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Abstract
Heterogeneous computers require a well-distributed workload to operate efficiently.
When possible, this load balancing procedure should redistribute the workload with
minimal knowledge of the system architecture, to reduce overhead. We propose a
generic dynamic load balancing technique for iterative problems, independent from
the resource to optimize. Proof of this generalization is given through formalization
of the designed technique. A heuristic algorithm is defined based upon this formaliza-
tion, with a structure that facilitates different objective functions. As a result, swapping
the objective function can be done with relatively low effort. This heuristic is imple-
mented to minimize energy consumption in an application. We use this application
to solve three different dynamic programming problems with multiple GPUs. The
implementation is described and then compared against two different workloads, the
homogeneous distribution and another dynamic load balancing technique. Our experi-
mentation shows good results in minimizing the overall energy consumption with low
overhead.
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1 Introduction

The path toward exascale has brought a substantial attention to energy consumption
and efficiency. The tendency to build environments only with traditional multicore
systems has been reduced drastically in favor of heterogeneous platforms that con-
tain coprocessors such as multiGPU systems and ARM architectures. The Top500
[18] list reflects this trend in the top computers, with the appearing of the mentioned
technologies in the most powerful machines, but also raises awareness with the high
power drawn for these powerful computers. The new node architectures introduce
load balancing issues inside the computational nodes themselves, increasing the dif-
ficulty to achieve the optimal use of the computational resources. Homogeneous load
distributions are no longer desirable, and applications need to be tuned to reach peak
performance when the target parallel computer changes [8]. Now, not only time is of
interest but energy has to be considered as well to minimize the costs of sustained
computing, and while the same optimization principles can be applied to energy, they
have to be adapted accordingly to different constraints. Additionally, the numerous
measurement devices and software available [3,5,10] increase the heterogeneity of the
scientific community applications.

We propose a generic heuristic algorithm to balance the workload between different
parallel processes dynamically in iterative algorithms. This generalization is based on
an arbitrary objective function that can be changed accordingly to the needs. Some
examples of the possibilities for objective functions are performance, energy effi-
ciency, communication time or memory accesses. We have formalized our algorithm
to support our claims and understand the requirements for our objective functions to
work. Then, we present a pseudo-code of this formalization using principles from
skeleton programming to facilitate the different objective functions.

To back our proposal, we also present an specific implementation of the algorithm
to minimize energy consumption in a heterogeneous multiGPU environment. This
implementationwas used to solve iterative problems that utilize dynamic programming
techniques. Starting from an even distribution, we apply the load balance heuristic to
minimize the total energy consumption of the execution. An analysis of the results
obtained allows to illustrate the advantages and the drawbacks of our proposal.

Our computational experimentation reveals that our technique achieves less energy
consumption than the homogeneous workload balance. Moreover, compared to a load
balancing technique that has been optimized for performance, we obtain less energy
consumption for most of the presented cases. Since the technique has been developed
independently from the objective resource, it is possible to apply the same approach
to different resources by modifying the objective function.

This work is structured as follows: related work in the field of energy efficiency
and load balance is described in Sect. 2. Section 3 introduces the formalization of the
problem for iterative algorithms. Section 4 describes the heuristic algorithm derived
from the presented concepts in the previous one. Section 5 presents our computational
experience for an implemented application and finally, Sect. 6 presents our conclu-
sions.
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2 Related work

In order to improve time performance in heterogeneous systems, multiple techniques
can be found in the literature over the last decades. Load balancing techniques have
been discussed for improving performance for complete parallel systems, for high
throughput networks and parallel storage systems. General models for dynamic load
balancing are presented and compared for multiple schemes such as spectral graph
partitioning, the generalized dimension exchange or the diffusion method, illustrating
their main issues, as well as scalability studies to provide insight into load balancing
in different architectures [12,15,26,27]. Multiple libraries that implement dense lin-
ear algebra packages make use of well-formulated computational models based on
Directed Acyclic Graphs in conjunction with dynamic task scheduling. This is the
case for Plasma [13] and FLAME [25] for shared memory codes. Moreover, an effort
to port this knowledge to hybrid architectures composed by multicores and GPUs is
present in libraries such as MAGMA [2] and FlameGPU [22]. Another approach is
the development of applications using highly tuned programming skeletons, which
covers the general aspects of a given implementation, to then develop the specifics
of the algorithm. This approach, made to obtain maximum time efficiency with an
optimal load balance, could be adapted to obtain energy-efficient implementations
of different algorithms. Examples of this concept are SkelCL [23], Marrow [16] and
DPSKEL [1,20].

Moreover, with the actual trend of high-performance computing, extensive effort
is being made to obtain energy-aware techniques for existing algorithms in modern
architectures, including the application of scheduling algorithms and heuristic meth-
ods focused on improving the efficiency of these high-power systems. HEROS [11]
introduces a load balancing algorithm for energy-efficient resource allocation in het-
erogeneous systems, PVA [24], peer VMs aggregation, proposes to enable dynamic
discovery of communication patterns and reschedule VMs based on the acquired
knowledge with virtual machine migrations. Energy-aware allocation heuristics have
also been proposed for a complete data center [4]. ALEPH [21] addresses the bi-
objective optimization problem for performance and energy (BOPPE) for many core
systems, by modeling the objective system. Our proposal starts from a homogeneous
workload distribution and proceeds to redistribute after evaluating the performance of
each process in the parallel application. This approach shares some characteristicswith
the works presented in ULL_Calibrate_lib [1], ADITHE [17] and E-ADITHE [9]. In
the first iterations of the algorithm, these techniques redistribute a homogeneous load
distribution according to the speed of the processes.We apply this principle in our pro-
posal with a generic approach for resource usage. We then dynamically reallocate the
work in order to minimize resource usage without a training phase or a known model
of the application.Whilemultiplemodels and generalizations have beenmade over the
last decades, our generalization provides a formalization for iterative problems with
unknown architecture, network and, principally, resource to optimize. While previous
contributions, including our work to improve energy efficiency [6], suppose a great
effort to increase the performance of applications or to reduce energy consumption,
this new approach isolates the objective resource to optimize from the load balancing
technique. We also provide a new algorithmic structure that can be filled with dif-
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ferent objective functions. In this work, we have focused our efforts in applying this
formalization to minimize energy consumption. However our approximation can be
replicated for different objectives, such as maximizing performance or minimizing
communications.

3 Dynamic load balancing for energy efficiency

In parallel computing, load balancing is a technique that reallocates workload between
processes tominimize inefficiencies caused by the different computational capabilities
of the underlying architecture or by the irregularities of the algorithm used to solve a
problem. Architectures can be heterogeneous because all the computing elements are
not uniform and the algorithm can have different number of operations to solve per
iteration. These inefficiencies should be addressed to optimize the resources available
on a given parallel system.

3.1 Load balancing problem formalization

The problem we are facing can be considered as a generic tuning problem in a parallel
system, that could be defined as the minimization of a function � that has the following
parameters:

– T is the tuning problem space of the function �.
– P is the problem to solve.
– A is the algorithm to use.
– N is the size of the problem.
– p is the number of parallel processes.
– w is the workload distribution of the parallel processes.
– x is the resource we are tuning.

Using this notation, the problem can be described as:

min �(P, A, N , p,w)

� : T −→ R

P, A, N , p,w �−→ x (1)

As we address the problem of load balancing in iterative problems, we will address
only a subset of the space T . Once defined P , A and our number of parallel processes p,
we can simplify the problem into a function to obtain an optimal workload distribution
for the selected parameters, such as:

∃F� : R
p+1 −→ R

N ,w �−→ x (2)
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where the function F�, given a workload w and a problem size N for p processes
can return a value x of the resource we want to optimize, execution time or energy
efficiency.

In the case of iterative problems, we consider a problem to be regular when the
iteration j and the iteration j +1 spend the same amount of resources x with constant
workload w. Assuming that an iterative problem has N iterations, we introduce the
concept of f �

j (w), as the N functions that define the resource consumption for each
iteration j ,

∃ f �

j : R
p −→ R

w �−→ x j
x =

N∑

j=1

x j 1 ≤ j ≤ N (3)

the total consumption of the resource x is defined as the sum of each x j . Equation 3
can be used as basis for the definition of a generic iterative regular problem, a function
F�(N ,w) defined as:

F�(N ,w) = f �
1 (w) + f �

2 (w) + · · · + f �

N (w)

where

f �

j (w) = f �

k (w) ∀ j, k

thus, min f �

j (w) �⇒ min F�(N ,w) (4)

However, when we face irregular problems, the cost of a given iteration is not the same
as the previous nor the following one, and while the definition of f �

j prevails, we have
to consider a different scenario. The scenario for a dynamic load balancing problem
needs to find a function for every iteration of the problem since

F�(N ,w) = f �

1 (w) + f �

2 (w) + · · · + f �

N (w)

and, f �

j (w) 	= f �

k (w) for any j, k

thus, min f �

j (w) � min f �

k (w)

min f �

j (w) � min F�(w) (5)

so in order to minimize our objective function F , we need minimize every function
f j by finding its optimal w. This allows us to formalize our dynamic load balancing
problem for p parallel processes as finding

w j = [
w1, j , w2, j , · · · , wp, j

]
1 ≤ j ≤ N

such that F�(N ,w) =
N∑

j=1

f �

j (w j ) be minimized (6)

Finally, as Eq. 6 considers N differentw, we can consider the input of the function F�

as a matrix W of dimensions p by N or number of processes by number of iterations,
which results in this last expression
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W =

⎡

⎢⎢⎢⎢⎢⎢⎣

w1,1 w2,1 · · · wp,1
...

...
. . .

...

w1, j w2, j wi, j wp, j
...

...
. . .

...

w1,N w2,N · · · wp,N

⎤

⎥⎥⎥⎥⎥⎥⎦

w j = [
w1, j , w2, j , · · · , wp, j

]

such that F�(N ,W ) =
n∑

j=1

f �

j (w j ) be minimized (7)

As we only have knowledge of the values of the functions f �

j a posteriori, i.e.,

f �

j is known in iteration j + 1 after w is assigned, the generic formulation gathers
special importance for defining suitable estimations of the problem performance. This
is particularly useful as our objective functions, F� and f �

j , are very difficult to obtain.

Estimations of f �

j for different w are needed for finding the best Wp,n . Additionally,
the generalization could be used as a tool to generate more complex optimization
strategies by changing the objective resource at runtime, e.g., from energy to time,
with relatively low effort.

4 Heuristic load balancing

4.1 Definition

As the function f �

j described in Sect. 3.1 is very costly to calculate, we have to obtain

a function g that models f �

j for a workloadw, and use this new function, to predict the

behavior of the function f �

j+1. g is a heuristic function that takes as input the current

workload w j and the value of resources consumed, f �

j (w j ), which were measured
after the computation was performed and returns a new workload distribution w j+1.
For regular problems,w j+1 will be a valid solution if the result f

�

j+1(w j+1) for the next
iteration j is similar or better than the result that would be obtained using the previous
workload distribution f �

j (w j ). Equation 8 represents formally this conditions,

∃ g : R
p+1 −→ R

p

w j , f �

j (w j ) �→ w j+1

such that, f �

j (w j ) ≥ f �

j+1(w j+1) (8)

To accomplish the definition of Eq. 8, g requires to have a mechanism to estimate
the values of f �

j (w j ). As previously defined in Sect. 3.1, the function f �

j is unknown
to us. Hence, the only viable solution without further knowledge of the problem is
to perform a general approximation of the problem behavior. To properly define the
estimation function, the following parameters are defined:
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– d j , displacement vector for process workload in iteration j , d j = w j+1 − w j

– w′
j , candidate workload distribution for iteration j + 1, w′

j = w j + d j

– xi, j the amount of resources consumed by process i in iteration j , similar to how
w j is defined in Eq. 6,

– x ′
j the estimated resource consumption of f ′�

j ,

– ri, j = xi, j
wi, j

, ratio of resources consumed per unit of work by process i in iteration
j . This value is the inverse of the efficiency of a given processor.

– r j , vector of resource ratios in iteration j , where

r j = [
r1, j r2, j · · · rp, j

]
(9)

A function f ′�
j that estimates f �

j needs to know the previous workload balance. A

definition of f ′�
j for energy consumption can be

f ′�
j (w′

j , r j ) =
p∑

i=1

(
ri, j · w′

i, j

)
= x ′

j (10)

where a candidate w′
j can be any feasible workload distribution in the problem space,

r j the ratios obtained with the gathered metrics and x ′
j the estimated amount of energy

consumed. Equation 10 can produce high error if the candidatew′
j+1 ismuch different

from w j .
In regular problems, it is possible to reach an optimalw j that would yield minimum

solutions for f �

j (w j ) and f �

j+1(w j ). When no further improvements are observed, the
load is already balanced, and a stop condition has been reached for the heuristic g.
Equation 11 defines this behavior:

let be w j+1 = g
(
w j , f �

j

(
w j

) )

if, f �

j (w j ) ∼= f �

j+1(w j+1) �⇒ local minimum for f �

j has been found (11)

This stop condition is used to define when two vectors w j and w j+1 are similar,
w j ∼ w j+1:

if, f �

j (w j ) ∼= f �

j+1(w j+1) �⇒ w j ∼ w j+1 (12)

Nevertheless, the nature of irregular problems forces g to lack a permanent stop condi-
tion, as defined previously in Eq. 5. These constraints require to address the trade-off
between the quality of the workload distribution w obtained and the resources spent
to obtain a good solution. In order to minimize the resource consumption of a given
problem, our heuristic g has to achieve good results for both cases presented in Eqs. 4
and 5.

In practice, only the values for iteration j are needed in order to calculate those
of iteration j + 1 and the matrix parameters are only used as formal notation. Using
these characteristics, g has to reassign the workload between processors on each step
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of a given iterative algorithm to minimize the resources x required per unit or work,
increasing the efficiency of the system for that given resource. By finding a suitable
d j , we can calculate a w j+1 that accomplishes this requirement.

4.2 Heuristic algorithm proposal

We propose to define the function g by applying techniques inspired by different
metaheuristics. This naturally leads to introduce specific parameters, based in the
former formalization:

– D∗
j , set of feasible displacements d j in a given iteration.

– P(g), probability of restarting the loadbalancingheuristic. This value is inspiredby
the acceptance probability of thewidely knownmetaheuristic SimulatedAnnealing
[14].

With this notation, we propose to calculate g following the steps defined in Algo-
rithm 1. The index j has been eliminated for the algorithm variables, as it is implicit
when g is called. When we find a valid vector of resources consumed, we calculate the
consumption for each processor per amount of work performed. We then calculate the
set D∗

j of feasible displacements. Since the cardinal of D∗
j increases rapidly with the

amount of processes, this function should generate a subset of movements that should
be scattered at the beginning of the problem and narrowed as the heuristic progresses.
This property is based on the variable neighborhood search metaheuristic [19]. After
that, we use the real metric x , execution time or energy consumption, to simulate the
possible outcome of the current iteration with every displaced workload distribution
waux and proceed with the best one, w′.

For regular problems, a simple execution of the algorithm is enough. However,
an irregular one this approach requires additional work in order to perform the load
balancing dynamically. Algorithm 2 illustrates the additionalmodifications required in
an iterative one to complete the load balancing process. After the initial homogeneous
distribution is performed, a small value is selected as P(g). State j contains the partial
solution of the iterative algorithm up to iteration j ; therefore, the final solution for the
iterative problem should be StateN .

Algorithm 1 g proposal
1: function g � Input: w, x � Output: w’
2: for all p do
3: r[p] ← x[p] / w[p]

4: D∗ ← GenerateDistributions(p)
5: w′ ← nil
6: xbest ← ∞
7: for all d ∈ D∗ do
8: waux ← w + d � Ensure waux values >= 0
9: x ′ ← f ′�(waux , resource_ratios)
10: if x ′ < xbest then
11: w′ ← waux
12: xbest ← x ′
13: return w′
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Algorithm 2 Heuristic applied to an iterative algorithm
1: procedure Iterative Problem
2: for all p do
3: w[p] ← 1/p
4: do_calibrate ← True
5: P(g) ← small value
6: xlast ← ∞
7: for all State j ∈ Iterative Algorithm do
8: DistributeWork(w)
9: Solve(State j )
10: GatherResults(w)
11: x ← ObtainResourcesUsed()

12: if do_calibrate then
13: w′ ← g(w, x)
14: do_calibrate ← similar(w,w′) � Similar returns bool and fulfills Equation 12.
15: else
16: if random() < P(g) then
17: w′ ← g(w, x)
18: P(g) ← small value
19: do_calibrate ← True
20: else
21: Increase(P(g))

22: w ← w′ � w′ is assigned at least once
23: xlast ← x

Workload is redistributed between all processes based on the metrics gathered after
solving the partial solution State j in iteration j , until the stop condition is reached.
Finally, due to the possible irregularity of the iterative problem, the probability to
restart the procedure is included in Algorithm 2. Once the load balancing has ended,
the probability P(g) is incremented every iteration until the condition in line 16 of
Algorithm 2 is met. When accepted, the load balancing process is restarted, and P(g)
is restored to its initial value.

5 Computational experience

5.1 Heuristic implementation

We have implemented the proposed heuristic to optimize energy consumption. It has
been done in C, using the library known as EML [7] to gather the energy metrics
required in the estimation function f ′. The GenerateDistributions implementation
introduces a new value to control the workload variation in each iteration. It is used
to determine similar workloads, when the new distribution is close enough to the
previous one. Finally, themaximumdisplacement is reduced every time the calibration
is performed.

We study four use cases of dynamic programming iterative algorithms. They have
been chosen by taking in consideration different parameters, their irregularity during
the execution and their computational granularity: The Knapsack Problem (KP), the
ResourceAllocation Problem (RAP) and theCutting Stock Problem (CSP). Each prob-
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(a) (b)

(c)

Fig. 1 Energy consumption surface of the workload with 2 processes. a KP, b RAP and c CSP

lem has different properties that allow to examine various computational granularities
and memory requirements:

– The Knapsack Problem has small granularity and is regular through all its phases.
Communications influence more the execution of this algorithm.

– The Resource Allocation Problem has an increasing granularity, and every value
requires the previous ones to be calculated.

– The Cutting Stock Problem is solved by traversing a dynamic programming table
diagonally and every iteration has a different amount of workload.

Figure 1 is a representation of executions that solve the presented cases, KP, RAP
and CSP using our energy heuristic specific implementation. The mesh represents
energy consumption during multiple executions with manual workload distributions
using two processes. This data can be used to visualize the behavior of our algorithm
in the solution space. The X -axis, labeled as Tesla K20c←→ TeslaM2090, represents
the amount of workload given to each process. The values in the Axis represent the
workload of the process with the GPU Tesla K20c, while the rest of the workload,
ProblemSize − X is given to the Tesla M2090. The arrows in the label represent
where the workload is reallocated when moving along the axis. The Y -axis represents
the current Iteration of the algorithm. The different colors in the heatmap represent
the energy consumed for each step and workload distribution. Additionally, a series
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of scattered points, represented as the symbol ‘+,’ represent the optimal workload
distribution for a given iteration, and the white line represents the data movements
generated by an execution of our implemented load balancing heuristic for energy
consumption.

In Fig. 1a, we can conclude that KP is a regular problem, except for the first itera-
tions, andmoreover, we can distinguish the desired space for our workload distribution
to the right of X-axis. In Fig. 1b, we observe how the difference in energy consumption
along the X-axis is much higher for the RAP. This is related to the data imbalance
of every iteration in the problem. Finally, in Fig. 1c, we observe how the optimal
workload configuration changes as the problem progresses in the CSP.

It can be observed how the heuristic trace moves toward the wrong workload con-
figurations in some cases because the efficiency of a given process varies with its
workload nonlinearly. Our simulated values, used to obtain the distribution w′, are
calculated using the current w and thus translate into wrong decisions delaying the
path toward good distributions. However, the trace clearly reaches an area where we
consider that the workload distributions are good enough for our execution. It is impor-
tant to remark that we do not input any information referring to the problem into the
heuristic. If required, it would be possible to set the restart probability of the algo-
rithm to 0, reducing overhead if we know the local optima does not move during the
execution, as is the case of Fig. 1b. However, it could be detrimental for cases as the
one shown in Fig. 1c.

5.2 Results

We gathered computational results in the heterogeneous system in Table 1. The nodes
have Debian 9 with the kernel 4.9.0-2-amd64 installed. The build and execution envi-
ronments haveGCC version 4.8.5, OpenMPI 3.0.0, compiled with said GCC compiler,
and the CUDA 7.5 sdk version. Every compilation was done with the −O2 opti-
mization flag. Energy measurement was performed for the GPUs using the Nvidia
Management Library (NVML) driver on the EML library.

To obtain the total energy consumption of the execution, EML was also used to
instrument the code by wrapping the Iterative Problem procedure described in Algo-
rithm 2. The downside of using energy consumption to perform calibration is that
the measurements are subject to the polling rate of the measurement devices and
hence the usage of EML to abstract the algorithm from theses issues, which can cause
potential losses in the application performance as the granularity is determined by the
measurement device.

Table 2 collects a set of experiments that properly represents the strengths and
weaknesses of our implementation. For each problem, CSP, RAP, and KP, we illus-
trate the average elapsed time and energy consumption formultiple sizes. For each size
and metric, we compare the performance and energy consumption of a reference time
(Ref ), an even static distribution; a dynamic load balance performed using the load
balancing algorithm of Ull_Calibrate_lib (Calib); and finally, developed implemen-
tation of the proposed heuristic algorithm to minimize energy consumption (EnerH).
The best option is highlighted using a bold font.

123



A heuristic technique to improve energy efficiency with… 1621

Table 1 GPU cluster

Nodes CPUs Memory (GB) GPU No. of cores RAM (GB) Mem BW (GB/s) Power (W)

Verode17 E5-2660 64 K20c 2496 5 208 225

Verode18 E5-2660 64 K40m 2880 12 288 235

Verode20 E5-2698v3 128 M2090 512 6 177.6 225

Table 2 Problem experimental data. KP and RAP share problem sizes

KP RAP CSP

Size Ref Calib EnerH Ref Calib EnerH Size Ref Calib EnerH

Time (s)

1000 0.30 0.52 0.52 1.36 0.71 1.08 500 1.53 1.68 2.36

2000 0.93 1.08 1.36 6.82 2.95 2.57 1000 9.46 9.49 14.70

3000 2.01 2.18 2.29 20.10 7.22 5.91 1500 31.02 30.09 31.53

4000 3.46 3.60 3.76 46.03 12.64 9.78 2000 73.64 65.44 66.76

5000 5.23 5.19 5.38 87.80 16.93 15.99 2500 145.9 133.1 123.1

6000 7.37 7.08 6.62 149.0 22.76 22.81 3000 249.3 217.1 199.8

7000 9.89 9.49 8.68 235.0 34.44 26.56 3500 393.8 341.6 318.3

Energy (J)

1000 35.2 62.9 63.1 188.0 93.0 145.7 500 213.3 236.5 327.9

2000 119.5 137.3 175.4 994.5 415.7 360.9 1000 1363 1379 2077

3000 266.3 281.9 298.6 2902 1025 845.5 1500 4489 4426 4563

4000 463.4 471.1 494.1 6691 1827 1418 2000 10713 9765 9876

5000 705.9 685.0 711.5 12,843 2511 2385 2500 21,369 20,095 18,573

6000 1001 940.9 883.1 21,885 3449 3390 3000 37,022 33,485 30,758

7000 1348 1268 1162 34,587 5186 3996 3500 58,609 53,178 49,385

Ull_Calibrate_lib applies a dynamic load balance technique over execution time, by
redistributingworkloadproportionally to the performance achievedduring theproblem
execution. While this is not the objective of the Energy Heuristic, we consider that
comparing our proposal to a homogeneous distribution only is not enough as proof of
the proposal effectiveness. The usage of a different dynamic load balancing technique
algorithm reinforces our claims despite addressing different objectives, as energy and
time are heavily correlated variables in the target architecture. The performance impact
of the energy consumption workload distributions are in these cases positive, as can
be observed in our results. There is only one case where they differ, size 6000 of the
RAP problem. This due to the polling rate of the energy consumption measurements
and can be considered equal.

The KP has low computational demands for each unit of work. As shown in Table 2,
there are performance losses for the executions up to size 5000, inwhichnot performing
load balancing at all is more efficient than load balancing. However, when the problem
size increases, we can observe that both Ull_Calibrate_lib and the Energy Heuristic
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Table 3 UllMF usage overhead during CSP

CSP Time (s) Energy (J)

Manual UllMF Error Manual UllMF Error

1000 13.68 14.708 0.075 1800.3 1998.7 0.110

1500 26.64 27.47 0.031 3806.6 3952.8 0.038

2000 64.24 65.17 0.014 9348.9 9504.7 0.017

2500 114.96 116.47 0.013 17,188.6 17,476.6 0.017

present performance gains against a homogeneous distribution. The average gains of
the energy heuristic, when it is applicable, is 6.5% of elapsed time and 8.2% of energy
consumption, while Ull_Calibrate_lib obtains 2.9% and 5.0%, respectively, against
the same reference.

OurRAP implementation using the skeleton shares all the codewith theKP,with the
exception of theCUDAkernel executed during themain loop.WhileKP is fine grained,
the RAP is very compute intensive. Table 2 displays how both Ull_Calibrate_lib and
the energy heuristic obtains very good performances, in terms of energy savings and
performance. The RAP problem definition generates unbalances in the workload if
a homogeneous distribution is used, obtaining more than 70% of gains when using
any load balancing method. Comparing both dynamic load balancing methods to
obtain a fair comparison, the energy heuristic performs better than or similarly good
to Ull_Calibrate_lib in every case studied, with an average improvement of 13.6%
elapsed time and 13.7% of energy consumption using the heuristic.

Finally, The CSP implementation is an example of a problem where a static load
balancing technique cannot reach the optimal solution for the problem since the best
workload distribution varies between iterations. Table 2 shows the best strategy for
sizes from 1500 up to size 2000 is Ull_Calibrate_lib and obtains worse results than
the heuristic as problem size increases. In this case, the heuristic obtains 12.5% better
execution time and 10.4% energy consumption compared to the reference from size
1500. Ull_Calibrate_lib, on the other hand, obtains an average improvement of 9.8%
and 7.0%, respectively.

Table 3 shows the overhead of our methodology. The comparison was performed
by executing different problem sizes for the CSP and saving every distribution of work
w. Then, a different set of executions was performed by removing the code related to
the heuristic and using the workload configurations stored earlier. The results gathered
for both cases are the best case obtained for each problem size. The overhead starts
at 7.5% and 11% for time and energy, respectively, and as the problem size increases
this overhead is reduced to 1.4% and 0.8%, respectively. These results indicate that
there is a relatively high impact of initialization that disappears as the problem size
increases. Despite this shortcoming of the load balancing implementation, the gains in
overall energy consumption are greater than the amount of energy wasted to perform
the algorithm.

These results, though they could still be improved, illustrate the competitiveness
of our approach despite its relative simplicity. They also illustrate the downsides of
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our implementation overhead and the limitations related to the usage of energy mea-
surement tools. However, the generalization could be used to avoid some of these
implementation issues, by supporting the load balancing technique with multiple
objective functions.

6 Conclusion

We have presented an heuristic algorithm for parallel applications to perform dynamic
load balancing in iterative problems, on heterogeneous systems. This heuristic is for-
malized using a generalization of the resource to optimize, in order to allow different
optimization criteria for the decision making to distribute the workload. As proof
of its effectiveness, we have implemented it using C and CUDA with relatively low
overhead. The computational results obtained prove that our load balancing technique
shows a considerable improvement for compute intensive problems. It also gets better
results in some cases when compared against a different load balancing algorithm that
has been proven to work. In the future, we plan to include CPU only environments
and generate more complex strategies that change the objective resource to optimize
using our formalization for iterative problems to cover the weak points of using only
energy consumption to calibrate.
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