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Abstract
Advanced numerical methods are necessary to carry out simulations of magnetized fluids due

to the highly non-linear nature of their equations. The timestep in the numerical calculation is

inversely proportional to the speed of propagation of signals in the system, and it dangerously

decreases when that speed is very large (like the Alfvén speed in the solar corona), sometimes

rendering the calculation very difficult or just impossible. A solution to this problem, proposed

by Boris 1970 and used in recent 3D models of the Sun (Rempel 2016, Cheung et al. 2019,

Chen et al. 2022) includes extra terms in the magnetohydrodynamic (MHD) fluid equations

that are disregarded in the standard MHD case, reducing the speed of propagation of signals.

Additionally, the speed of light is artificially lowered. In this thesis, a numerical code is built

from scratch and used to perform simulations of a 1D system with longitudinal velocity and

transverse magnetic field. The code is used to study the semi-relativistic MHD case of the

Boris correction, artificially changing the speed of light with a view to understanding whether

this technique modifies the physics obtained in the model for the evolution of the magnetized

fluid. It is concluded that the use of the Boris correction leads to an important decrease of the

speed of propagation of shocks while increasing the jumps of the physical quantities across the

shock. This leaves various open questions concerning the applicability of the Boris correction to

explosive situations, whose analysis goes beyond the scope of the present Graduation thesis.

Resumen
El uso de métodos numéricos avanzados es imprescindible para el desarrollo de simulaciones de

fluidos magnetizados debido a la naturaleza no lineal de sus ecuaciones. El paso temporal en los

cálculos numéricos es inversamente proporcional a la velocidad de transmisión de información

del sistema, decreciendo peligrosamente cuando esta velocidad es muy alta (como la velocidad de

Alfvén en la corona solar) haciendo los cálculos imposibles en algunos casos. Una solución para

este problema, propuesta por Boris 1970 y usada en modelos 3D recientes del sol (Rempel 2016,

Cheung et al. 2019, Chen et al. 2022), incluye términos en las ecuaciones magnetohidrodinámicas

(MHD) de los fluidos que son despreciados en el tratamiento MHD estándar, ralentizando la

velocidad de transmisión de información. Adicionalmente, la velocidad de la luz se reduce

de forma artificial. En este trabajo se construye un código numérico desde cero y se utiliza

para realizar simulaciones unidimensionales de un fluido con velocidad longitudinal y campo

magnético transversal. Usando dicho código se estudia el caso semi-relativista de la corrección

de Boris, reduciendo artificialmente la velocidad de la luz con vistas a comprender si dicha

técnica modifica la f́ısica obtenida en la evolución del fluido magnetizado. Se concluye que el

uso de la corrección de Boris disminuye de forma importante la velocidad de propagación de los

choques al tiempo que aumentan los saltos de las cantidades f́ısicas a través del choque. Esto

deja abiertas varias cuestiones sobre la aplicabilidad de la corrección de Boris en situaciones

explosivas cuyo análisis escapa del objetivo del presente Trabajo de Fin de Grado.
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1 INTRODUCTION

1 Introduction

En la presente sección se expone la relevancia de los métodos numéricos en dinámica de fluidos.

Se explica la corrección de Boris, técnica empleada para aumentar el paso temporal en los cálculos

numéricos y usada actualmente en simulaciones en la corona solar. Se establece el método de

comprobación de los efectos de esta técnica en la f́ısica resultante de las simulaciones numéricas.

Posteriormente se enumeran los objetivos de este trabajo. La construcción de un código

para realizar simulaciones de dinámica de fluidos compresibles, extensión al caso de fluidos mag-

netizados con tratamiento semi-relativista y tests de la corrección de Boris mediante reducción

artificial de la velocidad de la luz.

Finalmente se establece la metodoloǵıa de este trabajo. Se especifica el uso de métodos

numéricos, abordando los diferentes esquemas numéricos empleados y técnicas para reducir el

ruido numérico.

The use of advanced numerical methods is necessary to understand the time evolution of mag-

netized fluids in the cosmos and of fusion plasmas, due to the highly non-linear nature of their

governing equations. The Computational Fluid Dynamics (CFD) branch of Fluid Dynamics

studies how to obtain those numerical solutions in a reliable and efficient manner. It is part of

the state of the art in numerical modelling, and it has experienced a large boost in the past

several decades thanks to the fast advance in supercomupting facilities.

In Astrophysics, in particular, the systems to model can be very inhomogeneous, leading

to different evolutionary time scales in the different regions of the studied domain. In order to

guarantee numerical stability, the standard numerical codes have to fulfill a condition, known

as the Courant-Friedrichs-Lewy criterion (Courant et al. 1967, Laney 1998, Toro 2009), which

imposes a maximum timestep for the numerical advance of the calculation which is inversely

proportional to the speed of signal propagation in the physical system. In fact, the condition

stipulates that ∆t < fCF L · ∆x/vsign, with ∆t and ∆x the temporal and spatial resolution of

the code; vsign the signal propagation speed; and fCF L a number of order unity. The fastest

signal propagation speed in standard fluids interacting with electromagnetic fields (MHD fluids)

is the magnetosonic speed,
√

c2
s + v2

A, where cs is the sound speed and vA the Alfvén speed.

Its non-relativistic expression is vA = B/
√

µ0ρ, where B, µ0 and ρ denote the magnetic field,

magnetic permeability of free space and plasma density. In low density regions the Alfvén speed

can be very large. That is the case of the solar corona. The Alfvén speed is much greater than

the sound speed there, and can be extremely large above active regions. If the spatial resolution

1



1.1 Objectives 1 INTRODUCTION

is fixed and the system has large Alfvén speeds, the timestep can become very small, rendering

the numerical calculation very difficult or simply impossible to carry out.

A solution to this problem was proposed by Boris 1970 and is known as the Boris

correction. This technique maintains the non-relativistic equations for the fluid, but, different to

the standard MHD case, does not neglect the displacement-current term in Maxwell’s equations.

Therefore, a semi-relativistic set of MHD equations is obtained (see also Gombosi et al. 2002).

Additionally, the speed of light is artificially lowered which reduces the speed of propagation of

signals in the system (as detailed in this work). Although developed half a century ago, this

method is being used nowadays in the recent simulations of the solar corona using the MURAM

code (Rempel 2016, Cheung et al. 2019, Chen et al. 2022).

The general aim of this project is to create a code from scratch, written in the python

programming language, that can solve the equations of compressible fluid dynamics in one spatial

dimension with longitudinal velocity. The code is then enlarged to solve the MHD equations,

also for a 1D system with longitudinal velocity but with transverse magnetic field, i.e., with the

magnetic vector perpendicular to the direction of motion. In either case, the code is thoroughly

tested for standard problems of wave and shock front propagation. Then the semi-relativistic case

is studied, with a view to understanding whether the Boris correction does not modify the physics

obtained in the model so that it can be used to calculate the evolution of the magnetized fluid.

In the first part of the thesis, the non-relativistic equations for a non-magnetized ideal fluid are

presented (Section 2), along with the numerical scheme used to build the code that solves them

and the corresponding tests for cases with analytical solution. In Section 3, the non-relativistic

MHD equations are derived; the numerical scheme is modified correspondingly and extensively

tested for cases with analytical solution. The semi-relativistic magnetohydrodynamic equations

for a one-dimensional case with longitudinal fluid motion perpendicular to the magnetic field

are then presented in Section 4. The Boris correction is studied in Section 4.2; the tests to this

approximation are explained in Section 4.4 using for them an initial column-like profile as is

often used in the context of the standard Riemann problem of fluid mechanics. The final section

summarizes the conclusions reached in this work.

1.1 Objectives

• Construction of a python code to solve the general equations of compressible fluid me-

chanics for a one-dimensional situation in the particular case of an ideal gas without heat

conduction or viscosity and with longitudinal velocity only. Associated tests of propagation

of (a) linear sound waves and (b) moderate to strong sonic shock fronts.

2



1.2 Methodology 1 INTRODUCTION

• Enlargement of the code to cope with the one-dimensional MHD problem of a magnetized

fluid with magnetic field transverse to the direction of motion. Associated tests for (a)

linear magnetosonic waves and (b) moderate to strong magnetosonic shocks.

• Extension of the code to deal with the one-dimensional semi-relativistic MHD problem.

Associated tests for (a) linear semi-relativistic magnetosonic waves and (b) solution of

the Riemann problem. Determination of the properties of the generated semi-relativistic

magnetosonic shocks.

• Implementation of the Boris correction to artificially reduce the speed of light. Study of

changes of the physical properties of the solution through (a) magnetosonic waves and (b)

solution of the Riemann problem.

1.2 Methodology

This Graduation Thesis uses numerical methods to solve the fluid equations, indispensable

because of the non-linear nature of the equations. They are discretized in space and time,

substituting the space and time derivatives with finite differences. The choice of the finite

difference scheme is a decisive part of the different numerical methods historically developed to

solve this problem. We will use two different explicit numerical methods based on (a) the Lax-

Friedrichs scheme and (b) the first-generation scheme known as MacCormack method, belonging

to the Lax-Wendroff family of schemes. When testing the numerical results using cases with

analytical solution, the Lax-Wendroff scheme is chosen because it is less dissipative than the Lax-

Friedrichs scheme. Updating the code to cope with each set of equations, the hydrodynamic,

magnetohydrodynamic and semi-relativistic magnetohydrodynamic cases are solved with the

same numerical scheme.

Further to the numerical scheme, two methods are used to prevent numerical ringing

when calculating the evolution of sharp transitions like shock fronts or contact discontinuities:

(a) to treat the shock front transition, an artificial viscosity is required to avoid unwanted un-

wanted numerical noise. In this thesis, the classical Richtmyer-Von Neumann artificial viscosity

is used, which does a very good job at resolving the shock front with a chosen number of grid

points. This artificial viscosity is designed so that it works in situations in which the fluid is

being strongly compressed, like, precisely, across shocks.

(b) for the numerical ringing appearing around contact discontinuities (which are non-compressive),

a 4th-order filtering technique is used, as explained in Section 4.4.2.

3



2 CLASSICAL IDEAL FLUID

2 Classical ideal fluid

En el presente caṕıtulo se presentan las ecuaciones que describen la dinámica de un fluido clásico

ideal. Se simplifica el sistema de ecuaciones para el caso unidimensional, en el que se desarrolla

la teoŕıa de ondas de sonido y de choques. Posteriormente se plantea la solución numérica

que se seguirá para resolver las ecuaciones no lineales del sistema, se prueba con dos esquemas

numéricos diferentes y se llevan a cabo tests para comprobar la efectividad del código resolviendo

ondas de sonido y choques.

2.1 Equations

In order to obtain the set of semi-relativistic equations of magnetohydrodynamics, the simplest

case is analyzed first. We start by writing the equations for a classical ideal fluid in the absence

of gravity or electromagnetic field. Ideal here means that no dissipative phenomena are included,

like heat conduction or viscosity.

2.1.1 Fully non-linear equations of a simple fluid

The equations that govern the evolution of the simplest compressible fluid can be written in

explicit conservation form as follows:


∂ρ

∂t
= −div(ρ v) ,

∂

∂t
(ρ v) = −div(ρ v ⊗ v + p Î) ,

∂

∂t

(
ρ ϵ + ρ

v2

2

)
= −div

[(
ρ ϵ + ρ

v2

2 + p

)
v
]

,

(2.1)

(2.2)

(2.3)

where the six variables ρ, v = (vx, vy, vz), p and ϵ denote the mass density per unit volume,

fluid velocity, gas pressure and internal energy density per unit mass, respectively. Equations

(2.1) through (2.3) are known as the continuity, momentum and energy equations. On the left

hand side we find the volumetric densities, namely mass um = ρ, momentum uc = ρ v and total

energy ue = ρ ϵ + ρ v2/2. On the right hand side there are the corresponding fluxes, namely the

mass flux vector Fm = ρ v, the momentum flux tensor Π̂ = ρ v ⊗ v + p Î and the total energy

flux vector Fe =
(
ρ ϵ + ρ v2/2 + p

)
v.

These equations can also be written in terms of the Lagrange derivative, which provides

4



2.1 Equations 2 CLASSICAL IDEAL FLUID

the change in time measured if one pursued the fluid element as it moves in space:

Dρ

Dt
= −ρ div v ,

ρ
Dv
Dt

= −∇ p ,

ρ
Dϵ

Dt
= −p div v .

(2.4)

(2.5)

(2.6)

The simulation experiments that will be carried out in this Graduation Thesis will

focus on the one-dimensional case ρ = ρ(x), v = v(x) ex, p = p(x). The system of equations

(2.1-2.3) is then rewritten as:

∂ρ

∂t
= − ∂

∂x
(ρv) ,

∂

∂t
(ρv) = − ∂

∂x

(
ρv2 + p

)
,

∂

∂t

(
ρϵ + ρ

v2

2

)
= − ∂

∂x

[(
ρϵ + ρ

v2

2 + p

)
v

]
.

(2.7)

(2.8)

(2.9)

Assuming that the fluid is an ideal gas, the following expression of the internal energy

density can be used: ρϵ = p
γ−1 . This provides a system of three non-linear equations and three

variables.

2.1.2 Sound waves

Sound waves (also known as pressure waves) are the fundamental mode of propagation of small

amplitude perturbations in a fluid. The basic equations are obtained by considering a fluid in

static and stationary equilibrium extending to infinity with uniform values for the density ρeq

and pressure peq. This equilibrium state trivially fulfills the basic equations (2.7-2.9). On top of

this equilibrium, a perturbation is added with values (ρ′, v′, p′). If the perturbation is small,

equations (2.7-2.9) can be expanded as a power series in the perturbations, keeping terms up

to first order and disregarding all higher order terms i.e., neglecting non-linear effects. The

equations obtained are: 

∂

∂t

(
ρ′

ρeq

)
= −cseq

∂

∂x

(
v′

cseq

)
,

∂

∂t

(
v′

cseq

)
= −cseq

γ

∂

∂x

(
p′

peq

)
,

∂

∂t

(
p′

peq

)
= −γ cseq

∂

∂x

(
v′

cseq

)
,

(2.10)

(2.11)

(2.12)

with γ the adiabatic index of the ideal gas and cseq =
√

γ peq/ρeq the sound speed calculated

for the equilibrium values. For a single Fourier mode with frequency ω and wave number k, the

previous equations imply the following dispersion relation: ω = ±cseq k. The phase speed will

5



2.1 Equations 2 CLASSICAL IDEAL FLUID

consequently be vph = cseq, which is independent of k, so sound waves are non-dispersive. As

all modes propagate with the same phase velocities, any initial small-amplitude perturbation

with an arbitrary shape will shift in time without deformation in the direction of k with phase

velocity vph.

If the study is restricted to the case of adiabatic perturbations, the amplitude relations

of the perturbations are: ρ′

ρeq
= 1

γ
p′

peq
= ± v′

cseq
. The density and pressure perturbations are in

phase, while the velocity perturbation can be in phase or antiphase, depending on the direction

of propagation.

2.1.3 Shocks

A different kind of perturbation propagation in fluids are shock waves. These are sharp tran-

sitions in the physical quantities of the fluid: density, pressure, temperature... One encounters

shock fronts throughout the whole Universe, and in many situations on Earth as well. Shocks

are a clear example of the effect of the non-linear terms of the equations, as they take relevance

when the small perturbation conditions are not fulfilled.

To study the simplest case of one-dimensional shock propagation, one makes three

assumptions. First, the shock profile is taken to have a step function shape, with all variables

homogeneous in the pre and postshock regions. Secondly, the shock front is a plane advancing

at constant speed Vsh in the x direction and, in that frame of reference, the system is assumed

to be stationary (no time dependence). Finally, the shock is studied in that frame of reference

moving with it. We shall call u = v−Vsh the velocity of fluid elements relative to the shock front.

Through mass, momentum and energy conservation considerations, the Rankine-Hugoniot jump

conditions are derived:

ρ1 u1 = ρ0 u0 , (2.13)

ρ1 u2
1 + p1 = ρ0 u2

0 + p0 , (2.14)
u2

1
2 + ϵ1(ρ1, p1) + p1

ρ1
= u2

0
2 + ϵ0(ρ0, p0) + p0

ρ0
, (2.15)

where the subscript 1 denotes the postshock values, and 0 denotes the preshock values. These

two regions can be distinguished because the specific entropy of the postshock region is always

greater than the preshock specific entropy. This is an important consequence of the nature

of the equation of the entropy; this equation cannot be written in standard conservation form

as ∂u
∂t = −∂f(u)

∂x ; rather, it has two added terms, which are always positive and are, therefore,

entropy sources. In a real fluid, these terms are due to the dissipation associated with heat

conduction and viscosity, which are irreversible processes and non-negligible across the shock

6



2.2 Numerical solution 2 CLASSICAL IDEAL FLUID

transition.

Substituting the internal energy density by its expression in terms of ρ and p for the

simplest ideal gas, the different jumps p1/p0 and ρ1/ρ0 can be calculated in terms of the Mach

number M0 = |u0|
cs0

:

p1
p0

= 2γ

γ + 1M2
0 − γ − 1

γ + 1 , (2.16)

ρ0
ρ1

= 2
γ + 1

1
M2

0
+ γ − 1

γ + 1 , (2.17)

M2
1 = 2 + (γ − 1)M2

0
2γM2

0 − (γ − 1) . (2.18)

These analytical relations will be used to ensure the proper functioning of the code developed

in this thesis.

2.2 Numerical solution

Due to the highly non-linear behaviour of the system of equations that describe the fluid motion

(2.1-2.3) or (2.7-2.9), exact analytical solutions are generally very difficult or simply impossible

to obtain. A method involving numerical analysis has to be applied in order to solve the

equations. The branch of Fluid Dynamics that studies how to obtain numerical solutions of the

fluid equations is known as Computational Fluid Dynamics (CFD). It is part of the state of the

art in numerical modelling, and is a matter of great relevance in multiple fields such as aviation,

meteorology or astrophysics.

The first major task of this Graduation Thesis is to construct a code from scratch

that solves the 1D equations of fluid dynamics. The code is written in Python. It will solve

numerically the whole system of equations in the one-dimensional case (2.7-2.9). Introducing

the expression of the internal energy for an ideal gas ρϵ = p
γ−1 the volumetric densities for mass,

momentum and total energy can be reduced to:

um = ρ uc = ρv ue = p

γ − 1 + ρ
v2

2 . (2.19)

On the other hand, the mass, momentum and energy fluxes can be rewritten as:

fm = ρ v = uc , (2.20)

fc = ρ v2 + p = u2
c

um
+ (γ − 1)ue − u2

c

2 um
, (2.21)

fe =
(

ρ
v2

2 + γ

γ − 1p

)
v = γ ue v + (1 − γ) u3

c

2 u2
m

. (2.22)

Then, the fundamental fluid dynamics equations can be written as conservation equations:

∂u
∂t

= −∂f(u)
∂x

, (2.23)

7



2.2 Numerical solution 2 CLASSICAL IDEAL FLUID

with u = (um, uc, ue) and f(u) = (fm, fc, fe).

In order to solve the differential equations and compute the evolution of the state of the

fluid in a discretized manner, a finite difference method is used. The spatial domain is split into

a numerical grid of nint cells between the ends of the spatial domain x0 and xf , separated by

a fixed step ∆x. The time domain will be split in subsequent tn times, separated by a variable

∆t step that depends on the maximum information propagation speed as commented below.

The finite difference methods use a numerical scheme to update the densities u after each time-

step. A numerical scheme is an algorithmic process used to update the solution from any given

timestep at time tn to the next one, at time tn + ∆t. We have introduced two different schemes

in the code, the Lax-Friedrichs scheme and a scheme of the Lax-Wendroff family. They are

explained and compared in the next sections.

2.2.1 Lax-Friedrichs scheme

The first scheme we have introduced in the code is the so-called Lax-Friedrichs scheme [Toro

2009]. This is a robust and easy to implement explicit finite difference method. It is a FTCS

(Forward in Time, Centered in Space) scheme. One substitutes the derivatives in space through

the simplest centered finite differences, and for the derivatives in time, one uses a simple forward

finite difference, while the time advance uses neighboring grid point averages. The update in

time is calculated by:

un+1
i =

un
i−1 + un

i+1
2 − ∆t

2 ∆x

[
f
(
un

i+1
)

− f
(
un

i−1
)]

, (2.24)

where the subscript i indicates spatial position and the superscript n indicates time: un
i =

u(xi, tn). Given that the values of the variables at the end of the spatial domain cannot be

calculated through the scheme, an extra guard cell is added to each side. Having a total of

nint+2 cells the extra points will be calculated with the periodic boundary conditions:

un+1
0 = un

−2 un+1
−1 = un

1 . (2.25)

With a fixed spatial resolution of ∆x, the time step ∆t has to be limited to fulfill the Courant-

Friedrichs-Lewy criterion (Courant et al. 1967, Laney 1998, Toro 2009). This condition imposes

a maximum timestep for the numerical advance of the calculation which is inversely proportional

to the speed of signal propagation in the physical system. In fact, the condition stipulates that

∆t < fCF L · ∆x/vsign, with vsign the signal propagation speed and fCF L a number of order

unity. For an explicit numerical scheme like the one used, the fCF L factor has to be smaller

than 1.

8
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2.2.2 Lax-Wendroff scheme

The Lax-Friedrichs scheme is simple and robust, but it is also too dissipative. After a number of

iterations the amplitude of the perturbation is reduced, as if there were a real energy dissipation

effect. In order to solve this problem, a first-generation numerical scheme has been implemented,

which belongs to the so-called Lax-Wendroff family of schemes, namely the MacCormack scheme.

This scheme is implemented in two successive steps; the first one is a FTBS (Forward in Time,

Backward in Space) finite difference step, while the other is a FTFS (Forward in Time, Forward

in Space) step. Alternating the order of these steps every iteration achieves good stability

properties and second order accuracy in space and time. From the initial densities un
i , the

corresponding fluxes are calculated f(un
i ). Then intermediate density values are calculated.

With the FTBS scheme first:

un
i = un

i − ∆t

∆x
[f(un

i ) − f(un
i−1)] . (2.26)

Then the FTFS scheme is used:

un
i = un

i − ∆t

∆x
[f(un

i+1) − f(un
i )] . (2.27)

And the final density value is an average of the initial and this last value calculated:

un+1
i = un

i + un
i

2 . (2.28)

The next iterations will be essentially the same but changing the FTBS-FTFS order.

2.3 Results

To ensure the capabilities of the code to properly solve fluid dynamics problems, we have thor-

oughly tested it. Firstly the simple analytical propagation of linear sound waves is compared

with the numerical results of small perturbation propagation. Then the more demanding case

of shock waves, including strong shocks, is studied.

2.3.1 Sound wave tests

The small-amplitude sound wave properties were discussed in Section 2.1.2. According to what

was explained there, if an equilibrium state is created with a small-amplitude perturbation

added as the initial condition, the whole perturbation should propagate with the same shape

and phase speed, cseq =
√

γ
peq

ρeq
. If one jumps to a reference frame moving with this speed,

equivalent to making veq = −cseq, the perturbation should stay unchanged. This change of

reference system can be done because sound waves propagate at cseq with respect to the fluid

9
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(a) Lax-Friedrichs scheme. (b) Lax-Wendroff scheme.

Figure 1: Basic test of the code comparing two different numeric schemes. The initial perturba-

tion is a small amplitude cosine wave. The analytical solution is displayed as the grey dashed

line. It corresponds to the shift of the original perturbation with speed veq + cseq. As the initial

speed was veq = −cseq, the analytical solution stays still. A video animation of Figure 1a can

be seen here.

nints 2048 4096 8192 16384

Lax-Friedrichs
displacement 0.0049 0.0049 0.0037 0.0031

grid points displaced 1 2 3 5

Lax-Wendroff
displacement 0.0049 0.0049 0.0037 0.0031

grid points displaced 1 2 3 5
Table 1: Numerical solution displacement from the exact solution for sound waves of Figure 1.

at rest, so if in another reference system the fluid has equilibrium speed veq, the propagation

speed is vph = cseq + veq.

This is the first test carried out in Figure 1. The same experiment was developed using

the Lax-Friedrichs scheme in Figure 1a and the Lax-Wendroff scheme in Figure 1b. We defined

an equilibrium state: peq = 1.15, ρeq = 0.8, veq = −
√

γ
peq

ρeq , as shown in each subplot header.

Then, we added to the equilibrium state an initial perturbation with the shape of a cosine with

wavelength λ = 10. If it propagated with phase speed cseq, after a time t ∼ 10, equivalent to 1.5

wave periods, the perturbation would have travelled 15 distance units. Instead, given the frame

of reference used in the calculations, the numerical solution does not practically move compared

with the analytical one, marked by the dashed static perturbation in the plot. The displacement

is given in Table 1, generated by repeating the exact same experiment and increasing the number

10
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nints 2048 4096 8192 16384
Lax-Friedrichs 8.66e-03 4.33e-03 2.16e-03 1.07e-03
Lax-Wendroff 1.7e-05 1.7e-05 1.7e-05 1.7e-05

Table 2: Relative error due to dissipation for both numeric schemes of Figure 1 at t = 10 and

improving the spatial resolution.

of grid points nints used each time. There is an added row that indicates how many grid points

correspond to each displacement, illustrating that many distances are equal because of the

quantization of space in a numerical grid. The total displaced distance decreases when the

spatial resolution is increased in the calculations, proving that the error is due to numerical

precision.

Both numeric schemes obtain the same phase speed for perturbations, (same displace-

ment), but the Lax-Friedrichs scheme is much more dissipative than the Lax-Wendroff scheme,

as can be seen in Table 2. It displays the relative error in the calculations of the maximum of the

perturbation compared to the exact perturbation. The Lax-Friedrichs scheme is two orders of

magnitude more dissipative than the Lax-Wendroff, and like we expected, increases its accuracy

as the spatial resolution is improved.

2.3.2 Tests for shock waves

The elementary theory of shock waves, as discussed in Section 2.1.3, provides the value of the

pressure and density jumps and of the postshock Mach number as a function of the incoming

Mach number M0 through equations (2.16-2.18). Setting the initial preshock values ρ0, p0, v0,

and specifying the desired M0, all postshock values are determined by the previous relationships.

For the tests in this section, an initial condition is specified basically as a step function, but,

in fact, with a hyperbolic tangent profile, to prevent the appearance of singularities in the

numerical calculation. Then, the numerical solution should evolve as the expected shock. If

v0 = 0, the preshock medium will be at rest and the shock front will advance towards it with

speed Vsh = v0 − u0 = −u0 = M0 cs0. Yet, to simplify the analysis of the results, we will jump

onto a reference frame in which the shock front is static by establishing v0 = u0 = −M0 cs0 =

−M0
√

γp0/ρ0.

Figure 2 shows the results of this simple shock test for a case with M0 = 2, which is intermediate

between the limits of weak and strong shock. The same experiment was carried out using the

Lax-Friedrichs scheme (Figure 2a), the Lax-Wendroff scheme (Figure 2b) and the Lax-Wendroff

scheme with artificial viscosity (Figure 2c), which will be explained in the next paragraph.

11
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(a) Lax-Friedrichs scheme (b) Lax-Wendroff scheme

(c) Lax-Wendroff scheme using artificial viscosity

Figure 2: M0 = 2 shock test. The obtained jumps correspond to the analytical expressions

(2.16-2.18).

In all plots there is a green dot that moves with the theoretical value of Vsh. In this

case, as Vsh = 0, the dot is static. The shock front stays basically fixed onto the dot, as shown in

Table 3. It displays the distance between the shock front and its theoretical position for different

grid point numbers. As separation decreases when spatial resolution increases, the displacement

can be considered due to numerical precision. This proves that the numerical calculation of the

shock speed is consistent with the expected results.

12
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nints 2048 4096 8192 16384

Lax-Friedrichs
displacement 0.0191 0.0098 0.0049 0.0024

grid points displaced 4 4 4 4

Lax-Wendroff
displacement 0.0191 0.0098 0.0061 0.0024

grid points displaced 4 4 5 4

L-W artificial viscosity
displacement 0.0191 0.0098 0.0049 0.0024

grid points displaced 4 4 4 4
Table 3: Numerical solution displacement from exact position for shock waves of Figure 2.

In all three cases two additional small perturbations are apparent in the postshock

region (more visible in Figure 2c). The first one, marked with a blue cross, is present in the

pressure, density and velocity profiles. The perturbation is in phase for pressure and density,

and antiphase for velocity, because it consists of a sound wave that propagates through the

postshock medium to the left, travelling with speed −(|u1|+cs1). The perturbation is caused by

the small but unavoidable difference between the imposed initial condition and the real shape

that the shock takes. The second perturbation, marked with a red cross, is only present in the

density profile because it corresponds to a contact discontinuity. Like all contact discontinuities,

it moves in step with the medium in which it is located, in this case, the postshock medium, so

it travels with speed u1 to the left.

The calculation of derivatives across the shock is particularly difficult for the numerical

scheme due to the abrupt transitions. As a result a series of ripples appear before and after the

shock front (clearly seen in Figure 2b). In order to reduce them, the Ritchmeyer-Von-Neumann

artificial viscosity [Laney 1998] is included. This method adds an extra component to the

momentum and energy fluxes that acts like a viscosity wherever the fluid is being compressed

(∂v/∂x < 0). The extra terms are:

fc art visc =
(

ϵ∆z

2

)2
ρ

(
∂v

∂x

)2
, (2.29)

fe art visc =
(

ϵ∆z

2

)2
ρ v

(
∂v

∂x

)2
, (2.30)

where ϵ is a free parameter. Following the theory for this artificial term [Laney 1998], the free

parameter ϵ roughly corresponds to the number of grid points that cover the shock transition

and an extra condition is added to the fCF L parameter: fCF L < 10/ϵ2. This will lead to a

smaller time-step, requiring more iterations, as seen in Figure 2 (∆t goes from 10−3 to 1.6 ·10−4,

requiring about 6 times more iterations).

Including artificial viscosity eliminates the ripples of the shock front, obtaining a sharp

transition, and it has low dissipation thanks to the use of the Lax-Wendroff scheme. Never-

theless, the decrease of the time-step will increase the computational effort of the experiments.

Now the code can be subjected to strong shock conditions.

13
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Figure 3: Strong shock test with M0 = 100, using the Lax-Wendroff scheme and artificial

viscosity. A video animation of this figure can be seen here.

In Figure 3 a strong shock with M0 = 100 is tested. It is verified that the pressure

jump is unbounded (4 orders of magnitude difference in the jump) while the density jump is

bounded, as expected from equations (2.16-2.18). Even though the jumps are huge, the code

yields an accurate solution. The displacement of the shock front to its exact expected position

obtained for this case is equivalent to that of Table 3.

14
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3 The standard MHD fluid

En esta sección se derivan las ecuaciones que describen la dinámica de un fluido en presencia de

campo electromagnético para el caso unidimensional en el que la velocidad del mismo es paralela

a la de propagación y el campo magnético es perpendicular. Se toman las simplificaciones de

neutralidad de carga, conductividad infinita y velocidades no relativistas. A continuación se

desarrolla la teoŕıa correspondiente a ondas magnetosónicas y choques, y se llevan a cabo una

serie de tests para comparar los resultados numéricos con las soluciones anaĺıticas.

After having proved that the code correctly solves the simple non-relativistic ideal fluid equa-

tions, we continue by including the electromagnetic field. The fluid is assumed to have an

electric charge density per unit volume ρel, and to support electric currents with electric current

vector j. The changes carried out to incorporate to the fluid equations the interaction with the

electromagnetic field consist of adding two terms:

• The force exerted by the electromagnetic field on the fluid, i.e., the Lorentz force, given by:

FL = ρel E + j × B. This is a term that is added to the right of the momentum equation

(2.2).

• The work done by the electromagnetic field on the fluid, given by E · j. This term must

be added to the right of the energy equation (2.3).

In the following we will use Maxwell’s equations to transform the resulting expressions for

the enlarged fluid equations into their explicit conservation form, with the objective of better

understanding the nature of the coupled system fluid-electromagnetic field in the non-relativistic

approximation. This is usually referred to as the magnetohydrodynamic approximation.

3.1 Equations

To carry out the transformation just mentioned, Poynting’s theorem will be used, i.e.:

E · j = −div Sp − ∂uem

∂t
, (3.1)

where uem = ϵ0
E2

2 + B2

2µ0
is the electromagnetic energy density per unit volume and Sp =

E×B
µ0

is Poynting’s vector. This expression of the work done by the electromagnetic field on

the fluid as the sum of a divergence term and a time derivative is convenient for writing the

equations in explicit conservation form. The equation itself, i.e., Poynting’s theorem, has a clear

interpretation in terms of energy conservation: the energy lost by the electromagnetic field in
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exerting power onto the fluid comes at the expense of the electromagnetic energy (time derivative

term) or through deposition of the electromagnetic energy flux (divergence term).

In order to transform the resulting expressions, Maxwell’s equations will be used:

∇ · E = ρel

ϵ0
,

∇ · B = 0 ,

∇ × E = −∂B
∂t

,

∇ × B = µ0

(
j + ϵ0

∂E
∂t

)
,

(3.2)

(3.3)

(3.4)

(3.5)

where ϵ0 and µ0 denote the permittivity and permeability of free space, respectively.

Using the foregoing equations, and after some amount of straightforward, but non-

trivial, algebra, one can transform the expression for the Lorentz force into the sum of a diver-

gence term and a time derivative, as follows:

FL = div M̂ − 1
c2

∂Sp

∂t
, (3.6)

where M̂ = − B2

2µ0
Î − ϵ0E2

2 Î + B⊗B
µ0

+ ϵ0E ⊗ E is Maxwell’s stress tensor.

A further equation is necessary to obtain a complete system, namely Ohm’s Law, which

links the electric current with the electric and magnetic fields. We borrow its expression from

the basic theory of MHD by Priest 2014:

j = σ (E + v × B) , (3.7)

where σ denotes electrical conductivity.

3.1.1 The MHD equations

Using the formulae from electromagnetic theory just written and through straightforward deriva-

tions, one can turn the equations for the conducting fluid in the presence of an electromagnetic

field into the following form, which is in explicit conservation form:

∂ρ

∂t
= −div(ρ v) ,

∂B
∂t

= −curl E ,

∂

∂t

(
ρ v + Sp

c2

)
= −div

(
ρ v ⊗ v + p Î − M̂

)
,

∂

∂t

(
ρ ϵ + ρ

v2

2 + uem

)
= −div

[(
ρ ϵ + ρ

v2

2 + p

)
v + Sp

]
.

(3.8)

(3.9)

(3.10)

(3.11)

Equations (3.10) and (3.11) contain now the conservation of momentum and energy of the com-

bined fluid and electromagnetic field system. The term Sp/c2 clearly represents the momentum
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density of the electromagnetic field per unit volume, the tensor M̂ is a stress tensor due to the

electromagnetic field, the uem term is the energy density of the electromagnetic field per unit

volume and the Sp vector is the energy flux vector associated with the electromagnetic field.

Now, a number of further simplifications are assumed in the basic MHD theory:

• Charge neutrality. This means that ρel → 0, leaving the Lorentz force as FL = j × B

and (3.2) as ∇ · E = 0.

• Infinite conductivity, while keeping finite currents. Applying it to Ohm’s Law, if

σ → ∞ and j is finite, the electric field is E = −v × B.

Then the Poynting vector can be rewritten as Sp = −(v×B)×B
µ0

and Faraday’s induction

equation (3.4) is rewritten as ∂B
∂t = ∇ × (v × B).

• Non-relativistic fluid speeds: v ≪ c, where c is the speed of light. Considering this:

– The electromagnetic energy density is dominated by the magnetic energy density:

ϵ0E2

B2/µ0
= ϵ0µ0

|v × B|2

B2 ≤ v2

c2 ≪ 1 , (3.12)

as c = 1/
√

ϵ0µ0.

– The Ampère-Maxwell law (3.5) is also dominated by the magnetic term:

µ0ϵ0∂E/∂t

∇ × B = 1
c2

|v × B|τ−1

|B|L−1 ≤ |v|L/τ

c2 ≪ 1 , (3.13)

where L and τ represent the characteristic variation distance of B and characteristic

variation time of E. When the speed of all waves propagating in the system are

non-relativistic, L/τ ≪ c. Then, the Ampère-Maxwell law (3.5) can be rewritten as:

∇ × B = µ0j , (3.14)

i.e., the displacement current term can be neglected.

– Following the previous reasoning, the magnetic field terms dominate over the electric

field terms in Maxwell’s stress tensor, so it can be rewritten as M̂ = − B2

2µ0
Î + B⊗B

µ0
.

– The electromagnetic momentum density is given by Sp/c2, and comparing it with the

fluid momentum density

|Sp/c2|
|ρv|

= |(v × B) × B|
µ0c2ρ|v|

≤ B2

µ0ρ

1
c2 = v2

A

c2 ≪ 1 . (3.15)
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Applying these simplifications, the resulting system of equations is:

∂ρ

∂t
= −div(ρ v) ,

∂B
∂t

= curl(v × B) ,

∂

∂t
(ρ v) = −div

[
ρ v ⊗ v + p Î + B2

2µ0
Î − B ⊗ B

µ0

]
,

∂

∂t

(
ρ ϵ + ρ

v2

2 + B2

2µ0

)
= −div

[(
ρ ϵ + ρ

v2

2 + p

)
v − (v × B) × B

µ0

]
.

(3.16)

(3.17)

(3.18)

(3.19)

The term B2

2µ0
is called magnetic pressure, so the total pressure will be the sum of the gas and

magnetic pressures: ptot = pgas + pmag = p + B2

2µ0
.

Similarly to what we did for standard simple fluids, we will be here considering a

one-dimensional system. For extra simplification, we will limit ourselves to the case when the

magnetic field B is perpendicular to v, i.e.: ρ = ρ(x), p = p(x), v = v(x)ex, B = B(x)ez. The

system of equations can then be written as:

∂ρ

∂t
= − ∂

∂x
(ρ v) ,

∂B

∂t
= − ∂

∂x
(B v) ,

∂

∂t
(ρ v) = − ∂

∂x

[
ρ v2 + p + B2

2µ0

]
,

∂

∂t

(
ρ ϵ + ρ

v2

2 + B2

2µ0

)
= − ∂

∂x

[(
ρ ϵ + ρ

v2

2 + p + B2

µ0

)
v

]
.

(3.20)

(3.21)

(3.22)

(3.23)

The one-dimensional version of the induction equation (3.21) adds an important insight

to the situation. The magnetic flux contained between two fluid elements will be constant in

time:

Φ(t) =
∫ x1(t)

x0(t)
B(x, t)dx ;

dΦ(t)
dt

=
∫ x1(t)

x0(t)

∂B(x, t)
∂t

dx + B(x1, t)dx1(t)
dt

− B(x0, t)dx0(t)
dt

= 0 .

This result is a consequence in our 1D system of the general result for the 3D case called ‘the

flux freezing theorem’, studied in standard MHD texts.

3.1.2 Magnetosonic waves

Following the steps of Section 2.1.2, the small-perturbation theory for our 1D MHD system

with transverse magnetic field (3.20-3.23) can be briefly sketched. Expanding the equations as
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a power series in the perturbations and disregarding all non-linear terms we obtain:

∂

∂t

(
ρ′

ρeq

)
= −vph

∂

∂x

(
v′

vph

)
,

∂

∂t

(
B′

Beq

)
= −vph

∂

∂x

(
v′

vph

)
,

∂

∂t

(
v′

vph

)
= − 1

vph

[
cs

2
eq

γ

∂

∂x

(
p′

peq

)
+ vA

2
eq

∂

∂x

(
B′

Beq

)]
,

∂

∂t

(
p′

peq

)
= −γ vph

∂

∂x

(
v′

vph

)
,

(3.24)

(3.25)

(3.26)

(3.27)

where vph is the quantity that compares to v′ in establishing the amplitude of the perturbation,

and will denote the phase speed, and vA = B/
√

µ0ρ is the Alfvén speed. Following the same

steps as before, it can be determined that the phase speed is vph =
√

cs
2
eq + vA

2
eq = cms, a

quantity known as magnetosonic speed. Like for the elementary sound waves, the phase speed

is independent of k, so magnetosonic waves are also non-dispersive. The amplitude relations

of the perturbations are: ρ′

ρeq
= B′

Beq
= 1

γ
p′

peq
= ± v′

(cms)eq
. The density, magnetic field and gas

pressure perturbations are in phase, while the velocity perturbation can be in phase or antiphase,

depending on the direction of propagation.

3.1.3 Shocks

Non-relativistic MHD shocks are studied in the same situation as classical ideal fluid shocks

in Section 2.1.3. Jump relations across them are obtained in all the classical books about

magnetohydrodynamics, like those of Boyd et al. 2003 or Priest 2014, and are shown below.

The plasma beta for the unshocked region is defined as:

β0 = pgas0
pmag0

= 2 µ0 p0
B2

0
= 2 cs

2
0

γ vA
2
0

(3.28)

Remembering the sonic Mach number of the shock M0 = |u0|
cs0

, the jump relations are given by:



ρ1
ρ0

= X ,

B1
B0

= X ,

u1
u0

= X−1 ,

p1
p0

= 1 + γ M2
0 (1 − X−1) + β−1

0 (1 − X2) ,

(3.29)

(3.30)

(3.31)

(3.32)

where X is the positive solution of:

f(X) = 2(2 − γ)X2 +
[
2β0 + (γ − 1)β0M2

0 + 2
]

γX − γ(γ + 1)β0M2
0 = 0 . (3.33)
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If M0 → ∞, X → γ+1
γ−1 , so jumps across density, magnetic field and relative velocities

to the shock front are bounded, and the bound is the same as for density and relative velocities

in the purely hydrodynamic situation (2.17-2.18). Like in that case, the pressure jump is also

unbounded for high M0, because as the incoming energy flux is unbounded, the outgoing energy

flux has to be unbounded too.

For high β0, the gas pressure is more relevant than the magnetic pressure. If β0 → ∞,

X → (γ+1)M2
0

2+(γ−1)M2
0

, and then ρ0
ρ1

= X−1, i.e., the purely hydrodynamic case (2.17) is recovered.

Both tendencies can be appreciated in Figure 4. For γ = 5/3, when M0 → ∞, it is seen

in the top left plot that ρ1/ρ0 → 4 and in the center left plot p1/p0 → ∞. Furthermore, both

figures show that when β0 increases, the behaviour of the curve approximates the hydrodynamic

values previously calculated. In addition, when M0 → ∞, all β0 curves take the same behaviour

(even though they may have different values) because as the incoming energy flux increases, the

relevant dynamic term that increases unboundedly the outgoing energy flux is the gas pressure.

3.2 Numerical solution

The one-dimensional MHD system (3.20-3.23) is highly non-linear and an exact analytical so-

lution is very difficult or impossible to find, as for the classical ideal fluid case commented in

Section 2.2. It has to be solved through numerical methods, carrying out computational fluid

magnetohydrodynamical simulations. The numeric scheme used is the Lax-Wendroff scheme

with the Von-Neumann artificial viscosity included. The difference now is the calculation of

numerical densities and fluxes, given by the system of non-linear equations (3.20-3.23). The

volumetric densities of mass, momentum and energy and the equivalent numerical quantity for

the magnetic field are:

um = ρ , uB = B , uc = ρ v , ue = p

γ − 1 + ρ
v2

2 + B2

2µ0
. (3.34)

On the other hand, the mass, momentum and energy fluxes and the equivalent quantity for the

magnetic field are left as:

fm = ρ v = uc , (3.35)

fB = B v = uB
uc

um
, (3.36)

fc = ρ v2 + p + B2

2µ0
= (γ − 1)ue +

(3
2 − γ

)
u2

c

um
+ (2 − γ) u2

B

2µ0
, (3.37)

fe =
(

ρ
v2

2 + γ

γ − 1p + B2

µ0

)
v =

[
γ ue + (1 − γ) u2

c

2um
+
(

1 − γ

2

)
u2

B

µ0

]
uc

um
. (3.38)
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Figure 4: Variation of density, pressure and β jumps with respect to both M0 and Mms0
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nints 2048 4096 8192 16384

βeq = 10 displacement 0.0049 0.0049 0.0037 0.0031
grid points displaced 1 2 3 5

βeq = 0.5 displacement 0.0098 0.0073 0.0061 0.0061
grid points displaced 2 3 5 10

Table 4: Numerical solution displacement from exact position of Figure 5.

Figure 5: Basic magnetosonic wave test for the MHD case. The gray dashed line is the analyt-

ical solution, a static perturbation, which matches the numerical calculation performed by the

program. The left hand side corresponds to a β0 = 10 situation, and time elapsed is equivalent

to 1.6 periods of the perturbation. The right hand side corresponds to a β0 = 0.5 situation, and

the time elapsed corresponds to 2.8 periods. A video animation of this figure can be seen here.

3.3 Results

3.3.1 Magnetosonic wave test

As explained in Section 2.3.1, if a small amplitude perturbation is added to the equilibrium

state as the initial condition, the perturbation will propagate with phase speed vph = (cms)eq =√
cs

2
eq + vA

2
eq. If the initial velocity of the fluid in the equilibrium state is veq = −vph, the
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perturbation will appear static. The results of the experiment for equilibrium values peq = 1.15,

ρeq = 0.8, and two different values for the plasma beta, namely βeq = 10 and βeq = 0.5, are

shown in Figure 5. For the experiments, we added a small-amplitude perturbation with cosine

shape and wavelength λ = 10. Like in Figure 1, after a time t ∼ 10, the perturbation has

remained almost static. Its displacement from the exact theoretical position, i.e., the error, is

measured in Table 4. The error decreases as spatial resolution is increased, confirming the ability

of the calculations of the code to match the analytical results.

3.3.2 Shock test

The shock wave theory in section 3.1.3 presented the jump relations for a magnetosonic shock.

In the frame of reference that moves with the shock front, the shock should appear static.

We have carried out three experiments for shocks, all with M0 = 10, but with different values of

β0, namely β0 = 0.1, 1 and 10; this was achieved by changing B0. The results are illustrated in

Figure 6. Now, instead of displaying the pgas profile, the ptot profile is drawn. As expected, the

shock front stays at a fixed position close to the theoretical location marked with the static green

dot. The numerical errors lead to a slight displacement of the shock, which is listed in Table 5

for the different cases. This means that the numeric Vsh matches the theoretical value expected.

In all different β0 cases secondary perturbations similar to those encountered for simple sonic

shocks in Section 2.3.2 are present. The magnetosonic wave that propagates to the left through

the postshock medium matches its predicted speed, just like the contact discontinuity. The

latter is absent in the total pressure profile, as expected.

Up to this point, the theory of MHD perturbation propagation has been explained

and tested with a numerical code. The simplifications assumed of charge neutrality and very

large conductivity while keeping finite currents correspond to the treatment of plasmas found

throughout the universe. However, the assumption of non-relativistic signal speed propagation

is a more restrictive simplification that does not always hold. There are certain cases in which

the Alfvén speed, vA, can reach extremely high values, becoming relativistic. If fluid speeds are

still much smaller than the speed of light, a semi-relativistic system can be considered.

nints 2048 4096 8192 16384

β0 = 0.1 displacement 0.0191 0.0098 0.0049 0.0024
grid points displaced 4 4 4 4

β0 = 1 displacement 0.0191 0.0098 0.0049 0.0024
grid points displaced 4 4 4 4

β0 = 10 displacement 0.0191 0.0098 0.0049 0.0024
grid points displaced 4 4 4 4

Table 5: Numerical solution displacement from exact position for Figure 6.
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(a) β0 = 0.1 (b) β0 = 1

(c) β0 = 10

Figure 6: M0 = 10 shock test with different values of β0. The obtained jumps accurately match

the analytical expressions (3.29-3.32). The blue marker moves with speed |u1| + cms to the left,

the red marker moves with |u1| speed to the left and the green dot moves with Vsh speed, which

is zero in this system of reference. A video animation of Figure 6a can be seen here.
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4 Semi-relativistic MHD fluid

En la presente sección se derivan las ecuaciones que describen la dinámica de un fluido en presen-

cia de campo electromagnético para el mismo caso unidimensional anterior, a diferencia de que

el tratamiento para las ecuaciones del electromagnetismo incluye la corriente de desplazamiento.

Se elabora la teoŕıa correspondiente a ondas magnetosónicas en esta situación. Posteriormente

se presenta la corrección de Boris, un método que permite reducir el tiempo computacional

mediante una elección artificial de velocidad de la luz que limita la velocidad de propagación de

señales del sistema. Se llevan a cabo tests de ondas y choques para comprobar los efectos de

esta corrección.

In this chapter, we continue considering an ideal fluid (i.e. no dissipative phenomena are in-

cluded, like heat conduction or viscosity) in interaction with an electromagnetic field, and keep

the assumptions of charge neutrality and infinite conductivity. The fluid is still assumed to have

non-relativistic speeds, so that the non-relativistic fluid equations can be maintained. The new

aspect considered here is the possibility that the signal propagation speed in the plasma, in

particular the Alfvén speed, may no longer be very small compared to the speed of light. In

this case, the approximation of neglecting the displacement current carried out in Section 3.1.1

(Equations 3.13 and 3.14) cannot be kept. Consequently, the non-relativistic equations of fluid

dynamics will be combined with the full system of the Maxwell equations. The theoretical basis

for this approach can be found in the papers by Gombosi et al. 2002, Boris 1970, Rempel 2016

and Chen et al. 2022.

In fact, in the solar corona above active regions the Alfvén speed can be very large

(B ≈ 300 G= 0.03 T, ρ ≈ 2 · 10−12 kg/m3, then vA = B/
√

µ0ρ ≈ 2 · 104 km/s), but still well

below the speed of light. Yet, in the Boris correction that is tested later in this chapter, the

speed of light is reduced artificially, so the Alfvén speed can become close to c, even if only as

a trick to speed up the numerical calculation.

4.1 Equations

The starting point will be the general system of equations for MHD fluids (3.8-3.11). The

system will be rewritten for the one-dimensional case, and the corresponding simplifications will

be applied.
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4.1.1 Fully non-linear equations

In the one-dimensional case with purely transverse magnetic field [ρ = ρ(x), p = p(x), v =

v(x) ex, B = B(x) ez] and under the assumptions of charge neutrality and infinite conductivity,

the following simplified equations hold:

E = −v × B = vB ey , (4.1)

Sp = E × B
µ0

= vB2

µ0
ex , (4.2)

∂B
∂t

= −∇ × E = −∂(vB)
∂x

ez , (4.3)

Mij = − B2

2µ0

(
1 + v2

c2

)
δij + B2

µ0

(
δizδjz + v2

c2 δiyδjy

)
, (4.4)

uem = B2

2µ0
+ ϵ0v2B2

2 = B2

2µ0

(
1 + v2

c2

)
. (4.5)

Then, the whole system (3.8-3.11) can be written for the one-dimensional case as:

∂ρ

∂t
= − ∂

∂x
(ρ v) ,

∂B

∂t
= − ∂

∂x
(B v) ,

∂

∂t

(
ρ v + vB2

µ0

1
c2

)
= − ∂

∂x

[
ρ v2 + p + B2

2µ0

(
1 + v2

c2

)]
,

∂

∂t

[
ρ ϵ + ρ

v2

2 + B2

2µ0

(
1 + v2

c2

)]
= − ∂

∂x

[(
ρ ϵ + ρ

v2

2 + p

)
v + vB2

µ0

]
.

(4.6)

(4.7)

(4.8)

(4.9)

The continuity and induction equations remain unchanged, while there are new terms in the

momentum and energy conservation equations when compared to the equivalent system (3.20-

3.23). The extra terms that appear are marked in blue. These elements can be expressed in

terms of the Alfvén velocity, as B2

µ0
= ρv2

A:

∂

∂t

(
ρv + ρv

v2
A

c2

)
= − ∂

∂x

[
ρv2 + p + B2

2µ0
+ ρ

v2

2
v2

A

c2

]
, (4.10)

∂

∂t

(
ρϵ + ρ

v2

2 + B2

2µ0
+ ρ

v2

2
v2

A

c2

)
= − ∂

∂x

[(
ρϵ + ρ

v2

2 + p

)
v + vB2

µ0

]
. (4.11)

As the Alfvén velocity need not be very small compared to c in the present case, the new terms

can be relevant in the evolution of the system. We will refer to the ratio fB = vA
c as the Boris

factor.

It is seen that the effect of the Poynting term in the left hand side of the momentum

equation (3.10) has the effect of increasing the inertia of the fluid by a factor fB. A discussion

of this effect and its consequences can be found in the articles by Rempel 2016 and Chen et al.

2022.
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4.1.2 Semi-relativistic magnetosonic waves

Following the steps of Sections 2.1.2 and 3.1.2, the theory of magnetosonic waves in the present

semi-relativistic context can be derived. For small-amplitude perturbations, considering veq = 0,

expanding (4.6-4.9) as a power series in the perturbations and disregarding non-linear terms:

∂

∂t

(
ρ′

ρeq

)
= −vph

∂

∂x

(
v′

vph

)
,

∂

∂t

(
B′

Beq

)
= −vph

∂

∂x

(
v′

vph

)
,

∂

∂t

(
v′

vph

)
= − 1

vph

c2

c2 + v2
A

[
cs

2
eq

γ

∂

∂x

(
p′

peq

)
+ vA

2
eq

∂

∂x

(
B′

Beq

)]
,

∂

∂t

(
p′

peq

)
= −γ vph

∂

∂x

(
v′

vph

)
.

(4.12)

(4.13)

(4.14)

(4.15)

Following the steps of previous sections, the phase speed turns out to be:

vph =
√√√√cs

2
eq + vA

2
eq

1 + vA
2
eq

c2

=
(cms)eq√
1 + f2

B

. (4.16)

vph is independent of k, so the semi-relativistic magnetosonic sound waves are non-dispersive.

From (4.16) we see that the phase speed of the magnetosonic waves in the present semi-relativistic

frame is reduced by a factor
√

1 + f2
B compared to the standard non-relativistic phase speed

when the Alfvén speed is not small compared to c. The reason for this decrease in the phase

speed is related to the increase of the effective inertia of the fluid [as apparent from the left hand

side of the momentum equation (4.10)]; with higher inertia, the volume elements of the fluid

require a larger force to be accelerated, resisting changes in motion.

This has important consequences also in terms of the limitation of the timestep in

numerical calculations. From the Courant-Friedrichs-Lewy condition one can obtain: ∆t =

fCF L∆x/umax with umax = max(|v + vph|, |v − vph|). For cases with relativistic Alfvén speed:

∆t ≈ fCF L ∆x

vA

√
1 + f2

B . (4.17)

This is why the semi-relativistic approach is used in some numerical models of the solar corona

in our days ([Rempel 2016], [Chen et al. 2022]).

For adiabatic perturbations, the amplitude relations are: ρ′

ρeq
= 1

γ
p′

peq
= ± v′

vph
=

± v′

(cms)eq

√
1 + f2

B. For equilibrium states with the same (cms)eq, the perturbation amplitude

will be greater if the Alfvén speed is relativistic.
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4.1.3 Semi-relativistic shocks

For semi-relativistic shocks, in contrast to Sections 2.1.3 and 3.1.3, jump relations cannot be

determined analytically, nor can they be found in the literature. Then, the step-functions that

we used to define the initial situation with pre and postshock values to each side are no longer

feasible. The postshock values will not adapt to the exact values that the shock would take, and

there will be extra perturbations across it. Instead, we will solve the Riemann problem [Toro

2009]. This is a widely used situation in fluid dynamics and MHD simulations, consisting in

an initial state characterised by a discontinuity. There is an analytical solution to predict the

evolution in the simplest cases of non-relativistic speeds. In the simplest case, there will be a

shock wave propagating to one side of the discontinuity, a rarefaction wave propagating in the

opposite direction on the other side, and a contact discontinuity in the postshock medium. In

this case of semi-relativistic shocks the jump relations and shock front speed are unknown and

can only be estimated via the numerical experiments.

4.2 The Boris correction

The Boris correction [Boris 1970] is a modification that limits the signal propagation velocities

of a MHD fluid, reducing the computational timestep and permitting longer evolution times

in simulations. This correction is based on artificially lowering the speed of light, which will

increase the value of the fB parameter, reducing the signal propagation velocity (4.16) in the

problem. This change can have important consequences for the numerical calculation of the

solutions of the system, since ∆t increases with increasing fB for explicit numerical schemes, as

seen in (4.17).

When the system one is studying naturally reaches a steady state, the Boris correction

can accelerate the numerical calculation of the process, as explained by Gombosi et al. 2002.

In a steady state situation, the semi-relativistic terms that contain the speed of light disappear

because time derivatives cancel. Nevertheless, Rempel 2016, Chen et al. 2022 and other authors

use this correction in calculations of non-stationary time evolution. It is even used in explosive

situations like modeling of flares with values of fB > 1 [Cheung et al. 2019]. So, it is of interest

to explore some of the consequences of the correction in time-dependent calculations.

An example of the effect of this correction is the following: if one has a given vA ≪ c,

an artificial value of c = 1.5 vA can be set, i.e., fB = 2/3, and the new phase speed will be

vph = cms/
√

1 + 1/1.52 = cms/1.2. The time step has increased by 20%, making calculations

faster.
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4.3 Numerical solution

The semi-relativistic calculations will be solved through the Lax-Wendroff scheme with the Von-

Neumann artificial viscosity. The difference with the previous cases will be how the numerical

densities and fluxes are calculated. The mass, momentum and energy volumetric densities for

the numerical calculation and the equivalent numerical quantity for the magnetic field can be

written now:

um = ρ , uB = B , uc = ρ v
(
1 + f2

B

)
ue = p

γ − 1 + ρ
v2

2
(
1 + f2

B

)
+ B2

2µ0
. (4.18)

On the other hand, the mass, momentum and energy fluxes and the equivalent quantity for the

magnetic field are left as:

fm = ρ v , (4.19)

fB = B v , (4.20)

fc = ρ v2
(

1 + 1
2f2

B

)
+ p + B2

2µ0
, (4.21)

fe =
(

ρ
v2

2 + γ

γ − 1p + B2

µ0

)
v . (4.22)

4.4 Results

4.4.1 Semi-relativistic magnetosonic wave test

As explained in Section 4.1.2, if a small perturbation is added to the equilibrium state as the

initial condition, the perturbation will propagate with phase speed vph given by (4.16). As now

these propagation speeds can no longer be well below the artificially reduced speed of light when

fB is not small, but we have considered that the physical fluid velocities v are non-relativistic,

we cannot jump onto the reference system that moves with vph because then the fluid elements

would have relativistic velocities. Instead, we chose veq = 0 and the numerical perturbation

propagation speed will be monitored by tracking the position of a point of the perturbation and

the time elapsed.

For the numerical test, we defined an equilibrium state: peq = 1.15, ρeq = 0.8, veq = 0

and Beq/
√

µ0 varied so that βeq went from 0.1 to 10. We added a small amplitude perturbation

with the shape of a cosine with wavelength λ = 10, and measured the propagation speed by

tracking the maximum of the perturbation as it propagated. Following by the Boris correction,

the speed of light was artificially varied so that the Boris factor fB = vA/c went from 0 to 1

for each βeq. A video animation of the fB = 0.5 case with β0 = 0.1 can be seen here. For each

case, the measured phase speed, velocity perturbation amplitude v′, time step ∆t and number

29

https://youtu.be/0P9QtNyyr_0


4.4 Results 4 SEMI-RELATIVISTIC MHD FLUID

(a) βeq = 0.1 (b) βeq = 1 (c) βeq = 10

Figure 7: Variation of phase speed (upper row of panels), velocity perturbation amplitude (upper

middle row), timestep length (lower middle row) and number of required timesteps (lower row)

as a function of fB, calculated for βeq = 0.1 (left column), βeq = 1 (middle column) and

βeq = 10 (right column). For the phase speed, the numerical value (blue curve) is compared to

the theoretical value given by (4.16) (orange value); the match between the two is very good, so

that only one of them is visible in the figure.

of time steps required to reach tend = 2 were recorded. The results are plotted in Figure 7. For

the phase speed, the numerically calculated value (blue curve) is compared with the expected

theoretical value (orange curve) given by equation (4.16). The blue line precisely matches the

orange line and is hidden behind it. The perturbation amplitude profile has exactly the same

shape as the phase speed profile as it fulfills ρ′

ρeq
= 1

γ
p′

peq
= ± v′

vph
= 10−4, so their quotient has

to be constant. As fB grows from 0 to 1, both the perturbation amplitude and the phase speed

decrease to 70% of their initial value. Consequently, the length of the time step increases by

(100/0.7)% = 143%, while the number of time steps required to reach the final time decreases

to 70% of their initial value.

This simple test proves that the propagation speed varies when changing artificially the

value of the speed of light, and that the numerical calculations of the program work correctly.

4.4.2 Semi-relativistic MHD shock test

The absence of a complete semi-relativistic MHD shock theory, as commented in Section 4.1.3,

leads us to study the evolution of the shock and the dependence on the Boris factor fB by
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Figure 8: Initial perturbation profile for the Riemann problem, created with hyperbolic tangents.

analyzing Riemann problem situations. We experimented with an initial situation in the shape

of a column perturbation as shown in Figure 8, with, however, the vertical walls turned into

hyperbolic tangents to prevent the singular behaviour of the numerical solution from time 0.

To simulate a situation in which an explosive phenomenon is taking place in the Sun, the

perturbation is applied only in the gas pressure and magnetic field profiles, having instead a flat

profile for the initial density and relative velocity. Then, there will be two shock waves running

outwards, away from the initial column; also, two rarefaction waves propagating inwards, away

from the discontinuities. If we label with A the amplitude of the column jump for the gas

pressure, then we choose the jump for the magnetic field to be
√

A, so that the total pressure

has a jump of A.

We start by testing how the code behaves when solving a standard MHD Riemann

problem with no Boris correction, i.e., when fB = 0. Figure 9 illustrates the results. It uses

a column perturbation with amplitude A = 20 for the gas pressure and
√

20 for the magnetic

field, creating a jump of value 20 in the total pressure. For this case, β0 = 0.1.

It can be clearly appreciated that there are two shock waves propagating outwards of the central

region, characterized by the steep increase of density, velocity or total pressure. The shock front

speed is measured by detecting and storing its position every hundred time steps and carrying

out a linear fit. The postshock values of the physical quantities are measured by taking the

average value of the region between the shock front and the contact discontinuity, and, in the

figure, are marked with horizontal lines. In the domain between the shocks and not far from them

there is a contact discontinuity, which is also a standard feature of the solution of the Riemann

problem and is apparent in every profile except those for the total pressure and velocity plots.

A striking detail of this perturbation is the noise, clearly seen in the density, gas pressure and

magnetic field profiles, and consequently in the plasma beta profile too. The artificial viscosity
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previously included does not fix this noise because it is only applied when dv/dx < 0, and in the

contact discontinuity the velocity profile is flat, so a different approach to reduce it is required.

Figure 9: Time evolution up to t = 0.035 of the Riemann problem with initial column disconti-

nuity with width 3 and height 20 in gas pressure and
√

20 in magnetic field. For this case fB = 0

so after Vsh is numerically determined, horizontal lines are used to mark jump calculations for

all physical quantities. The black dot indicates the shock position that is used to calculate Vsh.

We implemented a 4th order filtering method to eliminate this high spatial frequency

signal.

ui = 5
8ui + 1

4(ui−1 + ui+1) − 1
16(ui−2 + ui+2) (4.23)

It involves two points on each side of the central point, and is applied at each iteration. We have

checked that this kind of filter does not affect the postshock values or any propagation speed,

nor does it weaken relevant perturbation properties (the sum of all coefficients is 1, so the

conservation law is still fulfilled). The filter was used for the simple classical and non-relativistic

cases and compared to the analytical solutions, accurately calculating all properties. Figure 10

is a proof of the effect of using the filter. It can be seen that the noise has disappeared while

the shape of all profiles has not changed.
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Figure 10: Same snapshot as Figure 9 (t = 0.32), but using the 4th order filter at each iteration.

The noise has disappeared, while all profiles keep their shape. A video animation of this case

can be seen here.

Once the ability of the code to solve the Riemann problem for an explosion-like situation

is proved for the non-relativistic case (fB = 0 in previous examples), the Boris correction can be

investigated in shocks. As there are no known jump relations or analytical values, the dependence

of different parameters with respect to fB will be studied. The simulation will be evolved to a

more advanced physical time than the one used for the fB = 0 case of Figure 10, so that there

is a larger separation in space between the shock front and the contact discontinuity, as shown

in Figure 11.

The experiment is carried out for β0 equal to 0.1, 1 and 10, and for each case it is

repeated reducing artificially the speed of light so that fB goes from 0 to 1. Rempel 2016 and

Chen et al. 2022 use values of fB greater than 1 in their work, but we will limit ourselves to fB

between 0 and 1 in this thesis to avoid extreme cases.
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Figure 11: Snapshot of a more advanced stage of the evolution of the Riemann problem (t =

0.124) for fB = 0, β0 = 0.1 and using the 4th order filter used at each iteration. A video

animation of this case can be seen here.

We have created a system with initial values p0 = 1, ρ0 = 1, v0 = 0 and B0 = 1, and

a column perturbation of jump 20 in gas pressure and magnetic field. We have let the system

evolve for various fB values, solving the Riemann problem and focusing on the resulting shocks.

The main aspect we study is how the properties of the shocks vary between cases with different

fB. A secondary aspect is contemplated by measuring the jumps across the shock for a given

fB and comparing its properties (M0, M0 ms, jumps, etc) to those of a shock with the same

propagation speed but assuming fB = 0, as there is an analytical solution for the latter case

(as was explained in Section 3.1.3). A video animation of this experiment with β0 = 0.1 and

fB = 0.5 can be seen here.
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Figure 12: Jump variations depending on fB for β0 = 0.1. The upper row contains the shock

front and postshock speed variations in the left panel and the Mach number variation in the

right panel. The middle row contains the numerically measured jump in the left hand panel and

the theoretically calculated jump using non-relativistic MHD theory. The bottom row contains

pressure jump in the left hand side and plasma beta jump in the right hand side.

These tests are shown in Figures 12, 13 and 14, which correspond to cases of low,

medium and high plasma beta. The top-left panel depicts the change of the shock front speed

and the postshock speed as a function of fB. A horizontal grey line represents the Alfvén speed.

For the case of fB = 1, c will be equal to it. It can be seen that both Vsh and vpost shock decrease

by roughly a factor of 2 when fB increases from 0 to 1 in all the different β0 cases.

The top-right panel depicts the variation of Mach numbers as a function of fB. The

sonic Mach number M0 = |u0|/cs0 (blue curve) is expressed as Vsh/cs0 because v0 = 0. The

orange line represents the magnetosonic Mach number that would be obtained for a shock

with the same propagation speed but in a non-relativistic situation fB = 0, i.e., M0 ms fB=0 =

Vsh/cms 0. The green line represents the magnetosonic Mach number obtained when cms is

calculated using the semi-relativistic expression (4.16), i.e., M0 ms fB
= Vsh

√
1 + f2

B/cms 0. It can

be seen that they all decrease with fB, as Vsh decreases while the sound speed or magnetosonic

speed are constant. Nevertheless, the expression for M0 ms fB
has Vsh multiplied with the square

root factor that increases when fB grows. This ensures that it does not go below the dashed
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grey line at 1. It indicates that the perturbation is still a shock, i.e., its propagation speed is

faster than the propagation speed of magnetosonic waves in this semi-relativistic context.

Figure 13: Jump variations depending on fB for β0 = 1. The panels represent the same physical

quantities as Figure 12.

The second row focuses onto the jump coefficient X. The left side panel depicts the

value one can obtain for it using the expressions (3.29-3.31) with the experimentally measured

jumps for B1/B0, ρ1/ρ0 and u0/u1. For the low plasma beta case, it does not vary more than

10%, for the unity plasma beta case it varies about 20% and for the high plasma beta case,

varies about 30%. In all cases the variation is an increase with similar shape.

The right hand panel of the second row shows the theoretical jump coefficient X that

would be obtained by finding the positive root of (3.33). The parameter X depends on M0, β0

and γ, so the line is obtained by introducing the sonic Mach number M0 numerically calculated

for each fB in that equation. It decreases to even below 1 with the same behaviour for every β0,

contrary to what the experimental jump coefficient does. The magnetosonic expression (3.33)

does not hold at all in this context.

The bottom row shows the gas pressure and β jumps. Gas pressure behaviour varies

for each β0 case. For medium and low plasma beta situations it drops as fB increases, while for

the high plasma beta case it drops initially but then increases. The β jump profile, on the other

hand, has similar behaviour in all cases.

36



4.4 Results 4 SEMI-RELATIVISTIC MHD FLUID

Figure 14: Jump variations depending on fB for β0 = 10. The panels represent the same physical

quantities as Figure 12 and 13.

Summarising the results just obtained, we have seen that when fB increases, the shock

front speed markedly decreases for high, medium or low initial plasma β0 values. For values of

fB close to 1 (which are lower than those used in the recent astrophysical literature mentioned

along this chapter), the value of the shock speed is some 36% (for β0 = 0.1), 34% (for β0 = 1),

and 31% (for β0 = 10) of the standard MHD value for fB = 0. The resulting shocks have

values for the fundamental jump quantity X which are larger by factors 1.06 (for β0 = 0.1),

1.18 (for β0 = 1) and 1.48 (for β0 = 10) for fB = 1 compared to the standard MHD value

(i.e., for fB = 0). We conclude that the properties of the shocks within the Boris correction are

noticeably different to those of the standard MHD theory.
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5 Conclusions

En el caṕıtulo actual se presentan las conclusiones del Trabajo de Fin de Grado. Se considera que

se ha desarrollado una herramienta sencilla que permite comprender el efecto de la corrección de

Boris en el caso espećıfico unidimensional de campo magnético perpendicular a la velocidad del

fluido. Se concluye que esta técnica altera importantemente las caracteŕısticas de los choques.

Un análisis profundo de las implicaciones de estos resultados escapan de los objetivos del presente

Trabajo de Fin de Grado, pero puede ser estudiado en el futuro.

In this Graduation Thesis, we have created a code from scratch capable of solving the general

equations of magnetohydrodynamics in one dimension for the case of longitudinal velocity and

transverse magnetic field. The code was extended to cope with the set of semi-relativistic

equations used in the Boris correction.

The effectiveness of the code has been thoroughly tested. The simplest hydrodynamic

simulations matched analytical results. Sound wave amplitude and phase speed were accurately

calculated, just as shock jumps and shock front speeds. This was checked using two different

numerical schemes, and it was verified that the Lax-Friedrichs scheme is robust but rather

dissipative, whereas the Lax-Wendroff MacCormack one had low dissipation. The latter code

was therefore selected for the rest of the experiments. The Ritchmeyer-Von-Neumann artificial

viscosity also proved its ability to reduce inconvenient ripples formed in shock fronts. The

code was validated against simple magnetohydrodynamic waves and shocks as well, accurately

calculating wave amplitude, phase speed, shock jumps and shock front propagation speeds under

the assumptions of charge neutrality, infinite conductivity and non-relativistic speeds.

With a view to testing the Boris correction, the semi-relativistic MHD equations have

been considered, i.e., the combination of non-relativistic fluid dynamics and Maxwell’s equations

including the displacement current. The code was tested and shown to calculate correctly

the propagation of magnetosonic waves in that context. Following the guidelines of the Boris

correction, the Boris factor fB = vA/c was artificially increased in the range (0,1). As there is no

theoretical, exact formulae for shocks in this situation, we have analyzed the shock propagation

speed and jump values across it starting with a pressure pulse of column shape. From the tests,

we conclude that the application of the Boris correction leads to a marked reduction of the

shock front velocity, while the jump coefficient X increases appreciably. This behaviour leads

to shocks that cannot be predicted by the standard MHD theory. We conclude that the Boris

correction is able to reduce the time-step as expected, but also changes in important ways the
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time evolution of the system, at least in explosive situations.

The code developed in this Graduation Thesis can be generally used for 1D problems in

non-relativistic contexts and in that sense it can be useful to pursue a large range of problems.

Here we have enlarged it to carry out a test of the Boris correction. A deeper analysis of

the implications of our results concerning this correction goes beyond the scope of the present

Graduation Thesis and may be pursued in future studies.
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