effective interactions acting between the basic building
blocks of these biological systems5.

There is extensive experimental and theoretical evidence of the
existence of capsid subunits formed by a reduced number of coat
proteins (protein fragments in some cases). Depending of this
number and/or the compound geometry, one speaks of hexamers
or hexons, pentamers or pentons, trimers and dimers. The generic
name of capsomers is commonly used for these subunits. The
particular choice of these subunits depends on the process being
analysed. For instance, experimental results show that the kinet-
ics of the self-assembly process of many viral capsids (in particular
for the larger ones) is hierarchical and involve two time scales:
first, proteins join into capsomers that later self-assemble into
the final capsid structure6–15. Theoretical studies support this
hierarchical mechanism16. In the final capsid structure, which
may have required an additional maturation process after its self-
assembly17, capsid subunits can also be identified by alluding to
specific criteria. One of these criteria is rigidity and identifies the
subunits as those protein or protein-fragment compounds with
high relative rigidity18. The theoretical implications of the exis-
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tence of these kinetic or structural subunits would be consistent
with the many physical properties shared by the viruses in a class.

The theoretical understanding of the more universal physical
properties found in viruses requires to relinquish the details of the
molecular scale that the computationally involved all-atom ap-
proaches19–21 provide, and develop coarse-grained models that
incorporate the relevant features5,22–54. Some of these mod-
els describe the capsid as a continuous medium in order to ac-
count for its mechanical and elastic properties51–54. Others use
spring networks for this purpose21,48–51,55. On the other hand,
most of the discrete models represent the capsid as a set of a
reduced number of rigid subunits of one or at most two differ-
ent classes, and propose a binary interaction potential energy be-
tween them27,32–35,37,37–47,56–58. These models provide poten-
tial energy landscapes59 whose global minima reproduce the ob-
served capsid structures. Moreover, theoretical analyses of this
landscape and its connection with the kinetics of the self-assembly
process can also be carried out. Besides, this work will show that
an adequate model of this type can also be used to tackle the
low-frequency normal-mode analysis of the capsid.

About half of all viruses known so far have capsids with icosa-
hedral symmetry60. Since proteins are asymmetric units, cap-
sids can not possess inversion centre and thus icosahedral capsids
must have the symmetry of the I point group (if an inversion cen-
tre were possible one would obtain instead the Ih point group).
For these viruses, the simple geometrical construction model in-
troduced by Kaspar and Klug61 is the basis of their structural clas-
sification. These authors build a geometrical model of the capsid
by folding a 2D hexagonal lattice whose equivalent positions are
given by a pair non-negative integers (h and k). The resulting
icosahedral shell is made of 20 equilateral triangular faces whose
area, expressed in units of the smallest icosahedron that can be
built, is given by the triangulation number T = h2+k2+kh, with h
and k integer numbers. Then the possible values for T are discred-
ited, i.e. T = 1,3,4,7, ..., and are used as structural classification
of all but a few icosahedral viruses.

The simplest icosahedral viruses have T = 1. In this case, the
capsid is formed by 60 repetitions of a single protein and the
possible polymeric subunits, from those mentioned before, can
be pentamers, trimers and dimers. These subunits have a rota-
tion symmetry axis which is five-fold for pentamers (C5 symmetry
point group), threefold for trimers (C3 group), and twofold for
dimers (C2 group). In the icosahedral T = 1 capsid, these rotation
symmetry axes must coincide with the corresponding symmetry
axes of the icosahedral symmetry group. Therefore, pentamers
are located at the icosahedron vertices, trimers on the faces and
dimers at the edges. Hence, if one identifies capsomers with poly-
hedron faces, then 20 equivalent trimers will form a regular icosa-
hedron, while 12 equivalent pentamers will produce its dual poly-
hedron, i.e. a regular dodecahedron. These are the two convex
regular polyhedra with icosahedral symmetry.

The elastic and mechanical properties of the viral capsids have
been the focus of recent research55,62,63. In the last years with
these properties in mind, proposals to attack the viruses have ap-
peared in the scientific literature. This action would be carried
out by means of mechanical procedures such as ultrasounds64,65,

or with electromagnetic radiation by using impulsive stimulated
Raman dispersion66–69.

Important structural and dynamical properties of the capsid dy-
namics that are involved in many processes like the previous ones
are determined by the frequency spectrum and motions of the
capsid normal modes. The normal mode analysis (NMA) pro-
vides a systematic methodology to investigate all these aspects.
The use of NMA70 as a tool to study the dynamics of proteins
under equilibrium conditions and its relationship with structure
started more than thirty years ago71–73, and has been fruitfully
extended, more recently, to many other biological systems such as
viruses20,21,48–51,74–77. The most genuine dynamics is associated
with the low-frequency modes, since these are related to the less
rigid and possibly more labile motions of the capsid. Therefore,
the use of coarse-grained interaction models would be totally jus-
tified to study this low-frequency spectrum.

The general procedure to accomplish such a study is the main
goal of this work, which will be focused, for illustration, on the
T = 1 capsid class. In order to attain this objective the coarse-
grained model presented in a previous work56, which describes
the subunits as rigid bodies with axial symmetry, will be conve-
niently generalised. Additional terms will be required to account
for the particular rotational symmetry of the capsomeric subunit
and other necessary effects. In Section 2, the coarse-grained in-
teraction energy model and the generalisation needed to account
for the normal-mode dynamics of T = 1 capsids are introduced.
Here, expressions for the force constants of the binary interac-
tion as analytical functions of the model parameters are derived
and the steps for the calculation of the capsid normal modes are
given. Section 3 presents the normal-mode frequency spectra ob-
tained by fitting the all-atom numerical data by Dykeman and
Sankey for the Satellite Tobacco Necrosis Virus (STNV)75,78. The
dependence of the normal-mode frequencies on the values of the
force constants and on the type of subunits used (either trimers
or pentamers) will be analysed. The real physical scale of the
force constants will be provided. The model shall be shown to
uncover latent structural instabilities fully consistent with the cur-
rent knowledge about this capsid, which does not to self-assemble
in the absence of RNA and is thermally unstable. Finally, Section
4 summarises the main conclusions of this work.

2 Model and methods

As has been mentioned in the Introduction, the coarse-grained
interaction model chosen for this wok assumes rigid subunits and
therefore six degrees of freedom are required to fix the position
and orientation of each one of them. For T = 1 viruses, which are
the object of this work, all subunits are identical and here two
possible choices shall be made, namely trimers and pentamers.

2.1 The interaction energy.

The starting expression for the binary interaction between two
subunits is the form presented in a previous work56, which is an
anisotropic interaction that includes the lowest order terms of a
multipolar expansion, namely
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Fig. 1 Equilibrium con�guration of a pair of pentamers around a twofold

symmetry axis C2.

V (0)
i j = p0 F0(ri j)+ p1 F1(ri j)

[
1−vzi ·vz j +2(vzi ·ni j)(vz j ·ni j)

]
+ p2 F2(ri j)

[
(vzi ·ni j + cosθen)

2 +(vz j ·ni j− cosθen)
2
]
, (1)

where ni j is the unitary vector ni j = ri j/ri j, ri j being the intercap-
somer position vector from capsomer i to capsomer j, and vzi is
the unitary vector giving the orientation of the z axis of a body-
fixed frame on capsomer i. This axis is chosen to coincide with the
subunit rotation symmetry axis. Here, p0, p1 and p2 are parame-
ters with dimensions of energy. The required form of the isotropic
functions F0, F1 and F2 and the role of the angular parameter θen

will be given later.
This potential has been designed to ensure that each of the

three terms in Eq. (1) fixes the equilibrium values of a subset
of the six internal degrees of freedom of the two-body problem
with a minimum number of terms with lowest possible order from
the general multipolar expansion (this expansion is always possi-
ble for any kind of anisotropic interaction, not just electrostatic
ones). The orientational degrees of freedom of both capsomers
will be given momentarily taking as reference a laboratory frame
with its Z axis pointing along ni j. Then, the body-fixed frame
on capsomer i provides its orientation, which is determined by
the corresponding three Euler angles θi, φi and χi. These angles
shall be defined with the ZY Z convention79, in which case θi and
φi can be identified respectively with the polar and azimuthal an-
gles of the spherical coordinates of the vector vzi in the laboratory
frame. Fig. 1 is an illustration of the equilibrium configuration of
two capsomers.

In the first term of Eq. (1), F0(ri j) is dimensionless and fully
isotropic and should be chosen to fix the equilibrium distance
ri j = ren , where it shall take the value F0(ren) = −1. The pa-
rameter ren determines the system length scale and thus can be
used as length unit, i.e. ren = 1 [the subscript n in a parameter
denotes explicitly its dependence on the capsomer type (either
n = 3 for trimers or n = 5 for pentamers)]. The other two terms
have isotropic parts that have been chosen respectively to make
their contributions vanish at the equilibrium orientational con-
figuration, thus there V (0)

i j = −p0, this being the minimum value

of this binary interaction energy if p0 is positive and p1 and p2

are positive semi-definite. The value of p0 can be then taken as
the system natural energy unit in which case p0 = 1. The sec-
ond term includes the dipole-dipole anisotropic contributions and
fixes the equilibrium configuration by the conditions φi− φ j = 0
and θi + θ j = π. The third term incorporates monopole-dipole
and monopole-quadrupole interactions and fixes the equilibrium
dihedral angle between the two subunits through the parameter
θen and the conditions θ j = θen and θi = π − θen , which are fully
compatible with the previous conditions. As will be shown later,
the required value of the parameter θen depends on the type of

capsomer. The potential energy V (0)
i j does not depend on the two

remaining degrees of freedom, χi and χ j, thus subunits in this
model have axial symmetry. Both functions F1(ri j) and F2(ri j)

in Eq. (1) are dimensionless isotropic functions which should
be chosen to satisfy F1(ren) = F2(ren) = 1. It will soon become
clear that these are the only conditions to impose to these func-
tions within the linear response regime. Of course, beyond this
regime the behaviour of the functions F0(r), F1(r) and F2(r) with r
should fit additional physical requirements at the relevant length
scale. For instance, Vi j should conveniently vanish at distances
large with respect to the molecular scale.

The study of the capsid normal modes only requires the knowl-
edge of the interaction form for small displacements around the
capsid equilibrium configuration, and such form is determined by
the corresponding symmetric Hessian matrix of force constants.
As will be discussed later, global equilibrium is reached when
each neighbouring pair of capsomers in the capsid is at its free
equilibrium configuration. Therefore, under these circumstances,
the capsid force-constant matrix will be determined by that of
the binary interaction. One has as many diagonal force constants
as the number of internal degrees of freedom, i.e. six for the
binary interaction. As shown in Fig. 1, the dihedral equilib-
rium configuration for the two capsomers has a twofold symme-
try axis perpendicular to the ni j vector (this axis must coincide
with one of the twofold symmetry axis of the icosahedral cap-
sid). As a consequence, the diagonal force constants must be
associated with modes that will be either symmetric or antisym-
metric with respect to a rotation of π around that axis. One of
these force constants, kr, is connected to the small oscillation
of the scaled coordinate ri j/ren around its equilibrium value 1
(stretching mode). This is a symmetric mode that is determined
by F0 in V (0)

i j . The term proportional to p1 in Eq. (1) deter-
mines the force constant, kφ , associated with the displacement
of the angular coordinate φ j − φi, which shall be called torsion
φ+ since it is symmetric. One readily obtains for this force con-
stant the expression kφ = p1 sin2

θen . There are other two force
constants related to the small oscillations of θi and θ j (bending
modes). The symmetric one corresponds to the displacement of
the coordinate θ+ = θ j−θi while the antisymmetric one is asso-
ciated with θ− = θi + θ j. The corresponding force constants are
kθ+ = p2 sin2

θen and kθ− = p1 + p2 sin2
θen . Note that one has just

two parameters to fix the three force constants kφ , kθ+ and kθ− .
Since the interaction potential does not depend on χi and χ j, the
corresponding two force constants vanish.
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In order to properly account for the normal modes, the
most general binary interaction model must incorporate a non-
vanishing symmetric Hessian matrix of independent force con-
stants whose dimension coincides with the number of degrees of
freedom. For this purpose, one firstly needs, on one hand, an
extra parameter to allow for two independent kθ force constants
and, on the other, one has to break the axial symmetry of the
capsomers in Eq. (1) by incorporating χ-dependent terms. Of
course, these terms shall be different for trimers and pentamers
by including the particular rotational symmetry of the subunit.
The following additional terms are proposed:

V (1)
i j = p3 F3(ri j)

{
Re
{
[−(vxi + ivyi) ·ni j]

n +[(vx j + ivy j) ·ni j]
n}

+[1− (vzi ·ni j)
2]

n/2
+[1− (vz j ·ni j)

2]
n/2}

+ p4 F4(ri j)
[
(vzi ·ni j + cosθen)(vz j ·ni j− cosθen)

]
+ p5 F5(ri j) Im

{
[−(vxi + ivyi) ·ni j]

n} Im
{
[(vx j + ivy j) ·ni j]

n}. (2)

In this equation, The first and third terms introduce non-
vanishing and non-degenerate χ force constants, respectively.
Here, vxi and vyi are unitary vectors giving (see Fig. 1), respec-
tively, the orientation of the x and y axes of the body-fixed frame
on capsomer i (and the same for j). The factor i in this expression
denotes the imaginary number unit. Symbols Re and Im refer to
real and imaginary parts respectively. The second term adds an
extra parameter to fix the kθ force constants. The new model pa-
rameters with dimension energy are p3, p4 and p5. As before, F3,
F4 and F5 are general dimensionless functions satisfying the con-
straint F3(ren) = F4(ren) = F5(ren) = 1. Again, beyond the linear
response regime other constraints may have to be imposed. The
symbol n, either as a power or as a subscript, denotes the order
of the rotational symmetry axis of the corresponding subunit, i.e.
n = 3 for trimers and n = 5 for pentamers. None of terms in Eq.
(2) alter the previous equilibrium values for θi, θ j and φi − φ j.
Besides, the last two terms provide n equivalent equilibrium val-
ues for χi and χ j, therefore breaking the axial symmetry of the
capsomers, but keeping the twofold rotational symmetry of the
equilibrium configuration. The design of V (1)

i j follows that of V (0)
i j ,

and like the anisotropic terms proportional to F1 and F2 in Eq. (1),
all the terms in Eq. (2) vanish at the equilibrium configuration.

The sum of these two contributions, V (0)
i j +V (1)

i j , determines
completely the six diagonal force constants, in the chosen coordi-
nates, as linear functions of the six model parameters pi, i= 0, ...5.
As already known, the stretching force constant kr and the torsion
force constant kφ are determined by V (0)

i j . The bending force con-

stants kθ+ and kθ− are determined by both V (0)
i j and V (1)

i j . Finally,

the torsional force constants kχ+ and kχ− are fixed by V (1)
i j . In

order to fix kr one needs the explicit functional form of F0(r). Ac-
tually, only its second derivative at the equilibrium distance r = ren

is required. However, an expression shown in previous works to
be very convenient for global optimisation and kinetical studies
shall be used here, namely, the generalised Lennard-Jones poten-

tial in dimensionless form

F0(r) =
( ren

r

)2m
−2
( ren

r

)m
, (3)

where the power parameter m should be chosen to fix the length
range scale of the interaction. This form satisfies the required
constraint F0(ren) = −1. Whence the stretching force constant
kr = 2p0m2 is obtained. For global optimisation tasks, a conve-
nient and simple explicit form shall also be given to the other
Fi(r) functions, namely

Fi(r) =
( ren

r

)m
; i = 1, ...5, (4)

with the same m parameter. Note that they indeed satisfy the
imposed constraint Fi(ren) = 1. In Table 1, the expressions for
the binary interaction diagonal force constants as functions of the
model parameters together with the corresponding dimensionless
coordinates and their equilibrium values are collected. There, sn

is the parameter sn = sinθen .

Table 1 Dimensionless coordinates (�rst column) whose displacements

from their equilibrium values (second column) provide the corresponding

diagonal force constants (with dimensions of energy) as functions of the

model parameters (third column, with sn = sinθen ). The +, − signs give

the symmetry (symmetric or antisymmetric respectively) of the mode

with respect to a π rotation around the twofold symmetry axis of the

equilibrium con�guration.

Coordinates Equilibrium Force constants

r+ = ri j/ren 1 kr = 2p0m2

φ+ = φ j−φi 0 kφ = p1s2
n

θ+ = θ j−θi 2θen −π kθ+ =
(

p2− 1
2 p4
)

s2
n

χ+ = χ j +χi π± 2πl
n ; l ∈ Z kχ+ = 1

2 n2 (p3 + p5sn
n)sn

n

θ− = θ j +θi π kθ− = p1 +(p2 +
1
2 p4)s2

n

χ− = χ j−χi −π± 2πl
n ; l ∈ Z kχ− = 1

2 n2 (p3− p5sn
n)sn

n

The form provided so far for the subunit binary interaction
has vanishing non-diagonal force constants for the chosen coordi-
nates. A complete general form requires additionally free values
for these coupling elements. In order to achieve completeness the
following terms are introduced:

V (r)
i j =

ri j

ren

−1,

V (φ)
i j = (vzi×vz j) ·ni j,

V (θ+)
i j = (vzi−vz j) ·ni j +2cosθen ,

V (θ−)
i j = (vzi +vz j) ·ni j,

V (χ+)
i j = Im

{
[−(vxi + ivyi) ·ni j]

n +[(vx j + ivy j) ·ni j]
n},

V (χ−)
i j = Im

{
[−(vxi + ivyi) ·ni j]

n− [(vx j + ivy j) ·ni j]
n}.

Around the binary equilibrium configuration the leading contri-
bution of each of these terms is linear in the corresponding inter-
nal coordinate. Therefore, the proposed additional contribution
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to the subunit binary interaction is

V (2)
i j = p6 F6(ri j)V

(r)
i j V (φ)

i j + p7 F7(ri j)V
(r)
i j V (θ+)

i j + p8 F8(ri j)V
(r)
i j V (χ+)

i j

+ p9 F9(ri j)V
(φ)
i j V (θ+)

i j + p10 F10(ri j)V
(φ)
i j V (χ+)

i j

+ p11 F11(ri j)V
(θ+)
i j V (χ+)

i j + p12 F12(ri j)V
(θ−)
i j V (χ−)

i j , (5)

which, as required, only includes couplings between modes with
the same symmetry. As before, Fi, i = 6, ..12, are general dimen-
sionless functions satisfying the constraint Fi(ren) = 1, that have
been given the explicit form in Eq. (4). Six additional parameters
(pi, i = 6, ..12) are involved, each one fixing a corresponding non-
diagonal force constant. Hence, the complete binary interaction
is

Vi j =V (0)
i j +V (1)

i j +V (2)
i j , (6)

and the elements of the force-constant matrix (in energy units) as
linear functions of the model parameters are presented in Tables 2
(for the symmetric modes) and 3 (for the antisymmetric modes).

Table 2 Force constant matrix elements (in energy units) for the binary

interaction as functions of the model parameters for the symmetric in-

ternal coordinates (S. C.)

S. C. r+ φ+ θ+ χ+

r+ kr krφ = p6s2
n krθ+ = p7sn krχ+ = np8sn

n

φ+ krφ kφ kφθ+ = p9s3
n kφ χ+ = np10sn+2

n

θ+ krθ+ kφθ+ kθ+ kθ+χ+ = np11sn+1
n

χ+ krχ+ kφ χ+ kθ+χ+ kχ+

Table 3 Force constant matrix elements (in energy units) for the binary

interaction as functions of the model parameters for the antisymmetric

internal coordinates (A. C.)

A. C. θ− χ−

θ− kθ− kθ−χ− = np12sn+1
n

χ− kθ−χ− kχ−

Within the linear regime, the final expression for Vi j given in
Eq. (6) is actually the most complete form that can be writ-
ten with the minimum number of the lowest-order multipole-
multipole terms, for the binary interaction between two rigid
bodies satisfying the geometrical constraints imposed by the cap-
somer and capsid symmetries. Although not required for this
work, the binary interaction model in Eq. (6) could also be
used for hexamers by taking n = 6. Pentamers and hexamers are
typical subunits appearing together in icosahedral virus capsids
with larger triangulation numbers (T ≥ 3). Then apart from the
pentamer-pentamer and hexamer-hexamer interaction forms al-
ready given here, the pentamer-hexamer interaction would be
also required to model these systems. This can be straightfor-
wardly derived by taking the common terms and combining the
different ones from the other two. Of course, parameters will be
in general different for each of these three interaction forms.

From the binary potential, the total potential interaction energy

for N identical capsomers (here N = 60/n) is readily obtained.

V =
N

∑
i, j>i

Vi j. (7)

The intercapsomer equilibrium distance (ren ∼ 80 Å for STNV)
is much larger than the molecular interaction range (∼ 1 Å). This
requires m-parameter values m & 50 in the isotropic term given
in (3). Therefore and as the calculations presented in the next
Section confirm, each subunit in the capsid equilibrium struc-
ture will interact only with its closest neighbours (contact interac-
tions) and the capsid binding energy, Eb, will be the sum of these
contact interactions. In each T = 1 geometrical structure that can
be assembled either from pentamers (a regular dodecahedron, as
shown in the Introduction) or from trimers (a regular icosahe-
dron) ones has 30 equivalent contacts. If each of these contacts is
at the equilibrium configuration of its binary interaction, then the
T = 1 capsid binding energy will take the value Eb = 30p0 and if
such equilibrium configuration corresponds to a stable stationary
point of Vi j (i.e. a minimum), this value of Eb will be a global
maximum (i.e. global minimum of V ). When this happens, one
generally speaks of a many-body equilibrium configuration with
zero frustration56. As will be shown in the next Section, where
we fit the model to the STNV capsid, it can happen that while V
has a minimum at the capsid icosahedral configuration, the cor-
responding binary equilibrium configuration is not a minimum of
Vi j but an unstable stationary point (a saddle point). In that case
the capsid energy minimum V = −30p0 may not be the global
minimum and other lower energy structures that break the origi-
nal architecture may exist.

In order to manage frustration, the relevant parameter in the
model is θen , which is a geometrical parameter that fixes the dihe-
dral angle between the two neighbouring capsomers. Of course,
the design of a vanishing frustration requires that this dihedral
angle coincide with the dihedral angle between neighbouring
faces of the corresponding regular polyhedron, either a dodec-
ahedron for pentamers or an icosahedron for trimers. Therefore,
these target geometries are going to determine the value of θen ,

namely θe3 = 1
2 arccos(

√
5

3 ) for trimers and θe5 = 1
2 arctan(2) for

pentamers. These parameters will be fixed to their respective val-
ues in all the calculations performed in this work. If parameter
m is chosen large enough to fit the real interaction length, the
other model parameters, which have a direct effect on the force
constants given in Table 1 and thus on the capsid elastic prop-
erties, hardly affect the capsid final geometrical structure. The
parameter p0 fixes the energy scale and ren the length scale of
the system. If the remaining parameters satisfy the previously
established constraints and provide a stable binary equilibrium
structure, the capsid icosahedral equilibrium geometry will re-
main unchanged. Furthermore, one can find that these regular
structures are indeed global energy minima of the correspond-
ing capsid potential energy surface, with the expected maximum
binding energy Eb = 30p0. In order to find these global minima,
the Basin-Hopping global optimisation technique80,81 was em-
ployed. Illustrations of these structures are presented in Fig.2.
Although the only geometrical constraint for the capsomers em-

Journal Name, [year], [vol.],1�13 | 5

Page 5 of 14 Soft Matter



ployed in this work is their rotational symmetry, in this figure a
regular pentagon has been chosen for pentamers and a regular
triangle for trimers. Note however that while the first two terms
(V (0)

i j and V (1)
i j ) of the binary interaction induce in the capsid the

symmetry of the group Ih, the third term V (2)
i j destroys the inver-

sion centre and reduce the capsid symmetry to that of the group I,
as happens in real capsids. Precisely, the terms in V (2)

i j responsible
for this symmetry breaking are those proportional to p6, p8, p9,
p11 and p12, which change sign under inversion.

2.2 The determination of the normal modes.

The methodology to apply this coarse-grained model to the study
of the normal modes of icosahedral T = 1 capsids will be worked
out in the remaining of this Section. For that purpose, the form of
the many-body kinetic energy is required. This kinetic energy will
have contributions, coming from the translational motion of the
centre of mass of each of the capsomers and from their rotational
motion as rigid bodies. In order to describe this last motion the
reference frame fixed on each capsomer (xyz) with the three axes
chosen along the inertia principal ones will be used. Then, the
kinetic energy for N equivalent subunits is

K =
1
2

Mn

N

∑
i=1

ṙi
2 +

1
2

N

∑
i=1

(Ixw2
xi + Iyw2

yi + Izw2
zi), (8)

where Mn is the capsomer mass, Ix, Iy and Iz its principal moments
of inertia and wxi wyi and wzi the components of the angular fre-
quency on the axes of the capsomer-fixed frame. Since, as already
established, the subunits are symmetric tops, one has Ix = Iy. Here
Mn is taken as the system natural mass unit.

The normal-mode analysis requires the 6N × 6N Hessian ma-
trix, F, of second derivatives of the interaction with respect to
the 6N generalised coordinates, evaluated at the capsid equilib-
rium configuration. With the displacements of these coordinates
from their equilibrium values one defines the 6N-dimensional col-
umn vector R. For each capsomer, this vector includes the three
displacements of its centre of mass in a laboratory-fixed frame
and the three angular displacements around its respective prin-
cipal axes of inertia. By expanding the potential V around the
equilibrium capsid configuration up to quadratic terms one ob-
tains V = Ve +

1
2 R̃FR, where Ve = −30p0 and the tilde on a sym-

bol means its transpose. In these displacement coordinates the
quadratic form of the kinetic energy in Eq. (6) has an associated
6N×6N diagonal matrix G−1 with the capsomer masses and prin-
cipal moments of inertia, i.e. K = ˙̃RG−1Ṙ. The normal mode co-
ordinates, Q, are related to the displacement coordinates through
the linear transformation R = LQ. The matrix L is obtained by
solving the secular problem given by the two matrix equations
L̃FL = ΛΛΛ and L̃G−1L = I, where I is the identity matrix and ΛΛΛ is
the diagonal matrix of the squares of the normal mode frequen-
cies, i.e. Λii = ω2

i . This procedure is known as Wilson GF-secular
scheme82. This is a general scheme to compute the normal modes
of an isolated many body system in terms of a complete set of
displacement coordinates which is independent of the particular
choice of such coordinates and therefore invariant under general
(not just linear) coordinate transformations83. The changes in

the capsomer orientation have been given as rotations around
the three axes of the frame fixed in each capsomer, which have
been chosen along the three principal axes of inertia. As shown
in Eq. (8), in this particular coordinates the rotational kinetic en-
ergy is diagonal. Besides, these orientational displacements can
be straightforwardly written in term of quaternions84–86. This
nice property and the other advantages of quaternions87,88 have
motivated the choice of these coordinates to represent the orien-
tational degrees of freedom in all the computations perfomed in
this work.

The normal modes of this problem must have the symmetry
of the corresponding irreducible representations of the capsid I
point group. The number of modes of each symmetry species
can be obtained by reducing the representation, Γn, whose basis
is the set of 6N displacements R. After eliminating the species
corresponding to the three translations and three rotations of the
whole capsid one obtains for pentamers (n = 5) and trimers (n =

3), respectively,

Γ5 = 2A⊕4T1⊕2T2⊕4G⊕6H, (9)

Γ3 = 2A⊕4T1⊕6T2⊕8G⊕10H, (10)

where the A symmetry species are not degenerate, the T1 and T2

species are triply degenerate, and the G and H species are, respec-
tively, quadruply and quintuply degenerate. By using symmetry-
adapted coordinates, the GF-secular problem can be decoupled in
smaller ones, one for each symmetry species. The number of nor-
mal modes is 6N−6, hence this number is larger for trimers than
for pentamers.

Both types of capsomers give two totally symmetric A modes.
Their frequencies can be obtained analytically. The first compo-
nent of these modes corresponds to the breathing of the cap-
sid in which all capsomers oscillate radially in phase. The ki-
netic energy of this motion is then Kbreathe =

1
2 NMn ˙(∆R)

2
, where

∆R is the radial displacement. The other component of the A
modes corresponds to the synchronised in-phase rotation of all
capsomers around their symmetry axis. Its kinetic energy is
Krot =

1
2 NIz ˙(∆χ)

2
where ∆χ is the angular change. Hence, the

total kinetic energy is KA = 1
2 NMn(R ˙∆r+)

2
+ 1

8 NIz ˙(∆χ+)
2
. The

three force constants involved in these two motions are kr, kχ+

and krχ+ and the leading change in the potential energy is VA =
1
2C
[
kχ+(∆χ+)2 + kr(∆r+)2 +2krχ+∆r+∆χ+

]
, where C is the num-

ber of contacts or bonds (i.e. C = 30) and R the radius of the
sphere containing the capsomer centres of mass at equilibrium,
i.e. the radius of the inscribed sphere of the corresponding equi-
librium polyhedron. From these two equations the following two
frequencies are obtained (it has been assumed here that ωb < ωr)

ωb =

√
15(S−D)

IzNMn
, (11)

ωr =

√
15(S+D)

IzNMn
, (12)

where
S = 4Mnkχ+ + Izkr/R2
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Fig. 2 Equilibrium con�guration of T = 1 capsids for pentamers (left) and trimers (right).

and
D =

√
(4Mnkχ+ − Izkr/R2)2 +16MnIz(krχ+/R)2

In these equations NMn is the total capsid mass Mc. The values of
R are R = 1

2 re(1+
√

5)sin(2π/3) for trimers and R = re sin(2π/5)
for pentamers. When krχ+ = 0, ωb =

√
30kr/(McR2) corresponds

to the frequency of the breathing mode while ωr = 2
√

30kχ+/(NIz)

gives the frequency of the rotation mode. All these are relevant
equations since they directly relate three of the force constants of
the model with the frequencies of the totally symmetric normal-
modes.

The coarse-grained model introduced in this work takes rigid
subunits as the interacting bodies in the capsid. These capsomers,
however, are not completely rigid but have internal motions,
which, for an isolated capsomer can be expressed in terms of
its own set of normal modes. These modes may involve more
or less collective motions or even very localised ones. Since the
chosen capsomers have an n-fold rotation symmetry axis (either
n = 3 or n = 5), their normal modes must have the symmetries
of the irreducible representations of the corresponding rotation
symmetry point group (either C3 or C5). Both groups have an
irreducible non-degenerate and totally symmetric representation
A. Besides, while the group C3 has a doubly degenerate addi-
tional representation E, the group C5 has two of this kind, E1 and
E2. If one takes the same particular mode in each capsomer, the
set so formed defines a reducible representation of the icosahe-
dral point group I. By reducing this representation one finds the
symmetry of the corresponding capsid normal-modes in which
the internal capsomer normal-mode participates. This reduction
process is summarised in Table 4. The rigid-capsomer approxi-
mation would require the frequencies of these internal modes to
be much larger than the frequencies of the modes derived with
the rigid model. But situations may occur in which one of these
internal modes corresponds to a very localised and floppy mo-
tion with a low frequency that could appear in the low frequency
region of the coarse-grained modes. For the T = 1 capsids con-
sidered in this work, such a mode shall appear in each of its 60
coat proteins (the capsid asymmetric unit). The set of these 60
equivalent local modes defines a reducible representation for the

icosahedral symmetry group, whose reduction provides the sym-
metry species of the corresponding capsid normal modes. These
species are given in the last row of Table 4. If the local mode
of this kind in a protein is far enough from the atoms in neigh-
bouring proteins, its coupling to the other equivalent modes and
even to other motions will be negligible, and its frequency will be
observed practically unchanged in all the corresponding capsid
normal modes belonging to the symmetry species just given. If
coupling between the local modes can not be neglected, changes
in the frequencies may be observed. Furthermore, the local low-
frequency mode may also couple to the coarse-grained modes and
thus contaminate them and alter their frequencies. These effects
will be discussed for the STNV capsid in the next Section.

Table 4 Reduction of the reducible representations (R. R.) made with

equivalent copies in all the capsid subunits (either 20 or 12) of each

symmetry species of the capsomer symmetry group, Cn (either n = 3
or n = 5), into the irreducible representations (I. R.) of the icosahedral

symmetry group I of the capsid. The last row corresponds to the case of

a representation formed with the 60 equivalent repetitions of a mode in

the asymmetric unit (C1 symmetry group). Note that the sums of the I
I. R. in each of the three groups (C3, C5 and C1) coincide

Capsomer group R. R. I I. R.
C3 20A A⊕T1⊕T2⊕2G⊕H

20E 2T1⊕2T2⊕2G⊕4H
C5 12A A⊕T1⊕T2⊕H

12E1 2T1⊕2G⊕2H
12E2 2T2⊕2G⊕2H

C1 60A A⊕3T1⊕3T2⊕4G⊕5H

To conclude this Section, an illustration of the effect of the
coupling between intracapsomer and intercapsomer modes will
be presented. Suppose one has a capsid intermode (i.e. coarse-
grained) Q1 of frequency ω1, and an intramode Q2 of frequency
ω2, both belonging to the same symmetry species A, and a poten-
tial coupling between them of strength λ . The energy (kinetic +
potential) of these two modes in the harmonic approximation is
then

E =
1
2
(Q̇1

2
+ Q̇2

2
)+

1
2
(ω2

1 Q2
1 +ω

2
2 Q2

2)+λQ1Q2. (13)

The expected situation is that ω2 >> ω1 and in this case the new
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frequencies derived from Eq. (13) are ω ′1 ∼ ω1 − λ 2/(2ω1ω2
2 −

2ω3
1 )≤ ω1 and ω ′2 ∼ ω2 +λ 2/(2ω3

2 −2ω2ω2
1 )≥ ω2, thus while the

intermode low frequency decreases the higher intramode one in-
creases. Besides, some mixing will be observed in the new modes.
Of course, this effect disappears here and in general in the limit
of a very large intracapsomer mode frequency ω2 (rigid capsomer
limit). Contrarily, the effect becomes more pronounced when the
two frequencies get closer and/or the coupling λ increases. When
more modes are coupled (these must all belong to the same sym-
metry species), the situation is more complex but there is always
a decrease in frequency for the lower frequency modes and an
increase for the higher frequency ones.

3 Results and discussion

In this Section the performance of the designed coarse-grained
model in the description of the low-frequency normal modes of
an icosahedral T = 1 capsid will be analysed. The first step in
this analysis is the determination of the model force constants
and thus the parameters values required to describe real capsids.
One direct way to perform this task would be, for instance, from
a fit of the model binary interaction to an atomistic force-field.
Here a different and more profitable approach will be carried
out by fitting the predictions of the coarse-grained model to a
known low-frequency normal-mode spectrum. The data obtained
by Dykeman and Sankey from an atomistic approach for the Satel-
lite Tobacco Necrosis Virus (STNV) capsid75,78 will be used for
that purpose. These authors provide a table with the five lowest
frequencies for the normal modes in each of the symmetry species
of the icosahedral I group (A, T1, T2, G and H). The frequencies
of these modes are collected in Table 5.

Table 5 Frequencies (cm−1) of the normal modes of the STNV capsid

for each of the irreducible representations of the symmetry group I, as
provided by Dykeman and Sankey78

Symmetry ω1 ω2 ω3 ω4 ω5
A 2.41 4.73 5.29 6.08 7.10
T1 2.89 3.57 3.60 4.70 4.89
T2 2.02 3.42 3.43 3.84 4.30
G 2.38 2.60 3.55 3.95 4.14
H 1.95 2.39 2.86 3.57 3.82

Among these normal modes those authors75,78 identify the first
clear intracapsomer collective mode, the so called "puckering" A
mode about the five-fold symmetry axes, at a frequency of 6.08
cm−1. Therefore, this value sets, on one hand, an upper bound on
the frequencies of the normal modes that can be reproduced with
the coarse-grained model and, on the other, the onset of intracap-
somer mode-frequencies. A second intracapsomer A mode of very
floppy and local character (involving around 140 atoms per pro-
tein) was identified at the relatively low frequency of 4.73 cm−1.
As discussed in the previous Section such a mode would imply
the existence of similarly localised modes for the other symmetry
species in the same frequency range, namely three T1 modes, an-
other three T2, four G modes and five H (see Table 5). The two
T1 modes with the highest frequencies (4.70 and 4.89 cm−1) in
Table 5 lie precisely within such a range. However, the number of
atoms participating in these modes is found to be75 around five

times larger than in the related A mode, which would indicate
possible coupling with the intercapsomer modes that may appear
at these low frequencies. The highest frequency mode with A
symmetry in Table 5 at 7.10 cm−1 has also a very local character.

Of the remaining two A modes, the lowest frequency one
(2.41 cm−1) corresponds predominantly to the collective breath-
ing mode of the capsid (radial expansion-contraction). In this
mode the three proteins closer to any threefold rotation axis of
the capsid appear to have a dominant in-phase oscillatory dis-
placement along the direction of this axis75,78, which could be
fairly well described as a quasi-rigid translation of the correspond-
ing trimer. The last A mode at 5.29 cm−1 (a collective rotation
mode) corresponds dominantly to an in-phase oscillatory rota-
tion of the five proteins closer to any of the five-fold rotation axis
around it75,78. Seen from above a threefold rotation axis this
motion appears to be equally well an oscillatory rotation around
this axis of its three closer proteins. Definitely, these two col-
lective A modes are in one-to-one correspondence with the two
A modes (breathing and rotating modes respectively) provided
by the coarse-grained model, whose frequencies, as analytical
functions of model parameters, were given in equations (11) and
(12). However, there are other modes that should be reproduced
and for that a least-squares fit of the normal mode frequencies
predicted by the coarse-grained model to a subset of those col-
lected in Table 5 has been implemented by minimising the cost
function

C =
1
2

√√√√ 1
f

f

∑
i=1

(
ω2

ci−ω2
ti

ω2
ti

)2

, (14)

where f is the number of target frequencies ωti from Table 5 and
ωci the corresponding coarse-grained predictions. The cost C is a
measure of the average frequency relative error of the fit. Differ-
ent sets of target frequencies have been considered. In all cases,
the two A local-character modes (at 4.73 and 7.10 cm−1), the A
"puckering" mode (at 6.08 cm−1) and the two T1 modes (at 4.70
and 4.89 cm−1) that are suspected of being contaminated by the
floppy local motion seen in the 4.73 cm−1 A mode, have been
discarded.

Table 6 Values of the �xed model parameters for trimers (n = 3) and

pentamers (n = 5)

n m θen ren [10−9 m] Mn [10−22 Kg]

3 50 1
2 arccos(

√
5

3 ) 6.400 1.089

5 50 1
2 arctan(2) 8.587 1.815

If the capsomer mass Mn is fixed as well as the geometry of
the capsid by fixing the geometrical model parameters n (to ei-
ther 3 or 5) and θen (to the corresponding required value given
in Section 2), the normal-mode frequencies obtained by solving
the GF secular problem shall depend on 15 variables, namely the
two different moments of inertia (Iz and Ix = Iy) and the 13 force
constants of the binary interaction model as given in tables 1-3.
The equilibrium distance re has also been fixed so as to reproduce
the real size of the virus. Finally a fixed integer value has been
given to the power parameter m, which determines the interac-
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tion length range. The values assigned to these fixed parameters
are collected in Table 6. Hence, the number of force constants
coincides with the number of free interaction-model parameters
pi, i = 0, ...12, and both sets are related by the linear transforma-
tion given in tables 1-3; thus one can readily obtain the values of
one set from those of the other.

The optimal values of the 15 free parameters will be obtained
by minimising C . For this purpose the Basin-Hopping global opti-
misation technique80 was also employed. Here results shall be
presented for the largest subset of objective frequencies taken
from Table 5 which contains the two A-breathing modes at 2.41
cm−1 and 5.29 cm−1, the first three T1 modes (at 2.89, 3.57 and
3.60 cm−1), all five T2 modes for trimers, and the first two of
these for pentamers (for this type of capsomers the model pre-
dicts just two T2 modes), all five G modes for trimers and the first
four of these for pentamers (the model predicts just four G modes
in this case), and all five H modes. Hence, one has f = 20 target
frequencies for trimers and f = 16 for pentamers.

The optimal parameter sets obtained for this sample are given
in Table 7, together with the corresponding values of the cost
function. An interesting result is that since the proposed com-
plete binary interaction model leads to a capsid equilibrium con-
figuration with the symmetry of the icosahedral group I, there
are indeed two equivalent enantiomeric global minima of the cost
function which are transformed into each other by inversion and
provide the same normal-mode frequency spectrum. These two
global minima share the values of all the force constants except
for krφ , krχ+ , kφθ+ , kθ+χ+ , and kθ−χ− , which change sign. In Table
7, just one of these two sets is given. It turns out from the scal-
ing properties of the normal-mode problem that the optimal force
constants given in Table 7 (in units of force/length) are indeed in-
dependent of the length scale of the problem, ren , and only change
if the mass scale, given by the capsomer mass Mn, change; once
these two scales are fixed, the energy scale, p0, is determined by
the fit and depends on the value given to the interaction-range
parameter m.

Finding the global minimum of the cost function was quite
fast and only required a few basin-hopping steps (< 10) when
starting from a random parameter set. Among these steps, just
one competing minimum with slightly higher cost and no essen-
tially different force constants was sampled. These features pro-
vide strong significance to the derived optimal model parameters.
Fig. 3 compares the frequency spectrum predicted by the optimal
coarse-grained models with the target data from Table 5.

The first observation from these results is that the frequencies
of the two totally symmetric modes (A modes) agree, within the
computational precision, with the analytical predictions given in
equations (11) and (12), which were derived assuming contact
interactions with zero frustration. Therefore the results confirm
the hypotheses made in the design of the interaction model. Of
course, the expected capsid binding energy Eb = 30p0 was always
obtained.

Both models (trimers and pentamers) are able to reproduce the
target frequencies within a 5% error. However while the trimer-
model is able to account for more modes as intercapsomer modes,
the pentamer-model would assign the observed modes outside

its predicted spectrum to intracapsomer modes. One may argue
that the rigidity of the subunits is a rough approximation. Indeed
the atomistic results by Dykeman and Sankey78 reveal some de-
gree of mixing between rigid and nonrigid motions. Despite this
behaviour, the work presented here demonstrates that coarse-
grained models that adequately freeze many of the degrees of
freedom of the problem can fit very accurately its low frequency
normal-mode spectrum. Hence, for the STNV capsid there are
not significant difference between the two fits to make a choice
between trimers and pentamers as the optimal subunits.

In general, the normal modes involve the excitation of all in-
ternal degrees of freedom of the capsomer pair and thus their
frequencies are going to depend on all the force constants and
moments of inertia when one changes them in the neighbour-
hood of their optimal values. There is of course the exception of
the A modes which, as seen in equations (11) and (12), only in-
volve the coordinates χ+ and r and the corresponding force con-
stants kr, kχ+ and krχ+ , and the moment of inertia Iz. The other
exceptions are found only for the pentamer capsid. By reduc-
ing the representations Γr and Γt whose basis are, respectively,
the set of the 12 rotation vectors and 12 displacement vectors
along each pentamer body-fixed z axis one obtains the decom-
position Γr = Γt = A⊕T1⊕T2⊕H. The pentamer capsid has just
2 A modes and 2 T2 modes. Therefore the T2 modes share the
known property of the A modes, namely, all these modes are lin-
ear combinations of just the 24 previous coordinates. As a con-
sequence of this, the T2 modes can not excite φ+ and θ+ and
do not depend, therefore, on the force constants in which any of
these coordinates appears as a subscript, neither on the Ix mo-
ment of inertia. Another implication of the previous decomposi-
tions is that the pentamer-capsid G modes can not excite any of
the 24 previous rotations and translations, hence the frequency
of this modes can not depend on Iz. For the trimer capsid the
corresponding 20-dimensional representations Γr and Γt reduce
as Γr = Γt = A⊕T1⊕T2⊕ 2G⊕H and symmetry does not impose
restrictions on the parameter dependence of the modes with the
exception of the two A modes. All these predictions are confirmed
by the calculations. Movies with the motion of some of the coarse-
grained normal modes obtained for the STNV capsid are provided
in the Electronic Supplementary Information.

With the fixed parameters given in Table 6 and the optimal
values of the force-constants given in Table 7 one can readily
calculate the six normal-mode frequencies of an isolated pair of
capsomers at the equilibrium configuration of its binary inter-
action. The values obtained for trimers and pentamers are col-
lected in table 8. This table presents a remarkable result: one
of the mode-frequencies for the pentamer pair has an imaginary
value (1.21i cm−1), which means that the equilibrium configura-
tion corresponds to a stationary point which is unstable along this
mode coordinate (a transition state). The trimer pair, on the other
hand, provides a stable fixed point for the corresponding equilib-
rium configuration. This is a robust result that also appears from
the fit of the simpler binary interaction form Vi j = V (0)

i j +V (1)
i j to

the same target frequencies, and even from the fit of Vi j =V (0)
i j to

a lower-frequency target set. In the following, arguments will be
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Table 7 Minimum values of the cost functions C and the corresponding optimal values of the force constants and moments of inertia for trimers

(n = 3) and pentamers (n = 5). Force-constant units have been converted to N/m by dividing them by r2
en . In each case, an equivalent enantiomeric

set of force constant values exists with only a change in the signs of the �ve force constants krφ , krχ+ , kφθ+ , kθ+χ+ , and kθ−χ−

n C
kr kφ kθ+ kχ+ krφ krθ+ krχ+ kφθ+ kφ χ+ kθ+χ+ kθ− kχ− kθ−χ− Ix = Iy Iz

[N/m] [Mnr2
en ]

3 0.053 39.72 6.874 27.54 15.67 3.568 -24.53 10.99 -9.213 9.508 14.29 2.543 9.770 0.671 0.295 0.904
5 0.047 19.86 0.335 0.389 3.115 1.414 -1.747 3.535 -0.153 1.162 0.180 0.657 0.997 0.254 0.057 0.196

Fig. 3 Capsid frequencies separated by symmetry species. Dotted lines are used for the target frequencies from table 5 and solid lines give the model

results. Black colour is used for the frequencies included in the cost function C and red for the frequencies excluded from the target set. Turquoise is

used for the additional frequencies predicted by the coarse-grained model.

Table 8 Optimal values of the normal-mode frequencies for the binary

interaction for trimers and pentamers in cm−1.

n ω1 ω2 ω3 ω4 ω5 ω6
3 0.76 2.73 2.84 3.22 3.98 8.98
5 1.21i 0.99 1.65 2.31 2.43 3.32

presented to show that these last results are completely consistent
with the current knowledge on the structural properties of the
STNV. In first place, the fit performed here use the target frequen-
cies obtained by Dykeman and Sankey for the STNV empty cap-
sid using an atomistic approach that started from a structure that
was determined by local energy minimisation of the Protein-Data-
Bank 2BUK structure in a classical force-field75,78. The real val-
ues of the capsid frequencies confirm the stability, at least locally,
of such a structure. Obviously, the optimal parameters obtained
from the fit of our coarse-grained model to these data equally
lead in both cases, trimer and pentamers, to locally stable cap-
sid configurations. However, while the configuration for trimers
corresponds to a global minimum of the capsid potential energy
surface V , that for pentamers is just a local minimum and there
are other structures with significantly lower energies. The exis-
tence of these more stable configurations for the pentamer capsid
is a consequence of the inferred instability of the corresponding
binary equilibrium configuration along its unstable mode, where
lower energy structures will exist for the pentamer pair. The un-
stable pair configurations are locally stabilised in the capsid but

beyond this stable point in the capsid configuration space one
shall find the lower energy asymmetric structures in which some
of the capsomer pairs have abandoned their unstable structures.
The icosahedral capsid structure might then be unstable against
thermal fluctuations. Although our optimised model would be
strictly accurate within a small enough neighbourhood around
the chosen equilibrium configurations of both the capsomer pair
and the full capsid, and extending this accuracy beyond this re-
gion would require a more careful choice of the Fi(r) functions, it
can still provide some insight on the structural changes that the
pentamer-pentamer instability will induce. Namely, by moving in
the direction of the unstable mode of the binary interaction we
find stable energy minima in which the C2 symmetry is broken
and the intercapsomer distance is reduced. From the correspond-
ing eigenvector one concludes that the pathway of the unstable
mode corresponds to a coordinate that involves excitation of all
the symmetric internal coordinates r+, φ+ , θ+, and χ+ in simi-
lar magnitudes, but with χ+ excitation having opposite direction
to the other three. It is therefore a symmetric mode, i.e. it does
not change after a π rotation around the original twofold axis of
the transition state. Therefore, the two opposite directions of the
unstable mode are unrelated by symmetry and thus lead to sym-
metry unrelated stable configurations, as can be checked numeri-
cally (they even have different energies). These new equilibrium
structures are also observed in the deeper energy minima that
now exist in the capsid.

There is experimental and theoretical work that indicates that
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the empty STNV capsid is unstable at room temperatures19,89–93.
Arkhipov et al.19 use a coarse-graining molecular dynamics
method with a resolution of ∼200 atoms to show that this empty
capsid collapses to an asymmetric and significantly squeezed
structure. These results are therefore fully consistent with our
previous findings. But why is this instability absent in the coarse-
grained trimer model? The experimental work by Ford et al.91

can help to answer this question. The work by these authors fo-
cuses on the role of RNA-capsid binding interactions in the as-
sembly of STNV for which the inability of its coat proteins to
self-assemble in the absence of RNA was observed. Their results
imply the relevance of these RNA-capsid bonds in stabilising the
capsid structure by overcoming electrostatic repulsion barriers be-
tween coat-protein sites around the threefold symmetry axes and
in making trimers the relevant capsid subunits when RNA lies in-
side. In other words, the instability of the empty capsid is located
around its threefold symmetry axes and the bonds appearing
there with the RNA introduce the required trimer rigidity to sta-
bilise the capsid. Our rigid-trimer coarse-grained model produces
in the capsid the same effect and removes the unstable modes.
In contrast, these are still present in the model with pentamers,
since the three subunits around each threefold symmetry axis can,
in this case, move independently. The effects of those repulsion
barriers between the coat proteins must be present in the empty-
capsid force-field used by Dykeman and Sankey and therefore
in the corresponding low-frequency normal-mode spectrum. As
demonstrated here, a fit of an appropriate coarse-grained model
to this spectrum can uncover the interaction features behind the
spectral features.

4 Conclusions

A minimal coarse-grained model for the interaction energy of vi-
ral capsids as a sum of pairwise interactions between properly
chosen equivalent subunits (trimers and pentamers for T = 1 cap-
sids) has been designed. The model treats these subunits as rigid
bodies and writes for them the most complete form, within the
linear response regime, of their binary interaction as a sum of
the minimum number of anisotropic terms chosen from those of
the general multipolar expansion with lower orders and satisfying
the geometrical constraints imposed by the high symmetry of the
capsid equilibrium structure.

The model has been employed in this work to analyse the
normal-mode frequency spectrum of the capsid. For this par-
ticular purpose and once the two geometrical parameters of the
model (θen and ren ) are fixed, the interaction energy depends on
13 parameters linearly related to the 13 independent elements
of the Hessian force-constant matrix for the binary-interaction
fixed point. Therefore within the rigid-subunit approximation the
model is complete to tackle the analysis of the small capsid os-
cillations. The system kinetic energy introduces three additional
parameters. One of them, the capsomer mass, fixes the mass scale
of the problem, and the other two correspond to the different
capsomer moments of inertia Ix = Iy and Iz. A fit of the predicted
normal mode frequency spectrum to the atomistic data obtained
by Dykeman and Sankey75,78 for STNV empty capsid, a T1 cap-
sid, has been performed, and the values of the 15 free model

parameters (13 force-constant matrix elements and 2 moments
of inertia) have been determined for both trimers and pentamers
as fundamental subunits.

Fair fits with ∼ 0.5% error have been obtained in both cases,
with no significant difference to favour the choice of a capsomer
type over the other. However, the normal mode spectrum of the
binary system (two isolated capsomers) obtained with the fit-
ted parameters has revealed in the case of pentamers an imagi-
nary frequency mode which makes the capsomer-pair equilibrium
configuration unstable along this mode coordinate (a transition
state). The theoretically and experimentally known properties
the STNV capsid, which does not self-assemble in vitro without
the RNA and is unstable at room temperature, would justify the
unstable mode found for pentamers and the inability of the trimer
capsid to detect the instability.

Together with its simplicity, the straightforward generalisabil-
ity of the model beyond the linear regime or to include other
capsomers like hexamers make it a promising tool to theoretically
interpret many experimental data such as those provided by the
atomic force microscopy or even to better understand processes
far from equilibrium such as the capsid self-assembly.
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