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a b s t r a c t

Analyzing and predicting the concentration of airborne dust is vital to the economic activity and to
the health of the population. In this study, we use a set of artificial neural networks that we structure
through ensemble learning to yield a complex variable, such as the concentration of dust, based on
actual data such as air temperature, relative humidity, atmospheric pressure and wind speed. The
statistical performance indices obtained, show the effectiveness of the proposed approach through the
application of a cross-validation committee. It is thus vital to have a reliable calculation method for
determining relative importances that can be applied to this type of ensemble architecture by way of
artificial neural networks.

Unlike other relative importance methods, where calculations are done based directly on the
weights in the artificial neural network and whose results in ensemble sets exhibit high dispersion,
we propose our own procedure, which selectively chooses the variation in the inputs to readjust the
architecture of the neural network. This allows us to measure those variables with the greatest effect
on the target variable, thus obtaining the multivariate influence on the surface dust concentration
through a computational model.

This method thus provides a real alternative for calculating and estimating relative importance that
can be generalized to any type of problem for multivariate systems modeled using artificial neural
networks for both, a simple configuration, and an ensemble architecture.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In an effort to efficiently protect human health and economic
ctivity on the islands, real-time information on airborne dust
oncentrations is a key component to determining the air quality
n the archipelago. We are interested in determining if the behav-
or of one variable (the concentration of dust on the surface) can
e determined from one or several variables in order to better de-
elop our computational procedure using ensemble methods for
eep learning and machine learning neural networks so that said
pproach can be used to understand and improve the forecasts
nd estimates in any other industrial fouling scenario through the
se of artificial neural networks (ANNs). We use the supervised
earning approach, resulting from applying this architecture in an
ffort to study and identify those variables that have the most
mpact on the sand values.
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nc-nd/4.0/).
Accordingly, the main contributions of this paper are summa-
rized below:

(1) Estimate the concentration value of calima, which is the
local term used in the Canary Islands, based on the basic
variables measured, such as ambient temperature, rela-
tive humidity, wind speed and atmospheric pressure. To
this end, we developed an ANN model where we apply a
cross-validated committee (CVC) ensemble architecture.

(2) Design a hybrid system to calculate the relative impor-
tances, Selective Importance Measure (SIM), which com-
bines a sensitivity analysis that eliminates inputs selec-
tively by means of a new adjustment to the network layers
in the architecture, and by setting the same initial weights
for each new training run.

(3) Validate the strength of the SIM method by estimating
which variables measured within the climate environment
of the Canary Islands have the greatest impact on the
concentration of calima and justifying these results with

the related literature.
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(4) Verify the stability of the SIM procedure with learning con-
ducted in an ANN with an ensemble architecture, check-
ing the dispersion of the results and comparing it to an-
other related classical method where the importances are
calculated directly based on the weights of the ANN.

We intend to use non-experimental data that are collected by
passively observing the real world, such that the data are not
the result of controlled or empirical experiments. The experi-
mental data are often gathered in laboratory settings, as happens
with the natural sciences; specifically, we will resort to time
series, which are data collected from observing a variable over
time, such as observing certain variables in the air, like tem-
perature, humidity, atmospheric pressure or wind speed. The
chronological order of the observations yields potentially impor-
tant information. Most atmospheric series are related to their
recent history.

Calima is the local term used in the Canary Islands to refer
o dust from the Sahara Desert. The arrival of Saharan dust was
mportant throughout the Pleistocene and remains so to this
ay [1,2]. The arrival of airborne dust is made evident by the
ncreased haze in the air, as visibility decreases, and the sky takes
n a reddish hue as the density of the dust rises. The entrainment
f the air in the areas of origin – located within the Sahara
esert – can occur both due to trade winds (Harmattan) and
o convective phenomena (Haboobs) [3]. In either case, the dust
an arrive in the Canarian archipelago with easterly to southerly
inds. Due to the proximity of the African continent, calima
vents are more frequent in Lanzarote, Fuerteventura and Gran
anaria (see Fig. 1).
The influx of Saharan air takes place primarily in fall and

inter, with these seasons accounting for 65% of all calima events,
ersus 35% in the spring and summer [2,4].
Part of the Saharan dust that reaches the Canaries settles

ia dry deposition, though this is not a dominant phenomenon
n the Canaries, with the wet deposition or ‘‘blood rain’’, being
articularly striking [5–7]. Rains after winter events can remove
significant amount of dust from the air.
The transfer of Saharan minerals to the Canaries is particularly

mportant, with Saharan minerals like quartz and mica being
ound in soil and sediments formed during the Quaternary pe-
iod [8]. Inputs of phosphates and iron appear to account for the
ertility of the archipelago’s soils and, but calima events also cause
rave damage to the economy (by affecting agriculture) and to
he health of the population of the Canary Islands [4,5,9]. These
vents are almost always accompanied by high temperatures and
significant drop in relative humidity, which turns these events,
specially in the summer, into times of high forest fire risk [10].
oreover, the presence of dust, which reaches an average of
27.30 µg/m3 versus the 27.76 µg/m3 with sea air, noticeably
educes visibility and causes respiratory problems, especially in
t-risk groups like young children, the elderly and those with
espiratory conditions [2,11]. The presence of dust can also affect
he industry and must be considered during the maintenance
ycle of rotating industrial components.
The main concept behind an ensemble learning model is the

imple intuitive idea of a committee of experts working together
o solve a problem. All members contribute their own experience
nd initiatives and the group as a whole can choose to uphold or
o reject a new idea on its own merits [12].

In line with Saviozzi, the ensemble-averaging method is usu-
lly implemented to achieve more accurate results than a single
NN [13]. The main idea of this method is to train different
etworks and combining their outputs in order to have a bet-
er prediction. Weng, shows in their experiment with ensemble
ethods, an improvement of on average 30% in test perfor-

ance metrics compared to a single two-layer neural network

2

with the same characteristics and features, including number of
neurons [14]. Other recent studies conducted that use a com-
bination of multiple artificial neural networks through an en-
semble method have exhibited better performance and yielded
improved results. This can be useful to deal with real world
applications [15–18].

The most relevant ensemble architectures include the bagging
method, developed by Breiman [19]. The bagging or bootstrap
aggregation method can be used to create and train each new
classifier or regression model of the ensemble with a bootstrap
sample of the available original training dataset. This yielded
results with a lower variance compared to the use of an simple
ANN [20].

Studies based on a combination of ensemble methods and
deep learning also reached the conclusion that the best option is
to group ANNs in an ensemble configuration to solve regression
and classification problems; in this case, for example, by means
of a bagging-based ensemble design that relies on new, semi-
supervised learning, versus classical supervised learning. This
new method relies on a parallel, unsupervised learning phase to
add new extracted features through a kernel learning regression
model [21].

The work undertaken by Liu is expanded with another case
that compares models based on kernel learning, whose improved
performance and prediction reliability again stem from an
ensemble-based model [22].

However, it is important to note that in an ensemble set, not
every ANN trained will yield good results. Locating the ANN that
exhibit low performance in the final model is a complex task [23].
Along these lines, Parmanto and Murrugarra proposed and ver-
ified the efficiency, in terms of the model’s performance, by
designing an ensemble structure based on the distribution given
by the cross-validation index, since the divisions that are made in
this method can be used to exclude some training sub-sets with
each iteration [24,25].

In order to analyze the relative importance (RI) of an ANN,
some researchers have used methods in an effort to obtain the
individual contributions from the input variables of an ANN, such
as the sensitivity analysis methods that use input perturbation
or calculate partial derivatives [26–30]. For example, Dimopou-
los and Zeng reached the conclusion that the partial derivative
algorithm and input perturbation algorithm performed relatively
well [27,28].

Maosen in his research, notes the instability problem of calcu-
lations based on sensitivity analysis, which have not paid enough
attention to the limitations of this type of method, which is
determined by the trained structure of the ANN [31].

Other algorithms, such as the one proposed by Garson, and
subsequently modified by Goh, called Modified Garson’s algo-
rithm (MGA), yield an approximation of importances for ANNs
by doing calculations involving different synaptic weights for the
input, hidden and output layers [32].

However, the studies by De Oña et al. indicated that this
method of connecting weights to measure the RI with the MGA
yielded high variability when applied to a neural network en-
semble architecture that has been trained with different initial
weights [33].

The paper is organized as follows. Section 2 describes how
the data are structured and the architecture is designed, using a
committee machine model based on ensemble-averaging with k-
fold partitioning and multi-layered feedforward neural networks,
to estimate the concentration of Saharan dust in the Canary
Islands using actual humidity, atmospheric pressure, temperature
and wind speed data collected from weather stations in the south
of the island of Tenerife. Section 3 presents our results, which are

compared with actual data for Saharan dust concentrations taken
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Fig. 1. Effect of Saharan dust concentration in the Canary Islands.
rom the public database and the BSC-DREAM8b v2.0 model, the
oal being to verify the strength of the neural models and to apply
arious methods intended to measure the relative importance
RI). The paper concludes with a presentation of our findings and
comparison of the methods applied.

. Methods

The general computation procedure in this study is shown in
ig. 2, where, after a data normalization and structuring phase,
he Saharan dust concentration is estimated within an ANN
ensemble architecture, based on the partitioning generated by the
cross-validation method through a supervised training process
of four environmental measurements and a calculated variable
for the input layer (Ambient temperature; atmospheric pressure;
wind speed; relative humidity; month number).

Once the statistical control phase is complete, we apply our
SIM method, developed to estimate the RI of the final model
obtained, in order to compare our methodology with a classical
method to calculate the RI of an ANN.

2.1. Data structure

The data set is divided into two main blocks. The first consists
of an initial data set (DS1) containing the input and output data
from July 2016 to July 2018, with one sample per minute for the
environmental input data. For the actual output and reference
values to be forecast, we took the concentration of Saharan dust
on the surface of the island of Tenerife, obtained from v2.0 of the
BSC-DREAM8b model (Fig. 3), using linear interpolation to adapt
its six-hour samples to the one-minute sampling frequency used
in the input data.

The second set of independent data (DS2), not used to train the
neural network, is from the July 2018 to December 2018 period
and also contains input and output data. It is intended exclusively
for the testing and results verification phase. In other words, we
will forecast the dust concentration using only the environmental
input data from DS2 and compare the results statistically to see
if they conform to the actual outputs for this period.

As part of preparing the data for the neural network, and in
an effort to facilitate the learning of the training algorithm, the
data in time series DS1 and DS2 were smoothed (Fig. 4). The data
were processed by means of a simple moving average (SMA) with
a time period of three days. The SMA is the unweighted mean of
the previous N datum points [34].

Wind speed and direction data were extracted and shown
graphically in a wind rose (Fig. 5), which displays the predom-
inant directions from the first and second quadrants that are
typical in the Canary Islands [1]. The variable wind direction
was not considered when building the model, however, given its
variability and normalization complexity.
3

Fig. 2. Flowchart of the main procedure used in this work. Sections 2.1 to 2.4.
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(

Fig. 3. Data and images from the BSC-DREAM8b-Dust model for Canary Islands, operated by the Barcelona Supercomputing Center. (http://www.bsc.es/ESS/bsc-dust-
daily-forecast).
Fig. 4. Raw Data vs 5-day SMA; January, February and March (Q1); April, May and June (Q2); July, August and September (Q3); and October, November and December
Q4).
Fig. 5. Wind rose with DS1 in the south of the island of Tenerife.
4

2.2. Neural network architecture

Artificial neural networks draw their inspiration from biolog-
ical neural networks and attempt to imitate the brain’s behavior
to engage in certain actions, such as pattern recognition or object
classification [35].

Haykin defines neural networks as follows [36]:
‘‘A neural network is a massively parallel distributed processor

made up of simple processing units, which has a natural propen-
sity for storing experiential knowledge and making it available
for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environ-
ment through a learning process
2. Interneuron connection strengths, known as synaptic
weights, are used to store the acquired knowledge’’.

The type of neural network presented in this paper is defined
as a Feedforward Back-propagation Neural Network (FFBP-NN).
Starting below, we propose the main architecture of the baseline

model.

http://www.bsc.es/ESS/bsc-dust-daily-forecast
http://www.bsc.es/ESS/bsc-dust-daily-forecast
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Its basic architecture consists of five inputs (Ambient tem-
perature; atmospheric pressure; wind speed; relative humidity;
month number), a single hidden layer with nine nodes with
an activation function that uses the hyperbolic tangent, and an
output layer with a linear activation function (Saharan dust
concentration) (Fig. 6). The number of nodes in the hidden
layer was adjusted by adapting the method proposed by Huang,
which relates the number of inputs to the output variables using
artificial neural models in a hidden layer [37].

The statistical performance indices used were the determina-
tion coefficient (R2) and the mean absolute error (MAE). Accord-
ing to Willmott, the MAE offers a natural measure of the mean
error (unlike RMSE) [38].

A supervised learning method was implemented and, to im-
prove the efficiency of the multilayer perceptron, we chose a
backpropagation algorithm with an adaptive initialization of the
weights, determined using the Nguyen–Widrow method, to
shorten the training phase [39]. Specifically, we used the
Levenberg–Marquardt optimization method, modified through
Bayesian regularization, designed to minimize sum-of-square er-
ror functions of nonlinear systems [40,41].

The Bayesian regularization makes a slight modification to
the optimization method, incorporating Bayes’ theorem into the
algorithm and compensating for potential overtraining of the
neural network [42].

The data re-sampling, cross-validation in k-iterations or k-fold,
echnique is used to partition the training data set into k subsets
ith equal dimensions, such that the final training partition is
onstructed using k-1 subsets, and the rest is defined as the
alidation, or test, set where 90% of each subset will be used in
he training phase and the remaining 10% for testing, such that
he entire data set is represented [43].

This paper uses a standard value of k = 10, since according
o Kohavi, the best method to use for model selection is ten-fold
tratified cross validation, even if computation power allows us-
ng more folds [44]. Other studies indicate that simulations done
sing ten-fold validations repeatedly yield the best statistical
erformance [25,45].
5

2.3. Ensemble learning

For this study, we used the k-fold partitioning or cross-
validated committees (CVC) ensemble method, similar to the
ensemble structure used by Parmanto, Xia, Dong and Murru-
garra, where the set in DS1 was partitioned with the same
dimensions [24,25,46,47].

Each fold set will be used to build a FFBP-NNnk. In addition,
he initial synaptic weights will be different for each partition nk
nd the final ensemble value will be the average of the results
btained with each. We will also obtain a preliminary MAE0 and
2
0 (Fig. 7).
The final resulting value will be evaluated using the average

alue of the combination of DS2 and each FFBP-NNnk trained in
he previous step with DS1, until the final statistical performance
xceeds the specifications in Eqs. (1) and (2) in terms of MAE and
2.
In the final validation stage for the models in this paper,

he training iteration cycle ends when an average final MAE is
btained that is below a control limit (Eq. (2)). This limit is the
esult of adapting the Shewart c-chart, statistical quality control
ethod called the control chart for nonconformities and a value
f R2 that exhibits a strong degree of correlation (Eq. (1)), [48].
f the specified limit is not exceeded, the model will readjust
he initial weights and the nodes of the hidden layer in each
FBP-NNnk (Fig. 7).
2
limit > 0.7 (1)

MAElimit = c + 3
√

c (2)

where c represents the average value of the DS1 set for the target
output variable.

The possibility exists that the limit values specified in Eqs. (1)
and (2) will not be exceeded. In this case, consideration must be
given to reviewing the normalization of the data sets or adding a
new variable that might help improve the learning phase.
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Fig. 7. Main diagram of the training algorithm used, with detailed views of the Ensemble Learning k-fold partitioning and Final Test blocks.
Fig. 8. Main diagram of the SIM procedure.
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2.4. Relative importance calculation

Next, we describe the methods proposed for measuring the
degree of relative importance of the various variables that make
up the model for our environmental system. We include our own
procedure, which combines the alteration of the inputs and new
training of the ANN to adjust the new architecture, and a classical
method based on the weights of an ANN.

2.4.1. Selective importance measure
We designed our own computational procedure for this work

that offers a method for studying and directly measuring the
RI calculation, following the training of a single artificial neural
network or a ‘‘committee’’ of networks.

nn (MAEx) =

∑k
nk=1

(
MAE(m−1)nk

)
k

(3)

nn (MAE0) =

∑k
nk=1 (MAE0nk)

k
(4)

where x indicates the input variable that is evaluated based on
the average MAEx, obtained from the ensemble of all the k-fold
during the new training of the FFBP-NN with DS1.
nk

6

Iterations(k) are carried out with new training after elimi-
nating an input variable with each cycle. This means that for
each iteration carried out in each FFBP-NNnk, the new training
configuration will always have m−1 inputs, where m is the total
number of inputs used in the system being modeled (Eq. (3)).

Finally, to obtain the final RI value for each input variable
(Eq. (5)), the new training nn (MAEx), it is compared with the
average performance nn(MAE0), resulting from the final original
ensemble model with DS1 (Eq. (4)).

SIM x = nn (MAEx) − nn (MAE0) (5)

The selection process for eliminating input variables implies
deleting them individually, along with their set of weights, in
order to again calculate the average mean absolute error resulting
from the new training of the ensemble nn (MAEx), to analyze the
result of altering the model (Fig. 8).

For each of the final trained FFBP-NNnk of the k-fold partition-
ng ensemble, all of their initial input, output and bias synaptic
eights, wi0xh, wo0h, bi0h and bo0 respectively, will be stored. In
he expression, h is the neuron of the associated hidden layer, i
he input layer, o the output layer and the value 0 indicates the
nitial state.
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Fig. 9. Expanded diagram of the SIM procedure for eliminating one input variable and its corresponding weights toward the hidden layer.
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These stored weight and bias variables will be used in the
nitial configuration of the training for the new ensemble set,
n (MAEx) after eliminating the initial input weights wi0x, which
orrespond to the x variable that has been removed (Fig. 9). The
rocess concludes by retraining each FFBP-NNnk with the new
onfiguration and repeating the cycle until all of the model’s
nputs are processed.

Therefore, for this procedure to be valid, a final control condi-
ion is required that somehow verifies the degree of dispersion of
he results (Eq. (6)). To this end, a limit value for the coefficient
f variation (CV) is set at 10% of the resulting final set. Below this
alue, the results are considered to have a low variability [49,50].
The expression for the CV is defined as:

V x(%) =
σnn(MAEx)

µnn(MAEx)
(6)

where µ indicates the average of the nn (MAEx) ensemble set,
obtained for each input, and σ is the average standard deviation
for that same set.

If this limit is exceeded for any of the input variables and the
resulting degree of variation is high, this might indicate that spe-
cific variable does not contribute significantly to the set, allowing
us to discard it, filter it out of training or revise the normalization
of its data set.

Lastly, the resulting algorithm is shown using the following
pseudocode:

2.4.2. Modified Garson’s algorithm
This method for the synaptic weights of an ANN is derived

rom the first algorithm proposed by Garson and later modified
7

by Goh, represented as follows [32,51]:

MGAindex=

j∑
h=1

|wih·who|∑m
i=1 |wih·who|

(7)

where m and j indicate the number of inputs and hidden nodes,
respectively. wih are the synaptic weights between input i and the
neuron in the hidden layer h, and who are the weights between
he hidden layer h and output o.

. Results

.1. Performance analysis for the ensemble model

In total, for this work we will selectively analyze a total of
0x FFBP-NN; that is, 10x FFBP-NN for each input variable x. This

means that each variable will yield a set of 10 results in terms of
the MAE.

For the first data prediction with DS1 data, whose output
was known beforehand by the FFBP-NN, the statistical perfor-
mance indices obtained were R2

≈0.93 and a mean absolute er-
or of MAE≈ 12.57 µgr/m3 (Fig. 10), with a concentrated error
distribution close to zero (Fig. 11).

For the forecast with data from DS2 data, the output of which
was unknown and whose input data were not used to train
the FFBP-NN, the statistical performance indices obtained were
R2

≈0.87 and a mean absolute error of MAE≈12.71 µgr/m3

(Fig. 12). The error distribution was slightly scattered around the
zero central value but limited to low error values (Fig. 13).

3.2. Measures of relative importance for the ensemble model

Having successfully completed the evaluation phase with new
DS2 data, we know that we have a model that has correctly
learned the system dynamics. Therefore, for this new phase we
only want to check each variable’s importance to the system, and
we are interested in doing so with the best performing data set,
in this case, DS1.

Next, we present the results for each of the methods described
in Section 2.4, that measure the level of RI in terms of percent;
that is, the RI value that each input variable in the set represents
with respect to the total set (Fig. 14). As described in Section 2.4.1,
a control method was set up for the SIM method, in terms of the

CV (Fig. 15).
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Fig. 10. Predicted results and statistical comparison for the data in DS1. July 2016 to July 2018.
Table 1
Average results obtained for each input variable in the SIM, MGA calculation to the FFBP-NN Ensemble with k-fold
partitioning (DS1).
Input variable SIM (%) SIM Ranking SIM CV (%) MGA (%) MGA Ranking MGA CV (%)

Temperature 34.63 1 2.6 19.9 3 34
Atmospheric Pressure 9.84 4 5.6 22.46 2 31.74
Wind speed 4.96 5 4.5 12.69 5 41.92
Relative humidity 26.60 2 3.4 19.70 4 16.61
Month number 23.96 3 2.8 25.13 1 30.68
Fig. 11. Error distribution histogram for the forecast with DS1.

The main results of the average RI calculations, ranked by
elevance, and measures of CV obtained for our ensemble models,
re shown in Table 1, which compares our proposed SIM method
o the MGA based directly on the weights of an ANN.

The average results for our proposed SIM method (Fig. 14)
gree with observations made in the Canary Islands during the
rrival of continental tropical air masses from the Sahara Desert,
ommonly referred to as ‘‘southern weather’’, which features high
ust concentrations in mainly high-temperature, low relative hu-
idity conditions and month number [10,52,53]. The changes in

elative humidity are key to the formation of dust [10,54–56].
8

Fig. 13. Error distribution histogram for the forecast with DS2.

The wind speed variable ranks last and does not exhibit as
much importance compared to the other variables, which have
more of an effect on the sand concentration measured on the
island of Tenerife.

In their research, Tao and Jamalizadeh discussed the irregular
contribution of the wind speed variable in different scenarios, and
found some cases where there was no direct correlation between
this variable and the presence of sand storms [57,58].

The literature reviewed describes the problem of randomness
when re-training a neural network due to the initialization of the
weights. However, our solution takes this into account, which
is why the algorithm, as input variables are eliminated in each
new training run, always uses the same initial weights that were
Fig. 12. Results of the forecast and statistical comparison for the data in DS2.
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Fig. 14. Degree of RI obtained for the SIM & MGA methods, for each input variable to the FFBP-NN Ensemble (DS1); Temperature (Temp.); Atmospheric Pressure
(Atm. Pr.); Wind speed (Wind S.); Relative humidity (RH.); Month Number (Month N.).
Fig. 15. Coefficients of Variation (CV) obtained for each input variable of the SIM procedure (A) and boxplots representing the amount of MAE spread for each input,
k times with SIM method (B).
used in the first original trained network. Therefore, the initial
conditions of the new training run m − 1, are the same for each
iteration for the different inputs.

In their research, Maosen et al. noted, in addition to the
problems involving the sensitivity analyses for RI, the lack of de-
termination when defining the number of neurons in the hidden
layer [31]. To address this, our CVC procedure, and as part of the
initial design of the ANNs, utilizes the same method to select the
ideal number of hidden layers, which is set based on the number
of inputs and outputs [37].

Findings with the MGA reflect a high degree of output vari-
ability (Table 1). Some of the average results are similar to those
calculated with the SIM method in terms of relative humid-
ity, month number and wind speed, though somewhat more
scattered with respect to the air temperature and atmospheric
pressure variables.

The values of RI with the MGA obtained high variability when
is applied to an FFBP-NN ensemble architecture that has been
trained with different initial weights. Therefore, does not guar-
antee the validity of the results of RI [33].

Lastly, note that the results satisfy the quality control we
established, which thus validates the SIM method based on the
degree of variability (Fig. 15), where the results lie within the
level defined as ‘‘low’’ (<10%) in the resulting final set. This shows
that the final 10xFFBP-NN for each of the five input variables used
in this model are relevant and indicate the correct distribution
and good performance of the entire data set utilized in DS1.
9

4. Conclusion

We managed to obtain a model that can be used to esti-
mate a more complex variable, like the calima concentration
on the surface, from a basic time series with online data mea-
sured on the island of Tenerife. Its statistical performance indices
show the effectiveness of the FFBP-NN ensemble proposed, and
structured using k-fold partitioning, with k = 10 and initial
different weights in each fold. The results were combined based
on an average value after having been validated using a statistical
performance control limit. Essential to the results was the prelim-
inary normalization and smoothing of the data set by means of an
SMA.

The results of the CVC procedure improve the individual per-
formance by combining the average resulting from all the trained
ANNs. It is thus essential to have a reliable calculation method to
determine relative importances that can be applied to this type
of ensemble architecture with ANNs.

Unlike other RI methods, where calculations are done based
directly on the weights in the artificial neural network and whose
results as ensemble sets exhibit significant dispersion and large
randomness in each new ANN trained, in our procedure we
propose a hybrid SIM system, in which we opted to analyze the
result of a new training method that selectively relies on the input
values and that also readjusts the ANN architecture by setting the
initial weights in order to assess its training in terms of the mean
absolute error.
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We also managed to achieve good stability in the results
btained for all the iterations, which closely approximated the
nvironmental reality studied. This allowed us to apply a calcu-
ation methodology to differentiate the values with the greatest
ffect.
The degree of RI calculated using our own SIM method cor-

ectly indicated two of the key variables that affect sand concen-
ration: relative humidity (26.6%) and air temperature (34.65%).
his is in contrast to the MGA calculation, where temperature
anks third at 19.7%, and relative humidity fourth at 19.9%, with
he month and atmospheric pressure leading the ranking.

However, the statistical dispersion control carried out for the
GA case based on a calculation of the weights yields highly vari-
ble results, confirming the findings obtained in other research,
s discussed in this paper.
SIM method thus provides a real alternative for calculating

nd estimating RI that can be generalized to any type of problem
or multivariate systems modeled using ANNs, both for a simple
onfiguration and for an ensemble architecture.
Having a model trained with historical data spanning several

ears, and having learned the relationship between the output
ariable and the basic environmental variables, will allow us to
ontinue with a new stage of simulations involving the sand
utput variable in any environmental scenario we need to study.
Moreover, the information that is obtained by calculating the

I using SIM can be used to improve the predictions or estimates
f an actual model, thereby eliminating irrelevant variables. This
ight occur, for example, when studying a case of industrial

ouling resulting from an environmental phenomenon, providing
n insight into the phenomenon’s dynamics over time and thus
inimize any associated costs.
Because of this, and as a continuation of this work, we will

se the sand concentration estimate from our model to include
t in a new ensemble neural architecture – trained using the
IM method – associated with a rotational industrial component.
his will help us to study the effect that the various variables
nvolved in the process and in the local environment have on
he performance of an industrial machine, and to develop our
wn methodology for data-driven maintenance, applied to the
ompressor of a power generation gas turbine.
In this particular case, having a model showing the local dust

oncentration as a function of basic environmental variables, will
llow us to know in advance the evolution of the thermal perfor-
ance of the machine, by using the dust variable as part of the

nput variables of a new CVC model. This will provide a medium-
erm estimation to be able to plan the next cleaning maintenance
hutdown and ensure in real time the correct operating status of
he gas turbine’s production.
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