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SUMMARY

La física cuántica como rama científica ocupa el estudio de la materia y posibles

interacciones entre partículas a una escala en la que la física clásica no puede

interpretar los sucesos observados. Dentro de dicha rama, este trabajo se centrará

en el campo de la física atómica y molecular para abordar el estudio de un sistema

que, si bien pudiera parecer simple, esconde propiedades de interés a la par que

complejas a la hora de su estudio en profundidad. Se estudia el átomo de Helio,

sistema compuesto por un núcleo y dos electrones, y a su vez el catión Hidrógeno

molecular 𝐻+
2 compuesto por dos núcleos y un electrón. Asimismo, se estudiará

la interacción átomo-molécula. El fin de dichos estudios será hallar las curvas de

energía potencial (PEC) en función de la distancia internuclear para los sistemas en

el estado fundamental.

Para el análisis de estos sistemas se aplicarán diversas aproximaciones las cuales

simplifican considerablemente el estudio sin suponer errores cuyo orden influya

gravemente en el resultado. Partiendo de la ecuación no relativista de Schrödinger

independiente del tiempo, asumiendo núcleos infinitamente masivos y usando la

aproximación de Born-Oppenheimer, se consiguen Hamiltonianos electrónicos a

fin de estudiar dicha estuctura electrónica. Dada la fijación de las posiciones de los

núcleos, la función de onda resultante de la resolución de la ecuación de Schrödinger

electrónica se verá simplificada, pues no dependerá de las posiciones nucleares como

variables.

El cálculo de estos sistemas se realiza mediante la implementación de los méto-

dos ab initio. Este conjunto de métodos variacionales plantean una manera de

resolver teóricamente las ecuaciones de Schrödinger basándose en el uso de con-

stantes universales, la posición de los núcleos y el número de electrones. Se parte

del método de campo autoconsistente Hartree-Fock, el cual asume una función de

onda antisimétrica basada en el producto de orbitales monoelectrónicos en forma de
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determinante de Slater para resolver la ecuación de Schrödinger electrónica. Una

vez resuelta, se realizan iteraciones del mismo método con la función de onda re-

finada hasta obtener diferencias despreciables en la energía de estado fundamental.

Debido a la suposición de la función de onda como producto de orbitales monoelec-

trónicos, aunque sea antisimétrica y cumpla el Principio de Exclusión de Pauli, no

contempla la interacción entre electrones a la hora de la consecuente deformación de

estos orbitales. Esto desemboca en una diferencia entre la energía real del sistema

y aquella hallada por el método Hartree-Fock, la cual se define como el término de

correlación electrónica. Es por esto que se añade al estudio el método de clusters

acoplados. Este introduce un operador que modifica la función de onda para que al

resolver la ecuación de Schrödinger sí se tenga en cuenta este efecto.

De la misma forma que el método de clusters acoplados mejora los resultados

obtenidos mediante Hartree-Fock, los cálculos pueden sufrir mejoras por medio de

el uso de un ansatz de función de onda más ajustado a modelos reales. Para los

sistemas a tratar en este trabajo, se utilizará una familia de bases para las funciones

de onda que tiene en cuenta la correlación y efectos de polarización entre orbitales

atómicos (bases de Dunning aug-cc-pVNZ). Un problema común a cualquier base

usada para el cálculo de estos métodos es la necesidad de truncar el número de

funciones de esa base, lo cual se intenta solventar mediante el ajuste a través de una

función dada de la energía en función del número de bases utilizadas, para ver el

valor que toma la energía con la regresión en el límite de base infinita. La teoría

detrás de los métodos y las funciones de onda que se usan para implementarlos se

explica en detalle en el Capítulo 2.

En cuanto a la resolución de la ecuación de Schrödinger por los métodos previ-

amente explicados, dada la naturaleza iterativa y la complejidad de la computación,

se utiliza el software de libre distribución NWCHEM mediante el cual a través de un

fichero de comandos, éste calculará las distintas propiedades que se necesitan para el

estudio llevado a cabo. Este software de química computacional es de gran utilidad
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no solo para este trabajo sino para cualquier tipo de estudio teórico computacional

de sistemas atómicos y moleculares, abarcando posibilidades de computación tanto

clásicas como cuánticas desde sistemas monoatómicos hasta interacciones entre

moléculas más grandes que la tratada en el presente proyecto.

El estudio se lleva a cabo en tres partes similares. Primero, se calcula la energía

del estado fundamental del Helio mediante los diferentes métodos para observar la

falta del término de correlación electrónica cuando se implementa Hartee-Fock en

comparación a clusters acoplados. Posteriormente, se estudia el catión molecular,

se usa el módulo de optimización de NWCHEM para hallar la geometría nuclear

que otorga el mínimo de energía del estado fundamenal. Con estos valores de

energía y distancia internuclear, se calcula la PEC en el entorno de dicho punto.

El hecho de que se observe un mínimo implica que la configuración es estable.

Finalmente, se juntan los dos subsistemas tratados en los apartados previos para

realizar cálculos sobre la PEC resultante de la interacción átomo-molécula. Dada

la simetría rotacional sobre el eje que une los átomos de Hidrógeno en la molécula,

se estudian dos configuraciones de interacción: uno con el Helio se encuentra en

el eje que pasa por el centro de masas del 𝐻+
2 y el otro con el Helio localizado

en la perpendicular a dicho eje. Ambas configuraciones presentan un mínimo, si

bien es cierto que los pozos de energía son de distinta magnitud. Es por ello que

se trata de estudiar el Hessiano de las configuraciones para verificar si se trata de

mínimos de energía estables, o por contraparte, de puntos de silla que implicarían

una inestabilidad del sistema a pesar de observarse un mínimo en la PEC.

Para finalizar, se comentan ciertos errores que se hallan podido cometer, como el

desplazamiento de las PEC debido a la superposición de bases (solventable teniendo

en cuenta el Basis Set Superposition Error en el NWCHEM) o las consecuencias de

haber usado una base como la aug-cc-pVdZ la cual introduce error debido al corto

número de funciones del que consta. A su vez, se proponen maneras de continuar

el estudio de este sistema que presenta interesantes propiedades.
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C h a p t e r 1

INTRODUCTION

Amongst all the different branches of physics, one common practice nowadays

would be the use of computation to help understanding and solving problems we

couldn’t before. Some physical problems such as the three-body problem are not

analytically solvable. In comparison, other aspects of physics will forever remain

impossible to know as there is a limit for what we can measure, for example

Heisenberg’s uncertainty principle. For those problems that are not analytically

solved, numerical methods have been developed to treat them with computers in

order to be able to understand their behaviours. The way quantum computers have

revolutionized computing can be compared to how computers as we know them

today were a revolution in their time. At the same time as computing helps with the

simulation of massive many-body systems, it is also equally helpful for those systems

that are not so substantial in size but require a big amount of calculations. Thus,

from complex calculations such as astrophysics simulations to the understanding

of the quantum systems, the ability of performing calculations without the need of

pen and paper reduces the time implied on some problems, therefore improving the

understanding of the universe.

Regarding one of the biggest parts of modern physics, quantum mechanics shows

how simple and big the world we see is, yet how tiny and complex the universe can

get. The present bachelor’s thesis (TFG) will try to approach one of the many

aspects this branch of physics has to show, while using computation and theory as

the roots to grow the understanding of specific problems like the one approached in

this work.

As undergraduates, students are introduced to the quantum world with systems

like particles in infinite wells, harmonic oscillators and the Hydrogen atom. Here,
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additional complexity will be given, approaching the first molecule that is studied in

molecular physics (𝐻+
2 ), whilst Helium is studied as a many-electron atom, to finally

put the interaction between these two systems into sight.

The Hydrogen Molecular Ion can be treated with different algebraic methods.

Despite that, its eigenvalue equations cannot be solved analytically and neither

does the molecule-atom interaction. Thus, computation comes into the picture to

give the possibility of analyzing this problem theoretically. Using a free distribution

chemistry package called NWCHEM, it is possible to analyze the quantum behaviour

of the different particles as well as the whole system. Making use of the Born-

Oppenheimer approximation and different ab initio methods, this work aims to study

the ground state energy for those nuclei and electrons involved to find properties

such as the energies of the system and its possible stable configurations.

Throughout the development of this study some aspects are found interesting

but rather too complex to discuss in this TFG. They are left as open ideas in Chapter

5 as to where the study on this 𝐻𝑒−𝐻+
2 interaction could continue to develop.
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C h a p t e r 2

THEORETICAL BACKGROUND

El sistema cuántico a tratar en este TFG consta de un átomo y una molécula. Para su

estudio, deberá hacerse uso tanto de la aproximación de Born-Oppenheimer para simpli-

ficar la resolución como de métodos ab initio para resolver numéricamente la ecuación de

Schrödinger y hallar la energía del estado fundamental. Los métodos variacionales ab initio

proponen una energía para el estado fundamental basándose en constantes universales y la

geometría del sistema. En este capítulo, se abordan los métodos Hartree-Fock y Coupled

Cluster, los cuales se usan para analizar el sistema con el que se trabaja. Por otra parte, se

explican los conjuntos de bases usados para implementar estos cálculos, asi como el límite

de base completa, técnica usada a fin de mejorar los errores provenientes del truncamiento

de lo que debería ser una base infinita. Para la escritura de este capítulo se ha usado el

conjunto de las siguientes referencias: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Any quantum system one could try to describe needs to be approached by solving

the Schrödinger equation. In this work, we will restrict the study of the system by

approaching the non-relativistic time-independent Schrödinger equation, because in

terms of the system to treat in this work that implies almost no measurable error.

Initially, the molecular problems in quantum mechanics are usually complex due

to the big amount of particles involved. One way of overcome these complexities is

using the Born-Oppenheimer approximation [1]. Essentially, from the Hamiltonian

for a system written in atomic units (𝑚𝑒 = ℎ̄ = 𝑐 = 4𝜋𝜖0 = 1):

𝐻 = −1
2

∑︁
𝛼

1
𝑚𝛼

∇2
𝛼 −

1
2

∑︁
𝑖

∇2
𝑖 +

∑︁
𝛼

∑︁
𝛽>𝛼

𝑍𝛼𝑍𝛽

𝑟𝛼𝛽
−
∑︁
𝛼

∑︁
𝑖

𝑍𝛼

𝑟𝑖𝛼
+
∑︁
𝑖

∑︁
𝑖> 𝑗

1
𝑟𝑖 𝑗
, (2.1)

where the first and second terms are the kinetic energy of both the nuclei with
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mass 𝑚𝛼 and the electrons respectively, and the last ones consider the potential

energy that comes from nucleus-nucleus, nucleus-electron and electron-electron

interactions. The Born-Oppenheimer approximation is now used to simplify the

study of such a system. It assumes that the nuclei of the atoms in the system have

fixed positions at the same time their masses are considered infinite since compared

to the electrons’ masses they are significantly bigger. The system then can be tackled

by studying the Schrödinger equation for the electrons:

(𝐻̂𝑒𝑙 +𝑉𝑁𝑁 )𝜓(r;R) = 𝐸𝑒𝑙𝜓(r;R). (2.2)

The wavefunction in the equation is a function of both the set of electron positions

r =
{
𝑟𝑖
}

and the set of nuclear positions R =
{
𝑟𝛼
}

The electronic Hamiltionian to study would be written as follows:

𝐻̂𝑒𝑙 = −1
2

∑︁
𝑖

∇2
𝑖 −

∑︁
𝛼

∑︁
𝑖

𝑍𝛼

𝑟𝑖𝛼
+
∑︁
𝑖

∑︁
𝑖> 𝑗

1
𝑟𝑖 𝑗
, (2.3)

𝑉𝑁𝑁 =
∑︁
𝛼

∑︁
𝛽>𝛼

𝑍𝛼𝑍𝛽

𝑟𝛼𝛽
. (2.4)

Since the Born-Oppenheimer approximation fixes the positions of the nuclei, R

distances will be constant from now on.

Once the Hamiltonian has been simplified to work with it, it is time for using

the different known ab initio calculations. These methods are based on solving the

time-independent Schrödinger equation (2.2) with the only input of known universal

constants, and both the location of the nuclei and number of electrons. With those,

these methods aim to get an approximate value of the ground state energy of the

system.

2.1 Ab initio calculations

These methods, based on the given parameters, aim to get results that could approx-

imate to exact values on the energy and give useful information about the system
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with no experimental needs. This section is devoted to understand how the different

ab initio methods used in this project work.

2.1.1 Hartree-Fock and Self Consistent Field

In order to solve the electronic Schrödinger equation (2.2), the Hartree-Fock (HF),

as a variational method, needs an ansatz to find a value for the ground state energy.

At first this method implies the assumption of monoelectronic wavefunctions that

are affected by the nuclei attractive interaction and the repulsive interaction with the

other electrons. Once a first spin-orbital and its energy is achieved, self consistency

is used on an iterative method for the convergence of the energy value.

Firstly, starting with the Eq.(2.2) (one should note that the eigenvalue of the

energy is also a function of the nuclei coordinate, i.e. 𝐸𝑒𝑙 = 𝐸𝑒𝑙 (R)), it is seen

that the term 𝑉𝑁𝑁 is the interaction potential between nuclei, and therefore fixing

the position of these particles would make this term be a constant, so that it can be

studied separately, and focus the study only on the electronic Hamiltonian (2.3). One

should denote all of its components separately, as this Hamiltonian can be separated

into monoelectron and bielectron operators:

𝐻̂𝑒𝑙 =
∑︁
𝑖

ℎ̂𝑖 +
∑︁
𝑖

∑︁
𝑗>𝑖

𝑔̂𝑖 𝑗 , (2.5)

where ℎ̂𝑖 represents monoelectronic hydrogenic hamiltonians:

ℎ̂𝑖 = −1
2
∇2
𝑖 −

∑︁
𝛼

𝑍𝛼

𝑟𝑖𝛼
, (2.6)

and 𝑔̂𝑖 𝑗 is the electron-electron interactions:

𝑔𝑖 𝑗 =
1
𝑟𝑖 𝑗
. (2.7)

With the given Hamiltonian (2.3), impossible to be solved analytically, it is

necessary to find a way of getting the ground state energy, as this is the purpose of

the work. Variational methods are the fundamentals of ab initio calculations, and
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in the present project the Rayleigh-Ritz method is used. The ground state energy is

demonstrated to satisfy the inequality:

𝐸𝑔 ≤ 𝐸 [Ψ] =
〈
Ψ
��𝐻̂𝑒𝑙 ��Ψ〉

⟨Ψ | Ψ⟩ , (2.8)

where the wavefunction Ψ used in the right term is a first ansatz, a trial function

that aims to describe the system as a first approximation. The HF method implies

the use of the product of monoelectronic orthonormal wavefunctions:

Ψ (𝑥1, 𝑥2, . . . 𝑥𝑁 ) =
1

√
𝑁!

�������������

𝜙𝑖 (𝑥1) 𝜙 𝑗 (𝑥1) . . . 𝜙𝑁 (𝑥1)

𝜙𝑖 (𝑥2) 𝜙 𝑗 (𝑥2) . . . 𝜙𝑁 (𝑥2)
...

. . .

𝜙𝑖 (𝑥𝑁 ) 𝜙 𝑗 (𝑥𝑁 ) . . . 𝜙𝑁 (𝑥𝑁 )

�������������
. (2.9)

To fulfill the fact that the electrons are fermions, the antisymmetric operator

is applied to the product of monoelectronic orbitals, and when normalized the

result of this antisymmetrization is the Slater’s determinant expressed above. These

spinorbital are orthonormal (⟨𝜙𝑖 |𝜙 𝑗 ⟩ = 𝛿𝑖 𝑗 ). Each spinorbital 𝜙𝑖 (𝑥1) contains the spin

and space coordinates of the electrons1. Notice that the fact that the wavefunction

is normalized reduces the calculation of the bound energy to the mean value of the

electronic Hamiltonian. Moreover, this wavefunction also obeys the Pauli Exclusion

Principle, necessary for fermion systems.

When following the calculations of this mean value that gives a first bound to

the ground state energy in the variational approach, we get the following expression:

𝐸 [Ψ] =
∑︁
𝑖

⟨𝜙𝑖 | ℎ̂𝑖 |𝜙𝑖⟩ +
1
2

∑︁
𝑖, 𝑗

(⟨𝜙𝑖𝜙 𝑗 |𝑔̂𝑖 𝑗 |𝜙𝑖𝜙 𝑗 ⟩ − ⟨𝜙𝑖𝜙 𝑗 |𝑔̂𝑖 𝑗 |𝜙 𝑗𝜙𝑖⟩), (2.10)

where we have, form left to right, the effects of the monoelectronic hamiltonians, and

the two-body interaction average values. From this point, Hartree-Fock equations

can be taking into account, having the form:
1The labels i,j,...,N denotes the monoelectronic quantum numbers and 𝑥1, 𝑥2, ..., 𝑥𝑁 the spatial

and spin coordinates of the electrons
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𝐹 (𝑥𝑖) |𝜙𝑖 (𝑥𝑖)⟩ = 𝜖𝑖 |𝜙𝑖 (𝑥𝑖)⟩ ∀𝑖, (2.11)

where the Fock operator 𝐹 (𝑥𝑖) is defined as it follows:

𝐹 (𝑥𝑖) = ℎ̂𝑖 (𝑥𝑖) +
∑︁
𝑗≠𝑖

(𝐽 𝑗 (𝑥𝑖) +𝐾 𝑗 (𝑥𝑖)). (2.12)

It is seen that the Fock operator for an electron depends on the monoelectronic

Hamiltonian of that electron ℎ̂𝑖, whereas the Coulomb operator 𝐽 and exchange

operator 𝐾 depend on all the electrons. These two operators, 𝐽 and 𝐾 , are defined

as:

𝐽 𝑗 |𝜙𝑖⟩ = [
∫
𝜙∗𝑗 (𝑥 𝑗 )

1
𝑟𝑖 𝑗
𝜙 𝑗 (𝑥 𝑗 )𝑑𝑥 𝑗 ] |𝜙𝑖⟩, (2.13)

𝐾 𝑗 |𝜙𝑖⟩ = [
∫
𝜙∗𝑗 (𝑥 𝑗 )

1
𝑟𝑖 𝑗
𝜙𝑖 (𝑥 𝑗 )𝑑𝑥 𝑗 ] |𝜙𝑖⟩. (2.14)

The Coulomb operator takes into account the potential that the electron feels due

to the rest of the electrons, while the exchange operator comes from the fact that the

wavefunction must be antisymmetric. From here, the Hartree-Fock equation for the

energy can be written:

𝐸𝐻𝐹 [Ψ] =
∑︁
𝑖

ℎ̂𝑖 +
1
2

∑︁
𝑖 𝑗 ,𝑖≠ 𝑗

(𝐽𝑖 𝑗 −𝐾𝑖 𝑗 ), (2.15)

where

𝐽𝑖 𝑗 =

∫
𝜙∗𝑖 𝜙

∗
𝑗

1
𝑟𝑖 𝑗
𝜙𝑖𝜙 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 = ⟨𝜙𝑖𝜙 𝑗 |𝑔̂𝑖 𝑗 |𝜙𝑖𝜙 𝑗 ⟩, (2.16)

𝐾𝑖 𝑗 =

∫
𝜙∗𝑖 𝜙

∗
𝑗

1
𝑟𝑖 𝑗
𝜙 𝑗𝜙𝑖𝑑𝑥𝑖𝑑𝑥 𝑗 = ⟨𝜙𝑖𝜙 𝑗 |𝑔̂𝑖 𝑗 |𝜙 𝑗𝜙𝑖⟩. (2.17)

At this point it is reasonable to start the calculations. With a trial function such as

the wavefunction described previously in (2.9), the components of the Hartree-Fock

equation can be obtained in order to get an initial guess on the bound energy on the

variational method. Once obtained the Fock matrix and solved the Hartree-Fock
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equations, a new and more precise set of spinorbitals arise. Iterating in such a way

that the process is repeated with a starting trial wavefunction based on the new set

of spinorbitals obtained, so on and so forth, the process converges to a solution,

where the difference between iterations are negligible, and the desired precision is

obtained into the calculations. This iterative method is known as the Self-Consistent

Field method (SCF) and even though the starting point of the solution might be far

from getting close results to accurate values, the iteration provides a better approach

to the ground state energy with a variational method. However, it is important to

notice that this method gives the energy of a system of independent particles, and

it does not take into consideration the electron correlation, since the wavefunction

is built by the product of monoelectronic spinorbitals, which actually is not a true

assumption. Moreover, the fact that each electron feels a mean potential energy

based on the other electrons is a mere approximation of the actual behaviour of the

system. Indeed, this correlation energy is defined as the difference between the real

non-relativistic energy of the system and the Hartree-Fock energy calculated with

the method:

Δ𝐸 = 𝐸𝑔 −𝐸𝐻𝐹 . (2.18)

Despite that, this method is useful for the Hydrogen Molecular Ion since it has no

electronic correlation, therefore being able to get very accurate results.

At this point in the Hartree-Fock method, it is reasonable to think that at least for

atoms the trial wavefunction can be good enough to get information about the system

due to their spherical symmetry, but for molecules this approach might need to be

properly improved. As mentioned in [2], C.C.J. Roothan and G.G. Hall proposed a

different set of known wavefunctions so that they could be used for expanding the

spatial part of the spinorbitals, transforming the Hartree-Fock equations in a matrix

problem, solvable by matrix manipulations. Roughly, this method states that using

a set of M basis function, each monoelectronic wavefunction could be described as
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a linear combination of atomic orbitals (LCAO):

𝜙𝑖 =

𝑀∑︁
𝑗

𝑐 𝑗𝑖𝜃 𝑗 , (2.19)

with unknown coefficients 𝑐 𝑗𝑖. Even though it could seem more complicated,

this transforms the wavefunction calculation into a computing problem of getting

the unknown coefficients. More detailed information regarding basis sets and their

importance will be described in section 2.2

To improve HF results and take the correlation energy into account, as it is essen-

tial in most molecular problems, many other methods have been developed. Møller-

Plesset’s method gets this improvement by means of the Rayleigh-Schrödinger’s

perturbation theory, using perturbation to second order (MP2) up to fourth order

(MP4). The following section will focus on explaining the Coupled-Cluster method,

as the post-HF ab initio method used in this project to get the accuracy needed on

the ground state energy.

2.1.2 Coupled Cluster calculations

The following post-Hartree-Fock method is a well known ab initio method which

provides really precise and accurate results coming from approximations for atomic

and molecular physics. Coupled Cluster calculations (CC) are widely used because

of its affinity involving the correlation energy as well as its property if being size-

extensive, meaning that correlation energies scale depending on the amount of

electrons involved in the system. The theory explained here is based on References

[3], [4].

The CC method takes the HF electronic wavefunction as a starting point to build

a new wavefunction:

|Φ𝐶𝐶⟩ = 𝑒𝑇 |Ψ⟩, (2.20)

where Ψ is taken in the form of eq.(2.9). The operator 𝑒𝑇 takes the form of its
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Taylor expansion, and 𝑇 is the so called cluster operator. This cluster operator is

defined as:



𝑇 = 𝑇1 +𝑇2 +𝑇3 + ...

𝑇1 =
∑
𝑖,𝑎 𝑡

𝑎
𝑖
𝑋
†
𝑎𝑋𝑖

𝑇2 =
1
4
∑
𝑖,𝑎, 𝑗 ,𝑏 𝑡

𝑎𝑏
𝑖 𝑗
𝑋
†
𝑎𝑋𝑖𝑋

†
𝑏
𝑋 𝑗

...

, (2.21)

𝑇3 and higher cluster operators are defined similarly growing as its subindex. The

notation refers to 𝑖, 𝑗 , ... as already-occupied spinorbitals in the HF wavefunction,

and 𝑎, 𝑏, ... are the subscripts for virtual spinorbitals2. Coefficients 𝑡𝑎𝑏
𝑖 𝑗

are unknown

at first, and the operators 𝑋𝑖 and 𝑋†
𝑎 are annihilation and creation of spinorbitals

operators, respectively.

The procedure to implement this method can vary. Nevertheless, the most

common approach is to start implementing |Φ𝐶𝐶⟩ in the Schrödinger equation:

𝐻̂𝑒𝑙𝑒
𝑇 |Ψ⟩ = 𝐸𝑒𝑇 |Ψ⟩, (2.22)

so then defining the correlation energy as in eq. (2.18), subtracting the HF energy

and left multiply by 𝑒−𝑇 , we can get the following equation:

𝑒−𝑇𝐻′𝑒𝑇 |Ψ⟩ = Δ𝐸 |Ψ⟩, (2.23)

where 𝐻′ = 𝐻̂𝑒𝑙 − ⟨Ψ|𝐻̂𝑒𝑙 |Ψ⟩. After that, if the equation is projected over the HF

trial function:

⟨Ψ|𝑒−𝑇𝐻′𝑒𝑇 |Ψ⟩ = Δ𝐸, (2.24)

and the correlation energy finally can be achieved. The coefficients on the cluster

operators are calculated by solving the non-linear coupled equations that arise from
2these virtual spinorbitals refer to the ones given when solving the eigenvalue equations for the

reference wavefunction
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projecting the equation (2.24) onto the excited determinants3, so that the projections

are equal to zero.

⟨𝑎𝑏𝑖 𝑗 |𝑒−𝑇𝐻′𝑒𝑇 |Ψ⟩ = 0, (2.25)

where the ⟨𝑎𝑏
𝑖 𝑗
| stands for the different excited states4 possibly given by the equations

used.

The CC method ideally could consist on the infinite series of cluster operators

𝑇𝑖, however this ideal situation is impossible to achieve computationally. Indeed,

the method is really consuming in terms of computational power and time, therefore

its common to use finite models, for example CCSD fixes 𝑇 as 𝑇1 +𝑇2, whereas the

CCSDT model uses 𝑇 = 𝑇1 +𝑇2 +𝑇3.

2.2 Basis sets

As aforementioned, the ab initio methods explained rely on a wavefunction that

is assumed to be the one that describes the system, at least as a starting point.

However, in order to achieve theoretical results, a complete and infinite basis set

of wavefunctions needs to be used, but it is not possible to compute an infinite

amount of them. Despite the fact that they need to be truncated, one must find a

basis that can fit the problem as efficiently as possible. Nowadays, there are lots of

different basis that have already been researched and studied for different atoms and

molecules. Nevertheless, it is necessary to point where the basis used come from,

and how to apply them.

At first, different basis sets can be found in [9]. In the present TFG, the trial

functions used for the computation of the system are the Gaussian-type functions

(GTFs), which take the following expression:

𝑔𝜈𝜆𝛾 (r) = 𝑁𝜈𝜆𝛾𝑥𝜈𝑦𝜆𝑧𝛾𝑒−𝛽
2
, (2.26)

3Those excited states are given when annihilation and creation operators act on |Ψ⟩.
4⟨𝑎

𝑖
| would be states given by 𝑇1, ⟨𝑎𝑏

𝑖 𝑗
| by 𝑇2 and so on.



15

where 𝜈,𝜆 and 𝛾 are non-negative integers, 𝛽 is a real positive exponent, and

𝑁𝜈𝜆𝛾 is the normalization constant. Some rules are applied to the exponents 𝜈,𝜆, 𝛾

so that the resulting function are grouped based on their forms. For example, s-type

orbital is the one where 𝜈+𝜆+𝛾 = 0, when 𝜈+𝜆+𝛾 = 1 the GTFs are p-type orbitals

(3 possible p-types having one integer to be 1 and the rest 0) where the direction

whose exponent is equal to 1 is called the privileged spatial direction. Moreover,

d-type orbitals are those with 𝜈 +𝜆+𝛾 = 2 (6 different possibilities) and so on. The

sum of this non-negative integer is, indeed, the total orbital momentum of the atom

described by the GTF (𝜈 +𝜆+𝛾 = 𝑙).

Another family of commonly used functions are the Slater-type orbitals (STOs).

Their value comes from the fact that using a linear combination of STOs centered

in the nuclei of the atoms is more accurate than using GTFs. However, when lots

of atoms are involved, the calculation of the integrals that arise from using STOs

is computationally hard, therefore the evaluation of the integrals could be improved

time-wise by using GTFs since they take the form of Gaussians.

When it comes to computing, it is necessary to talk about the concept of minimal

basis set. This term refers to the smallest amount of STOs required to describe the

system (that means each atom’s inner shell and valence shell atomic orbitals are

described by STOs). Despite their complexity, a flaw of the more optimal GTFs is

that their functions don’t have one to one relations between the atomic orbitals and

the functions. Since the idea of the minimal basis set is to strike a balance between

accuracy and computational efficiency, neither of those are the best approach for

the efficiency, and that’s why, to reduce the number of basis functions on the GTFs,

the contracted Gaussian-type functions (CGTFs) are used. These take the following

form:

𝜔𝑟 =
∑︁
𝑢

𝑑𝑢𝑟𝑔𝑢, (2.27)

where 𝑑𝑢𝑟 are known constants (contraction coefficients) from previous opti-
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mizations, and 𝑔𝑢 are normalized Cartesian Gaussians centered in the same atom

and with same indexes 𝜈𝜆𝛾, but different orbital exponent 𝛽. Using these contracted

forms reduce the number of basis functions of GTFs to the same number of func-

tions as STOs, while being simpler that these last mentioned ones, which implies

a reduction of the computational costs with few losses in accuracy. In the present

TFG, only CGTFs are used and it will be explained the way of using those down

below.

As it should be mentioned, an atomic orbital usually requires more than one

CGTF to be described accurately, so it can be said that the more functions you use

to describe an atomic orbital, the better the description of it will be. In the present

TFG we narrow the calculations to the usage of Dunning basis sets [5]. Using

double the basis function is referred to as Double-Zeta (DZ), Triple-Zeta would be

using triple the basis functions and so on5. In addition, the interaction between

atoms should be noted in each atomic orbital due to polarization effects, therefore,

additional polarization terms must be introduced (calling these newly formed basis

the polarized (P) basis sets). Taking into account electron correlation, we can see

that the different CGTF basis sets are called cc-pVNZ (with N = 2,3,4,5,...), where

cc stands for "correlation consistent". Finally, the basis sets used in these TFG are

the augmented Dunning basis sets aug-cc-pVNZ, where the augmentation takes into

account the diffuse primitive non-polarized and the polarization functions for the

cc-pVNZ basis sets. Molecules with Hydrogen bonding are specially well described

by these kind of basis sets.

In the present TFG, where the study was restricted to Helium and the Hydrogen

Molecular Ion, the previously discussed basis set is considered efficient since the

molecule to study has only one electron, and the Helium atom has been proven to be

well represented by that basis set. The system was tackled by using the same basis

set (aug-cc-pVNZ), and increasing N from 2 to 4 to see a growth in accuracy. Table
5In these thesis the basis set function used go from Double-Zeta to Quadruple-Zeta
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2.2 shows the different characteristics of the basis sets depending on 𝑁:

Basis Name Shells Functions Orbitals
aug-cc-pVDZ 5 9 3s2p
aug-cc-pVTZ 9 25 4s3p2d
aug-cc-pVQZ 14 55 5s4p3d2f

Table 2.1: Different Basis sets used in this work and their specifications

The columns on the table are easily readable. The number of shells is the same

as the amount of orbitals (for example, aug-cc-pVDZ has 5 shells which means

3 s orbitals + 2 p orbitals), and the number of functions comes from how much

functions each different type of orbital can be described with (s-type orbitals require

𝜈 + 𝜆 + 𝛾 = 0 so one function, p-type ones 𝜈 + 𝜆 + 𝛾 = 1, so three functions, and

𝜈 +𝜆+𝛾 = 2, so 6 functions).

2.2.1 CBS limit

As previously said, the theoretical infinite basis set must be used in order to get the

most accurate value possible. Despite that, to be able to compute the problem, the

infinite basis needs to be truncated. Nevertheless, it is essential to see that the more

functions used to describe the system, the more accurate the results will be. Indeed,

taking advantage of this behaviour, the energy results achieved with same basis but

more number of functions are seen to follow a non linear function. That is, using

the energy values from different basis assuming those values fall in the domain of

a certain function. In terms of the work performed in this project, according to

reference [6] for the aug-cc-pVNZ family of basis sets in the systems studied, the

energies follow the empirical expression:

𝐸 (𝑛) = 𝑎 + 𝑏

𝑛𝑐
. (2.28)

A regression can be made to approach the asymptotic limit of the function as n

tends to infinity. In (2.28), 𝐸 (𝑛) is the energy, 𝑛 depends on the basis used (in this
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project n=2,3,4), and 𝑎, 𝑏, 𝑐 are unknown constants that are found with least squares

non-linear regression. The idea of finding these asymptotic limits for different

energies as function of the basis sets is called the Complete Basis Set (CBS) limit,

and gives a closer approach to the theoretical energy that could be found using an

infinite basis set without taking an infinite amount of time to compute.
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C h a p t e r 3

NWCHEM: OPEN SOURCE HIGH-PERFORMANCE
COMPUTATIONAL CHEMISTRY PACKAGE

Dada la complejidad del cálculo computacional del sistema referente a este Trabajo de

Fin de Grado, se usa el progama de libre distribución NWCHEM, instalado en un Cluster de

ordenadores del Departamento de Física de la Universidad de La Laguna. En este capítulo

se explicará cómo se llevan a cabo los cálculos numéricos así como la estructura del archivo

creado para ejecutar el programa.

The ab initio calculations that need to be done in this bachelor’s thesis are done

using the free distribution chemistry package NWCHEM, developed by the Exper-

imental Molecular Science Laboratory (EMSL) at the Pacific Northwest National

Laboratory (PNNL) [10]. The program allows solving quantum mechanical systems,

from biomolecules and nanostructures to partly classical as well as both relativistic

and non-relativistic systems. Therefore, it is useful for atoms and molecules as the

ones studied in this project. NWCHEM gives the user free will to choose the desired

method (from HF and post-HF to Density Functional Theory and more advanced

ones) to perform the calculations as long as the system fulfills the requirements of

the method to be calculated. Calculations made to solve this quantum system were

run in cluster Molec3, node 38 in the Physics’ Department of the University of La

Laguna. This section is devoted to show the process of describing the system by an

input file that the program will get the information from to solve it.
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3.1 Input File

NWCHEM requires a specific input file structure to perform properly the calcula-

tions. To give some perspective, the essential structure of the file must describe:

the computational specifications for running the calculations, the description of the

system (how particles are placed in the space and how they are represented) and the

method to use as well as the values one wants to get. The different directives used

to write the input file are the following:

• START + "name": initiates and gives name to the files that will be created to

perform the calculations.

• TITLE + "name": specifies the name of the output.

• ECHO: will include the input file text in the output. Useful for identifying the

calculations in the output.

• CHARGE: gives information about the electrons in the system. If not used

the program assumes the atoms in the system are neutral.

• GEOMETRY: this directive is used for describing where the atoms of the

system are initially placed, and within these section of the input one must

choose the coordinates as well as the length units. If not specified defaults are

cartesian coordinates in angstroms.

• BASIS: allows to indicate which basis sets are used for which atoms of the

system. The program itself already comes with libraries full of different basis

sets, therefore one should only specify the name (e.g. aug-cc-pVDZ).

• CONSTRAINTS: If the program is going to make changes in the information

given to do the ab initio calculations, some of this information can be fixed so

that the algorithm does not modify the desired parameters.
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• SCF/TCE: directives related to the chosen methods for computing the calcu-

lations. SCF is the already known Self Consistent Field, and TCE stands for

Tensor Contraction Engine, a module of NWCHEM that is said to converge at

the exact solution of the Schrödinger’s equation. Within this directive, subdi-

rectives are used to determine the ab initio method as well as the parameters

of computing:

– UHF/CCSDT: Unrestricted HF and Coupled-Cluster SDT, the methods

themselves. The first one is the most commonly used for open shell

molecules, where the number of electrons with different spin is not

equal, and CCSDT takes into account the correlation energy previously

discussed in chapter 2.

– MAXITER + int: Restriction to the number of iterations for the methods

– SINGLET/DOUBLET: gives information about the spin multiplicity of

the system to calculate.

– NOPEN + int: number of open-shells in the system.

– THRESH: used for setting the precision of the calculation.

• DRIVER: module for performing optimizations in the calculation based on

the GEOMETRY given.

– EPREC: determines the precision of the energy in the optimization

• TASK + method + energy/optimize/frequencies: directive to input explicitly

the desired calculation to be done by the program. Optimize will search the

minimum in energy for different positions of the atoms, whereas energy will

compute the ground energy of the system based on the given information

in CHARGE, GEOMETRY and BASIS. Frequencies, on the other hand,

evaluates certain parameters that are not computed if not specified, such as

the Hessian given for the system on that point.
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As every directive is completed, before starting to write new directives it is manda-

tory to explicitly write end in order to separate the directives in different blocks of

code. An example of an input file can be found in the Appendix.

One should note that NWCHEM allows for more complex systems than those

studied in this TFG, so that the directives explained in this chapter are the ones used

in the present work, being this directives the top of the iceberg regarding the power

and complexity of the program itself.
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C h a p t e r 4

RESULTS AND DISCUSSIONS

Este capítulo presenta los cálculos realizados tanto para el Helio como para el catión

de la molécula de Hidrógeno, así como para el sistema que resulta de sus interacciones.

Se mostrarán los valores calculados para la energía del estado fundamental del Helio, así

como las curvas de energía potencial para el 𝐻+
2 como para la interacción 𝐻𝑒−𝐻+

2 en dos

distintas geometrías posibles. A su vez, se compararán los resultados obtenidos con valores

de la literatura, discutiendo posibles discrepancias entre los valores calculados y los de

referencia.

The study of the 𝐻𝑒−𝐻+
2 interaction is carried out by firstly getting solutions

on the behaviour of the different components of the particle system. Studying the

Helium atom and the Hydrogen Molecular Ion separately serves as the starting

point for analyzing the whole system. Both parts will be studied for their ground

states, aiming to find the most accurate lowest energy possible given by the methods

explained in Chapter 2 with the NWCHEM program.

4.1 Helium Atom

Considering the atom itself, neutral Helium (Z=2) has one nucleus and two electrons.

Correlation energy takes an important place in the study of the simplest many-

electron atoms. The generic electronic Hamiltonian described in eq.(2.3) for Helium

is written as follows:

𝐻̂𝑒𝑙 = −1
2

2∑︁
𝑖=1

∇2
𝑖 −

2∑︁
𝑖=1

2
𝑟𝑖
+ 1
𝑟12
. (4.1)
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Since there is only one nucleus, 𝑟𝑖 refers to the the distance between the nucleus

itself and the electrons, and 𝑟12 is the electron-electron distance. For the HF method

to be carried out, it would be easier to visualize it as:

𝐻̂𝑒𝑙 = ℎ̂1 + ℎ̂2 + 𝑔̂12. (4.2)

From this Hamiltonian, both HF and then CC methods shall be used for achieving

the ground state energy. In terms of complexity, results given by the program used

to perform the calculation were the fastest on this atom since there is no need for

optimization to minimize the energy based on the nucleus position. Nevertheless,

it is important to mention that since HF method does not take into account the

electronic correlation, the useful values for this calculation will be the ones achieved

with the CCSDT method, as it does consider this energy term. The following

table shows the different obtained values for the ground state energy and the figure

represents the non-linear regression made with expression (2.28) to achieve the CBS

limit on the energy:

Basis Name RHF (a.u.) CCSDT (a.u.) Corr. Energy (a.u.)
aug-cc-pVdZ -2.85570467 -2.88954849 -0.03384382
aug-cc-pVtZ -2.86122253 -2.90083640 -0.03961387
aug-cc-pVqZ -2.86153946 -2.90272034 -0.04118088
CBS limit -2.86159106 -2.90358432 -0.04199326

Table 4.1: NWCHEM ground state energies for Helium

From the data achieved with NWCHEM, one can reasonably say that electronic

correlations is essential to get an accurate value. Moreover, having the value of

reference 𝐸𝑟𝑒 𝑓
𝐻𝑒

= −2.9036816𝑎.𝑢. given in [11] shows that the value gets closer to

the reference value once CBS limit is made, reducing the error by one order of

magnitude. The calculations agree with the values achieved by [12], however the

ones calculated in this TFG might be more precise since the driver precision was

fixed to be on the order of 10−8.
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Figure 4.1: CBS Calculations for the Helium Ground State Energy

As it can be seen in the Fig 4.1, Coupled Cluster calculations are essential to

describe properly this atom since the energy gap between methods is big enough

to not to be neglected. It is notable that, and it will be seen further in the results,

the aug-cc-pVDZ basis set on its own is not acceptable to get accurate results.

Furthermore, there is a strong possibility that the fact of it being not that precise leads

to inaccuracies when performing the CBS limit. However, in terms of consistency

throughout this work, it is needed to use it since using the aug-cc-pV5Z basis set in

the following system required more computational power than the one being used,

and in order to perform a non linear regression with 3 parameters, one must provide

at least 3 data values, making the usage of the value given by the aug-cc-pVDZ basis

set unavoidable.

4.2 Hydrogen Molecular Ion (HMI)

Contrary to the Helium atom, the 𝐻+
2 cation has two nuclei, and one electron shared

by them. The reduction of complexity from Helium having just one electron,

removing the electronic correlation, is counteracted by the addition of two atom

nuclei that need to be set in an stable configuration. To start with, the electronic
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Hamiltonian (2.3) for the molecular cation is given by the following expression in

atomic units:

𝐻̂𝑒𝑙 = −1
2
∇2

1 −
1
𝑟𝛼1

− 1
𝑟𝛽1

. (4.3)

Following a similar approach to the one for the Helium atom, the Hamiltonian

could be rewritten in a more appropriate way, similar to eq.(4.2). It is a matter of

interest to mention that, as it is seen in many different books on the subject [3] [1],

as the Schrödinger’s equation for the system is written with the Hamiltonian (4.3),

the problem could be studied by changing the electronic coordinates used, from

cartesian to confocal elliptic coordinates, in order to separate the Schrödingers’

equation into a couple of Partial differential equations (PDEs) that depend on each

of the coordinates separately [13].

To find the distance that minimizes the ground state energy, NWCHEM’s task

optimize function is required, as it looks for the distribution whose ground state

energy is minimum. Once this distance is found, different calculations are done to

find the Potential Energy Curves (PEC) for the HMI, that is, doing the calculation

for different fixed internuclear distances and proceeding calculating the CBS limit

on each distance given so that we can plot the energy as a function of the distance 𝑅

between the protons. In the following table we can see the different values achieved

for the ground state energy with the equilibrium internuclear distance 𝑅 =−1.997296

bohr1:

Basis Name UHF (a.u.)
aug-cc-pVdZ -0.60124654
aug-cc-pVtZ -0.60234356
aug-cc-pVqZ -0.60256395
CBS Limit -0.602689571

Table 4.2: NWCHEM values for the minimum for the 𝐻+
2

1The distance used for the minimum of the ground state energy was found when using the
optimize input in NWCHEM while using the aug-cc-pVqZ basis set
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Figure 4.2 shows the data obtained for the HMI, once CBS limits are done with

the expression 2.28 using the values for each point and the different basis sets:

Figure 4.2: PEC values and different energy contributions achieved with NWCHEM
for 𝐻+

2

It is seen that the nuclear contribution decreases proportionally with the inverse

of the internuclear distance. Indeed, as this distance R tends to zero, the electronic

energy approaches -2 Hartrees, which would be the value for a Helium cation, a

particle with two protons on its nucleus and only one electron. Fig. 4.3 shows a

closer look into the PEC itself:
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Figure 4.3: Potential Energy Curve for 𝐻+
2

This clearly shows a minimum, which means the molecule has a stable configu-

ration for which it will maintain its geometry if unperturbed. In addition, it is seen

that if the nuclei were to be separated an infinitely distance (i.e. 𝑅→∞), the HMI

would have a ground state energy equal to the one of a Hydrogen atom, since there

would be a proton infinitely far away, therefore not interacting with it. Furthermore,

from the data achieve it can be concluded that the equilibrium dissociation energy

is found to be 𝐷𝐸 = −0.10265093 Hartrees, nothing but 17.03% of the total energy

of the molecule ion in its stable state.

From a reference perspective, the minimum ground state energy value is consis-

tent with the one given by the Reference [14], where they found the energy value to

be 𝐸𝑒𝑙 (𝑅 = 𝑅𝑚𝑖𝑛) = −0.6026 Hartrees. It is reasonable to state that the performed

calculations conclude with precise results for the energy of the ionic molecule.

From this point, once the Helium atom and the Hydrogen Molecular Ion have

been studied, the system where they are interacting is the next step to understand

the interaction.
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4.3 Helium-Hydrogen Molecule Ion Interaction

The complete problem that comes when Helium and 𝐻+
2 interact may be tackled

from different perspectives. Now, the whole system consists of 3 nuclei and 3

electrons, overall charge being +1 𝑞𝑒. Back in the HMI, one should optimize in

order to get a minimum in the ground state energy for the H-H interaction. Here,

there are different ways one can tackle the problem: either optimizing to see how

the three nuclei arrange themselves, or restrict the interaction fixing the positions

of some nuclei. The procedure followed to study the system in this project was to

fix the Hydrogen nuclei, so that they are at a distance which gives them the lowest

ground state energy (i.e. their equilibrium configuration), and then move the Helium

around to see how the PEC changes depending on its position relative to the ion

molecule. Helium atom is then placed in two different configurations:

• Linear Configuration: Placing the Helium along the 𝐻+
2 internuclear axis,

varying its distance respect to the HMI midpoint. (𝜑 = 0º)

• Perpendicular Configuration: Helium falls in the perpendicular line that

cross the HMI internuclear distance in the midpoint. Frequently known as

T-shape configuration (𝜑 = 90º)

Because of the structure of the system, it could be said that the symmetry of the

problem makes it so that it is only necessary to study the system when 0º≤ 𝜑 ≤ 90º.

Therefore, this two configurations will give the bound PES for how the system could

behave when fixing 𝐻+
2 internuclear distance.

Figure 4.4 shows the different calculated points for both the linear and perpen-

dicular configurations of the system. Since these atoms have weak bonds when

interacting (acting as Van der Waals molecules), it is necessary to change the units

to Angstroms (Å) in distance and milielectron-volts (meV) for energy, at the same
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time the energies are represented compared to the sum of the 𝐻𝑒 and 𝐻+
2 energies

as separated systems for a better visualization of the PEC.

Figure 4.4: Different Configurations’ PEC for the He-𝐻+
2 interaction

The linear configuration shows a minimum with 𝐷 𝑙𝑖𝑛
𝐵

= −358.59558 𝑚𝑒𝑉 when

the Helium is at a distance of 1.58753 Å from the center of masses of the molecular

ion, which means it is a stable configuration. A slight minimum can be seen in the

perpendicular configuration with 𝐷 𝑝𝑒𝑟

𝐵
= −71.99899 𝑚𝑒𝑉 at a distance of 2.11671

Å, which makes the configuration eligible to be stable, while if it was a saddle point

it wouldn’t be stable even though there was a seemingly minimum in this PEC. To get

information regarding this property of the system in that position, one must study the

Hessian that comes from the system fixing the positions. For the linear configuration

this Hessian when diagonalized shows only positive frequencies, which means that

the point considered a minimum is, indeed, a minimum for the system. This means

it is an equilibrium position for the system to stay at a ground state energy. On the

other hand, the Hessian in the perpendicular configuration when the calculations are
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done with the aug-cc-pVTZ basis set determines the point to be a minimum as well,

but if the aug-cc-pVQZ basis is used one of the frequencies is negative, showing

the existence of a saddle point. This result is consistent with the reference [15],

concluding that this point is most likely a transition state, from where it eventually

will fall to a real equilibrium position.
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C h a p t e r 5

CONCLUSIONS

Se listan diversas fuentes de errores en los cálculos efectuados a lo largo del estudio del

sistema 𝐻𝑒−𝐻+
2 . El uso imperativo de la base de Dunning aug-cc-pVDZ puede haber sido

una fuente de error a la hora de realizar cálculos de límite CBS comparado con los posibles

errores que hubiese supuesto el uso de la base aug-cc-pV5Z. Por otra parte, el hecho de no

haber tenido en cuenta el Error de Superposición de Bases conlleva a un desplazamiento en

energía en los cálculos realizados por el NWCHEM. Se propone a su vez ideas de estudios

posibles a surgir en base al trabajo realizado en este TFG

Once results are shown, it can be concluded that calculations on the systems

with the free distribution chemistry package NWCHEM are not only simple but also

effective. However, notable improvements could be done in order to perform more

precise results. Taking into account only accuracy on the results, if computational

time was not to be taken into consideration, the study of the systems should have

been studied with the aug-cc-pV5Z or even aug-cc-pV6Z basis sets, to be able to

perform more consistent CBS limit extrapolations. In terms of this project, due

to the sources for computation and the system to study, 𝐻𝑒−𝐻+
2 interaction when

using aug-cc-pV5Z was happening to take more than a day in computation time for

calculating the energy of the system at an specified geometry with CCSDT method,

therefore it was discarded since this project required making those calculations for

over 50 points in total. Moreover, the fact that it wasn’t reasonable to use that basis

set introduce the imperative necessity of using the results given by aug-cc-pVDZ

basis set to perform the CBS limit calculations, which might be one of the primary

sources of error on the results achieved.
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From another perspective, some other sources of error have not been considered

as they could have been if had enough time. That might be the case of the Basis

Set Superposition Error (BSSE), a error that comes from the fact of assuming the

basis used for each atom of the system to be separate, leading to a shift in energies

calculated when not taken into account. Reference [15] shows that this project’s

calculations are shifted from higher accuracy calculations done there. Despite this

shift, it is certain that these calculations are consistent with the behaviour one could

expect from this system, as similar systems are studied and results are in consonance

with those given in this project.

When it comes to the means of this project, it is certain that, as an undergraduate’s

project with the purpose of getting to know the world of atomic and molecular

physics as well as the quantum chemistry field, this project serves its function more

than completely. Nevertheless, the study on this system might not be said to be

concluded. As it could have been the case if this project had a lifespan of more than

one year, the work done on it could be the starting point for different studies on the

𝐻+
2 −𝐻𝑒 interaction. As a first improvement, the usage of bigger basis sets in the

family of the aug-cc-pVNZ basis sets should be implemented, as well as the BSSE

energy correction. Once these problems were fixed, many options on studying this

system may arise. On one hand, the proposal of an analytic function to describe

the PEC of the interaction could be treated as it is done in [15]. On the other hand,

the study and understanding of this system could lead to the study of clusters of

Helium atoms with 𝐻+
2 , to see stabilities on the different possible systems given by

that addition of atoms.
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A p p e n d i x A

NWCHEM INPUT FILE

The following image shows a sample for an input file structure used to run the

calculations on NWCHEM.

Figure A.1: NWCHEM Sample input file

When this file is run, the program takes the information of the system (geometry,
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charge, constraints, basis set, etc.) and starting from the geometry given, it uses the

TCE directive to minimize the energy using the CCSDT method with a maximum

of 2000 iterations, considering the fixed positions for the Hydrogen nuclei.
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