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2 CHAPTER 1: INTRODUCTION

1 Motivation

The main motivation for this project was to understand classical work within the
framework of quantum mechanics. We seek to understand what it means work
in a quantum system and how to compute it. To achieve this, it is necessary
to grasp the definition of work in thermodynamics and tailor it to the particular
quantum system at hand. Once the definition of work in a quantum system has
been established, the next goal is to determine the possible values of work for a
given Hamiltonian, as well as the average work. This is done through a two-point
measurement protocol [11] that includes initial and final energy measurements.
Finally, the project aims to study the probability distribution and related statistical
variables and to explore the implications of increasing the number of particles
in the system. Understanding the nature of work in quantum systems and the
influence of different numbers of particles is important for various applications in
quantum technology and to advance our knowledge of basic physical processes.

2 Chapter 1: Introduction

Abstract
Comenzaremos haciendo una introducción histórica de la termodinámica, la mecánica
cuántica y la mecánica estadística; todo ello para poder apreciar posteriormente
su relación entre sí y con los sistemas cuánticos que vamos a tratar. Posteriormente
introduciremos el sistema cuántico a tratar para hacer primero, una diferenciación
entre las variables de interés (trabajo y calor) y su forma en este sistema; y se-
gundo, tratar dos ejemplos para ver el comportamiento de estas variables, a pri-
ori, termodinámicas en dichos sistemas cuánticos. Para esto último nos serviremos
principalmente de cálculo matricial básico y de métodos numéricos para resolver
sistemas de ecuaciones diferenciales, apoyándonos en las figuras mostradas para
sacar algunas conclusiones.

Algunas expresiones que se derivan en este apartado serán usadas en siguientes
secciones con tal de facilitar el desarrollo matemático.

2.1 Historical introduction

The fields of thermodynamics, statistical mechanics, and quantum mechanics are
fundamental branches of physics that have revolutionized our understanding of
the natural world. Each of these fields of study has its history of development,
but they are deeply interconnected, with the concepts and principles of one influ-
encing and enriching the others. In this introduction, we will explore the histori-
cal context of thermodynamics, statistical mechanics, and quantum mechanics, as
well as their relationships and applications in the field of quantum systems.
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2 CHAPTER 1: INTRODUCTION

• Thermodynamics: [1] The study of thermodynamics began in the 19th cen-
tury when scientists investigated the behavior of heat and energy. The In-
dustrial Revolution sparked the need for efficient engines, leading to the
development of the First and Second Laws of thermodynamics. In the mid-
19th century, Rudolf Clausius and Lord Kelvin, among others, formulated
these laws, which laid the foundation for the principles governing energy
conversion and heat transfer in macroscopic systems. It was also at this time
that Carnot introduced us to the first modern definition of work: a weight
lifted by a height. Thermodynamics has become essential for many differ-
ent practical applications, including steam engines, refrigeration, and power
generation.

First Law of Thermodynamics:[2] In an isolated adiabatic system that
evolves from an initial state A to another final state B, the work done does
not depend on the type of work or the process followed.

∆U = Q−W (1)

Where U is the internal energy of the (isolated) system, Q is the amount of
heat supplied to the system and W is the work done by the system.

• Quantum mechanics: [3] The advent of quantum mechanics in the early
20th century revolutionized physics. Scientists such as Max Planck, Albert
Einstein, Niels Bohr, Erwin Schrödinger and Werner Heisenberg have made
pioneering contributions in this field like Schrödinger equation or Heisen-
berg uncertainty principle. Quantum mechanics introduces the idea that par-
ticles exhibit wave-particle duality and that their properties are described by
wave functions. These wave functions challenged classical notions of deter-
minism and fundamentally changed our understanding of matter and energy
at the microscopic level.

Schrödinger equation:[4] The Schrödinger equation gives the quantized en-
ergies of the system and gives the form of the wave function so that other prop-
erties can be calculated.

ih̄
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ (2)

Where i is the imaginary unit, h̄ is the reduced Planck constant, ψ is the
wave function of the quantum system, and H is the Hamiltonian differential
operator.

• Statistical mechanics: [5] While thermodynamics provides a macroscopic
understanding of energy, statistical mechanics emerged in the late 19th cen-
tury to explain the microscopic origin of macroscopic properties. Scottish
physicist James Clerk Maxwell and the Austrian physicist Ludwig Boltzmann
played important roles in the development of statistical mechanics. Boltz-
mann’s statistical interpretation of entropy linked the concepts of probability
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2 CHAPTER 1: INTRODUCTION

and thermodynamics, allowing for a deeper understanding of the behavior
of large particle systems. Statistical mechanics is the bridge between the mi-
croscopic world of individual particles and the macroscopic world described
by thermodynamics.

The connection between thermodynamics, statistical mechanics, and quantum
mechanics became apparent as physicists explored the behavior of quantum sys-
tems. Quantum statistical mechanics [6] was developed to describe the statistical
behavior of particles according to quantum principles. This framework provides an
overview of phenomena governed by the Bose-Einstein and Fermi-Dirac statistics,
which characterize the behavior of particles with integer (bosons) and half-integer
spins (fermions), respectively. Furthermore, the principles of thermodynamics,
such as the conservation of energy and entropy, find new manifestations in the
quantum field. Quantum thermodynamics is an emerging field that studies the
exchange of energy and heat in quantum systems, in which quantum fluctuations
and coherence play an important role. The application of these concepts is cru-
cial in various fields, including quantum computing, quantum information theory,
and quantum optics. Understanding and manipulating quantum systems requires
a deep understanding of the statistical behavior and the quantum nature of the
particles involved.

In sum, the historical development of thermodynamics, statistical mechanics,
and quantum mechanics has dramatically shaped our understanding of the phys-
ical world. The interactions between these fields have allowed us to explore the
behavior of quantum systems, opening new frontiers in technology, computing,
and fundamental physics. Ongoing research in these areas continues to advance
our knowledge and pave the way for future advances in quantum science and tech-
nology. In this final degree project, we are precisely going to treat thermodynamic
variables in isolated quantum systems. We will give special emphasis to the study
of work and its properties in these systems.

2.2 Quantum Work driven in a isolated system

[7] We have a quantum system in interaction with a thermal bath, in this way the
Hamiltonian will be the sum of both plus the interaction potential between them,
all of them will depend on time:

H(t) = HS(t) +HB(t) + VSB(t) (3)

The quantum average will be the trace of the Hamiltonian and the density
matrix, in such a way that deriving:
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2 CHAPTER 1: INTRODUCTION

⟨H(t)⟩ = Tr(ρ(t)H(t)) =⇒
d ⟨H(t)⟩

dt
= Tr(ρ̇(t)H(t)) + Tr(ρ(t)Ḣ(t))

We could associate this with the 1st Law of Thermodynamics 1, but it would be
necessary to identify which sum corresponds to work and which to other form of
energy. To do this, we assume an isolated system, that is, there is no heat loss or
gain. This Hamiltonian will have the form: HS(t) = f(t)σz. In an example later
we will shape the function and apply some initial conditions to better visualize
each term.

On the other hand, it is known that the temporal evolution of the density of
states is given by the Liouville-von Neumann equation [8]:

ih̄
∂ρ

∂t
= [H, ρ] (4)

Whereas ρ → {ρ11, ρ12, ρ21, ρ22} we will have 4 differential equations, two of
them for the populatios and two are coherences.

With this equation we can analyze the traces obtained before and see what
happens for the isolated case, the first addend:

Tr(ρ̇(t)HS) = Tr
(
[HS, ρ]

ih̄
HS

)
=

1

ih̄
Tr ((HSρ− ρHS)HS −HS(HSρ− ρHS)) =

(5)

=
1

ih̄
Tr
(
����HSρHS − ρH2

S −H2
Sρ−����HSρHS

)
=

1

ih̄
Tr (���ρH2

S −���ρH2
S −���H2

Sρ+���H2
Sρ) = 0

And the second addend:

Tr
(
ρ(t)ḢS

)
= Tr

(
ρ(t)ḟ(t)σz

)
= ḟ(t)Tr (ρ(t)σz) (6)

Therefore, the first addend, being null, knowing that we are in the specific
case of an isolated system, corresponds to heat, and the second, assuming all the
energy of the system, corresponds to work.

Now, we are going to analyze two examples to show the procedure to follow
to obtain the thermodynamic variables of the quantum system.

• Example 1:

Suppose that our time-dependent function is f(t) = sin(wt) and that
the initial condition of the system is: |ψ⟩⟨ψ| =

(
|1⟩−|2⟩√

2

)(
⟨1|−⟨2|√

2

)
.
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2 CHAPTER 1: INTRODUCTION

In that case, the initial density matrix will be:

ρ(0) =
1

2

(
1 −1
−1 1

)
(7)

Now, using 4 and operating conveniently we arrive at:

ih̄
∂ρ

∂t
= f(t)

(
0 2ρ12

−2ρ21 0

)
= sin(wt)

(
0 2ρ12

−2ρ21 0

)
(8)

Therefore, the diagonal terms of the density matrix will be constant, while
the non-diagonal ones will not. In fact, having the same initial conditions in
this case, they will be the same with a change of sign, leaving:

ρ12(t) = ρ21(t)
∗ = ρ12(0) exp

(
2

ih̄

∫ t

0

sin(ws)ds

)
= −1

2
exp

(
− 2

ih̄w
cos(wt)

)
(9)

Now with this, we can calculate all the terms mentioned before, for example:

⟨H(t)⟩ = Tr(ρ(t)H(t)) = sin(wt)Tr
((

1/2 −ρ12
ρ21 −1/2

))
= 0

This makes sense since the function is a sine and the initial populations are
equal, the average energy will be zero. The terms of heat and work will
remain:

Q(t) = Tr(ρ̇(t)H(t)) =
sin(wt)

ih̄
Tr
((

0 2ρ12
2ρ21 0

)(
1 0
0 −1

))
= 0

W (t) = Tr(ρ(t)Ḣ(t)) = w cos(wt)Tr
((

1/2 −ρ12
−ρ12 −1/2

))
= 0

On average they are null, this is because the diagonal terms assume the
same weights, and as we saw before, these terms will not evolve over time,
obtaining zero work for any time t. That is, the work is zero since the trace of
the Hamiltonian is zero at all times t. Now, if we represent by components:
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2 CHAPTER 1: INTRODUCTION

(a) Diagonal components w = h̄ = 1. (b) Anti-diagonal components w = h̄ = 1.

Figure I: Components of density operator.

It can be observed that the components of the diagonal are constant, as
expected, for the antidiagonal they do vary periodically but they are equal.
It is notorious that the variation of the energy in time will be equal to the
work, which in this case is zero.

• Example 2:

Suppose now that the initial condition is the same as in example one
but our hamiltonian is H = λ

2
σx +

f(t)
2
σz.

In matrix form we would have the following:

H =
1

2

(
sin(wt) λ
λ − sin(wt)

)
(10)

As in the previous example, using 4 and operating the matrices, we obtain:

ih̄
∂ρ

∂t
=

1

2

(
λ(ρ21 − ρ12) 2 sin(wt)ρ12 + λ(ρ22 − ρ11)

−2 sin(wt)ρ12 − λ(ρ22 − ρ11) −λ(ρ21 − ρ12)

)
(11)

This system is not easy to solve but although we cannot obtain the exact
solution, we can approximate it using numerical methods, in this case, the
Runge-Kutta of order 4:
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2 CHAPTER 1: INTRODUCTION

Figure II: Numerical solution of density operator (λ = h̄ = w = 1).

In the same way as in the previous example, we can calculate the heat and
work:

Q(t) =
1

4ih̄
Tr
(

λ(ρ21 − ρ12) 2 sin(wt)ρ12 + λ(ρ22 − ρ11)
−2 sin(wt)ρ12 − λ(ρ22 − ρ11) −λ(ρ21 − ρ12)

)
(
sin(wt) λ
λ − sin(wt)

)
= 0

W (t) = Tr
((

ρ11 ρ12
ρ21 ρ22

)(
w cos(wt) 0

0 −w cos(wt)

))
=
w cos(wt)

2
(ρ11 − ρ22)

It was clear that the heat should come out zero since we are in an isolated
system, taking that all the energy is due to work. Using the values obtained
earlier for the density components:
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2 CHAPTER 1: INTRODUCTION

Figure III: Numerical solution of work (λ = h̄ = w = 1).

As we can observe it’s an unpredictable function, it depends to a great extent
on the values of the independent term and sinusoidal term. We saw that the
heat is zero so we are not going to take it into account for our numerical
analysis, all the energy is due to work. Now, there are two borderline cases,
in which λ≪ 1 and in which λ≫ 1 :

(a) Work with λ = 10−9. (b) Work with λ = 102.

Figure IV: Work in two borderline cases.
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2 CHAPTER 1: INTRODUCTION

We see that they clearly have two behaviors, in the case of λ = 10−9 we see
a periodic function that grows, however, it oscillates in values very close to
0, tending to a very small value as time progresses as it can be seen in V.
This was all to be expected since a very small λ should recover the previous
example where the work is zero. On the other hand, we see that the solution
for λ = 102 has a sinusoidal form and is not null since the parameter adds
work to the system.

Figure V: Work with λ = 10−9 for t ≫ 1.
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3 CHAPTER 2: DEFINITION OF WORK; TWO-POINT MEASUREMENTS
PROTOCOL

3 Chapter 2: Definition of work; two-point measure-
ments protocol

Abstract
El objetivo final de este apartado es obtener los distintos valores del trabajo así
como su distribución de probabilidad a distintos tiempos. Para ello, primero debe-
mos caracterizar el operador evolución temporal y obtener su forma matricial.
Esto se consigue mediante una rotación específica que convierta nuestro hamilto-
niano en un hamiltoniano independiente del tiempo, pudiendo así calcular direc-
tamente el operador evolución.

Ya con este operador debemos calcular el operador densidad de estados, que
va a depender de la temperatura del sistema cuántico en cuestión. Utilizando
este a tiempo 0 y el de evolución para obtenerlo en un tiempo arbitrario podemos
calcular la energía media inicial y final; y con ello, el trabajo medio.

3.1 Time evolution operator

In this section, we closely follow [11] and we are going to calculate the evolution
operator in a specific case to be able to use it later to compute the work. We
assume an isolated system without a thermal bath whose Hamiltonian varies in
time with the form:

HS =
h̄ω

2
σz −

Ω

2
(σx sin(ωdt) + σy cos(ωdt)) (12)

As we have mentioned, the system is isolated, so H = HS(t). Now, we can
start with the Schrödinger equation 2. This equation is linear, so its time evolution
will be given by the action of a certain time evolution operator U(t), such that
|ψ(t)⟩ = U(t) |ψ(t0)⟩. In this way, we arrive at the following equation:

ih̄
∂

∂t
U(t) = HS(t)U(t) where U(0) = 1 (13)

To deal with our particular case, we are going to assume the form of U(t)
depending on a parameter α, in such a way that:

U(t) = e−
i
h̄
ασztŨ(t) (14)

For simplicity in the calculations, the notation U = U(t) and Ũ = Ũ(t) is used.
Substituting in 13 and conveniently operating:

12
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ih̄
∂U

∂t
= ih̄

(
− i

h̄
ασze

− i
h̄
ασztŨ + e−

i
h̄
ασzt

∂Ũ

∂t

)
= HSe

− i
h̄
ασztŨ

ασze
− i

h̄
ασztŨ + ih̄e−

i
h̄
ασzt

∂Ũ

∂t
= HSe

− i
h̄
ασztŨ

Multiplying by e
i
h̄
ασzt on both sides from the left, knowing that it commutes

with σz, and simplifying:

ασzŨ + ih̄
∂Ũ

∂t
= e

i
h̄
ασztHSe

− i
h̄
ασztŨ

Substituting HS from the expression 12 and then rearranging terms for sim-
plicity:

ασzŨ + ih̄
∂Ũ

∂t
= e

i
h̄
ασzt

(
h̄ω

2
σz −

Ω

2
(σx sin(ωdt) + σy cos(ωdt))

)
e−

i
h̄
ασztŨ

Finally:

ih̄
∂Ũ

∂t
=

(
h̄ω

2
− α

)
σzŨ − Ω

2
e

i
h̄
ασzt [σx sin(ωdt) + σy cos(ωdt)] e

− i
h̄
ασztŨ (15)

Now we must calculate the action of the exponentials on the Pauli matrices σx
and σy of the second addend. To do this, we can do a Taylor series expansion of
the exponential matrix function for any Pauli matrix σn, that is:

e
i
h̄
ασnt = 1+ iσn

(
αt

h̄

)
+
i2σ2

n

2!

(
αt

h̄

)2

+
i3σ3

n

3!

(
αt

h̄

)3

+
i4σ4

n

4!

(
αt

h̄

)4

+ ...

Grouping the terms into real and imaginary parts:

e
i
h̄
ασnt =

{
1− σ2

n

2!

(
αt

h̄

)2

+
σ4
n

4!

(
αt

h̄

)4

+ ...

}
+ i

{
σn

(
αt

h̄

)
− σ3

n

3!

(
αt

h̄

)3

+ ...

}
In this way, it is clearly seen that the terms grouped in the real part correspond

to an expansion of the cosine function and the terms grouped in the imaginary part
to a sinusoidal function. This allows us to rewrite the matrix rotation operator as
follows:

e
i
h̄
ασnt = 1 cos

(
αt

h̄

)
+ iσn sin

(
αt

h̄

)
(16)
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A more abstract version of the general 2×2 matrix can be found by applying
Sylvester’s formula to give a generic 16 version for the analytic function [10].

In our case, σn = σz so we can elaborate the following product that appears in
the equation 15:

e
i
h̄
ασzt [σx sin(ωdt) + σy cos(ωdt)] e

− i
h̄
ασzt =

=

(
1 cos

(
αt

h̄

)
+ iσz sin

(
αt

h̄

))
[σx sin(ωdt) + σy cos(ωdt)]

(
1 cos

(
αt

h̄

)
− iσz sin

(
αt

h̄

))
Doing this product of matrices and applying trigonometric properties we arrive

at:

(
0 −i cos

(
2αt
h̄

+ ωdt
)
+ sin

(
2αt
h̄

+ ωdt
)

i cos
(
2αt
h̄

+ ωdt
)
+ sin

(
2αt
h̄

+ ωdt
)

0

)
=

= sin

(
2αt

h̄
+ ωdt

)
σx + cos

(
2αt

h̄
+ ωdt

)
σy

Now, we can choose α in such a way that the Hamiltonian is not dependent
on time. To do this we take out i common factor and convert the interior into an
exponential:

(
0 −i

(
cos
(
2αt
h̄

+ ωdt
)
+ i sin

(
2αt
h̄

+ ωdt
))

i
(
cos
(
2αt
h̄

+ ωdt
)
− i sin

(
2αt
h̄

+ ωdt
))

0

)
=(

0 −iei(
2α
h̄
+ωd)t

ie−i( 2α
h̄
+ωd)t 0

)

It is clear that to make the previous expression independent of time it would
be necessary to make the exponent null, for this trivially:

α = −ωdh̄

2
=⇒

(
0 −i
i 0

)
(17)

Once we have obtained this addend we can return to 15 to solve the differ-
ential equation. However, by obtaining a time-independent Hamiltonian, we can
directly calculate the evolution operator by doing the rotation. We find that such
Hamiltonian is:

H̃ =
h̄

2
(ω + ωd)σz −

Ω

2
σy (18)

Now, we can obtain the evolution operator as:

14
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U(t) = e−
i
h̄
ασzte−

i
h̄
H̃t =

=

(
eiωdt/2 0

0 e−iωdt/2

)[(
e−i(ωd+ω)t/2 0

0 ei(ωd+ω)t/2

)(
cos
(
Ωt
2h̄

)
sin
(
Ωt
2h̄

)
− sin

(
Ωt
2h̄

)
cos
(
Ωt
2h̄

))]
After operating, and making the product of the matrices, the analytical expres-

sion of the evolution operator is finally obtained:

U(t) =

(
cos
(
Ωt
2h̄

)
e−

i
2
ωt sin

(
Ωt
2h̄

)
e−

i
2
ωt

− sin
(
Ωt
2h̄

)
e

i
2
ωt cos

(
Ωt
2h̄

)
e

i
2
ωt

)
(19)

Below we represent the form of u(t) and v(t) that we will use in the next
section:

Figure VI: u(t) and v(t) components of evolution operator (h̄ = ω = 1, Ω = 1/2).

3.2 Definition of W(t)

We have a solution for the time-dependent evolution operator which, as expected,
has the form:

U(t) =

(
u(t) v(t)

−v∗(t) u∗(t)

)

15
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Where u(t) = cos
(
Ωt
2h̄

)
e−

i
2
ωt and v(t) = sin

(
Ωt
2h̄

)
e−

i
2
ωt.

Now with the shape of these functions we can compute the work, for this the
first thing would be to define an initial state for the density of states operator [11]:

ρth = Z−1eβH(0)

Where Z is the canonical partition function Z = Tr
(
e−βH

)
and β = 1

KBT
. In

later calculations, we will assume KB = 1.

From 12 it is clear that H(t = 0) = h̄ω
2
σz − Ω

2
σy. However, we are going to

assume the case that Ω ≪ h̄ω, so the canonical partition function remains:

Z = Tr
(
e−βH(0)

)
= Tr

(
e−

βh̄ω
2

σz

)
= Tr

(
e−

βh̄ω
2 0

0 e
βh̄ω
2

)
= 2 cosh

(
βh̄ω

2

)
With this, we obtain the following matrix for the density operator at the initial

instant dependent on temperature:

ρth(0) =
1

2

(
1 + tanh

(
βh̄ω
2

)
0

0 1− tanh
(
βh̄ω
2

)) =
1

2

(
1 + f 0
0 1− f

)
(20)

On the one hand, it is true that Tr(ρth) = 1, is a necessary condition since the
sum of the probabilities must give 1. On the other hand, it is true that when T →
∞, it says β → 0, the populations equalize, and that when T → 0 as tanh

(
βh̄ω
2

)
→

1 then the system tends to its ground state; both results agree with what was
theoretically expected.

T → ∞ =⇒ ρth(0) →
(
1/2 0
0 1/2

)

T → 0 =⇒ ρth(0) →
(
1 0
0 0

)
Now, we must evolve said operator up to a time t in order to subsequently ob-

tain the energy at that time. To do this, we apply the evolution operator previously
calculated as follows:

ρth(t) = U(t)ρth(0)U
†(t) =

1

2

(
u(t) v(t)

−v∗(t) u∗(t)

)(
1 + f 0
0 1− f

)(
u∗(t) −v(t)
v∗(t) u(t)

)
Operating and taking into account that logically |u(t)|2 + |v(t)|2 = 1 since it is

the sum of the probability amplitudes, we obtain:
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ρth(t) =
1

2

(
1 + f(|u(t)|2 − |v(t)|2) −2u(t)v(t)f

−2u∗(t)v∗(t)f 1− f(|u(t)|2 − |v(t)|2)

)
(21)

With this result we can obtain a lot of things, in this case, we can use it to
calculate the mean value of energy at time 0 (⟨Ei⟩) and at time t (⟨Ef⟩). The
mean value of the energy at any time it’s the trace of the product of the density
matrix at this time times the Hamiltonian (in our case is independent of time). So:

⟨Ei⟩ = Tr(ρth(0)Ho) = h̄ωf =
h̄ω

2
tanh

(
βh̄ω

2

)
(22)

⟨Ef⟩ = Tr(ρth(t)Ho) =
h̄ω

2
f(|u(t)|2 − |v(t)|2) = h̄ω

2
tanh

(
βh̄ω

2

)
(|u(t)|2 − |v(t)|2)

(23)

Now with the form of energy at initial time and at time t we can obtain the
average work done in said period of time. It is notorious that since the final
energy is equal to the initial one but multiplied by the factor (|u(t)|2 − |v(t)|2)
and since these are the probability amplitudes that meet |u(t)|2, |v(t)|2 ≤ 1 then
(|u(t)|2 − |v(t)|2) ≤ 1; so work is negative, that is, work is exerted on the system
(as initially planned).

Now, if we calculate the work like the difference between the final and initial
energy we obtain that:

⟨W ⟩ = ⟨Ef⟩ − ⟨Ei⟩ =
h̄ω

2
f(|u(t)|2 − 1− |v(t)|2) = −h̄ωf |v(t)|2

Replacing everything and leaving it as a function of temperature and time,
furthermore, redefining the work as that exerted on the system, we obtain:

⟨W ⟩ = h̄ω tanh

(
βh̄ω

2

)
sin2

(
Ω

2h̄
t

)
(24)

The first minimum of this function is trivially in t = 0 because it is the initial
state. The following minimums are located at t = 2nπh̄

Ω
where n ∈ N. On the other

hand, the maximums in time of this function are t = nπh̄
Ω

where n ∈ N. All of these
results are shown in the following figure.
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Figure VII: ⟨W ⟩ (t) (h̄ = ω = 1, Ω = 1/2 and β = 1/10).

Another fact that we can observe is that as the temperature increases, β de-
creases, thus decreasing the hyperbolic tangent, that is when T → ∞ then ⟨W ⟩ =
0. This is coherent if we think that when we increase the temperature a lot, the
populations equalize, obtaining a mean value of zero. The opposite occurs if we
do T → 0, doing the average value of the maximum work. All this is represented
in the following figure:

Figure VIII: ⟨W ⟩ (T ) (h̄ = ω = 1, Ω = 1/2 and t = 2π).
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Just because our Hamiltonian is constant (H0 → H0), then in our case ∆F = 0,
where F is the Helmholtz Free Energy which is a thermodynamic potential that
measures the useful work obtainable from a closed isothermal thermodynamic
system. Because of ⟨W ⟩ ≥ ∆F we expect ⟨W ⟩ ≥ 0 as indicated in 24.

In macroscopic systems, the individual measurements are very similar to the
average, but in microscopic systems, it doesn’t work. We have said before that
⟨W ⟩ ≥ ∆F but actually, the individual measurements of W can be smaller than
∆F , which leads to local violations of the second law of thermodynamics. Never-
theless, this will not be taken into account for our analysis.
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4 Chapter 3: Probability distribution

Abstract
En este capítulo nos adentramos en el cálculo de las probabilidades de obtener los
distintos valores posibles del trabajo. Mediante el uso de una simple probabilidad
condicionada y definiendo una función característica podemos obtener la distribu-
ción de probabilidad completa del trabajo a través de la transformada inversa
de Fourier. Posteriormente hemos hecho un análisis estadístico de los resultados
de esa transformación. Por otro lado, tras calcularse dicha función característica
hemos comprobado si esta cumple la igualdad de Jarzynski haciendo r = iβ y
explicamos sus implicaciones.

Por último hemos analizado qué le ocurre a los valores posibles del trabajo
si aumentamos el número de partículas (sin interración entre sí), obteniendo la
distribución de probabilidad para N partículas.

4.1 Work distribution P (W )

We will now obtain the probability distribution expression P (W ) obtained by re-
peating the work measurement several times (via the energy in the initial and final
states). This can be done bearing in mind that this is a two-point measurement
protocol. According to probability theory, if A and B are two events, then the sum
of the probabilities P (A,B) of these two events can be written as:

P (A,B) = P (A|B)P (B)

Where P (B) is the probability that B occurs and P (A|B) is the conditional
probability that A occurs if B has occurred. In our context, P (B) are just the
initial probabilities Pn and P (A|B) is assigned to the expression:

|⟨m|ψ(t)⟩|2 = |⟨m|U(t) |n⟩|2 (25)

That is the probability to measure a final energy Ef
m after a time t after having

measured Ei
n and where |n⟩ is the initial state and |m⟩ is the final state. Therefore,

the probability that both events occur is:

P (Ei
n, E

f
m) = |⟨m|U(t) |n⟩|2Pn (26)

Now, since the work is W = Ef
m−Ei

n we can obtain the exact expression of the
probability of obtaining the different work values:

P (W ) =
∑
n,m

|⟨m|U(t) |n⟩|2Pnδ(W − (Ef
m − Ei

n)) (27)

Where the last term is te Dirac delta funtion.
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Although this equation is correct, it is not practical. Most systems have a large
number of allowable energy levels and consequently a large number of allowable
energy differences Ef

m − Ei
n. It is much more convenient to work with the charac-

teristic function defined by the Fourier transform of the original distribution [11]:

G(r) =
〈
eirW

〉
=

∫ ∞

−∞
dWP (W )eirW (28)

Because P (W ) and G(r) are Fourier transforms of each other they have the
same information. Besides, we can apply the inverse Fourier transform to obtain
the distribution P (W ):

P (W ) =
1

2π

∫ ∞

−∞
drG(r)e−irW (29)

Starting from the expression 27 and taking into account that our Hamiltonian
is constant (Ho) we can arrive at a more convenient expression for G(r):

G(r) =
∑
n,m

|⟨m|U(t) |n⟩|2Pne
ir(Ef

m−Ei
n) =

∑
n,m

⟨n|U †(t)eirH0 |m⟩ ⟨m|U(t)e−irH0ρth |n⟩

Since the definition of the trace is Tr(A) :=
∑

k ⟨Aek, ek⟩ we obtain the follow-
ing characteristic function:

G(r) = Tr
(
U †(t)eirH0U(t)e−irH0ρth

)
(30)

This expression has no particularly important physical significance beyond the
distribution of work. However, working with G(r) is often much more convenient
than P(W) because it is written as a trace of the product of the operators. In many
respects, this function plays a role similar to the Z partition function in equilibrium
statistical mechanics. Usually, you don’t focus on the physical meaning of Z, but
use it as a convenient quantity to extract observables like energy and entropy.

So, in our case, we already know all operators because we calculated them
before. After computation:

G(r) = Tr

((
u∗(t) −v(t)
v∗(t) u(t)

)(
ei

h̄ω
2
r 0

0 e−i h̄ω
2
r

)
...

)
= ... =

=
1

2
Tr

((
|u(t)|2 + |v(t)|2e−ih̄ω 2iu∗(t)v(t) sin

(
h̄ω
2
r
)
ei

h̄ω
2
r

2iu(t)v∗(t) sin
(
h̄ω
2
r
)
e−i h̄ω

2
r |u(t)|2 + |v(t)|2eih̄ω

)(
1 + f 0
0 1− f

))
Now, doing the last matrix product, calculating the trace and arguing terms we

have this expression for their characteristic function:

G(r) = |u(t)|2 + |v(t)|2
(
1 + f

2
e−ih̄ωr +

1− f

2
eih̄ωr

)
(31)
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With this calculation, we can compute the inverse Fourier transform of the
characteristic function to find the probability distribution of employment. Never-
theless, before that, we will introduce the Jarzynski equality since it is an equation
of great importance that can be derived from this characteristic function.

[12] Jarzynski equality: Consider a classical system in thermal contact
with a heat reservoir at temperature T with some parameters γ⃗=(V,B,k,...).
If the parameters of a system change infinitely slowly between two points
γ⃗B and γ⃗A in the parameter space, so that at each moment the system is in
thermal equilibrium with the reservoir, then from classical thermodynamics
we have that W = ∆F .
Conversely, when a parameter changes in a finite time tf , the work per-
formed depends on the microscopic initial conditions of the system and
reservoir. The fact is that on average the work is more than the free en-
ergy change (as obtained in the previous section). In this system, Jarzynski
proved that: 〈

e−βW
〉
= e−β∆F (32)

Based on the definition of the characteristic funtion if r = iβ we have that
G(iβ) =

〈
e−βW

〉
. On the other hand, using 30 but with different initial and Hamil-

tonian state we obtain that:

G(iβ) =
1

Zi

Tr
(
e−βHf

)
=
Zf

Zi

The relation between Helmholtz free energy and Z is F = 1
β
lnZ. So, if we

substitute that in the last expression we obtain that:

G(iβ) =
e−βFf

e−βFi
= e−β∆F =

〈
e−βW

〉
q.e.d. (33)

In our specific case, if we make r = iβ in the expression 31 we see that the sum
inside the parentheses becomes 1 and therefore G(iβ) = |u(t)|2 + |v(t)|2 = 1; thus
obtaining the Jarzynski equality because, as we saw before, ∆F = 0. We can then
conclude that our system satisfies the Jarzynski equality.

At this point, we can go back to the above and calculate the inverse Fourier
transform of the characteristic function 29:
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P (W ) = |u(t)|2
(

1

2π

∫ ∞

−∞
dre−irW

)
+ |v(t)|21 + f

2

(
1

2π

∫ ∞

−∞
dre−ir(W+h̄ω)

)
+

+|v(t)|21− f

2

(
1

2π

∫ ∞

−∞
dre−ir(W−h̄ω)

)
Taking into account that a Dirac delta can be expressed as δ(x) = 1

2π

∫∞
−∞ dreirx

we can simplify the parentheses with the deltas, obtaining:

P (W ) = |u(t)|2δ(W ) + |v(t)|2
(
1 + f

2
δ(W + h̄ω) +

1− f

2
δ(W − h̄ω)

)
(34)

From this expression, we can distinguish 3 different values for the work W ∈
{−h̄ω, 0, h̄ω} that corresponds to a "photon absorption", no change, and a "pho-
ton emission" respectively. Something important to note is that we only obtain 3
values due to the approximation taken before (Ω ≪ h̄ω), if we had not taken this
approximation we would have more possible combinations for the work.

All these possibilities appear next to their probability amplitudes. This can be
easily verified if, for example, we see that the initial probability of absorbing a
photon is 1−f

2
and taking into account the transition probability |⟨−|U(t) |+⟩|2 =

|v(t)|2 we obtain P (W = −h̄ω) = 1−f
2
|v(t)|2, which is what accompanies to the

delta of said value. This reasoning can be replicated with the rest of the values,
obtaining said amplitudes.

P (W = −h̄ω) = 1− f

2
|v(t)|2 (35)

P (W = 0) = |u(t)|2 (36)

P (W = h̄ω) =
1 + f

2
|v(t)|2 (37)

An important conclusion to highlight is that the probability of emitting a pho-
ton is not the same as that of absorbing it, which makes sense with the previous
results, since otherwise the average work would be zero. In fact as f = tanh

(
βh̄ω
2

)
and in general βh̄ω

2
≥ 0 then tanh

(
βh̄ω
2

)
≥ 0 so 1 + f ≥ 1 − f . This means

that the probability of absorbing a photon is less than that of emitting it, that
is, P (W = h̄ω) ≥ P (W = −h̄ω) thus leading to the mean value of the work being
greater than 0 even though there may be local violations of the second law.

Also, we can calculate the relation between the probability of absorption and
emission:
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P (W = −h̄ω)
P (W = h̄ω)

=
1− f

1 + f
=

1− tanh
(
βh̄ω
2

)
1 + tanh

(
βh̄ω
2

) =
cosh

(
βh̄ω
2

)
− sinh

(
βh̄ω
2

)
cosh

(
βh̄ω
2

)
+ sinh

(
βh̄ω
2

)
Using the properties coshx+sinh x = ex and coshx− sinhx = e−x we conclude

that:

P (W = −h̄ω)
P (W = h̄ω)

= e−βh̄ω (38)

That satisfies the detailed balance principle [13], wich is used in kinetic sys-
tems which are decomposed into elementary processes like collisions.

Now, we can compute also how the probability distrubution varies in function
of temperature T. Since temperature affects populations, it is to be expected that
it will affect the probabilities of obtaining one or the other value for work.

As expected, we can see 3 facts in figure IX:

• 1. When T → 0, that is, β → ∞ the probability P (W = h̄ω) absorbs all
the probability of P (W = −h̄ω). This is because, at low temperatures, the
system tends to the ground state as we saw before.

• 2. The probability P (W = 0) does not vary with temperature.

• 3. When T → ∞, that is, β → 0 the probabilities P (W = h̄ω) and P (W =
−h̄ω) are equal. This is due to the fact that, as we mentioned before, with
the increase in temperature the populations in the fundamental and excited
states are equalized.
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(a) Probability distribution with β = 103. (b) Probability distribution with β = 1.

(c) Probability distribution with β = 10−3.

Figure IX: Probability distribution P(W) borderline cases (h̄ = ω = 1, Ω = 1/2).

Another statistical data that we can compute thanks to the characteristic func-
tion is the variance. To do this, knowing that this function can be expressed as the
following exponential, we can do an expansion in the Taylor series:

G(r) =
〈
eirW

〉
= 1 + ir ⟨W ⟩ − r2

2!

〈
W 2
〉
+ ... (39)

Doing this expansion to the result obtained 31 we obtain that the second order
term remains ⟨W 2⟩ = h̄2ω2|v(t)|2. Having this, we can now compute the variance
as:
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σ2(W ) =
〈
W 2
〉
− ⟨W ⟩2 = h̄2ω2|v(t)|2(1− f 2|v(t)|2) (40)

As f = tanh βh̄ω
2

and β = 1/T as the temperature increases the dispersion in
the work data increases, obtaining the maximum variance when T → ∞ being
σ2
max(W ) = h̄2ω2|v(t)|2. The minimum in the variance will then be obtained when
T → 0 being σ2

min = h̄2ω2|v(t)|2(1− |v(t)|2).

4.2 Work distribution on a large number of particles

So far we have analyzed only one particle system. However, in most situations, it
is still common to deal with systems containing a large number of particles. There-
fore, the next step is to consider the work done on N particles. For simplicity, we
assume that the particles do not interact.

Work is the difference in energy, and for non-interacting systems, energy is an
additive quantity. Therefore, the total work WT done in a particular process is the
total work done on each particle:

WT = W1 +W2 + ...+WN (41)

Since the particles do not interact, they will absorb or emit photons whether
other particles interact or not; this means that the average work of N particles will
be N times the average work of one particle. If we go back to the definition of
the characteristic function 30 and take into account that each individual particle
is going to have the same function, we get:

GT (r) =
〈
eirWT

〉
=
〈
eirW1

〉
...
〈
eirWN

〉
= G(r)N =

(
α + γ+e

−ih̄ωr + γ−e
ih̄ωr
)N

(42)

Where α = |u(t)|2 and γ± = |v(t)|2 1±f
2

.

This is a trinomial expansion and we can calculate it as:

(a+ b+ c)n =
∑
i,j,k

i+j+k=n

(
n

i, j, k

)
aibjck (43)

Where
(

n
i, j, k

)
= n!

i!j!k!
; n = N ; a = α; b = γ+e

−ih̄ωr and b = γ−e
ih̄ωr.

Taking into account that the combinatorial numbers that will appear are only
coefficients, like α and γ±, we could rewrite the interior of the summation as
Ck−je

ih̄ωr(k−j), where if we do m = k − j (that means we can have values from -N
to +N) we finally obtain:
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GT (r) =
N∑

m=−N

Cme
ih̄ωrm (44)

Now if we perform the inverse Fourier transform as we did in the previous
section, we get a sum of exponential integrals similar to the previous section. This
means we will have the sum of the Dirac deltas as possible values of the work:

P (WT ) =
N∑

m=−N

Cmδ(WT −mh̄ω) (45)

This means that in a system of N particles that do not interact with each other,
there will be 2N+1 possible values for work (since we include the possibility of
no work). This makes sense if you think of a single system, since it has 3 possible
energy values (fulfills the 2N+1 values) and you measure work by measuring the
energy in two steps, where possible energies are h̄ω

2
and − h̄ω

2
, and thus possible

combinations would be −h̄ω, 0 and h̄ω. It is reasonable to think that in a system of
N non-interacting particles, this is reproduced, yielding 2N+1 combinations when
measuring the initial and then final energies.

5 Conclusions

The first thing we can conclude is that, as we saw in Chapter 1, despite having a
classical definition, work, and heat can also find quantum counterparts, such as
the trace of the product of two operators 5 and 6. We have seen two examples,
in which thanks to applying equations such as 4 we have been able to obtain the
average work dependent on time.

Something important to note is that although we can define the work thanks
to operators, this is not an operator. The easiest way to see this is if we use the
two-point measurement protocol described in Chapter 2. This leads us to the fact
that the work is W = Ef

m − Ei
n which means that the number of possible values

is greater than the dimension of the Hilbert space of the Hamiltonian, concluding
that the work is not an observable and, in fact, it characterizes a process and not
a state.

On the other hand, we have seen throughout Chapter 2 that the use of the
time evolution operator can greatly simplify the calculations for mean work. We
have seen that the density matrix tends to have equality between populations at
very high temperatures and tends to the ground state at very low temperatures.
The latter will affect the dependence on the average working temperature, being
maximum at low temperatures and minimum at high temperatures. Regarding
temporal dependence, it is clear that this is going to be a cyclical process, varying
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in this case in the form of sin2(x), that is, it will always be positive and greater
than the variation of the Helmholtz free energy.

Finally, in Chapter 3 we have seen that defining a characteristic function that is
the Fourier transform of the probability distribution can help to easily obtain the
work distribution. Once obtained, it is easy to show that it meets the Jarzynski
equality as well as the possible values and their probability amplitudes, finding
an equilibrium that helps explain why the mean value of energy is positive and
seeing that populations behave with temperature, same as mentioned above. This
method is so powerful that it can even help us to obtain the probability distribu-
tion of a system with N non-interacting particles, obtaining 2N+1 possible values
for the work.

To conclude, in this project what was expected has been achieved: to study
and understand a quantum extension of the classical notion work and being able
to compute it in different ways. In the process, we have achieved results that are
consistent with the theory and physics we know. A possible way to complete it is
to submit the system to a thermal bath, studying the heat and how this affects the
work and its distribution, that is certainly of reach at the undergraduate level.
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6 Anexo

Code example of Runge Kutta Orden 4:

#Importamos los paquetes
import numpy as np
import matplotlib.pyplot as plt
import math

#Le damos un valor a las variables
w = 1
l = 1
#Definimos las ecuaciones diferenciales a tratar
def F(t,X):

M = np.array([[0, 1j*l/2, -1j*l/2, 0 ], [1j*l/2, -1j*3*np.sin(w*t)/2,
0, -1j*l/2], [-1j*l/2, 0, 1j*3*np.sin(w*t)/2, 1j*l/2], [0, -1j*l/2,
1j*l/2, 0 ]])
X = np.array(X)
return M@X

#Creamos la función de Runge Kutta por pasos
def runge_kutta4(F,h,n,X0,t0):

X = [None]*n
X[0] = np.array(X0)
global T
T = [t0+i*h for i in range(n)]
for i in range(n-1):

K1 = h*F(T[i],X[i])
K2 = h*F(T[i]+h/2, X[i]+K1/2)
K3 = h*F(T[i]+h/2, X[i]+K2/2)
K4 =h*F(T[i]+h/2, X[i]+K3)
X[i+1] = X[i] + (K1+2*K2+2*K3+K4)/6

return X

#Añadimos el tamaño, el número de y evaluamos la función con ciertas
#condiciones iniciales
XNum = runge_kutta4(F, 0.025, 1000, [0.5,-0.5,-0.5,0.5], 0)

#Separamos las variables que queremos obtener de la matriz resultante
Rho11 = [XNum[i][0] for i in range(len(XNum))]
Rho12 = [XNum[i][1] for i in range(len(XNum))]
Rho21 = [XNum[i][2] for i in range(len(XNum))]
Rho22 = [XNum[i][3] for i in range(len(XNum))]
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Wrapping of a function:

def encontrar_minimos_maximos(array):
minimos = []
maximos = []

# Comprobamos si el primer elemento es mínimo o máximo
if array[0] < array[1]:

minimos.append(array[0])
else:

maximos.append(array[0])

# Comprobamos los elementos intermedios
for i in range(1, len(array) - 1):

if array[i] < array[i - 1] and array[i] < array[i + 1]:
minimos.append(array[i])

elif array[i] > array[i - 1] and array[i] > array[i + 1]:
maximos.append(array[i])

# Comprobamos si el último elemento es mínimo o máximo
if array[-1] < array[-2]:

minimos.append(array[-1])
else:

maximos.append(array[-1])

return minimos, maximos

minimos,maximos = encontrar_minimos_maximos(W(t)) #W(t) es la función que
#tenía definida, solo haría falta camniarlo por la función de la que
#pintamos la envolvente
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