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Abstract

The incorporation of photovoltaic energy into the world’s electricity
grid is already a fact. Therefore, forecasting the energy produced by
photovoltaic plants is a topic that is increasingly being studied by
the scientific community. The importance of developing good predic-
tion techniques lies mainly in the intelligent and efficient use of this
great resource, solar energy. With this motivation, this work will fo-
cus on short-term photovoltaic power forecasting techniques, known
as nowcasting. The dataset we will use is composed of images from
sky cameras and historical power data simultaneously obtained. This
study will be focussed on the impact of different image pre-processing
methods on the quality of the results in a deep learning model very
similar to those used for nowcasting. Specifically, four techniques are
proposed for preprocessing images before they are used to train a con-
volutional neural network (CNN). The results obtained in each of the
four cases will be analysed in an exhaustive way with different metrics
used for these purposes in order to make an informed comparison of
them.
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Chapter 1

Introduction

The surface of Earth receives a total value of 3.85 - 10** J per year
[1]. Consequently, in the words of Morton et al.[1], the solar energy
received by the Earth every hour is enough to power the entire globe
for a year. These data can help us to understand the power of the use
of solar resources in world energy production.

The global cumulative photovoltaic capacity grew at an almost ex-
ponential rate since 2000 until 2021 as shown in Fig.1.1. It is expected
to supply 16% of global electricity demand in 2050, according to the
International Energy Agency (IEA)[2].

Solar PV cumulative capacity et

Cumulative capacity of solar photovoltaics is given in megawatts (MW).
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Source: BP Statistical Review of World Energy OurWorldInData.org/renewable-energy e CC BY

Figure 1.1: Graph of global cumulative photovoltaic capacity growth. Extracted
from Our World in Data [3].

With the increasingly widespread adoption of solar photovoltaic
plants around the world and its growing integration into the existing
electricity grid, the forecasting of solar irradiance and photovoltaic
(PV) power generation has become a topic of not only scientific, but
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also economic and strategic interest [4]. This is due to the fact that,
as a renewable energy source, the solar energy production depends on
external weather factors that cannot be controlled such as the position
and movement of clouds. Therefore, forecasting the power output of
solar photovoltaic panels is a critical factor in enhancing the efficiency
of electricity network operating points in the presence of high solar en-
ergy penetration. In recent decades, this has become a widely studied
topic by the scientific community, which has proposed many different
solutions to this challenge.

The present work will focus on one of them, Skycam-based fore-
casting techniques, which are built on the use of Sky cameras, which
are fisheye cameras capable of taking a picture of the entire sky dome.
An example of an inexpensive ground-based skycam is shown below
in 1.2. Traditionally, these devices have been prohibitively expensive,
but with the advent of inexpensive digital security cameras and more
powerful graphical processing capabilities, the wider adoption of lo-
calised solar forecasting it is much more practical than ever before [5].

Figure 1.2: Two sky cameras located at the site where the data collection for this
work was performed.

Skycam-based forecasting techniques have been proved to make im-
portant contributions to nowcasting and short-term solar forecasting,
by identifying and predicting cloud movement and forecasting changes
in solar availability. The term nowcasting should not be confused with
the concept of short-term forecasting!, as the former refers to the pre-
diction of values that are occurring at the same time as the data used

IThe definition of these terms will depend on the source consulted, as the issue is still under
discussion. In this paper we will stick to the definitions given in this section. Generally, and in the
context of this study, nowcasting techniques are used to predict weather conditions at the time of
data collection. These predictions will be used to make new short-term predictions based on them.
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to make the prediction, i.e. it is a simple regression problem [6], while
the latter refers to the problem of predicting what’s going to hap-
pen in the near future [7]. Not only nowcasting but also short-term
forecasting are critical for managing smart grid operations such as
system integration, ensuring power continuity, and managing ramp
rates. In this context, in accordance with Zhang et al.[8] most numer-
ical weather prediction (NWP) and satellite data are inadequate. This
is due to their low spatial and temporal resolution, in other terms, the
weather stations closest to the panel or PV plant being predicted are
often too far away to provide reliable data, and on the other hand,
satellite data often have relatively limited resolution.

With the aim of solving this issue, inexpensive ground-based sky
imaging cameras (or ‘skycams’) installed close to the panels are a the
best option, in accordance with Chow et al.[9]. Far from providing us
with relevant weather information, the sky imagers provide us with
images of the sky that will be analyzed to determine the relation be-
tween the sky appearance and the photovoltaic power output or the
solar irradiance.

Nowadays, artificial neural networks (ANNs) are the tool of choice
for analysing photos of the sky. It is worth mentioning that this has
not always been the case. Other resources used for this purpose, which
became more prominent in the past years, are optical flow techniques?
and clear sky libraries® [10]. This work will focus on ANNSs, in par-
ticular, in convolution neural networks (CNNs), which are the type of
ANN most used with this aim as they can be trained to learn to distin-
guish details in an image, such as the area occupied by clouds in the
sky dome or the position of the sun among others [11]. As reported by
Saha [12] the CNN has an excellent performance in machine learning
problems, specially the applications that deal with image data.

As mentioned above, this work will focus on the study of photo-

20ptical flow techniques are used in the forecasting of solar photovoltaic power generation to
estimate the position and movement of clouds from image sequences. Optical flow refers to the
pattern of pixel movement from one image to another, which can be used to estimate the speed
and direction of cloud movement. With this information, changes in solar irradiance reaching the
solar panels can be predicted more accurately.

3Clear sky libraries are used to predict the direct solar radiation reaching the solar panels on
clear sky days. These libraries are based on models that use the position of the sun, time of day,
latitude, altitude and other meteorological factors to calculate the amount of direct solar radiation
reaching the solar panels.
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voltaic power prediction techniques with sky cameras. It is necessary
to clarify that it is not intended to develop any prediction technique,
but concentrate on the previous step, the preprocessing of the im-
ages obtained with the sky-cams and its impact on the results of a
deep-learning model whose architecture is similar to that of the men-
tioned models used for nowcasting (short-term forecasting). Image
preprocessing is a critical step in using CNNs for computer vision. By
performing transformations on images before feeding them to the net-
work, the accuracy and computational efficiency of the neural network
can be significantly improved. All these aspects will be addressed in
this project.



Chapter 2

Objectives

With the motivation of studying this undoubtedly popular topic in
numerous sectors, the objectives of this work have been raised. This
work is based on the difficulty that deep learning models have in the
task of detecting clouds and sun position in a sky image and there-
fore in predicting solar PV production and solar irradiance. As it was
mentioned in the introduction, while this is a simple task for humans,
it is actually quite complex for deep learning models to perform effi-
ciently for all parts of the sky, with a variety of cloud types and for
the variety of lighting and weather conditions throughout the day [5].

In this line, this work will compare the results of a machine learning
model based on an artificial neural network applied in four different
ways. The images that will serve as input data for the model will be
pre-processed in each case in a specific form. Along these lines it will
be possible to study the repercussion of each pre-processing method
on the results of the model, results that can be extrapolated to more
complex prediction models than the one used in this work. For this
purpose, appropriate evaluation metrics, which will be discussed later,
will be used.

In order to facilitate the understanding of future sections, a brief
description of each of the four applications mentioned is presented
below:

e In the first application of the model, which will be referred to
as "RGB model” or ”original model”, the input to the neural
network we will be the RGB (red-green-blue) color images of the
sky extracted from the skycams as (width, height, 3) arrays.

e In the second application of the model, which will be referred to as
”5-channels model” or ”complex model”, two additional channels

9
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will be added to the three (RGB) channels of the original images,
therefore, the inputs will be (width, height, 5) arrays. The first of
the extra channels will be the nRBR (Normalized Red-Blue Ra-
tio) channel constructed from the R (red) and B (blue) channels
of the original image. The second channel will correspond to the
saturation channel of the HSV (Hue, Saturation, Value) colour
model image, the choice of which is explained below.

e In the third application, which will be referred to as ”2-channels
model” or ”intermediate model”, the input images will be (width,
height, 2) arrays. The first channel shall correspond to the blue
channel of the original image and the second to the nRBR channel
calculated in the same way as in the 5-channels model.

e In the last application, which will be referred to as "7nRBR model”
or "simple model”, the inputs shall be single channel images,
(width, height, 1), corresponding to the nRBR channel calculated
in the same way as for the 2-channels and 5-channels models.

The decision to choose the nRBR and the saturation channels to
combine with the red, green and blue channels of the original image
was not arbitrary. Numerous scientific studies have shown the effec-
tiveness of these image pre-processing methods in detecting clouds in
sky images [13, 14, 15, 16, 17, 4], etc.

On the one hand, the use of the saturation (S) channel of an image
in the HSV colour space for solar photovoltaic prediction can be inter-
esting for several reasons: The saturation channel is a measure of the
purity of the colour in an image. Higher saturation indicates higher
colour purity and, in the context of PV power prediction, this may
be correlated with higher intensity of incident sunlight. Therefore,
the saturation channel can provide useful information on the amount
of solar radiation reaching the solar panels. Moreover, compared to
other channels, such as the hue channel (H) or the value channel (V),
the saturation channel is less susceptible to variations in illumination.
This means that even in changing lighting conditions, the saturation
channel can provide useful and consistent information about the pu-
rity of colour in an image. For all these reasons, the HSV colour space
is commonly used in image processing and computer vision because of
its simplicity and efficiency in calculating colour transformations. In
addition, many machine learning algorithms, including convolutional

10
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neural networks (CNNs), can process images in the HSV colour space
effectively [4, 17].

On the other hand, talking about the concept of the Red-Blue Ratio
for cloud algorithms, it is worth mentioning that it was first developed
at Scripps Institution of Oceanography with the Whole Sky Imager

(WSI) [13].

A sample of the red-blue ratio applied to a clear sky image and to a
cloudy day image extracted from Long et al.’s paper ” Retrieving Cloud
Characteristics from Ground-Based Daytime Color All-Sky Images”,
specifically from Figure 4, on page 638, is shown in Fig.2.1.

Below the sample sky image are two images that show the corre-
sponding extracted red—green—blue (RGB) color channel blue and red
pixel values that make up the sample image. The red pixel values
are relatively small (dark) in the sky portion of the image because
little red light is scattered by this clear atmosphere compared to the
correspondingly greater blue scattering and greater blue pixel values,
except near the horizon where the increased atmospheric pathlength
makes the original sky image appear white to our eyes, and somewhat
near the sun in the image. The corresponding relative red/blue ratio
values are shown in the upper second from left image in Fig.2.1. For
clear sky the red/blue ratio is small, that is, dark in the image, but
increasing near the sun and near the horizon.

Figure 2.1: (top left) Clear-sky image obtained by a skycam, (top second from left)
corresponding relative red /blue ratio “image,” (lower left) separated blue, and (lower
second from left) red pixel value amount images. (top third from left) Cloudy-sky
image, (top right) corresponding relative red/blue ratio “image,” (lower third from
left) separated blue, and (lower right) red pixel value amount images [13].

11
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The purpose and basis of this study lies in the following idea: The
image preprocessing can determine such decisive factors when assess-
ing the performance of a deep learning model as the quality of its
results and the computational cost required for training, among oth-
ers. If the results were satisfactory, there would be no doubt about
the potential for the application of these methods in more complex
solar forecasting models.

12



Chapter 3

Methodology

3.1 Data

3.1.1 Data capture

3.1.1.1 Images

The original dataset consists of a set of images of the sky obtained at
a frequency of 15 seconds using a fisheye (also known as wide-angle)
sky-camera capable of photographing the sky with a field of view of
up to 180 degrees. The images were obtained in Simrishamm, Sweden,
near a photovoltaic plant. All the images were organized by date and
time of recording.

2021-09-03 12:47:15 4

(a) Cloudy day. (b) Clear day.

Figure 3.1: Examples of sky images obtained with the skycam on different days.

3.1.1.2 Historical active power data

The second part of the dataset corresponds to active power data ob-
tained every 10 seconds from the PV plant near the sky-cam location.
The corresponding power data were organised by date and time of
recording in a csv document.

13
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Figure 3.2: Active power dataset.

3.1.2 Data preprocessing

Preprocessing of the dataset, both power data and images, is a crucial
process that must be performed before training any model.

3.1.2.1 Interpolation of the active power data

Since the power data were obtained at a frequency of 10s while the
images were obtained every 15s, it was necessary to interpolate the
power data in order to have it with a frequency of 15s, so that each
image had its corresponding power data.

3.1.2.2 Selection of the data

Since a very large dataset was available, it was possible to make a se-
lection. The dataset that was finally used to train the model was com-
posed of 185,808 photos and their corresponding power data recorded
every 15 seconds from 9:00 a.m. to 19:30 p.m. thus eliminating the
dark images corresponding to the hours of less light. The selected
images correspond to those obtained from August 30 to November 12,
2021.

3.1.2.3 Dataset division into training, test and validation data

The selected dataset will be divided into three subsets of data: train-
ing, validation and test. Each of these subsets will have a particular
size and function in relation to the model. While the training set will
be used to adjust the hyperparameters of the neural network, the vali-
dation set will be used to evaluate the model at each epoch or training
step. Finally, the test set will be used to make the final evaluation

14
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of the model once all the training steps have been completed. In this
work, 75% of the data has been selected for training, and of the re-
maining 25%, the 25% will be used for validation, leaving 18.75% of
the original dataset for the test set.

3.1.2.4 Normalization of the power data

Data normalization is performed to speed up the learning process of
the neural networks. We ensure that different features have similar
ranges of values (feature scaling) to enable the gradient descent to
converge faster. Therefore, we normalize the training data to solve
the model learning challenge. For normalizing the power data the
the MinMaxScaler from Sklearn (is one of the most popular machine
learning libraries in Python) whose formula is 3.1 will be used. The
resulting data will be in the range [0, 1].

XO - Xmin
Xmax - Xmm

The normalization of the images is performed in a different way. It

X =

(3.1)

will be detailed in the image preprocessing subsection.

3.1.2.5 Image preprocessing

In order to reduce the image noise and to select the part of the images
corresponding to the sky circle, a mask was applied as shown in the
3.3.

In addition, all images were resized from 640x480 to 100x100 pixels.
Image resizing is a process that must be performed before loading the
images into the model [18]. Its importance lies mainly in the following
reasons: Firstly, CNNs can require large amounts of memory and
processing time, especially if the images are very large. By resizing
the images to a suitable size, the processing time and memory usage
of the neural network can be reduced, which can allow for faster and
more efficient training of the model. Secondly, the input images must
have the same size to be processed in a CNN model. If the images have
different sizes, they can introduce noise into the model and hinder the
neural network’s ability to learn useful patterns in the images. By
resizing all input images to the same size, you can normalise the size
and ensure that all images are processed in the same way. Finally,
by resizing the images, you can increase the chances that the neural
network will learn more general patterns that can be applied to a

15
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variety of images, not just training images, thus improving its ability
to generalise to new images.

RESIZED

Figure 3.3: Applying the mask and resizing to the original image.

Once the images were resized, their preprocessing was differentiated
according to the model.

e RGB model
In this case no extra preprocessing is performed, as the original
images are in RGB color format.

e 5H-channels model

The nRBR channel is calculated from the red and blue channels
of the original image with the Eq.3.2 where R corresponds to
the intensity of the red channel pixels and B to the blue channel
pixels. The factor e in the denominator is essential to avoid
division by zero errors.

XnRBR = % (3.2)
Subsequently, the original RGB image is transformed into an im-
age in HSV color format and the saturation channel is extracted.
Finally, these two new channels are added to the three channels
of the original image.

e 2-channels model
In this case, the calculation of the nRBR channel and the extrac-
tion of the saturation channel were performed in the same way
as in the 5-channels model. In this case, the resulting image will
consist of these two channels.

e nRBR model
In this model, the nRBR channel was calculated in the same way

16
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as for the H-channel and 2-channel models. The resulting images
consist of this single channel.

Figure 3.4: This image shows one of the images of the dataset corresponding to a
sunny day with scattered clouds and the five channels (in grayscale) of the image
resulting from it following the preprocessing described above. From left to right:
original image RGB, blue channel, green channel, red channel, nRBR channel and
saturation channel.

In all cases, the resulting images were normalized by dividing their
pixel intensity by the maximum value as shown in Eq.3.3. This tech-
nique is also known as range normalization and is used to adjust the
image pixel values in a range between 0 and 1.

X
255.0
Range normalization is useful to ensure that the pixel values of differ-

ent images are in the same range, which makes it easier to compare
the characteristics of different images.

XNormalized — (33)

3.1.2.6 Batch size

In deep learning, a batch refers to a set of data points that is processed
simultaneously during model training. Instead of feeding the entire
training data set at once, the set is divided into several smaller batches
and the model is iteratively trained on each batch.

The use of batches is common in deep learning due to the memory
limitations of GPUs and CPUs, as well as to improve training effi-
ciency. By processing data in batches, the model only needs to load a
small amount of data into memory at a time, allowing training to be
performed faster and in parallel.

Batch size is an important hyperparameter that can be adjusted
during model training. A larger batch size may improve training ef-
ficiency, as the model takes less time to process the data, but it may
also require more memory and may make the training more suscep-
tible to overfitting. A smaller batch size may require more training
time, but may improve generalization and avoid overfitting.

17
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A batch size of 200 data has been chosen for this project. This
decision was conditioned by the size of the dataset, the capacity of the
computer processor used to train the model and by the complexity of
the model.

3.2 Model

The model that will be used in this work and that will be used to draw
conclusions about the different preprocessing techniques mentioned
(see Sec.3.1.2.5) will be a convolutional neural network (CNN). CNNs
are a type of deep learning algorithm that is mostly used to analyze
and learn visual attributes from large amounts of data [19]. Although
they are mainly used for image-related Al applications, they can also
be used for other Al tasks such as natural language processing, as well

as in recommendation engines'.

In order to try to understand the functioning of this type of neural
networks, it is necessary to visualise the images as arrays of dimen-
sions width x height x depth (see Fig.3.5) where width and height are
integers corresponding to the number of pixels in each of these dimen-
sions and depth refers to the number of channels in the image.

HEIGHT

Y
2>

WIDTH <

Figure 3.5: Image viewed as a matrix.

Taking this into account and trying to contextualise the usefulness
of this type of network, the following situation is considered: if we
wanted to connect a 100x100xC image to a neuron in our neural net-
work, this would imply a total of 10000xC parameters for a single
neuron. Herein lies the great usefulness of CNNs, as they are able to
reduce the number of parameters to achieve greater efficiency.

'Recommendation engines are software systems designed to suggest products, services, content
or other relevant information to users based on their preferences, interests or past behavior [20].

18
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3.2.1 Model Framework

The architecture of this model was decided based on the capacity of
the computer processor on which the training process was to be per-
formed, on other examples of convolutional networks with applications
related to object detection in images and on empirical tests performed
comparing different architectures.

The model consists of four convolution blocks (see Fig.3.6), followed
by six more layers. These last layers are, in order: a flatten layer, a
dense layer with 128 neurons, a batch normalization layer, a rectified
linear unit (ReLU) activation layer, a dropout layer and finally a dense
mononeuronal layer. The input size for the convolutional network will
be 200x100x100xC, where 200 corresponds to the batch size, 100x100
to the width and height of the images respectively and C corresponds
to the number of channels of the images according to the received
preprocessing.

INPLT
(100, 100, 2)
y (50, 50, 16)
::_'5, 25, 32)
g (12,12, 64) (6, 6,128) §8
= 53¢

P s
Comv. {_Dm I.’_,nm- {_n:m. 08 =
bleck1  block2  block 3 block 4

OUTPUT

Figure 3.6: Diagram of the model used.The brackets specify the dimensions of the
array at each stage of the process. The value of z shall be 1, 2, 3 or 5 depending on
the nRBR, 2-channel, RGB or 5-channel model, respectively.

Each convolution block consists of a 2D convolution layer, a batch
normalization layer, a ReLLU activation layer and a 2D MaxPooling
layer. Each of the above-mentioned layers will be explained below.

3.2.1.1 Convolutional layers

In convolution layers, a set of kernel filters are applied to the input
image, which is treated as a matrix, and shifted over it (see Fig.3.7).
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These filters, are themselves matrices of the same depth as the orig-
inal image. While the number of filters in each convolution layer is
determined, the filter values, which correspond to the weights of the
trained CNN, are learned by the neural network during its training.
The resulting filters will be those that have proven to be most effective
on the assigned task.

The result of the convolution is a set of feature maps that highlight
different patterns in the input image. The set will consist of as many
matrices as the number of kernel filters applied during convolution,
i.e. the depth of the resulting "image” will be equal to the number of
filters.

FILTER 1

|
2 BN

: FEATURE MAPS

FILTER 3

G

FILTER 16

Figure 3.7: Representation of a 16-filter convolution process.
Figure 3.8 shows the output (set of feature maps) of a 2D convo-

lution layer in which 16 filters of kernel 3x3 were used on a 100x100
resolution image.
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Figure 3.8: Set of feature maps obtained after the first convolution (with 16 filters)
of the 5-channels model.

3.2.1.2 Batch normalization layers

Batch normalization layers are a popular regularization technique in
deep learning. These layers are used to normalize the input from a
previous layer, i.e., adjust the mean and variance of the input to a
standard distribution. According to loffe et al. in [21], batch normal-
ization layers have several benefits in the neural network, including:

e Reducing the covariate problem: Batch normalization layers re-
duce the covariate problem, which occurs when two features are
highly correlated and, therefore, one can predict the other. This
reduces redundancy in the neural network, which can improve its
generalization ability.

e Training acceleration: Batch normalization layers can accelerate
the training of a neural network. This is because normalizing the
input of a previous layer reduces the variance of the activations
of the current layer, which reduces the magnitude of gradients
during training and thus accelerates convergence.

e Regularization: Batch normalization layers can also act as regu-
larizers, which helps reduce overfitting in a neural network.

However, there are also some limitations in the use of batch normal-
ization layers. For example, they may require more training time and
higher memory consumption. In addition, they can also reduce the
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network’s ability to capture complex patterns in the data if they are
overused or misused.

3.2.1.3 Pooling layers

The main purpose of these layers is to reduce the dimensionality of the
features generated by the previous convolutional layers, which helps to
reduce computational cost and improve generalization. Pooling layers
work by taking a region of the input image and applying a statistical
operation to summarize that region into a single value. The most
common operations used in pooling layers are maximum and average,
which take the maximum or average value of the pixels within the
region, respectively (see Fig.3.9). The operation is repeated with a
window that scrolls through the entire input feature, generating a
smaller output feature. [22].

However, while pooling layers can be useful for reducing the size
of the input, they also have some limitations. For example, the use
of these layers can lose spatial information, which can be critical for
applications such as image segmentation. In addition, pooling can
decrease spatial resolution and thus limit the ability of the network to
capture fine details in the image.

Max Pooling Average Pooling
29 | 15 | 28 | 184 31 | 15 | 28 | 184
0 | 100 | 70 | 38 0 100 | 70 | 38
123 a2 7 2 e || 7 2
12 | 12 [m45 6 12 | 12 |[B458N6
2x2 2x2
pool size pool size
Y i
100 | 184 36 | 80
12 | 45 12 | 15

Figure 3.9: Max pooling vs. Average pooling scheme. Image extracted from [23].

In the model used in this work, it was decided to use max pooling
instead of average pooling, based on the idea of Scheller et al. at [24],
who state that this type of pooling has a higher convergence rate and
better generalization capacity than average pooling.
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3.2.1.4 Dense layers and activation function

In dense layers, each neuron is connected to all neurons in the previ-
ous layer. These layers are commonly used in neural networks to learn
complex representations of input data. Each neuron in this layer re-
ceives as input a linear combination of the outputs of all neurons in
the previous layer, followed by an activation function. This linear
combination is realized by the dot product between the weights, w; of
the connections and the outputs of the neurons of the previous layer,
7;, to which a bias term 2, b, is added, (see Eq.3.4). The number of
dense layer units is a fundamental parameter, as it determines the size
of the output vector.

z2=">b+ Z (T (3.4)

On the other hand, the activation function is a function used for
transforming the input values of neurons. Essentially, it brings non-
linearity into the neural networks so that they can learn the relation-
ship between the input and output values. [22].

In the model used, two dense layers were incorporated after the con-
volution blocks, one of 128 units and rectified linear function (ReLU)
activation (see Fig.3.10) and the last layer, which will be another dense
layer of a single unit and linear activation function.

" RelU

R(z) =max(0, 2)

B {

-10 -5 0 5 10

Figure 3.10: Activation function ReL.U.

In a regression problem, such as the one covered in this paper, the
last layer of the neural network is used to predict a continuous nu-

2The bias term is added to the linear combination of the inputs and connection weights before
passing them through the nonlinear activation function. It is used to shift the activation function
up or down along the y-axis. This means that the bias term affects the activation level of the
neuron, independent of the inputs.
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merical value rather than a discrete class. Therefore, it is important
to choose the activation function and the number of neurons in this
layer to ensure that the network can learn to produce a continuous
and accurate output. This is why the linear function has been cho-
sen, as it takes as input the linear combination of the inputs and the
weights of the connections in the previous layer. Therefore, the output
of the last layer is simply the weighted sum of the outputs of the pre-
vious layer, which allows the network to produce a continuous output
without compressing the range of the output. Furthermore, with a
single neuron, the network can produce a single output for the desired
regression value, which in this particular case will correspond to an
active power value.

3.2.1.5 Dropout layers

Dropout layers are an efficient regularization technique that helps pre-
vent overfitting and improves model generalization. The dropout tech-
nique consists of randomly selecting a subset of neurons in a layer and
temporarily disabling them during training. This prevents certain
neurons from becoming overly specialized to specific patterns in the
training data and forces all neurons in the layer to learn to be useful
for the task at hand. After training, the neurons that were temporar-
ily deactivated are activated again for model evaluation [25].

In the model used, a dropout layer is applied, where the 20% of the
neurons are deactivated, before the last dense layer.

3.2.1.6 Flatten layers

Flatten layers convert a multidimensional tensor into a one-dimensional
vector, allowing the output of a convolutional layer to become an input
to a fully dense layer, since these layers only accept one-dimensional
inputs.

For example, starting from the output of the last convolution block
of the 5-channel model (see Fig.3.6) used, each image would have
dimensions 6x6x128. By applying a flattening layer, this tensor can
be converted into a one-dimensional vector of size 6 - 6 - 128 = 4, 608,
which can be used as input for a dense layer.
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3.2.2 Metrics

The metrics used to assess the performance of a CNN model during
training and validation (such as training loss and validation loss) are
different from the metrics used to assess the quality of model predic-
tions on test data.

3.2.2.1 Metrics used to evaluate the performance of a model

Training and validation metrics measure the model prediction error
on training and validation data, respectively. These metrics are used
during the training process to adjust model parameters and improve
model performance on training and validation data. The metrics used
for this purpose were the mean absolute error (MAE) as the loss func-
tion and the mean square error (MSE).

N
1 X
MAE = > lyi — il (3.5)
=1
1 N
MSE = — > (i — ) (3.6)

i=1
In addition, the training and validation time has also been considered
as an indicator of the computational cost of each of the models. This
metric is of great importance when designing a network architecture,
especially when working with large amounts of data.

3.2.2.2 Metrics used to assess the quality of the model predictions

The metrics used to assess the quality of model predictions on test
data measure the performance of the model on a separate dataset
that has not been used during training or validation. These metrics
indicate how well the model generalises to completely new data.

Following the recommendations of Boursalie et al. [26] , the coeffi-
cient of determination (R?), the MAE and the root mean square error
(RMSE), were used.

RMSE = vMSE (3.7)
M S Eogel

Pl = 3.8

i MSErp.; (3:8)

where MSE,.; = % sz\il(yz — #;)? , using the mean of the inputs as
reference.
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R? is expected to take values between [0, 1], but it may happen,
in cases where the model to be evaluated obtains worse predictions
than the model that uses the mean as prediction, that this coefficient
is negative. This coefficient determines the quality of the model to
replicate the results, and the proportion of variation in the results
that can be explained by the model. R? = 1 would indicate that the
results can be explained by the model in their entirety.
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Chapter 4

Results

4.1 Comparison of performance metrics

Using the metrics presented in section 3.2.2.1, the Figure 4.1 has been
constructed. It can be seen that in all models the training loss is
inversely proportional to the training time, and consequently, to the
computational cost. The high training time of the 5-channels model
compared to the rest of the models stands out. An increase of about
3 minutes is observed from the nRBR model to the RGB model, while
from the RGB to the 5-channels model an increase of about 7.5 min-
utes is observed, having in both cases two channels of difference be-
tween the input images of the model.
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0.000 -
50
0I||||||||““““\ |||||||||

5-channels 2- channels nRBR

Training loss [kW]

Training time [min]
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] (] =
1 1 1

=
[=]
I

Figure 4.1: Comparison of training loss and training time of all models. See Table
Al
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4.2. COMPARISON OF PREDICTION METRICS

4.2 Comparison of prediction metrics

As mentioned in section 3.2.2.2, the closer the value of R? is to the
unity, the better the predictions. Taking this into consideration, it
can be seen in the linear regressions of Fig.4.2, that all the models
manage to explain more than 97% of the results, indicating that the
architecture of the model designed is adequate for this purpose. Even
though the differences are not very large, the one with the best pre-
dictions is the 5-channels model, followed by the RGB, 2-channels and
the nRBR in last place. This was the expected result, the more chan-
nels the input image has, the more information is being offered to the
model to better learn how to make predictions.
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Figure 4.2: Linear regression between real and predicted data for all models.
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To reaffirm the validity of the models used, their error histograms
have been plotted in Fig.4.3. According to Gawlikowski et al.[27],
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these plots are very useful to understand how the model is performing
and how the errors in the predictions are being distributed. This can
help to identify patterns in the errors and to find areas where the
model needs improvement. For example, if the errors are normally
distributed around zero, it may be an indicator that the model is
making good predictions. On the other hand, if there are a large
number of very large or very small errors, it may be an indicator that
the model is having difficulty learning certain patterns in the data.

Although it can be seen in Fig.4.3 that, broadly speaking, all the
plots resemble a normal distribution, there is a clear shift of the max-
imum frequency error to the right of zero in all of them. This means
that there is a tendency in the model to underestimate the values of
the target variable. In other words, the model is producing values
that are below the true values. This could be due to several factors,
such as imbalance in the distribution of the training data, a lack of
representation of certain classes or features in the training data, or a
lack of ability of the model to capture certain patterns in the data.
Particularly, in the graph of the 5-channels model, this shift is mini-
mal, which again shows the good performance of this model.
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Figure 4.3: Error histograms of the four models. The black line indicates the error
with maximum frequency.

In addition, the MAE and RMSE have been plotted for each of the
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models (see Fig.4.4). Reasonable values have been obtained for these
metrics according to the results obtained by Zhang et al.[8]. Again,
the more channels the input image has, the smaller the errors made
by the model in making the prediction.
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Figure 4.4: Comparison of MAE and RMSE of all models. See Table A.2.

In order to further analyse the results of each model, the daily fore-
casts have been studied. As can be seen in Fig.4.5, the days of max-
imum and minimum mean prediction error for the 5-channels model
and the RGB model match. This result raises the question of the use-
fulness of the extra information provided by these two channels added
to the RGB image in the 5-channel model.

Thanks to Fig.4.5, a uniform behaviour of all models has been
observed. The days of minimum error coincide with days of cloudy
skies and the days of maximum error coincide with days when there
are changes in the state of the sky, e.g. days when it is sunny at
dawn and cloudy as the day progresses, and vice versa. This result
coincides with that of other nowcasting papers [5, 8, 4], where it is
stated that the highest photovoltaic prediction errors are produced
temporally coinciding with ramps in production, and these ramps are
mainly due to a change in cloudiness.
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Figure 4.5: Comparison of the mean absolute error per day. See Table A.3.

To deepen this issue and to extract more useful information on the
model results, three specific days have been chosen from the dataset:
a sunny day, a cloudy day and a partially cloudy day. The graphs
in Fig.4.6 show the performance of each model on each of the days
mentioned.
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Figure 4.6: Values predicted by the different models versus actual values for a sunny,
cloudy and partly cloudy day.

The R? has been calculated for each of these days, and for each of
the models. The resulting plots can be seen in Fig.4.7.
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Figure 4.7: Linear regression between real and predicted data of each model. From
left to right: sunny day, cloudy day and partially cloudy day. From top to bottom:
2-channels model, 5-channels model, nRBR model and RGB model.

This figure provides decisive information for the analysis of the
results. As can be seen in the graphs corresponding to the nRBR, 2-
channel and RGB models, the value of the coefficient of determination
decreases notably on cloudy days, while in the 5-channel model this
variation is not so noticeable and maintains the proportion of variation
in the results that can be explained by the model above 90%. This
result is of outmost importance, as it seems to show the effectiveness
of the latter model in making sufficiently good predictions on sunny,
partly cloudy and completely cloudy days.
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Chapter 5

Conclusions

The prediction of the power produced by a photovoltaic plant through
sky images is a very topical issue for the scientific community. An
essential part of this process is the preprocessing of the images, which
has been satisfactorily addressed in this work.

Four preprocessing techniques have been employed to treat the im-
ages that would be the input of a convolutional neural network. The
results obtained in each of the cases have been evaluated with sev-
eral error metrics that have allowed an informed comparison between
them. The fact that in all situations very satisfactory metrics have
been obtained, low values for MAE and RMSE and R? values close to
1, shows the efficiency of this type of neural networks in image analysis,
and therefore, their potential in more complex models of photovoltaic
prediction from sky images.

It is necessary to mention the rightward shift of the error distribu-
tion compared to a normal distribution. As mentioned in Sec.4.2, it
implies that the models are making more prediction errors in a spe-
cific direction. This could be due to several factors, such as the lack of
representation of certain sky types in the training data, the presence
of noise or artefacts in the images, such as the windmill present in
all images of the dataset, which affect the ability of the network to
extract relevant features, or the lack of ability of the model to capture
certain patterns in the data. In this case, it may be useful to perform
a more detailed analysis of the training and validation data to bet-
ter understand the causes of this bias and consider possible solutions,
such as including more data, using techniques to remove obstacles in
the images, or exploring different convolutional network architectures.
This motivation is left for future work. This bias is not considered to
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have a significant impact on the final objectives of this work.

Based on the results of the comparisons between the applications
studied, some interesting conclusions could be drawn. The 5-channels
model has outperformed the traditional RGB model in terms of pre-
diction quality. Taking into account its high computational cost com-
pared to the other models, its use could be advantageous as long as
sufficient resources are available.

The most competent models in this study are the RGB and the
5-channel models. As shown in Fig.4.5, the behaviour of both models
is very similar, as they both obtained their maximum and minimum
error peaks on the same day, and the rest of the peaks are very close
in time. This event questions the usefulness of these two extra chan-
nels incorporated to the RGB images in the 5-channel model, because
based on this result, this second model implies an inefficient increase
in the computational cost, which in some cases may not be convenient.
More precisely, according to the results obtained, the computational
cost increases by 18.41% in the 5-channel model compared to the RGB
model, while RMSE decreases by 5.16%, MAE by 13.14% and R? in-
creases by a modest 0.10%.

The result that could determine the choice of the 5-channel model
in future works is the one extracted from Fig.4.7. While the coeffi-
cient of determination in the RGB, 2-channel and nRBR models drops
significantly for the cloudy day, this is not the case for the 5-channel
model, which remains above 90%. Although it would be necessary to
study what happens on other cloudy days and to particularise the re-
sults for different types of cloudiness, it could be concluded that these
two extra channels added in the image preprocessing of the 5-channel
model improve the detection of image details, being this improvement
more remarkable on the type of days mentioned.

If this line of study is pursued further and the certainty of these
results is confirmed, the benefit of this image preprocessing technique
applied to more complex short-term photovoltaic prediction models,
nowcasting, would be evident, since, as has been observed in various
papers on this subject, [5, 8, 4], the great difficulty of these models lies
in the prediction of photovoltaic power ramps, an event that occurs
due to the cloudiness of the sky.
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By focusing future studies on the potential of the 5-channel model,
numerous improvements can be implemented. It would be interest-
ing to compare the results of this 5-channel model with other models
(with equally preprocessed images as input) whose architecture has
been modified. It would also be possible to compare the results for
different hyperparameter configurations in order to achieve a good fine
tuning. Exploring with channels from other colour models may also
be a possible avenue for improvement. Ultimately, the search for the
ideal preprocessing of sky images for forecasting techniques is a very
interesting topic that needs to be further studied.
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Appendix A

Appendix

A.1 Results

Table A.1: Comparison of the performance metrics of the different models.

Model name RGB | 5-channels | 2-channels | nRBR
Training loss [kW] 0.0244 | 0.0241 0.0271 | 0.0274
Training MSE [kW?] | 0.0017 0.0017 0.0021 0.0022
Validation loss [kW] | 0.0145 0.0133 0.0161 0.0223
Validation MSE [kW?] | 0.0008 0.0007 0.0009 0.0013
Training time [min] | 42.320 |  50.136 40.840 | 38.612
Validation time [sec] | 1.972 2.311 1.819 1.701

Table A.2: Comparison of the quality metrics predictions between models.

Model name | RGB | 5-channels | 2-channels | nRBR
R?* [adim] 0.990 0.991 0.988 0.980
MAE [kW] | 5.831 5.154 6.371 9.194

RMSE [kW] | 10.536 9.992 11.237 14.392

Table A.3: Comparison of the days of maximum and minimum prediction error for

each model.
Model name | Max MAE day | Max MAE [kW] | Min MAE day | Min MAE [kW]
RGB 2021-09-04 13.90 2021-11-08 1.94
5-channels 2021-09-04 12.70 2021-11-08 1.71
2-channels 2021-09-25 14.24 2021-10-18 2.01
nRBR 2021-08-30 18.83 2021-09-30 3.65
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