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Resumen

La teoŕıa de cuerdas aparece como una propuesta que permite explicar la excistencia
de part́ıculas fundamentales como cuerdas idénticas, que se diferencian entre śı según
el modo en el que oscilan. Es una teoŕıa de campos que no tiene parámetros libres,
solo depende del parámetro que determina la longitud de la cuerda. En este caso se
estudiará la teoŕıa de cuerdas bosónica, que no contempla los fermiones.

Se puede derivar a partir del principio de mı́nima acción. Para la cuerda relativista,
la acción depende del área de la hoja del mundo que representa su trayectoria por el
espacio-tiempo. Se estudian dos acciones equivalentes: la acción de Nambu-Goto y la
de Polyakov. Después de fijar las ligaduras que debe cumplir el sistema, la ecuación
de una cuerda relativista queda esencialmente reducida a una ecuación de ondas. Para
resolverla se imponen condiciones de contorno correspondientes a una cuerda cerrada
o una cuerda abierta con condiciones de Neumann o Dirichlet.

La expresión para la las coordenadas en la hoja del mundo se puede expandir en
modos de Fourier, dando lugar a una ecuación que cuenta con una parte traslacional
y otra asociada a las vibraciones internas de la cuerda. Para una cuerda abierta los
modos solo se propagan en un sentido, mientras que para la cuerda cerrada se deben
tener en cuenta ambos. A partir de la definición de los coeficientes de Fourier, se puede
determinar el momento lineal, y posteriormente, la masa efectiva.

Para cuantizar las ecuaciones se siguen dos procedimientos. Partiendo de la teoŕıa
clásica, se definen los conmutadores a partir de los corchetes de Poisson y los coeficientes
pasan a ser operadores. Con este método aparecen estados de norma negativa a los que
se les denomina estados fantasma. Al eliminarlos aparecen una serie de restricciones que
fijan el número de dimensiones a 26. Por otra parte, haciendo uso de la simetŕıa frente a
reparametrizaciones, se puede definir un gauge en el cono de luz que permite cuantizar
las cuerdas evitando los estados fantasmas. En cambio, al usar estas nuevas coorde-
nadas, la invariancia de Lorentz no se manifiesta y debe ser impuesta. Al recuperarla se
llega nuevamente a las mismas restricciones para la dimensionalidad del espacio-tiempo.

Se puede hacer uso de la fórmula de la masa para obtener el espectro de estados
excitados. El estado fundamental, tanto para cuerdas abiertas como cerradas, corre-
sponde con la representación de un taquión. El primer estado excitado para las cuerdas
cerradas, corresponde sorprendentemente con la representación del gravitón. Este re-
sultado permite establecer una teoŕıa de gravedad cuántica.

Sin embargo, la teoŕıa de cuerdas bosónica no contiene fermiones en sus representa-
ciones. Para completarla se establecen un conjunto de supersimetŕıas, que dan lugar
a las teoŕıas de supercuerdas. Mediante el uso de un superálgebra, se crea un grupo
espacial supersimétrico en el que cada bosón tiene asociado un fermión. Existen 5 tipos
de supercuerdas, todas ellas se definen en espacios de 9 dimensiones espaciales y una
temporal. Se desarrolla una teoŕıa que engloba todas las posibles teoŕıas de cuerdas,
considerando cada una de estas como casos particulares. Es la denominada Teoŕıa-M.
Aunque aún es una teoŕıa desconocida, se ha establecido que sus dimensiones aumentan,
teniendo ahora 10 espaciales y una temporal.



Abstract

String theory comes as a proposal that allows to explain the excistence of funda-
mental particles as identical strings, which differ from each other according to the way
they oscillate. It is a field theory that has no free parameters, it only depends on the
parameter that determines the length of the string. In this case we will study bosonic
string theory, which does not consider fermions.

This may be derived from least action principle. For the relativistic string, the action
depends on the area of the world-sheet that represents its trajectory through space-time.
Two equivalent actions are studied: the Nambu-Goto action and the Polyakov action.
After fixing the bindings to be satisfied by the system, the equation of a relativistic
string is essentially reduced to a wave equation. To solve it, boundary conditions cor-
responding to a closed string or an open string with Neumann or Dirichlet conditions
are imposed.

The resulting expression for the coordinates on the world sheet can be expanded
into Fourier modes, giving rise to an equation that has a translational part and other
part associated with the internal vibrations of the string. For an open string the modes
only propagate in one direction, while for the closed string both must be taken into
account. From the definition of the Fourier coefficients the linear momentum can be
determined, and subsequently, the effective mass.

To quantize the equations, two procedures are followed. Starting from the classi-
cal theory, the commutators are defined from the Poisson brackets and the coefficients
become operators. With this method, negative-norm states are predicted, which are
called ghost states. When they are eliminated, a series of restrictions appear that set
the number of dimensions to 26. Alternatively, by making use of symmetry against
reparametrizations, a gauge can be defined in the light cone that allows quantization
of the strings avoiding ghost states. In contrast, when using these new coordinates, the
Lorentz invariance does not show manifested and must be imposed. When recovering
it, one again arrives at the same restrictions for the dimensionality of space-time.

The mass formula can be used to obtain the spectrum of excited states. The ground
state, for both open and closed strings, corresponds to the representation of a tachyon.
The first excited state for closed strings, corresponds surprisingly to the representation
of the graviton. This result makes it possible to establish a theory of quantum gravity.

However, bosonic string theory does not contain fermions in its representations.
To complete the theory, a set of supersymmetries are established, which give rise to
superstring theories. By using a superalgebra, a supersymmetric space group is created
in which each boson has an associated fermion. There are 5 types of superstrings, all
of them are defined in spaces of 9 spatial and one temporal dimension. From them a
theory is developed that gathers all the possible string theories, considering each one
of them as particular cases. This is the so-called M-theory. Although it is still an
unknown theory, it has been proved that its dimensions increase, having now 10 spatial
and one temporal.
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CHAPTER 1 INTRODUCTION

Chapter 1

INTRODUCTION

En esta sección se explica la motivación principal de la teoŕıa de cuerdas. Se introduce
como teoŕıa unificadora que incluye la gravedad cuántica. Para su derivación se emplea
el principio de mı́nima acción: un principio variacional que permite describir cualquier
teoŕıa f́ısica a partir de una acción que debe ser estacionaria. También se hace un breve
estudio del sistema formado por las cuerdas clásicas.
. . . . . .

1.1 Motivation and justification arguments for string theory

One of the major open problems in physics today is the description of a Grand Unifying
Theory that encompasses all the forces and particles present in the universe. As Maxwell did
in the 19th century, when he discovered the equivalence between the electric and magnetic
fields. Or as happened a hundred years later, when there was established the relationship
between weak and electromagnetic interactions. The current aim is to achieve a universal
and unifying theory.

The Standard Model is the most widely accepted physical model for describing the fun-
damental particles and their interactions. It can even be considered the closest to the GUT
(Grand Unifying Theory). On the other hand, it has certain gaps or unsolved problems such
as: it is not able to explain gravity and it depends on about twenty parameters that cannot
be determined.

The initial development of the string theory consists in supposing a system made of
indivisible elements. Particles are usually thought of as point elements. However, when
thinking of one dimension objects, as strings curved with the shape of a loop, different and
nevertheless interesting results are obtained. String theory can be mainly though of as a
substitution of point particles by one dimension strings. Unlike the Standard Model, where
our four-dimensional space, with three spatial and one temporal dimension is presupposed,
in String Theory the dimensionality of the considered space-time is derived. This allows
to put an end to the problem of undetermined parameters. For strings, only one parameter
results which is associated with the length of the string ls. There are no other free parameters.

The fundamentals of this theory assume that all known particles constituting the universe
are composed of identical strings. Then each particle would correspond to an excited mode
of the string. Meaning, that depending on how they vibrate, they will give rise to different
particles. It can be thought of as a classical string on an instrument producing music: each
mode of vibration gives a different note, just as each mode in string theory represents a
fundamental particle.
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CHAPTER 1 INTRODUCTION

Depending on the conditions considered different theories can be derived. On the one
hand, the theory that emerges from the classical theories can be considered separately. This
does not include anticommutation properties, and therefore, fermions cannot appear. This is
the Bosonic String Theory (that is the one that will be developed in greater depth), where
the predicted particles are only bosons. During the derivation it is concluded that these
strings live in 26 dimensions. On the other hand, if the bosonic theory is expanded by us-
ing super-algebras that include fermions in their representations, both kinds of particles are
taken into account. The strings considered now are called Superstrings. These live in 10
dimensions (one temporal and 9 spatial) and present a series of supersymmetries.

Supersymmetry is a relation that couples bosons, which are the force-carrying particles,
to fermions, which are the matter-carrying particles. Thus, all the fundamental particles are
associated in pairs for each excited state, unless symmetry is broken. It can be also imposed
to the Standard Model. However, the most significant improvement over the Standard Model
is including the particle associated to gravity carriers. In the derivation of string theory, the
graviton emerges as one of the excited states. From it one can derive a quantum gravity
theory and if supersymmetry is considered, supergravity is obtained.

Bosonic strings do not include fermions, so it is not a realistic theory. There are 5 different
superstring theories: Type I, Type IIA, Type IIB, Heterotic SO(32) and Heterotic E8 × E8.
Many interrelations have been observed between them. For this reason, the so-called M-
theory arises later on. It encompasses all string theories, in a space of 11 dimensions, which
are again separated into one temporal and 10 spatial dimensions.

So far, this M-theory remains completely unknown. It can be thought of as a single theory
that has different sides. Just as in Einstein’s theory the reference systems are presented, the
different superstring theories would correspond to the edges of a network of theories aiming
to explain particular cases. This kind of duality describes physical systems that apparently
are completely different but in fact could be identical.

In addition to the difficulty that working in a space with so many dimensions introduces,
the question arises: What happens with these extra dimensions? Why don’t we see them
in our four-dimensional world? Mainly one could start by arguing that, due to the available
technology, it is not possible to observe at such a small scale and check whether it is possible
to detect these dimensions. Assuming that both the length of the string and the size of the
extra dimensions are of the order of Planck’s constant ls ∼ 10−35m, the minimum observed
distance is of the order of 10−18m. Hence, there is a difference of many orders of magnitude.

For this reason, there is no experimental verification of the certainty of this theory to
describe reality. If one could actually measure the length of the string or prove the existence
of more spatial dimensions, there would be some evidences. So far it is assumed that there
are compact dimensions. This consists in supposing that there are objects of dimension D,
which, when observed from a much larger scale, appear to be naturally defined in a space of
lower dimension (see Figure 1).
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Figure 1: Example of compactification of one circular dimension when observing from a much
larger scale.

General physics presents two opposing frameworks that have revolutionized the paradigm
followed up to now. These are relativity and quantum physics. In this sense, string theory
is an excellent candidate as a unifying theory. With it, quantum gravity appears naturally,
filling the gap that was missing to describe the behavior of the universe as a whole.

1.2 The least action as a fundamental principle

The least action principle states that any theory can be described starting from an action.
The fundamental equations of physics are obtained by establishing this action as stationary,
meaning that a physical system will evolve in time in such a way that the resulting action
gives a minimum. If the action for a given mechanical system is denoted by S, the trajectory
followed in space and time by the particle under study must correspond to that which gives
a variation δS equal to zero.

However, it is more accurate thinking of an extremum value instead of restricting it just
to minimum. This assumption comes from general relativity. When considering relativistic
particles the trajectories followed are defined by the geodesic, where the critical point could
either minimize or a maximize the path, depending on the chosen parametrization.

The least action principle is one of the most important methods because of its generality
for the derivation of different theories, models and equations. It can be used in all branches
of physics. Each system can be described from a Lagrangian density that gives an action and
then some restrictions that are included to satisfy the variational principle. The constraints
imposed to make the action stationary give the equations of motion
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1.2.1 Action of the relativistic point particle

The motion of a relativistic point particle can be described from the equations of motion
derived from the principle of least action. The first objective resides in determining the proper
action for the system considered. For the present case, it must satisfy several symmetries,
such as Lorentz invariance. The integral cannot depend on the path considered or on the
reference frame. Therefore, the only possibility is that the action is a scalar. Intuitively it
looks like the interval ds defined between two events in general relativity, should appear since
it fulfills all these conditions. However, the dependence can be a proportionality relation.
That is why a factor α is included, just to avoid loosing generality and provide the correct
dimensions of an action: energy multiplied by time, or similarly ML2/T .

S = −α
∫ b

a

ds. (1)

For a flat spacetime, described by the Minkowski metric, the interval is defined by ds2 =
−(c dx0)2+(dx1)2+(dx2)2+(dx3)2. Thus, if the particle is considered to be static, its interval
should be temporal and all the differentials of the spacial coordinates (dx1 = dx, dx2 =
dy, dx3 = dz) equal to zero. This gives the so-called proper time dτ :

ds2 = −c2 dτ 2 = −c2dt2 + dx2 + dy2 + dz2,

dτ 2 = dt2
(
1− dx2 + dy2 + dz2

c2

)
=⇒ dτ =

ds

c
= dt

√
1− v2

c2
.

As for non-moving free particles the proper time is maximum, the minus sign added in equa-
tion (1) guarantees that the action will be minimum for that simple case. In order to maintain
that statement it can be predicted that α must be a positive constant.

The limits of the integrals are the corresponding positions of the particle at given initial
and final times t1, t2. In agreement with the least action principle, the action can be written
as an integral in time of the form

S =

∫ t2

t1

Ldt. (2)

From this equality and using the previous definition of proper time, it can be observed that
the equivalence between these two equations allows changing the integration variable in the
equation (1), and expressing it as an integral over time dt. This means:

S = −
∫ t2

t1

αc

√
1− v2

c2
dt.

Now it can be seen at a glance that the Lagrangian of the system is L = −αc
√
1− v2

c2
.

In the non-relativistic limit this should give the same result as the classical Lagrangian
for a free particle L = mv2/2. Then the relativistic Lagrangian function is expanded giving
the approximate expression
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L = −αc
√
1− v2

c2
≈ −αc+ α

v2

2c
. (3)

The constant terms appearing in the Lagrangian will not be present in the equations of
motion. Therefore, to obtain an expression that coincides in the classical limit, the constant
term −αc is not taken into account. Consequently in the limit v ≪ c this expression coincides
with the classical one if the constant α is the mass of the relativistic point particle times the
speed of light, i.e.

α = mc. (4)

That assumption emerges from direct comparison of the second term of equation (3) and the
classical expression. What is more, one can observe that for rest particles, the Lagrangian
corresponds to minus the rest energy (E = mc2).

This way one can determine the action of the relativistic point particle with its proper
dimensions, again ML2/T

S = −mc
∫ b

a

ds, (5)

and also the Lagrangian function that is finally given by the equation

L = −mc2
√
1− v2

c2
. (6)

1.2.2 Action for the Schrödinger equation

The Schrödinger equation is a fundamental equation in quantum mechanics that describes
the behavior of quantum systems. Being one of the most important equations of modern
physics, it can be derived from the least action principle as well, where the action is defined
as the integral of the Lagrangian over time. With this another example of the usefulness of
this variational principle is provided.

This derivation leads to the general time-dependent equation, which arises from the con-
sideration of the following Lagrangian density L

L =
iℏ
2
(ψ∗ψ̇ − ψ̇∗ψ)− ℏ2

2m
∇ψ∗ · ∇ψ − V (r)ψ∗ψ. (7)

Here ψ(r) are complex classical fields that represent the states of a particle in quantum
mechanics. The last term on the right hand side is multiplied by V (r), that represents the
external potential, and the other two terms are associated with the kinetic energy for the
supposed quantum particle of mass m.
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The corresponding action, S, is obtained by performing the integration in time of the La-
grangian L, which in turn is found from the integral over the whole volume of the Lagrangian
density.

L =

∫
L dr⃗ , S =

∫ tf

ti

Ldt.

The Euler-Lagrange equations for this system give the same dynamical result for a field
or its complex conjugate. In the present case, the derivatives of the Lagrangian respect to
the fields ψ∗ and ∂ψ∗/∂r⃗ are used. Bearing in mind the form of L in (7), Euler-Lagrange
equations lead to the following equality:

d

dt

(
∂L
∂ψ̇∗

)
+

∂

∂r⃗

(
∂L
∂ψ∗

∂r⃗

)
− ∂L
∂ψ∗ = 0,

iℏ ψ̇ +
ℏ2

2m
∆ψ − V (r)ψ = 0.

This is the time-dependent Schrödinger equation, which describes the behavior of a particle
of mass m in a generic potential V (r).

If instead of using the Euler-Lagrange equations one would develop the action by taking
a variation and making it stationary, the same results are obtained. To do so, suppose a
variation of the action respect to ψ∗

δS =

∫ tf

ti

∫
V

[
iℏ
2
(δψ∗ψ̇ − ˙δψ∗ψ)− ℏ2

2m
∇(δψ∗) · ∇ψ − V (r)δψ∗ψ

]
dr⃗ dt.

Since the variance δψ∗ is arbitrary, it is convenient to write the variation of the action as a
term, that must be zero, multiplied by δψ∗. Therefore, the summands in which instead of
δψ∗ its derivatives appear, must be integrated by parts. This leads to the emergence of the
following boundary terms:

∫ tf

ti

∫
V

˙δψ∗ψ dr⃗ dt =

∫
V

∫ tf

ti

[
d

dt
(δψ∗ψ)− δψ∗ψ̇

]
dt dr⃗, (8)∫ tf

ti

∫
V

∇(δψ∗) · ∇ψ dr⃗ dt =
∫ tf

ti

∫
V

[
∇(δψ∗ · ∇ψ)− δψ∗ · ∇2ψ

]
dr⃗ dt. (9)

where the first term in the first integral can be integrated and evaluated in time, and the first
term in the last integral can be transformed into a surface integral using the Stokes theorem.
This finally gives

∫
V

∫ tf

ti

d

dt
(δψ∗ψ) dt dr⃗ =

∫
V

[δψ∗ψ]
tf
ti dr⃗, (10)∫ tf

ti

∫
V

∇(δψ∗ · ∇ψ) dr⃗ dt =
∫ tf

ti

∫
S

δψ∗ · ∇ψ ds⃗ dt. (11)
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Since these two terms must also cancel out, they give rise to the initial and boundary
conditions that the physical system must satisfy. Thus, the least action principle not only
allows to obtain the equations of motion, but also gives the possible boundary conditions,
which emerge from the boundary terms coming from the integration by parts.

Notice that Schrödinger equation demand to define proper boundary conditions. The first
result shown in equation (10), sets the values for the initial and final times, requiring the
variation to be zero. The boundary conditions (11) state that the flow through the surface
delimiting the volume under consideration must be zero. This either because the function is
zero at the border or because the current across the boundary cancels out.

1.2.3 Other examples of the least action principle

In order to emphasize the versatility of the least action principle, some examples of equations
and laws of great importance in physics which can be obtained from an action, are shown
below.

The first example are the famous Maxwell equations for the free electromagnetic field.
Suppose certain electric field E⃗ and a magnetic field B⃗, both defined in a volume V . The
whole theory can be derived from a Lagrangian density that leads to the corresponding action

SEM = − 1

8π

∫ tf

ti

∫
V

(E⃗2 − B⃗2)dr⃗dt.

It can be also convenient to use the tensorial notation, replacing those two fields in the
Lagrangian density by the electromagnetic field, denoted as F ik. Therefore, as the action
has to be an scalar, it takes the form

SEM = − 1

16πc

∫ tf

ti

∫
V

FikF
ikdr⃗dt.

On the other hand, it can be also used in quantum mechanics to derive the Dirac equation.
This equation describes a fermionic field of spin-1/2 particles. If there are no interactions,
the Dirac equation for free fermions emerges from the following Lagrangian density:

L = ψ†γ0(iℏc γµ∂µ −mc2)ψ,

where ψ is a spinor representing the field of the fermionic particles and γµ are the so-called
Dirac matrices.

Changing the framework under study, one can consider for instance the Einstein equations
for general relativity. In the derivation for the relativistic particle it was shown that the action
must be a scalar, and it seems to be related with the metric when the whole spacetime is
considered and not only a region. Introducing the scalar R that gives the curvature of space,
this action is given by

8
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SGR = − c3

16πG

∫
Ω

R
√
−g dΩ,

being c and G the light speed constant and the gravitational fundamental constant, respec-
tively. Note that in this case the integration is done over a Ω space, that represents all the
coordinates, temporal and spatial.

It can be also mentioned that this theory can be derived from this Lagrangian straight-
fowardly. The problem with general relativity emerges when one tries to quantize it. The
classical gravitational field is well defined by the resulting equations, but the quantum field
does not seem possible.

1.3 The classical string

Before considering the general case, it can be helpful to study the classical (nonrelativistic)
string. Assuming a string of length a with fixed endpoint (0, 0) and (0, a) in the (x, y) plane.
This makes that only transverse oscillations are allowed, meaning that only the y coordinates
of each point of the string may vary in time.

The dynamical configuration of a string is mainly described by the tension T0. Thinking of
a dimensional analysis, this must have units of force, or equally, mass times velocity squared
(energy) over length

[T0] = [Force] =
[Energy]

L
=
M [v2]

L
, (12)

where the squared brackets are used to denote units. M comes from mass units and L from
length units. The mass per unit length is also a known parameter for a string. It is called
the mass density and it is usually denoted as µ0.

Now that the force and the mass parameters are determined, Newton’s laws can be applied
in order to obtain the equation of motion. Equating the vertical force to the mass times the
acceleration, one arrives at the typical wave equation

∂2y

∂x2
− µ0

T0

∂2y

∂t2
= 0. (13)

From the dimensions of the tension shown in (12), it can be deduced that the velocity of the
string oscillations can be written in terms of the mass density and the tension. Thus, the
velocity of the waves taking place on the studied string v0 =

√
T0/µ0, can be substituted in

the previous expression, giving the final wave equation:

∂2y

∂x2
− 1

v20

∂2y

∂t2
= 0. (14)

The equation of motion of the classical string can also be derived from a Lagrangian
density. The latter will determine the action to be employed when applying the variational
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principle. The Lagrangian of a system is typically given by its kinetic and potential energy,
denoted by T and V respectively.

L = T − V ; T =

∫ a

0

1

2
(µ0 dx)

(
∂y

∂t

)2

, V =

∫ a

0

1

2
T0

(
∂y

∂x

)2

dx.

The integrals are defined along the string, so the total energy is obtained by taking all the
infinitesimal segments dx. Note that in the kinetic energy, instead of the total mass m ex-
pected for a point particle, there appears the mass density multiplied by the infinitesimal
length interval dx. Similarly, the potential energy is determined from the work done over
each fragment ∆l, that in the matter under consideration is T0∆l. After taking infinitesimal

segments, ∆l can be approximated to 1
2

(
∂y
∂x

)2
dx.

At last the Lagrangian density L is defined. It should be integrated to obtain the La-
grangian of the system L(t) and subsequently for the action of the string.

L
(
∂y

∂t
,
∂y

∂x

)
=

1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2

L(t) =

∫ a

0

L dx , S =

∫ tf

ti

L(t) dt.

Assuming a variation in the action δS and making it vanish, one obtains that the resulting
equation of motion is identical to the wave equation (13), as expected. But when integrating
by parts, two other terms appear which are evaluated at the boundaries. Since these terms
must also cancel out, the boundary conditions and initial conditions are set in such a way
that they verify for these terms to be equal to zero [1].

As one must deal with a partial differential equation to solve this kind of problems,
those boundary conditions and initial conditions should be set. The most common boundary
conditions are Dirichlet and Neumann boundary conditions (see Figure 2). The first are used
to describe strings whose ends are fixed (equations (15)), giving the corresponding values
at x = 0 and x = a. Meanwhile the others refer to endpoints that are free to move in y
direction. This are obtained evaluating the derivative ∂y/∂x (equations 16).

y(t, x = 0) = y(t, x = a) = 0 ⇔ ∂y

∂t
(t, x = 0) =

∂y

∂t
(t, x = a) = 0, (15)

∂y

∂x
(t, x = 0) =

∂y

∂x
(t, x = a) = 0. (16)

Once the proper boundary conditions are set, the general solution for this problem is a
superposition of two arbitrary functions travelling in opposite directions

y(t, x) = h+(x− v0t) + h−(x+ v0t). (17)

From the starting configuration given by the initial conditions, the corresponding value of
the function y(t, x) and its time derivative at t = 0 is known

10



CHAPTER 1 INTRODUCTION

Figure 2: Representation of the motion allowed for the endpoints of a string depending on
the boundary conditions imposed. Left: Neumann boundary conditions. Right: Dirichlet
boundary conditions.

y(0, x) = h+(x) + h−(x),

∂y

∂t
(0, x) = −v0

dh+
dx

+ v0
dh−
dx

.

These equations allow solving the shape of h+ and h− from the fist-order differential equa-
tions and using the boundary conditions. When the functions h+ and h− are obtained, the
full solution of the equation of motion can be calculated from the sum (17).

In the case of ideal oscillations, where each point of the string is in phase and doing a
sinusoidal transverse movement, the function y(t, x) would take the form

y(t, x) = y(x) sin(ωt+ ϕ),

where ω is the frequency and ϕ the phase constant. This leads to a wave equation were the
allowed frequencies can be determined.

Depending on the imposed conditions for the system, one obtains the following nontrivial
solutions that depend on an arbitrary constant An:{

yn(x) = An sin
(
nπx
a

)
, n = 1, 2, ... for Dirichlet BC,

yn(x) = An cos
(
nπx
a

)
, n = 0, 1, 2, ... for Neumann BC.

Substituting that in the resultant wave equation for this problem gives the possible oscillation
frequencies.

d2y(x)

dx2
+ ω2µ0

T0
y(x) = 0 , with ωn =

√
T0
µ0

(nπ
a

)
.

where ωn gives the shape of the allowed frequencies. In both cases those are the same, except
that for Neumann boundary conditions it is admitted the situation with n = 0.

11
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Chapter 2

THE RELATIVISTIC STRING

Considerando las condiciones a las que está sujeta una cuerda relativista, se obtiene la
acción de Nambu-Goto a partir del área de la hoja del mundo. La acción de Polyakov es
equivalente a ésta, por lo que las ecuaciones del movimiento derivadas en ambos casos
son idénticas. También deben satisfacer las mismas ligaduras.
. . . . . .

Since general relativity it is known what is the path that a particle leaves when traveling
through space-time. This corresponds to what is called the world-line. It is an intuitive
representation of the trajectory of a relativistic point particle when it is moving, where one
axis shows the variation in space and the other axis is for time.

The next step would be to do the same procedure but with a one dimensional object. In
that case instead of drawing a line, it trivially appears as a two dimensional object. Therefore
a string moving in space-time forms the so-called world-sheet. In Figure 3 the world-sheet of
an open string and a closed string are shown respectively.

Figure 3: Representation of the world-sheet resultant for open (left) and closed (right) strings
when traveling through space-time. All spacial dimensions are included in the horizontal
planes where the string is contained at each instant. The temporal dimension is the one
represented in the vertical axis. For all fixed times, the world-sheet gives the corresponding
position of the string in space.

12



CHAPTER 2 THE RELATIVISTIC STRING

2.1 Action of a relativistic string

In the following, the behavior of a relativistic string will be studied. For this purpose, the
equations of motion must be determined. As in the previous section, they will be obtained
from the least action principle (as was done with the relativistic particle) and certain bound-
ary conditions must be set (just like the classical string). In agreement with the procedure
followed for the point particle, the action of the relativistic string must be derived first.
Therefore, a scalar is also used so that it remains invariant to Lorentz transformations.

For the relativistic point particle the quantity used was the interval that describes its
world-line. It seems intuitively reasonable that for a 1-dimensional string this quantity could
be the area of the world-sheet created by the string. Through this reasoning one arrives to
the Nambu-Goto action (whose name comes from the physicists Yoichiro Nambu and Tetsuo
Goto).

Nambu-Goto action:

To describe a two dimensional surface, the coordinates of the string are needed to be
parameterized first. This means that each point of the string will be defined by a mapping
function that transforms the coordinates from the parameter space into the spacetime. For
convenience this parameters are usually denoted as τ and σ, being associated to a temporal
and a spacial parameter respectively.

Therefore certain given region from the parameter space (τ, σ) is transformed by the
mapping functions Xµ(τ, σ) (see Figure 4), that are the coordinates of the string

Xµ(τ, σ) = (X0(τ, σ), X1(τ, σ), ..., Xd(τ, σ)).

Now the two infinitesimal vectors corresponding to a variation in each direction of the
parameter space are defined separately:

dvµ1 =
∂Xµ

∂τ
dτ , dvµ2 =

∂Xµ

∂σ
dσ.

These vectors represent the corresponding quadrilateral surface in the world-sheet. As they
together take the generic form of a parallelogram, its area can be calculated by means of the
formula:

dA =
√
(dv1 · dv1)(dv2 · dv2)− (dv1 · dv2)2.

Using the scalar product, as well as for the point particle, guarantees that the result is
a Lorentz invariant. However, the term in the square root is negative. In order to obtain
the action from this quantity, a change in the sign would not affect the result. After this
small modification, the definitions of dvµ1 , dv

µ
2 are substituted, and with the relativistic dot

product notation, one finally arrives at

13



CHAPTER 2 THE RELATIVISTIC STRING

Figure 4: World-line of a relativistic point particle in the parameter space and in the target
space. Bellow the world-sheet for an open string is shown, also in the parameter space and in
the target space. The change from one system to the other is done mapping the coordinates
by expressing them in terms of arbitrary parameters. The way this coordinates transform
allows the reparametrization invariance, meaning that they can be written in terms of other
parameters and return the same result.

A =

∫ √(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂σ

)2

dτdσ. (18)

As it was done with the point particle, there is a constant that should be added, to provide
the proper dimensions. In fact, if a dimensional analysis is performed, it can be seen that the
action has units ofML2/T , while those of the area are L2. The missing constant will have to
add units of mass divided by time. This corresponds precisely to the units of tension divided
by velocity (12). Because of the relativistic nature of the problem, that velocity seems to
correspond to the speed of light. So the action would have as a proportionality constant T0/c.

Introducing the abbreviated notation for partial derivatives

Ẋµ ≡ ∂Xµ

∂τ
, Xµ′ ≡ ∂Xµ

∂σ
,

one reaches the final expression of the Nambu-Goto action:

S = −T0
c

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 . (19)

The integral is defined between the limits of an initial and final time corresponding to the
values τi, τf of the temporal parameter, and between 0, σ1 for the spacial one. If it turns out

14



CHAPTER 2 THE RELATIVISTIC STRING

that σ is periodic, the system corresponds to a closed string.

By direct inspection of equation (5) for a relativistic point particle, one can notice that
this action may be defined as a function of the metric. The definition of the relativistic dot
product says that for a generic metric the interval can be written as

ds2 = −gµν(X)dXµdXν . (20)

Assume that the coordinates for the one-dimensional world-line are expressed using only one
parameter X(τ). Thereby the action of the point particle is also defined by the following
expression

S = −mc
∫ √

−gµν
dXµ(τ)

dτ

dXν(τ)

dτ
dτ.

Returning to the problem at hand, the action of a string will also depend on the metric.
In that case, the surface under consideration is a 2-dimensional object, thus two parameters
are needed to determine the world-sheet coordinates.

An induced metric is also defined, which will be the one intrinsic to the world-sheet. If
flat Minkowski space can be used in this situation, the metric gµν = ηµν . The interval in
equation (20) can be obtained as a function of the surface parameters by applying the chain
rule for the coordinates Xµ, i.e.

ds2 = −ηµνdXµdXν = −ηµν
∂Xµ

∂σα
∂Xν

∂σβ
dσαdσβ. (21)

The generic situation of dimension D, has parameters σd = (σ0, σ1, ..., σD−1). In the proposed
scenario, only two parameters are used: σ0 = τ, σ1 = σ. This makes that 0, 1 are the only
possible values for the sum over α and β that is implicit in the previous equation.

Here it is defined the induced metric of the surface, that arises from placing the string in
a D dimensional space. As σd are arbitrary parameters, this equality must remain satisfied
and invariant. From this statement one can prove that Nambu-Goto is a reparametrization
invariant action. So the induced metric (Gαβ) will depend on the parameters used

Gαβ ≡ ηµν
∂Xµ

∂σα
∂Xν

∂σβ
=
∂X

∂σα
· ∂X
∂σβ

. (22)

From the definition above, the different terms that result from giving values to α, β = 0, 1
can be calculated. Matrix representation of this metric reveals its explicit shape
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G00 =

(
∂X

∂τ

)2

= (Ẋ)2,

G11 =

(
∂X

∂σ

)2

= (X ′)2,

G01 = G10 =
∂X

∂τ
· ∂X
∂σ

= Ẋ ·X ′,

=⇒ Gαβ =

(
Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

)
. (23)

To complete this derivation, one should note that the determinant of Gαβ is equivalent
to the term in the square root of equation (19) for the action. Calling G = det(Gαβ), the
Nambu-Goto action in its reparametrization invariant form is given by

S = −T0
c

∫ √
−G dτdσ. (24)

Polyakov action:

In addition to this equation, there exists the Polyakov action. Here the dependence
is established using another metric introduced as an auxiliary field: the intrinsic metric
hαβ(τ, σ). This is more general since it has not been reduced to the Minkowskian flat metric.

S = −T0
2 c

∫ √
−hhαβ ∂X

µ

∂σα
∂Xν

∂σβ
gµν dτ dσ . (25)

The Polyakov action is a redefinition of the previous one, which, since it does not contain
a square root, it is more convenient for certain calculations. Both actions are equivalent
and it can be proved by doing small variations of the Polyakov action respect to the field
hαβ (Wray, pp 22-23, [2]). Thus same equations of motion and the same quantization of the
strings are obtained in both cases.

2.2 Equation of motion for strings

Once the action is known, the equations of motion can be derived from it. In agreement
with the least action principle, if a variation δS is computed, the equations of motion for the
relativistic string will emerge by setting δS = 0.

In this calculations Nambu-Goto action will be used. For simplicity of writing, one begins
by explicitly defining the action as a function of a Lagrangian density

L(Ẋµ, Xµ′) = −T0
c

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

S =

∫ τf

τi

dτ

∫ σ1

0

dσ L(Ẋµ, Xµ′).
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Once this simple notation has been entered, the variational principle is applied.

δS =

∫ τf

τi

dτ

∫ σ1

0

dσ

[
∂L
∂Ẋµ

∂(δXµ)

∂τ
+

∂L
∂Xµ′

∂(δXµ)

∂σ

]
.

When the variation is made, the terms ∂L/∂Ẋµ and ∂L/∂Xµ′ arise. These are the momenta
of the string and as they are important quantities, they will appear on several occasions.
Therefore they are denoted with their own symbols.

Pτ
µ ≡ ∂L

∂Ẋµ
= −T0

c

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
, (26)

Pσ
µ ≡ ∂L

∂Xµ′ = −T0
c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
. (27)

This notation is then inserted in the equation for δS. By making some modifications to
the derivatives in order to group them in a more convenient way, it results in the following
for the term in brackets:

[
Pτ
µ

∂(δXµ)

∂τ
+ Pσ

µ

∂(δXµ)

∂σ

]
=

[
∂

∂τ
(Pτ

µ δX
µ) +

∂

∂σ
(Pσ

µ δX
µ)−

(
∂Pτ

µ

∂τ
+
∂Pσ

µ

∂σ

)
δXµ

]
.

The first two terms in the right-hand side are full derivatives, so after doing the integral
by parts they will depend on the initial and boundary conditions. Cancelling the boundary
terms requires a different study about these constraints (as was done for (11) and (10) in
the derivation of Schrödinger equation). However, the last term must go to zero always, for
every arbitrary variation carried out. No other possibility is left but to make equal zero the
term in parenthesis, yielding the equations of motion for the relativistic string

δS =

∫ σ1

0

dσ
[
Pτ
µ δX

µ
]τf
τi
+

∫ τf

τi

dτ
[
Pσ
µ δX

µ
]σ1
0

−
∫ τf

τi

dτ

∫ σ1

0

dσ

[(
∂Pτ

µ

∂τ
+
∂Pσ

µ

∂σ

)
δXµ

]

=⇒
∂Pτ

µ

∂τ
+
∂Pσ

µ

∂σ
= 0 . (28)

As mentioned above, the first two boundary integrals appearing at the right hand side
of the equality must go to zero as well. For the first one to vanish, one can simply consider
the initial and final states such that their variation is zero δXµ(τf , σ) = δXµ(τi, σ) = 0.
The second integral is related with the endpoints of the string, and 2D boundary conditions
are required. Following the same procedure as for the classic string, Dirichlet boundary
conditions are set for the spatial terms

∂Xµ

∂τ
(τ, σ∗) = 0 , µ ̸= 0 , σ∗ = 0, σ1;
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Figure 5: Possible boundary conditions for the relativistic string: the closed strings that has
no endpoints and open strings fixed to D-branes. The open strings can have both endpoints
fixed to the same brane, or start in a brane and end in a different one.

where µ = 0 must be excluded because time varies with τ . Therefore, a condition can be
set to force Pσ

0 (τ, σ∗) to vanish as well. These are the free endpoints condition and can be
associated with Neumann boundary condition

Pσ
0 (τ, σ∗) = 0 , σ∗ = 0, σ1.

Dirichlet boundary conditions arise from assuming fixed endpoints in the string. In the
relativistic string the objects to which the string is fixed are called D-branes. The dimen-
sionality of these branes depend on the freedom the endpoints have to move. It can be a
point, what means a 0 dimension brane (D0-brane), a line (D1-Brane), a plane (D2-brane)
or a hiper surface (Dp-brane). For instance, if the endpoints have free boundary to move
means that there is a D-brane filling the space. Figure 5 shows some examples of how strings
that have boundary conditions associated with branes are distributed.
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Chapter 3

SYMMETRIES OF THE BOSONIC STRING

Las acciones de la cuerda relativista presentan simetŕıas globales y locales. En esta
sección se demuestra que la acción de Polyakov cumple las simetŕıas correspondiantes a
las transformaciones del grupo de Poincaré, la invariancia frente a reparametrizaciones
y la simetŕıa frente a un cambio de escala local (simetŕıa de Weyl). Al aplicarlas se
obtienen restricciones adicionales que se deben verificar junto con la ecuación de onda.
. . . . . .

According to the actions that determine the world-sheet of a bosonic string, there are
some interesting transformations that maintain these actions invariant. These can be di-
vided in two kinds: global symmetries and local symmetries. Both will be studied in this
section, giving rise to new restrictions that must be met.

The global symmetries are those that do not depend on the coordinates of the spacetime
where the transformation is applied. These are satisfied in all the spacetime considered, and
their parameters do not depend on the coordinates. For the case of local symmetries, the
changes that affect in different regions of spacetime are involved, so they will depend on
where the transformation is performed.

3.1 Global symmetries

The response of the whole spacetime to these global transformations must include the ones
corresponding to the background. Taking the Minkowski space, that must comply with the
Lorentz invariance, the first global symmetry that our system presents is against the so-called
Poincaré transformations.

Poincaré’s group consists of an extension of the Lorentz transformations with the group of
spatial translations and rotations of the Minkowski space. The generic form of the Poincaré
transformations is as follows δX

µ(τ, σ) = aµν X
ν(τ, σ) + bµ,

δhαβ(τ, σ) = 0.

This emerges from an infinitesimal Lorentz transformation

X ′µ = Λµν X
ν , with Λµν = δµν + aµν .

Thus, the variation under Lorentz transformation is given by δXµ = aµνX
ν . But Lorentz

invariance should be imposed here, meaning that for any spacetime interval δ(ηµνX
µXν) = 0.

Using the property of a symmetric ηµν , one can deduce that this condition is satisfied if aµν
is antisymmetric
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δ(ηµνX
µXν) = 2 ηµν δ(X

µ)Xν = 2 ηµν(a
µ
ρX

ρ)Xν = 2 aρνX
ρXν = 0.

Looking at the resulting expression it can be seen that the only way to obtain zero is that
the terms on which the sum is made cancel out. Which yields the general solution aρν = −aνρ.

Knowing the meaning of these transformations, the main interest is to show that actions
are invariant against them. For this purpose, the Polyakov action (25) will be used in the
following development. In addition, the expressions can be simplified by setting c = 1. By
doing this, the writting gets simpler as constant c will not appear anymore. But the general
units of the problem are changed. Under this consideration it is said that normalized units
are employed, and they will be used hereafter.

A variation performed in this action according to the Poincaré transformations, keeps the
metric hαβ(τ, σ) defined in the world-sheet unchanged. However the two derivatives ∂αX

µ,
∂βX

ν present variations that will be considered separately and summed. If the indices are
exchanged in that sum, one reaches the following variation of the action

δS = −T0
∫
dτdσ

√
−hhαβ ∂α(δXµ) ∂βX

νgµν .

But the variation of Xµ was already defined by aµρX
ρ + bµ. None of the components of aµν

and bµ depend on the spacetime coordinates, so their derivatives are zero, making possible
to simplify the previous expression

δS = −T0
∫
dτdσ

√
−hhαβ ∂α(aµρXρ + bµ) ∂βX

ν gµν

= −T0
∫
dτdσ

√
−hhαβ aµρ ∂αXρ ∂βX

ν gµν

= −T0
∫
dτdσ

√
−h aνρ(hαβ ∂αXρ ∂βX

ν),

where the last equality is obtained using the general metric tensor gµν to lower the indices
of aµρ. At first glance it may not appear to be zero, but it is. It has been shown above that
aνρ (with both indices lowered) is antisymmetric, and the term in parentheses is symmetric,
since it depends only on the intrinsic metric and the derivatives of the string coordinates.
The product of a symmetric term and an antisymmetric term enables us to conclude that
the variation is zero δS = 0. At this point it is finally proved that the Polyakov action is
invariant against Poincaré transformations.

3.2 Local symmetries

Bosonic strings also present local symmetries. Those are transformations that depend on the
metric and on the coordinates of the world-sheet.
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3.2.1 Reparametrization invariance

This is a property that depends on the chosen parameters of the world-sheet. As mentioned
in the derivation of the Nambu-Goto action, reparametrization invariance must be satisfied.
Analogously for Polyakov action, due to the fact that both actions are equivalent.

Simply looking at the equations that give the actions (19), (25), the components of the
string coordinates Xµ are transformed as scalars for different parameters σ → σ′ = f(σ).
Besides, in the Polyakov action, the metric hαβ varies as a second order tensor.

Xµ(τ, σ) = X ′µ(τ, σ′) , hαβ(τ, σ) =
∂fγ

∂σα
∂fλ

∂σβ
h′γλ(τ, σ

′).

This kind of symmetries shows a redundancy in this theory. Meaning that bosonic string
theory actually has fewer degrees of freedom than initially expected.

3.2.2 Weyl symmetry

In addition to the aforementioned symmetries, the Polyakov action fulfills one more sym-
metry. Since it is defined by the intrinsic metric of the world-sheet, if a transformation
were to change the scale, this metric must remain invariant. These are the so-called Weyl
transformations:

hαβ(τ, σ) → h′αβ(τ, σ) = e2ϕ(σ)hαβ(τ, σ). (29)

Note that this transformations are local because the function ϕ(σ) depends exclusively on
the world-sheet parameters, that are defined locally.

A change in the scale leaves the variation of the coordinates Xµ(τ, σ) equal to zero, i.e.
δXµ(τ, σ) = 0. However, one must check whether the other quantities appearing in the action
are invariant as well. Beginning with the term of the determinant

√
−h′ =

√
−det(h′αβ) = e2ϕ(σ)

√
−det(hαβ) = e2ϕ(σ)

√
−h. (30)

Doing a Taylor expansion of the exponential function and considering an infinitesimal varia-
tion, all the terms of higher order in ϕ can be neglected, leaving only the linear ones. Thus,
for the metric with both upper indices

h′αβ = e−2ϕ(σ)hαβ = (1− 2ϕ+O(2))hαβ ≈ (1− 2ϕ)hαβ , δhαβ = −2ϕhαβ.

Now these transformed terms are multiplied and substituted using the first equality of
the previous equation, which gives

√
−h′h′αβ = e2ϕ(σ)

√
−he−2ϕ(σ)hαβ =

√
−hhαβ. (31)

This equivalence confirms the Weyl symmetry of the Polyakov action under these trans-
formations, i.e. independently on the scaled metric that is being used, the action S does not
change.
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3.3 String equation and its constraints

Knowing these properties, the gauge symmetry of this theory can be used to simplify the
equations of motion. Since the actions are equivalent, their corresponding equations of mo-
tions must be equivalent as well. For the Polyakov action, it is explicitly written as

∂

∂σα

(√
−hhαβ ∂X

µ

∂σβ

)
= ∂α

(√
−hhαβ ∂βXµ

)
= 0.

A locally flat metric can be chosen for this purpose. Using invariance against reparametriza-
tions, a so-called conformal gauge metric is strategically selected. If ϕ(τ, σ) is a function of
the world-sheet, the form of this metric will be

hαβ = e2ϕηαβ,

where, of course, one can select the condition of ϕ = 0 and reach the Minkowski flat metric.
With that choice, the Polyakov action (25) simplifies significantly

S = −T0
2

∫
d2σ ∂αX · ∂αX,

and the equation of motion for coordinates Xµ reduces to the free wave equation, in equiva-
lence to the classical string equation (14)

∂α∂
αXµ = 0. (32)

Note that in this expression there is an implicit sum over α, and the sacalar product is ac-
tually the relativistic dot product.

This equation now is satisfied whether the metric is set to be flat. However it may be
generalized for an arbitrary hαβ. To ensure so, the action must not change when the metric
varies; i.e. the derivative of the Polyakov action respect to hαβ must be zero. But this
derivative is a very important quantity, as it defines the stress-energy tensor Tαβ. Applying
certain normalization conditions, just for convenience, the stress-energy tensor is expressed
as

Tαβ = − 2

T0

1√
−h

∂S

∂hαβ
. (33)

Now a variation of the action under a generic transformation of the metric is calculated.
Restricting it only to Weyl transformations (30), the resulting variation is

δS = −T0
2

∫
dτdσ

√
−h δhαβ Tαβ = −T0

2

∫
dτdσ

√
−h (−2ϕ)hαβ Tαβ.

From this result, for the least action principle to be satisfied, the only possibility (since
√
−h

and ϕ can take any arbitrary value) is provided by the condition

hαβTαβ = 0. (34)
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Returning to the previous assumption in which a flat metric is used, this equality leads
to a traceless stress-energy tensor. Considering a matrix corresponding to a two-dimensional
space, and knowing that the metric hαβ = ηαβ is symmetric, this result may be expressed
explicitly as

hαβ(X) = ηαβ =

(
−1 0
0 1

)
=⇒

T01 = T10 = Ẋ ·X ′ = 0,

T00 = T11 =
1
2
(Ẋ2 +X ′ 2) = 0,

Ẋ ·X ′ = 0 , (Ẋ2 +X ′ 2) = 0 . (35)

The assumption of a flat space can only be done locally. In general, this condition cannot
be extended, although these constraints must be satisfied for all the local regions considered
independently of the boundary conditions of the system. This means that they are needed
to fulfill the least action principle and to continue with the development of the theory.

To summarize, it can be seen that the motion of a relativistic string is just equivalent
to solving a wave problem with given boundary conditions. Even now the three possibilities
supposed for the endpoints (closed string, open string with Dirichtlet boundary conditions or
open string with Neumann boundary conditions) led to the same constraints. By joining the
wave equation (32) in its expanded form and the constraints to be fulfilled (35) compacted
in one expression, the problem is finally reduced to the equations(

∂2τ − ∂2σ
)
Xµ(τ, σ) = 0 , for

(
Ẋ ±X ′

)2
= 0. (36)
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Chapter 4

MODE EXPANSION

Se resuelve la ecuación de ondas a partir de una solución general para las coordenadas
en la hoja del mundo. Realizando una expansión en modos de Fourier el movimiento
de la cuerda se descompone en un término traslacional y otro para las oscilaciones in-
ternas. Se determinan nuevos coeficientes que se relacionan con el momento lineal y
permiten obtener la relación para la masa asociada a cada modo.
. . . . . .

Once the constraints required for a relativistic string have been established, it enables
further development and resolution of the equations that govern its nature. Following the
same procedure as with the classical string, the wave equation (32) can be solved now. For
this, a generic solution for two arbitrary functions fµ, gµ is proposed. Analogously, one is
travelling to the right and the other to the left; therefore the resulting function takes the
form

Xµ =
1

2
(fµ(τ + σ) + gµ(τ − σ)) .

Suppose an open string moving in a space-filling D-brane as a general situation. The
boundary conditions are imposed in such a way that the free endpoints must satisfy Neumann
conditions. Therefore at σ = 0 it leads to

∂Xµ

∂σ
(τ, 0) =

1

2
(fµ′(τ)− gµ′(τ)) = 0.

So the derivatives of fµ and gµ are equal, giving that the functions can only differ in a
constant. But the constant can be included if a redefinition of fµ is done, then

Xµ =
1

2
(fµ(τ + σ) + fµ(τ − σ)) . (37)

If the same condition is placed on the other boundary σ = π, it is clear that the derivative
fµ′ is periodic, with natural period 2π. As a generic periodic function, it can be expanded
in a Fourier series and then integrated

fµ′(u) = fµ1 +
∞∑
n=1

[aµn cos(nu) + bµn sin(nu)] ,

fµ(u) = fµ0 + fµ1 u+
∞∑
n=1

[Aµn cos(nu) +Bµ
n sin(nu)] ;

where in the second expression the integration constant was absorbed by the new coefficients
of the expansion and fµ0 is added.
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Substituting this result in the proposed solution gives a proper expression for the fields
Xµ. Using some trigonometric relations, the arguments can be separated in terms of τ or σ
for more simplicity, giving rise to the expanded function

Xµ(τ, σ) = fµ0 + fµ1 τ +
∞∑
n=1

[Aµn cos(nτ) +Bµ
n sin(nτ)] cos(nσ).

This can be also written in terms of complex exponential functions. Before doing so, new
constants will be defined to change them for those appearing in this equation.

So far, all equations depend on one parameter: T0. Since the beginning of string theory
the slope parameter α′, started to be used. It is obtained from the proportionality relation
between the angular momentum of the string and its energy squared. It is defined by

α′ =
1

2π T0 ℏc
, or α′ =

1

2π T0
in natural units (c = ℏ = 1),

and it is proportional to the string tension.

By thinking of the units, one can easily see that the slope parameter should have dimen-
sions of length squared, when natural units are used. That gives a hint about its relation
with the string length ls. Therefore it can be also defined in an alternative way

ls = ℏc
√
α′ or ls =

√
α′.

The constraints obtained from the stress-energy tensor (35) allows to simplify enormously
the expressions that define the momentum density of the string (26) and (27). If this param-
eter is also inserted into the mentioned equations, they will reduce respectively to

Pτµ =
1

2π α′ Ẋ
µ , Pσµ = − 1

2π α′X
µ′. (38)

These quantities are densities defined respect to the parameters. When an integration is
carried out for P τµ, using the previous definition of Xµ and the periodicity condition in σ,
the result gives the total momentum

pµ =

∫ π

0

Pτµ dσ =
1

2π α′ πf
µ
1 =⇒ fµ1 = 2α′pµ.

Finally, the name of the constant fµ0 is changed for a more intuitive one: fµ0 = xµ0 . Now
the parameters have been redefined and the resulting expansion gives:

Xµ(τ, σ) = xµ0 + 2α′pµ τ − i
√
2α′

∞∑
n=1

(
aµ∗n einτ − aµn e

−inτ) cos(nσ)√
n

.

At this point, the physical meaning of this equation can be appreciated. The fields
Xµ(τ, σ), which define the coordinates of the string, are dictated by the sum of two basic
motions. On the left hand side, there is a constant and a term associated with the mo-
mentum. This matches the movement of the string as a whole, i.e. the translation motion.
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On the other hand, the last term on the right represents the oscillations. In fact, if all the
coefficients aµn (coming from the Fourier series) were cancelled, the equation turns out to be
the equation of motion of a point particle located at the center. This expansion introduces
the internal modes, that represent a significant difference between the string and the particle
theories.

Moreover, other coefficients can be used to define this function as a sum over the positive
and negative integers of a single exponential. These are

αµ0 =
√
2α′ pµ, (39)

αµn = aµn
√
n , αµ−n = aµ∗n

√
n for n ≥ 1; (40)

where αµ−n = (αµn)
∗ is an important property of these coefficients.

In order to maintain the form of the equation as a sum of a translational motion and
the oscillations, it is convenient to keep outside the summation the term for n = 0 when
introducing these new coefficients. Thus this leads to:

Xµ(τ, σ) = xµ0 +
√
2α′ αµ0 τ + i

√
2α′
∑
n̸=0

(
1

n
αµn e

inτ

)
cos(nσ). (41)

4.1 Light-cone coordinates

The equation obtained above fulfills the wave equation, but the constraints must still be
imposed. For that purpose the world-sheet light-cone coordinates are introduced. As in
general relativity, these are defined as a linear combination of the parameters τ , σ, meaning
a change in the coordinates used in the world-sheet

σ± = τ ± σ =⇒

τ = 1
2
(σ+ + σ−),

σ = 1
2
(σ+ − σ−).

If closed strings are considered now, the previous generic solution proposed for Xµ (see
equation (37)) corresponds to the sum of the right moving function that depends on σ− and
the left moving function with argument σ+, i.e. Xµ = Xµ

R(σ
−) +Xµ

L(σ
+). Giving their own

two solutions after computing the Fourier series

Xµ
R(σ

−) =
1

2
xµ0 +

1

2
α′ pµ σ− + i

√
α′

2

∑
n̸=0

1

n
αµn e

−inσ−
,

Xµ
L(σ

+) =
1

2
xµ0 +

1

2
α′ pµ σ+ + i

√
α′

2

∑
n ̸=0

1

n
α̃µn e

−inσ+

.

Note that here two different coefficients are defined, one for each direction of propagation.
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With the definition of these new parametrization, the wave equation and the constraints
(36) are respectively written in the following way

∂+∂−X
µ = 0,

(∂+X
µ)2 = (∂−X

µ)2 = 0.

Reviewing the constraints, further conditions that must be fulfilled by the coefficients of
the Fourier modes and the momenta pµ will be obtained. One can take now the derivatives
to analyze them, starting with ∂−X

µ

∂−X
µ = ∂−X

µ
R =

1

2
α′ pµ +

√
α′

2

∑
n̸=0

αµn e
−in σ−

=

√
α′

2

∞∑
n=0

αµn e
−in σ−

,

(∂−X
µ)2 =

α′

2

∑
n,k

αn · αk e−i(n+k)σ
−
=
α′

2

∑
n,m

αn · αm−n e
−imσ−

.

In the first relation, to obtain the second equality it is assumed that pµ and α′ are related
with α0 by

αµ0 =

√
α′

2
pµ. (42)

Meanwhile for the second equation what proceeds is to rename the sum of modes. The
quadratic combination of oscillators is a remarkable operator that gives rise to the so-called
Virasoro modes

Lm =
1

2

∑
n∈Z

αn · αm−n. (43)

The same steps can be followed with the derivative with respect to σ+. The results are
equivalent, giving the constants

α̃µ0 =

√
α′

2
pµ , L̃m =

1

2

∑
n∈Z

α̃n · α̃m−n. (44)

Note that clearly the zero-order coefficients coincide in both representations αµ0 = α̃µ0 .

Then the constraints of the stress-energy tensor in this basis are written in terms of the
Virasoro modes as 

T−− = (∂−X
µ)2 = α′ ∑

m Lm e
−imσ−

= 0,

T++ = (∂+X
µ)2 = α′ ∑

m L̃m e
−imσ+

= 0,

T+− = T−+ = 0.
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This explicitly shows that the constraints that must be satisfied imply having an infinite
number of null coefficients Lm = L̃m = 0, for m ∈ Z.

4.2 Mass formula for a bosonic string

From the definition of Lm and L̃m one can note that the corresponding values for m = 0
include the momentum squared. This is an special product, because from relativity it is
known that the rest mass can be calculated from it

M2 = −pµpµ.

The mass of the particle arises from the appearance of the four-momentum in the mode
expansion. The linear momentum is a constant of motion, so the mass of the particle cannot
change. Due to the bindings of the system, the momentum of the string depends on the
oscillations, and therefore the mass as well. The state of the string and its mass are clearly
related. If the string does not interact, the oscillation mode stays the same, therefore its
momentum and mass will remain constant.

Depending on whether one considers open or closed strings, two moving modes are consid-
ered or only one. For closed string left moving and right moving modes contribute; meanwhile
for the open strings, a mode propagating in one direction reaches the endpoint and is re-
flected. Thus after all, both modes are essentially the same in that case. This arises from
the fact that for open strings, σ is defined with values between 0 and π; meanwhile for closed
strings there are no endpoints so σ is periodic with values between 0 and 2π. This gives
different definitions on the coefficients αµ0 for open and closed strings.

The constraints obtained in the previous section must be also satisfied for L0 and L̃0.
But the definition of the Virasoro operators shows that these quantities depend on αµ0 and
α̃µ0 respectively. Equally, they depend on the linear momenta of the string, i.e. pµ. Then the
effective mass of a string could be given in terms of L0 and L̃0.

For an open string, in the mode expansion there is only one mode, because left and right
moving modes are forced to combine into standing waves. The corresponding mass formula
is then

M2 =
1

α′

∞∑
n=1

αn · α−n. (45)

However, for the closed string there can be left-moving and right-moving modes, leading to
the following

M2 =
2

α′

∞∑
n=1

(αn · α−n + α̃n · α̃−n). (46)

These are the mass-shell relations of the string. From these expressions the corresponding
effective mass related to each state of the string can be calculated.
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Chapter 5

QUANTIZATION OF THE STRINGS

Mediante dos procedimientos distintos se llega a la cuantización de las cuerdas. La cuan-
tización canónica surge de la transformación directa de la teoŕıa clásica, pero predice
estados de norma negativa que deben ser eliminados. Para las coordenadas en el cono
de luz se pierde la simetŕıa de Lorentz, por lo que debe ser impuesta después de cuanti-
zar. En ambos casos se establecen las ligaduras correspondientes a la dimensionalidad
del espacio-tiempo para las cuerdas bosónicas.
. . . . . .

In order to continue with the development of this theory, the conformal fields Xµ need
to be quantized. There are several alternatives, but here two of them are going to be per-
formed: canonical quantization and light-cone quantization. Both should give the same
outcome. However, weak arguments are used. The rigorous way to prove that the results are
true is by means of conformal field theory [2, 3, 4]. This derivation is rigorous and verifies
that the conclusions reached are correct.

5.1 Canonical quantization

Canonical quantization is the one that emerges from transforming the classical theory di-
rectly to quantum. It is reached by changing the Poisson brackets from the Hamiltonian
formalism into commutators. In the same way, the fields that describe the coordinates and
the momentum will be treated as operators. As they are functions that depend on the modes
coming from the Fourier expansion, the coefficients of this expansion must become operators
as well.

The canonical quantization should be started by promoting the fields Xµ and canonical
momenta Pµ = 1/(2πα′)Ẋµ to operators. These must obey the following commutation
relations

[Xµ(τ, σ), Pν(τ, σ′)] = iδ(σ − σ′)δµν ,

[Xµ(τ, σ), Xν(τ, σ′)] = [Pµ(τ, σ), Pν(τ, σ′)] = 0,

being these the results obtained from transforming the Poisson brackets into commutators.

The coefficients of the expansion will become operators analogously. So the only non-zero
commutation relations obtained for the modes α, α̃ and the constants xµ, pµ are the following

[x̂µ, p̂ν ] = iδµν ,
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[α̂µn, α̂
ν
m] = [ ˆ̃αµn, ˆ̃α

ν
m] = nηµν δn+m, 0.

The relations for modes α̂µm and ˆ̃αµm are reminiscent of the commutation relations for
the creation and annihilation operators of the quantum harmonic oscillator. In quantum
mechanics the second quantization introduces a simple notation just by using these two
operators. With the same purpose, having operators that share exactly the same structure
as creation and annihilation operators, gives a familiar view of string theory in terms of
second quantization. In order to use operators constructed in such a way that they satisfy
the creation/annihilation relations, the operators âµm and âµ†m are defined

âµm =
αµm√
m
, âµ†m =

αµ†−m√
m

; (47)

[âµm, â
ν†
m ] = [ˆ̃aµm, ˆ̃a

ν†
m ] = ηµνδm,n for m,n > 0. (48)

Now, the ground state |0⟩ can be described as the state obtained under the action of all
the lowering operators, âµm

âµm|0⟩ = 0 for m > 0.

Equally, any generic physical state |ϕ⟩ can be also defined as the state resulting after the
action of raising operators, âµ†m , over the ground state

|ϕ⟩ = âµ1†m1
âµ2†m2

. . . âµn†mn
|0; kµ⟩.

This method is the one followed to construct the Fock space: adding creation operators
to the ground state, i.e., a representation of the new particles created from the vacuum
initial state. Each state of the Fock space corresponds to a different excitation of the string.
These physical states will also be eigenstates of the momentum operator. Therefore their
corresponding eigenvalues in the momentum space, introduce new quantum numbers

p̂µ|ϕ⟩ = kµ|ϕ⟩.

Another aspect one should notice, is that there are some exceptional cases in the definition
of the commutators for the creation/annihilation operators (48), where the commutator is
negative. This occurs when µ = ν = 0 due to the nature of the metric, as Minkowskian flat
space is being considered [

â0m, â
0†
n

]
= η00δm,n = −δm,n.

Under these conditions, the predicted states lead to results that make no physical sense.
Considering a state |ψ⟩ = â0†m |0; kµ⟩, for m > 0, its norm can be calculated by

∥|ψ⟩∥2 = ⟨0|â0mâ0†m |0⟩ = ⟨0|
[
â0m, â

0†
m

]
|0⟩ = −⟨0|0⟩,

where the condition âµm|0⟩ = 0 was used for the ground state.
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The result shows that there can be states with negative norm: if ⟨0|0⟩ is defined to be
positive, all the states having that form must have negative norm; on the contrary, if ⟨0|0⟩
is negative, there will be other states whose norm is less than zero. States with negative
norm are meaningless results when thinking of a physical interpretation. Since the norm of a
state is related to a probability, its values must belong to the interval [0, 1] to have any real
interpretation.

The reasoning followed for the canonical quantization predicts these states with no phys-
ical sense, that are called ghost states. To continue with the development of the theory,
these resulting unphysical states must be removed. However, avoiding them leads to new
restrictions on the number of dimensions of the background space-time in which our theory
is being defined.

The definition of the physical states must take into account the constraints. In the classical
theory the constraints where written as Lm = 0 for all m, which arise from the vanishing of
stress-energy tensor. This generators will also become operators as they are defined in terms
of the αm modes. When doing the quantization, normal order of the operators is chosen as
a convention coming from Quantum Field theory. It is denoted by (:) and represents the
following:

: αi · αj :=

{
αi · αj for i ≤ j,

αj · αi for i > j,

which says that the operator with lower index is placed on the left of the operator with higher
index. When the two operators do not commute, the normal ordering may add additional
constants to the quantum expressions that must be determined using other physical argu-
ments.

According to the form of the Lm generators given by (43), they can be transformed using
modes operators that emerge after quantization, but setting the normal order. Leading to
the following operators that define the Virasoro algebra

L̂m =
1

2

∞∑
n=−∞

: α̂m−n · α̂n : . (49)

With this description the operators are well defined (no additional constants are required
from the commutation relations), except the m = 0 case. In the equation given for L̂0 there
is still ambiguity, even after setting the normal order

L̂0 =
1

2

∞∑
n=−∞

: α̂−n · α̂n :=
1

2
α̂2
0 +

∞∑
n=1

α̂−n · α̂n.

The ambiguity is shown in the definition of L̂0 because α̂n y α̂−n do not commute and it is
not clear which order is the correct one. Also, since they do not commute the result will not
be the same, but differ by a commutation constant. Then one of the orders is assumed, such
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that if the arrangement of the operators is switched, the extra constant which arises from
the commutation rules appears. These constant is added to ensure that all possible ordered
representations leads to the same result and its value should be calculated.

Depending on the value given to this constant, that will be called a, different results are
obtained. Apparently each chosen value of the commutation constant give rise to a different
theory. Since these operators can be used in the notation of numerous equations and defini-
tions, the value of a will affect all of these functions.

The commutation relations for operators L̂m are therefore obtained from the correspond-
ing relations for α̂n, and the result can be written by

[L̂m, L̂n] = (m− n)L̂m+n +
c

12
m(m2 − 1)δm,−n, (50)

where c is a constant called the central charge, which appears, as the constant a, from the
ambiguities in the operator ordering. In bosonic string theory, it is equal to the space-time
dimension. The resulting algebra is the well known quantum Virasoro algebra. Also note
that for m = −1, 0, 1 the term containing c vanishes, what defines a subalgebra containing
the elements {L̂−1, L̂0, L̂1} that fulfill the relations

[L̂m, L̂n] = (m− n)L̂m+n. (51)

5.1.1 Constraints and physical states

The classical constraints implies that Lm = L̃m = 0 for all m, and consequently L0 = 0. But
in the quantized theory, it cannot be established for an operator L̂n = 0 or L̂n|ϕ⟩ = 0 for all
physical states |ϕ⟩. Instead, this constraint is introduced by calculating the expected value
between two physical states and making that quantity zero, which is sufficient condition to
obtain

⟨ϕ′|L̂n|ϕ⟩ = 0 =⇒ L̂n|ϕ⟩ = 0 for n > 0. (52)

If one focuses in the n = 0 constraints, the ambiguity present on these terms due to
normal ordering, introduces constants that yield different constraint equations. For some
constant a, the equality reached for an open string is

(L̂0 − a)|ϕ⟩ = 0. (53)

Meanwhile, for a closed string with right moving and left moving modes, represented respec-

tively by the corresponding operators L̂0 and ˆ̄L0, the relations are

(L̂0 − a)|ϕ⟩ = 0 , ( ˆ̄L0 − a)|ϕ⟩ = 0. (54)

These are the so-called mass-shell condition for open and closed string. In agreement
with the previous section, the normal ordering also have a correction for the mass formula.
First one can define the number operator N̂ taking into account the order of operators
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N̂ =
∞∑
n=1

: α̂−n · α̂n :=
∞∑
n=1

n : â†n · ân : . (55)

The resulting mass formulas describing the states of open and closed strings are given, re-
spectively, by

α′M2 =
1

α′

∞∑
n=1

: α̂−n · α̂n : −a = N̂ − a, (56)

4

α′M
2 =

∞∑
n=1

: α̂−n · α̂n : −a =
∞∑
n=1

: ˆ̃α−n · ˆ̃αn : −a or N̂ − a = ˆ̄N − a, (57)

where the second equation is for the closed string, and can be expressed using N̂ as number

operator for the right movers and ˆ̄N as the number operator for the left movers.

One interesting relation between the number operators is achieved by doing the subtrac-
tion of the two conditions for each moving operator (54):

(L̂0 − a− ˆ̄L0 + a)|ϕ⟩ = (L̂0 − ˆ̄L0)|ϕ⟩ = 0.

Analyzing the definition of the operators N̂ and L̂0, from the above equality the following is
obtained

N̂ = ˆ̄N. (58)

One observes a relation of equivalence between the left moving and right moving modes,
known as level matching condition of the bosonic string. It implies that the direction in
which modes propagate in a closed string is not relevant. The same excited states can be
obtained by modes traveling to the left and to the right, as long as the value of the number
operator is the same.

From the mass formula and the number operator, the mass spectrum of the string may
be constructed. Giving different values to n returns the corresponding excited states, which
together form the desired spectrum:

α′M2 = −a for n = 0 (ground state),

α′M2 = −a+ 1 for n = 1 (first excited state state),

α′M2 = −a+ 2 for n = 2 (second excited state),

·
·
·
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5.1.2 Spurious States

The states that satisfy the mass-shell condition (i.e. equation (53)) and that are orthogonal
to all the other physical states are called spurious states. They can be though of as vacuum
states. A general spurious state can be written as a linear combination of states using as
coefficients the generator operators for the Virasoro algebra

|ψ⟩ =
∞∑
n=1

L̂−n|χn⟩, (59)

where |χn⟩ is a state that also verifies the modified mass-shell condition. Thus the two con-
ditions to have spurious states are: the orthogonality and that they are eigenstates of L̂0.
This type of states are not very common in physics, so they are one of the characteristic
phenomena of strings.

The equation (53) can be applied multiplying the spurious state |ψ⟩ by the term (L̂0−a).
After some calculations, using the previous definition of |ψ⟩ and the commutation relations
for operators L̂m, in particular for [L̂0, L̂−n] = n L̂−n, one arrives to

(L̂0 − a)|ψ⟩ = L̂0

(
∞∑
n=1

L̂−n|χn⟩

)
− a

(
∞∑
n=1

L̂−n|χn⟩

)
=

=
∞∑
n=1

(
[L̂0, L̂−n] + L̂−nL̂0

)
|χn⟩ −

∞∑
n=1

a L̂−n|χn⟩ =

=
∞∑
n=1

(
L̂−nn+ L̂−nL̂0 − L̂−na

)
|χn⟩ = 0

=⇒
(
L̂0 − a+ n

)
|χn⟩ = 0.

The verification of the last equality allows determining the value of the constant a for cer-
tain state with fixed n. This requirement is one of the new constraints needed to eliminate
non-physical states.

Being orthogonal to all physical states is one of the most interesting aspects of these
states. That is because they do not contribute when they are combined to any other physical
state. Meaning that if a spurious state is added to any physical state, the result is the same,
due to the orthogonality.

In order to prove that any spurious state |ψ⟩ is orthogonal to all physical states, suppose
any physical state |ϕ⟩. Making use of the fact that L̂†

−n = L̂n and the restrictions (52) for
n > 0, when doing the scalar product it is shown that

⟨ϕ|ψ⟩ =
∞∑
n=1

⟨ϕ|L̂−n|χn⟩ =
∞∑
n=1

(
⟨χn|L̂n|ϕ⟩

)∗
= 0.
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Moreover, as spurious states are orthogonal to all physical states, if a spurious state |ψ⟩ is
also assumed to be physical state, it must be orthogonal to itself. Concluding that it should
be a zero-norm state

∥|ψ⟩∥2 = ⟨ψ|ψ⟩ = 0.

When dealing with the problem of eliminating the ghosts, the study of spurious states is
of great interest. Negative norm states are also orthogonal to the positive norm states, but
they are not physical and must be removed. In this sense, one can consider them also as
spurious states. If one is able to make all spurious states physical, then all spurious states
will have zero norm and the negative-norm states would have hopefully disappeared.

This rough idea makes it possible to arrive at the optimal situation in which ghost states
are eliminated. However, it can also be proved mathematically by following a more rigorous
reasoning.

5.1.3 Removing ghost states

To remove the so-called ghost states, some constant values need to be fixed. Analyzing the
spurious states allows to establish a and c. For simplicity, it seems logical to start with the
lower level states. Hence, level 1 spurious states are the ones used in the beginning because
it is the simplest expression that can be used to find a. For that purpose it is defined:
|ψ⟩ = L̂−1|χ1⟩.

For |ψ⟩ to be a physical state, and making use of the conditions involved by |χ1⟩, is it
imposed:

(L̂0 − a+ 1)|χ1⟩ = 0 , L̂m>0|χ1⟩ = 0 =⇒ L̂1|χ1⟩ = 0, (60)

(L̂0 − a)|ψ⟩ = 0 , L̂m>0|ψ⟩ = 0 =⇒ L̂1|ψ⟩ = 0; (61)

where the last conditions are the particular cases for m = 1. By developing it through the
use of the commutators and their corresponding relationships, one arrives at

L̂1|ψ⟩ = L̂1(L̂−1|χ1⟩) = [L̂1, L̂−1]|χ1⟩ = 2L̂0|χ1⟩ = 2(a− 1)|χ1⟩ = 0.

So finally, to have that last term equals zero, the only solution is a = 1. This restriction
represents the boundary between the spaces constituted by the spurious and ghost states.

Recalling the origin of constant a, this assumption establishes the commutation relations
between operators α̂−n and α̂n. The given solution states that the correction arising from the
normal ordering is, indeed, a constant a = 1. Now the ambiguity problem in L̂0 has come to
an end.

In order to determine the value of the central charge c, i.e., the dimension of the back-
ground space; it is needed to work with two level spurious state. Since any operator L̂−n
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with n ≤ 1 can be written in terms of L̂−1 and L̂−2 as a linear combination (Wray [2], pp
66-67), general spurious states can be also described in terms of those two operators. But to
ensure that the resulting norm is zero, it is also needed a constant, denoted as γ. Then the
spurious state is given by

|ψ⟩ = (L̂−2 + γL̂−1L̂−1)|χ2⟩.

As in the previous assumption, the spurious state |ψ⟩ must satisfy the same conditions
(61), and |χ2⟩ has the following relations

(L̂0 − a+ 2)|χ2⟩ = 0 , L̂m>0|χ2⟩ = 0

Again, following the same procedure based on the particular constraint for m = 1:

L̂1|ψ⟩ = L̂1(L̂−2 + γL̂−1L̂−1)|χ2⟩ =
(
[L̂1, L̂−2 + γL̂−1L̂−1]

)
|χ2⟩ =

=
(
3L̂−1 + 2γL̂0L̂−1 + 2γL̂−1L̂0

)
|χ2⟩ =

(
3L̂−1 + 4γL̂−1L̂0 + 2γL̂−1

)
|χ2⟩ =

=
(
3L̂−1 − 4γL̂−1 + 2γL̂−1

)
|χ2⟩ = (3− 2γ)L̂−1|χ2⟩ = 0.

Note that here the commutation relations (51) were used in the first step and then for
[L̂−1, L̂0]. Likewise from the above constraints, some results such as L̂1|χ2⟩ = 0 and L̂0|χ2⟩ =
(a− 2)||χ2⟩ were also employed, knowing now that a = 1, and therefore L̂0|χ2⟩ = −|χ2⟩.

From the last equality one obtains the value of γ, being necessarily γ = 3/2. Thus, for a
two level spurious state, that is as well a physical state, this value must be imposed in order
to maintain the zero-norm condition.

However, the aim of this calculation is to fix c. For the two level spurious states, there
were two undefined constants, so other equation will be needed. As already discussed, the
subalgebra formed by the operators {L̂−1, L̂0, L̂1} does not have the central charge constant
in its commutation relations. A greater value ofm is required to obtain an equation of similar
form to (51), where c appears. Following an analogous procedure to the previous ones, in
this instance the constraint with m = 2 will be used, where in the commutation relation c
will show off

L̂2|ψ⟩ = L̂2(L̂−2 +
3

2
L̂−1L̂−1)|χ2⟩ =

(
[L̂2, L̂−2 +

3

2
L̂−1L̂−1]

)
|χ2⟩ =

=
(
13L̂0 + 9L̂−1L̂1 +

c

2

)
|χ2⟩ =

(
−13 +

c

2

)
|χ2⟩ = 0

=⇒ c = 26 .

Finally, it is concluded that if the state |ψ⟩ is to be spurious and physical simultaneously,
it must be defined in a space with c = 26. Then fixing the value of this constant eliminates
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the non-physical states of the boundary, and hence it is argued that they are hopefully re-
moved.

This constant is equal to the dimensionality of the space in which the strings live. Meaning
that the background space-time where the bosonic theory is defined has 26 dimensions, where
one must be temporal and the remaining 25 are spacial. There can be bosonic string theories
with other values for this constants, like a ≤ 1 and c ≤ 25. These are the so-called non-critial
theories. On the other hand, if it is required to remove the ghost states with negative norm,
then restricting the values of these constants to a = 1, γ = 3/2 and c = 26 is needed.

5.2 Light-cone quantization

In the previous quantization process, Lorentz invariance was first imposed. Then quantiza-
tion was proceeded directly from the classical expression, which gave rise to ghost states of
negative norm, that had to be eliminated. In the present derivation of the quantized string,
a new gauge defined on the light-cone coordinates will be used. Taking advantage of the
symmetry under reparameterization, it has been proved that a change in the spacetime light-
cone coordinates of the form σ± → σ̃± = ξ±(σ±), will not change the problem. Notice that
in previous sections it have been used the light-cone coordinates of the world-sheet described
by the string, while now the coordinates to be worked on are the light-cone coordinates of
the background spacetime itself.

Choosing the right parameterization is the way to avoid the occurrence of negative norm
states. As usual, the coordinates of the light-cone are defined as a linear combination of
the time coordinate with a spatial coordinate. The selection of this transverse coordinate
is arbitrary and in this model the D − 1 coordinate is picked. Therefore, the light-cone
coordinates X+, X−, along with the other D − 2 spatial coordinates compound the set that
describes the spacetime {X−, X+, X i}D−2

i=1

X± =
1√
2
(X0 ±XD−1).

In the resulting system, vector operations like the dot product or the raising and lowering
indices follow the rules given by

A ·B = −A+B− − A−B+ +
D−2∑
i=1

AiBi, (62)

A+ = −A−, (63)

A− = −A+, (64)

Ai = Ai. (65)

Since the two light-cone coordinates are treated differently from the rest, there is no Lorentz
invariance manifest. The symmetry of the group that owns the corresponding symmetries of
the Lorentz group is SO(1, D− 1), which was the group initially considered. But taking the
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light-cone coordinates causes the dimensions that remain invariant to be reduced. Now the
representations becomes those of the group SO(D − 2).

The residual gauge symmetry allows to reparametrize τ and σ, as they are functions of σ+

and σ−. According to the above mentioned change in these coordinates, their new definition
have the generic form

τ → τ̃ =
1

2
(σ̃+ + σ̃−) =

1

2
(ξ+(σ+) + ξ−(σ−)),

σ → σ̃ =
1

2
(σ̃+ − σ̃−) =

1

2
(ξ+(σ+)− ξ−(σ−)).

The given function for τ̃ has the same form as the proposed solutions to the wave equation.
Furthermore, for the Minkowski metric in D dimensions, the space-time coordinates Xµ(τ, σ)
must also satisfy the wave equation. In terms of the light-cone coordinates, this equation is
written as follows

∂+∂−τ̃ = 0 and ∂+∂−X
µ(τ, σ) = 0.

This implies that from the residual gauge freedom, a reparametrization relating τ̃ to Xµ(τ, σ)
can be chosen, such that the bosonic theory is considerably simplified:

X+ = x+ + l2sp
+τ̃ . (66)

This is the lightcone gauge, for some arbitrary constant x+. Since τ̃ fulfills the wave
equation, writing the coordinates in terms of parameter τ̃ is a convenient way to enforce
that the equations of motion for the strings are satisfied. Taking into account that the wave
equation and its restrictions fulfill the properties of linearity, the defined gauge represents
X+ as linear function of τ̃ .

The effects of setting this gauge can be observed comparing equation (66) with the mode
expansion of X+ for an open string

X+(τ, σ) = x+ + l2sp
+τ +

∑
n ̸=0

1

n
α+
n e

−inτcos(nσ).

The contribution of all α+
n modes has been removed for n ̸= 0. Therefore, this gauge reduces

the number of constraints, since in the previous study infinite Ln modes were required to be
equal to zero. Analogously, for the closed string, the result would be similar but with both,
left moving and right moving modes equal to zero, i.e. α+

n = (α+
n )

† = 0.

Then for the expansion of X− the procedure is non-trivial. Suppose an open string
with Neumann boundary conditions. Then applying the Virasoro constraints in the mode
expansion gives

X−(τ, σ) = x− + l2sp
−τ +

∑
n ̸=0

1

n
α−
n e

−inτcos(nσ)
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with

α−
n =

1

p+ls

(
1

2

D−2∑
i=1

∞∑
m=−∞

: αin−mα
i
m : −a δn,0

)
.

Hence, only the zero modes are relevant for X− and X+, making possible to describe the
bosonic strings just using transverse oscillators. As the string is not necessarily living in the
plane formed by X0 −XD−1, these are not literally transversal modes, but they are referred
this way because they correspond to the components that are not contained in the light-cone.

With the recent definitions, the mass formula in light-cone coordinates is rewritten using
the corresponding dot product rule (62). Therefore it is given by

M2 = −pµpµ = 2p+p− −
D−2∑
i=1

pipi.

The previous definition of α−
n for an open string, can be used to determine the momentum

associated to the light-cone coordinates, i.e. the product p+p−. One can see that for n = 0

α−
0 =

1

p+ls

(
1

2

D−2∑
i=1

∞∑
m=−∞

: αi−mα
i
m : −a

)
=

1

p+ls

[
1

2
(αi0)

2 +N − a

]
. (67)

But it follows from its definition that α−
0 ≡ p−ls, and similarly αi0 ≡ pils. Plugging this into

the last expression and moving to one side all the terms containing momentum components,
the mass-shell relation for an open string in the light-cone gauge emerges as

l2sp
+p− =

1

2
(pi)2l2s + (N − a) =⇒ 2p+p− − (pi)2 = −pµpµ =

2

l2s
(N − a),

M2 =
2

l2s
(N − a). (68)

These are the so-called level matching conditions of the string, and they are functions of
the transverse oscillators, as can be seen from the definition of N̂ in equation (55). Actually
the general solution can be described by 2(D − 2) transverse modes αin, and for the closed
string α̃in too.

The excitation of the string can be predicted from the above equation. As mentioned,
when using the light-cone gauge it only depends on the transversal modes αin for i = 1, ..., D−
2. The 00 term is therefore excluded, which implies that the negative sign of the commutation
relations will not contribute. Consequently, the light-cone quantization does not include the
negative-norm states. Now the theory does not predict non-physical states, but one cannot
forget about the Lorentz symmetry. Manifest invariance is lost, so it must be re-imposed by
hand once the ghost states have disappeared.

39



CHAPTER 5 QUANTIZATION OF THE STRINGS

5.2.1 Recovering Lorentz invariance

By expressing the light-cone coordinates as a linear combination of a spatial and a temporal
coordinate, the Lorentz symmetry can be lost. It is not guaranteed that the system described
by the light-cone gauge remains invariant to these transformations. Fortunately, it can be
recovered if explicitly required.

Computing the first excited states allows determining the values of the constants a and
c, required for this theory to have physical meaning. The first excited state comes from
setting N = 1 and can be obtained by acting with the raising operator over the ground state,
i.e. αi−1|0; kµ⟩. Now Lorentz invariance has to be imposed. But the physical states that
are invariant under Lorentz transformations form a representation of SO(D− 1) for massive
states and SO(D − 2) for massless states. The considered first excited state belongs to a
representation of the group SO(D − 2) in the transverse space. From this condition, it is
deduced that αi−1 must correspond to a state with zero mass. Acting on the mass operator,
or equivalently on its square, it must provide 0 as eigenvalue. Therefore,

M2
(
αi−1|0; kµ⟩

)
=

2

l2s
(1− a)

(
αi−1|0; kµ⟩

)
=⇒ a = 1 .

Thus, to require Lorentz invariance the first excited state should be massless, with an eigen-
value equal zero. This only occurs for fixed a = 1. Once this value is obtained, the central
charge c can be calculated, and it also determines the dimensionality of the spacetime D.

To find the number of dimensions, first assume that the ambiguity in the ordering of
αin, α

i
−n operators was not detected. If the number operator N̂ is redefined keeping the

symmetrized ordering, that comes from the classical theory, it should satisfy

1

2

∑
n ̸=0

αi−nα
i
n =

1

2

∑
n<0

αi−nα
i
n +

1

2

∑
n>0

αi−nα
i
n,

where the sum over i = 1, ..., D − 2 is implicit. If the normal order is now imposed, the
resulting expression must be the same as before, i.e. the extra constant must be equal to a.

Setting the normal order means placing the annihilation operators on the right side.
These are αin for n > 0, so in the sum over n < 0 it is needed to change acting order of these
operators. To do that, the commutation relations [αin, α

i
−n] = n δij are used, giving

1

2

D−2∑
i=1

∑
n̸=0

αi−nα
i
n =

1

2

D−2∑
i=1

∑
n>0

: αi−nα
i
n : +

D − 2

2

∞∑
n=1

n. (69)

The last summation on the right hand side diverges as it is a sum over infinite terms. To
solve this problem, a regularization procedure is followed, which consists of using the ζ(s)
Riemann function

ζ(s) =
∞∑
m=1

1

ms
, with s ∈ C and Re(s) > 1,
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that is equal to the summation mentioned before, if one takes s = −1.

It turns out that the Riemann ζ-function converges when Re(s) > 1. But using analytic
continuation, this function can be defined for all possible arguments, giving finite results
(except for s = 1). The particular solution for s = −1 is ζ(−1) = −1/12. That is quite
surprising, because it suggests a solution for an infinite sum of natural numbers, which is not
only less than one, but also negative.

Placing that result in equation (69) gives an alternative expression after the normal
ordering of the operators, that should be equal to the one obtained when the ordering constant
a was used

1

2

D−2∑
i=1

∑
n>0

: αi−nα
i
n : −D − 2

24
=

1

2

D−2∑
i=1

∑
n>0

: αi−nα
i
n : −a.

Since the ordering constant was calculated above, it is assumed this value is known and right,
i.e. a = 1. Therefore the dimensionality of the background spacetime is finally fixed

D − 2

24
= a =⇒ D = 26 .

The light-cone quantization allows to derive the theory avoiding predictions of non phys-
ical states, such as ghost states. However, as the gauge used breaks the common structure
of Lorentz transformations, invariance is not guaranteed and must be required subsequently.
It is then when the restrictions are obtained: bosonic string theory satisfies the Lorentz in-
variance if a = 1 and if the space is defined to have dimension D = 26.

After performing those two processes of quantization, it is seen that effectively, both lead
to the same constraints for the background space-time. Starting with the classical theory
that includes the manifestly Lorentz symmetries, seems to be an easy and intuitive method
to obtain quantized strings. However it gets complicated when the ghost states with negative
norm are introduced. Eliminating them is a tedious procedure, but gives the values of the
constants. From another point of view, a gauge in the coordinates can be established to get
rid of the ghosts, following the light-cone quantization. This way, the non-physical states
are not predicted. Avoiding this problem also carries the lost of Lorentz invariance. When
guaranteed again, the same values for the same constants reappear. Therefore, both paths
lead to equal parameters of bosonic string theory, these being a = 1 and the space-time
dimension D = 26.
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Chapter 6

SPECTRUM OF EXCITED STATES

Empleando la fórmula de la masa obtenida en secciones anteriores, se construye el es-
pectro de masas para cuerdas abiertas y cerradas. Cada estado excitado corresponde
con la represtentación de una part́ıcula. Aparece el taquión como estado fundamental
y el gravitón como primer estado excitado de las cuerdas cerradas.
. . . . . .

After doing the quantization, the conditions that must be fulfilled for Lorentz invariance
and symmetries of the strings, fix the values of the constants that describe the bosonic
string theory. The level matching condition and the mass formula were rewritten in terms of
operators. Then the mass spectrum of the string may be analyzed. The excited states are
calculated by raising the value of the number operator N , and also Ñ under the consideration
of closed strings. Due to the contribution of two directions of propagation for the modes of
the closed string, and only one for the open string, the mass formulas are different for those
kinds of strings and their analysis will be done separately.

6.1 Open string

As it was said from the begining, the string theory has the extraordinary characteristic that
it has only one parameter to determine: the length of the string, ls. Open strings have the
constant α′ that implicitly includes this parameter, since it is defined as α′ = l2s/2. From
equation (68) in the canonical quantization, or analogously, (56) in the light-cone quantiza-
tion; the mass of the resulting particle can be obtained for each excited state. This values
are expressed just in terms of the slope parameter.

To built the mass spectrum it seems appropriate to start for the ground state, that should
be the one associated to N = 0. Substituting all these values in the mentioned equations,
the bosonic vector representation for the ground state is |0; kµ⟩. From it one obtains a mass
squared negative

M2 = − 1

α′ .

This results gives a particle with imaginary mass. Although apparently meaningless, it is a
representation corresponding to particles that appear in special relativity, and whose main
quality is that they admit velocities higher than the speed of light. This particle is a tachyon.

Having an imaginary mass is equivalent to having an imaginary energy in the ground
state. A complex energy state is interpreted physically as an unstable state, and therefore
it will decay. From this result it follows that this theory is not adequate, since it should be
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possible to begin from stable states.

For the first excited level, the physical states are those having N = 1. These are obtained
adding a creation operator to the ground state αi−1|0; kµ⟩ and gives a massless boson. As they
are defined as a vector, their representation is associated to spin-1 particle, corresponding
then with a photon.

Then the next excited states are obtained simultaneously, but instead of a vector, higher
order tensors arise since there are more possibilities of reaching the excited state. For example,
for N = 2, the states are αi−1α

j
−1|0; kµ⟩ or αi−2|0; kµ⟩, giving a total number of 324 states.

The representation is a second-rank tensor, that consists of a spin-2 particle. Using again
the mass formula (68), the resulting M2 = 1/α′ shows that this is the first massive particle
state in the mass spectrum.

6.2 Closed strings

Next, the same study will be performed with the closed strings. Now the mass formulas are
the ones appearing in (68) and (57), where left moving and right moving modes are being
considered. The equivalence between the excitation of both moving modes, was shown above,
i.e. (58). The excited states are reached by forming a composition of both: the right-moving
sector and the left moving sector

M2 =
4

α′ (N − 1) =
4

α′ (N̄ − 1).

Again at the beginning the first value is N = 0, corresponding to the ground state. Notice
that the closed string have a different definition for the slope parameter α′ = l2s , but it still
depending on the length of the string ls. Therefore the squared mass gives another value,
M2 = −4/α′, that is also negative. Hence, the ground state for the closed string is a tachyon
as well, and it is also an unstable state represented by a particle field that decays.

Unlike the previous case, two operators are already present in the first excited state. These
correspond to each of the propagation directions, as previously mentioned. In agreement
with the level matching condition, when one creation operator αi−1 acts over the ground

state, an operator α̃j−1 is also needed. Then there are (D − 2)2 first excited states of the

form α̃j−1α
i
−1|0; kµ⟩. As it was seen in the derivation, the space-time constraints were fixed

under the assumption of a massless first excited state, satisfying the mass formula M2 =
4/α′(N − 1) = 0 for N = 1. Therefore, these states have zero mass and are given by

|Ωij⟩ = αi−1α̃
j
−1|0; kµ⟩,

which is the result of a tensor product between the two massless vectors, corresponding to a
spin-2 particle.

The tensor |Ωij⟩ can be splitted into a symmetric and antisymmetric part. The symmetric
part is more interesting, which in turn can have two components: δij |Ωij⟩ and one with zero
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trace. The trace term is just a scalar that gives rise to the so-called dilaton. The traceless
part has no mass and spin 2, but in this case is a field representation of the group SO(24).
These characteristics are the ones expected for the graviton.

The graviton is the particle defining the gravity field and it determines the metric of
spacetime. It can be transformed into an operator and introduce the associated creation a†µν
and annihilation operators aµν to obtain a quantized theory. Under the proper symmetry
conditions for the metric, the graviton field can be quantized, finally giving rise to a theory
of quantum gravity. This fact is indeed one of the most remarkable results that emerges from
string theory.

There are other excited states that can be calculated by the tensor product of the vectors
resulting for each excited state. Again for N = Ñ = 2, there are two options of acting
creation operators that must be included. Then one must consider the right moving and left
moving sectors

(αi−1α
j
−1 + αi−2)⊗ (α̃i−1α̃

j
−1 + α̃i−2)|0; kµ⟩,

all these states being massive, in agreement with the resulting mass equation M2 = 4/α′.

6.3 Open and closed strings in a same theory

It should be pointed out that the symmetries required by the string framework forces to fix
a space in which the constants are a = 1 and D = 26. These results are obtained equally
well whether open or closed strings are assumed. In other words, open and closed strings are
part of the same theory.

Some theories may only include the boundary conditions corresponding to the closed
string. It is simply to assume that it has no endpoints. In contrast, all theories that include
open strings must necessarily include closed strings as well. The reason for this is that when
considering interactions, an open string can join its extremes until it becomes closed.

In bosonic string theory both open and closed strings are included. Generally superstring
theories also study the two types, but there are certainly some theories that only take into
account closed strings.
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Chapter 7

CONCLUSION AND FUNDAMENTAL RESULTS

Analizando las predicciones que hace la teoŕıa de cuerdas bosónicas, se deduce que
hay redundancias en su definición y da lugar a un estado fundamental inestable. En
cambio, la aparición del gravitón es uno de los resultados más impactantes. Tampoco
contempla la existencia de fermiones, por tanto la teoŕıa debe ser completada.
. . . . . .

So far, the consideration of one dimensional body instead of a point particle, has led to this
whole theory. Relativistic string action, based on its world-sheet, gave an equation of motion
and later some constraints that must be also imposed. At the end those equations reduce to
the wave equation, meaning that they behave as classical strings. Thus, the coordinates used
to describe the motion of the string were expanded in Fourier modes. The resulting expres-
sion for the world-sheet coordinates have two components: one associated to the motion of
the center of mass (although there is no mass distribution) and one for the vibrational modes.

This is followed by the quantization, that is when complications appear. On the one side,
ghost states can be predicted, but they are eliminated by restringing the dimension of the
background space. On the other side, reparametrization invariance is employed to define a
gauge in the light-cone that allows an alternative way to quantize the strings. Again, impos-
ing Lorentz symmetries gives the same restricting results as before.

During these processes some equations for the states of the string are obtained. Con-
sidering different excited states, the mass spectrum is constructed, where each state has a
representation that can be associated with a particle. In this theory, only with bosons. The
most impressive result is the spontaneous appearance of the graviton, the particle describing
the gravitational field at quantum levels. This is a result that has never been achieved before.
The idea of having a quantum gravity theory causes a shocking impression of string theory.

The graviton comes from the representation of the first excited state for a closed string.
It emerges as a zero-trace second rank tensor, together with the dilaton, that is a scalar
field, and with an antisymmetric tensor. The correspondence between this state of the closed
string and the graviton is established when one observes that it is a massless state and has
spin 2.

However, the bosonic string theory presents some failures that also show off when do-
ing the mass spectrum, like the appearance of the tachyon as the ground state. Having an
unstable ground state shows that there are other problems in the definition of the theory.
Despite this, the principal shortcomings is the absence of fermions. The only way of including
fermions is to expand the theory, by using new symmetries. These are the so-called super-
symmetries and their representation needs a superalgebra that collects the bosonic string
theory and those supersymmetries.
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Chapter 8

FURTHER STEPS TO SUPERSTRINGS

Al introducir supersimetŕıas la dimensionalidad se reduce a 9 dimensiones espaciales y
una temporal. Además el taquión se elimina del espectro. Ahora se consideran tanto
fermiones como bosones que aparecen formando superparejas. Hay cinco tipos de super-
cuerdas. La teoŕıa que engloba todas las anteriores es aún desconocida y se denomina
Teoŕıa-M.
. . . . . .

The mass spectrum predicts several kinds of particles when computing their excited states.
But fermions do not appear there. Without fermions, there is no way to describe ordinary
matter. The need of including those particle fields in this theory was what caused the intro-
duction of supersymmetries. These are symmetries that associate a fermion to each boson [5].

What is done here is to extend the working space to a 2D supersymmetric space, where
there are the scalar fields Xµ(τ, σ) of the world sheet for bosons and their corresponding su-
persymmetric partners ψµ(τ, σ) for fermions. There are defined creation operators for bosons
and for fermions, separately. Each boson is associated with a fermion of the corresponding
excited state forming a superpartner. The pairs are established between particles that differ
1/2 in their spin. Using a superalgebra it is possible to combine both particle representations
[10]. However, since bosons commute and fermions anticommute, they can be combined if
they are considered as the even and odd elements, respectively, of a new supergroup.

The addition of these supersymmetries not only imply the inclusion of fermions, it also
makes that for those theories where supersymmetry is present in the world-sheet and also in
the spacetime spectrum, the tachyon disappears. Thus, two unlikely results of the bosonic
theory have been eliminated. Moreover, after setting this symmetry, the constraint in the
number of dimensions changes, and now it is reduced to 10 (1 temporal and 9 spatial).

In contrast to bosonic strings, depending on the considerations for the allowed boundary
conditions and moving modes, the theory gives rise to five different string theories that are
supersymmetric in spacetime [4, 5, 12, 15]:

• Type I: includes open and closed strings moving in a 10-dimensional space. These have
one supersymmetry generator where bosons and fermions are defined. The representa-
tions of Type I superstrings correspond to those of the gauge group SO(32).

• Type IIA: it has right-moving and left-moving closed strings where those modes are
chosen to have opposite chirality. There could be stable Dp-branes for p even. The
superstrings live in a 10 dimensional space with two supersymmetry generators. The
resulting spectrum includes the graviton and their superpartners, which are a gravitino
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and two fermions, all of them with opposite chirality. Thus, supergravity appears with
non-chiralty property. This theory predicts fermions, but it does not predict force
carriers.

• Type IIB: it is similar to Type IIA, but now left and right moving modes are defined with
the same chirality. These have stable Dp-branes with p odd. Also the supergravity now
is chiral, what emerges from the fact that the superpartners, gravitino and fermions,
have the same chirality.

• Heterotic SO(32): heterotic strings only consider closed strings, combining right-
moving modes for fermions in 10 dimensions and left-moving modes for bosons in 26
dimensions. Therefore, there are 16 extra dimensions for the bosonic sector, which is
a possible assumption since the different modes do not interact. However the extra
dimensions must be compactified, leading to a gauge group corresponding to SO(32),
for the present case.

• Heterotic E8 × E8: they are identical to the previous ones, except that now the gauge
group used is E8 × E8. In both heterotic strings the graviton field appears with its
superpartners and other gauge generators in a space with one supersymmetry. Neither
of these two types contemplates branes.

Since 5 theories appear, one might think that the unicity has been lost, but later research
work has shown that they are related to each other [16]. There are dualities that relate
theories belonging to different limits, such that all theories are related. Then, it is deduced
that all these theories are manifestations of the same theory.

The M-theory is proposed as a string and branes theory. It also includes a theory of
supergravity in 11 dimensions. The theories listed above are interpreted as different visions
that are included in the landscape of the M-theory. However, it is a theory that has not been
fully determined, although some aspects of it are known.

So far, only free strings have been considered. To introduce interactions no additional
nonlinear terms should be added, because this would not be consistent with the symmetries.
On the contrary, all the information needed is contained in the world sheet described by the
Polyakov action. A perturbative theory is developed, where the interactions are included
through the Feyman path integrals. This means doing a sum over all possible topologies that
the world sheet can have. In comparison with the particle interactions described by quan-
tum field theory, Feynman diagrams for strings form smooth surfaces. They have no vertices.

Figure 6 shows the representation of an interaction between two strings. If one looks
locally at each diagram, it is seen how every region appears to be representing a freely prop-
agating string. Looking globally is when the representation of the interaction is understood.

There are evidences that string theory has numerous applications for the resolution of
problems in different areas of physics. It has proved to be of great utility especially for the
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Figure 6: Representation of the interaction between two strings as a sum of all possible
topologies of the world-sheet.

development of models. For example, the use of string theory made it possible to calculate
the entropy of black holes [1, 13]. These result comes from the supergravity theories arising
from superstrings. In addition, a proposed solution for understanding dark matter has also
been arrived at from strings [12, 14].

Due to string theory a new mathematical framework has been developed and it has been
useful in other areas of physics. Dualities relate apparently different systems, allowing them
to be solved from different points of view. For example, in condensed matter, dualities and
other methods obtained from string theory have been used to solve problems [17].

48



REFERENCES

References
[1] Zwiebach, B. A First Course in String Theory. Cambridge University Press, Cambridge,

2004.

[2] Wray, K. An Introduction to String Theory. University of California, Berkeley, 2011; pp
1-79. Available in: https://math.berkeley.edu/~kwray/papers/string_theory.pdf

[3] Tong, D. String Theory. University of Cambridge, Cambridge, 2009; pp 1-56. Available
in: https://www.damtp.cam.ac.uk/user/tong/string/string.pdf

[4] Polchinski, J. String Theory. Cambridge University Press, California, 1998; Vol. 1.

[5] Uranga, A. M. Introduction to string theory. Cambridge University Press, Madrid, 2012.
Available in: https://members.ift.uam-csic.es/auranga/Lect.pdf

[6] Landau, L. D.; Lifshitz, E. M. Mecánica relativista in Teoŕıa clásica de los campos.
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[8] Pérez Hernández, F. J. Relatividad General. Universidad de La Laguna, 2022.

[9] Conlon, J.; Mason, C.; Hughes, E. Why string theory. [Online] University of Oxford,
2023. Available in: https://whystringtheory.com/

[10] Haber, H. E. Supersymmetry, Part I [Online]. UC Santa Cruz, 2013. Available in:
https://pdg.lbl.gov/2014/reviews/rpp2014-rev-susy-1-theory.pdf

[11] Vafa, C. Fundamental Lessons from String Theory with Cumrun Vafa [Video-
masterclass]. World Science Festival, New York City, 2015. Available in: https://ww

w.youtube.com/watch?v=cqszNrp1EDQ

[12] Pierre, J. M. Supersymmetric Strings in Superstrings! [Online]. University of California,
Santa Barbara, 2023. Available in: https://web.physics.ucsb.edu/~strings/super

strings/susy.htm

[13] Chen, W. M.; Ge, X.; Jang, W.; Meyer, R.; Hsien-Hang, B. Black Hole Entropy and
String Theory. Seoul, 1996.

[14] Cicolia, M.; Guidettic, V.; Righic, N.; Westphalc, A. Fuzzy Dark Matter Candidates
from String Theory [Online]. Hamburg, 2022. Available in: https://arxiv.org/pdf/21
10.02964.pdf

[15] Polchinski, J. String Theory: Superstring Theory and Beyond. Cambridge University
Press, California, 1998; Vol. 2.

[16] Förste, S.; Louis, J. Duality in string theory. Germany, 1998.

[17] Nastase, H. String Theory Methods for Condensed Matter Physics Cambridge University
Press, São Paulo, 2017.

49

https://math.berkeley.edu/~kwray/papers/string_theory.pdf
https://www.damtp.cam.ac.uk/user/tong/string/string.pdf
https://members.ift.uam-csic.es/auranga/Lect.pdf
https://whystringtheory.com/
https://pdg.lbl.gov/2014/reviews/rpp2014-rev-susy-1-theory.pdf
https://www.youtube.com/watch?v=cqszNrp1EDQ
https://www.youtube.com/watch?v=cqszNrp1EDQ
https://web.physics.ucsb.edu/~strings/superstrings/susy.htm
https://web.physics.ucsb.edu/~strings/superstrings/susy.htm
https://arxiv.org/pdf/2110.02964.pdf
https://arxiv.org/pdf/2110.02964.pdf


REFERENCES

List of figures:
• Figure 1: Serap Ogmen. A General Look at the String Theory and its Variations.
Harvard University, 2017. Available in: https://www.researchgate.net/figure/An
-example-of-compactification-At-large-distances-a-two-dimensional-sur

face-with-one_fig5_321299695

• Figure 2: Kevin Wray. An introduction to string theory. [2]

• Figure 3: Barton Zwiebach. A First Course in String Theory. [1]

• Figure 4: Richard J. Szabo. An Introduction to String Theory and D-Brane Dynamics.
Imperial College Press, 2011. Available in: https://francis.naukas.com/2015/08

/18/resena-an-introduction-to-string-theory-and-d-brane-dynamics-por-r

ichard-j-szabo/

• Figure 5: Chien-Hao Liu, Harvard University. Available in: https://www.researchga
te.net/figure/1-D-branes-as-boundary-conditions-for-open-strings-in-s

pace-time-This-gives-rise-to_fig1_262878097

• Figure 6: Bert Vercnocke. Lectures on Scattering Amplitudes in String Theory. Uni-
versity of Amsterdam, Institute for Theoretical Physics, 2010. Available in: https:

//www.researchgate.net/publication/47646322_Lectures_on_Scattering_Amp

litudes_in_String_Theory

50

https://www.researchgate.net/figure/An-example-of-compactification-At-large-distances-a-two-dimensional-surface-with-one_fig5_321299695
https://www.researchgate.net/figure/An-example-of-compactification-At-large-distances-a-two-dimensional-surface-with-one_fig5_321299695
https://www.researchgate.net/figure/An-example-of-compactification-At-large-distances-a-two-dimensional-surface-with-one_fig5_321299695
https://francis.naukas.com/2015/08/18/resena-an-introduction-to-string-theory-and-d-brane-dynamics-por-richard-j-szabo/
https://francis.naukas.com/2015/08/18/resena-an-introduction-to-string-theory-and-d-brane-dynamics-por-richard-j-szabo/
https://francis.naukas.com/2015/08/18/resena-an-introduction-to-string-theory-and-d-brane-dynamics-por-richard-j-szabo/
https://www.researchgate.net/figure/1-D-branes-as-boundary-conditions-for-open-strings-in-space-time-This-gives-rise-to_fig1_262878097
https://www.researchgate.net/figure/1-D-branes-as-boundary-conditions-for-open-strings-in-space-time-This-gives-rise-to_fig1_262878097
https://www.researchgate.net/figure/1-D-branes-as-boundary-conditions-for-open-strings-in-space-time-This-gives-rise-to_fig1_262878097
https://www.researchgate.net/publication/47646322_Lectures_on_Scattering_Amplitudes_in_String_Theory
https://www.researchgate.net/publication/47646322_Lectures_on_Scattering_Amplitudes_in_String_Theory
https://www.researchgate.net/publication/47646322_Lectures_on_Scattering_Amplitudes_in_String_Theory

	INTRODUCTION
	Motivation and justification arguments for string theory
	The least action as a fundamental principle
	Action of the relativistic point particle
	Action for the Schrödinger equation
	Other examples of the least action principle

	The classical string

	THE RELATIVISTIC STRING
	Action of a relativistic string
	Equation of motion for strings

	SYMMETRIES OF THE BOSONIC STRING
	Global symmetries
	Local symmetries
	Reparametrization invariance
	Weyl symmetry 

	String equation and its constraints

	MODE EXPANSION
	Light-cone coordinates
	Mass formula for a bosonic string

	QUANTIZATION OF THE STRINGS
	Canonical quantization
	Constraints and physical states
	Spurious States
	Removing ghost states

	Light-cone quantization
	Recovering Lorentz invariance


	SPECTRUM OF EXCITED STATES
	Open string
	Closed strings
	Open and closed strings in a same theory

	CONCLUSION AND FUNDAMENTAL RESULTS
	FURTHER STEPS TO SUPERSTRINGS

