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Abstract: Glaucoma, a disease that damages the optic nerve, is the leading cause of irreversible
blindness worldwide. The early detection of glaucoma is a challenge, which in recent years has
driven the study and application of Deep Learning (DL) techniques in the automatic classification
of eye fundus images. Among these intelligent systems, Convolutional Neural Networks (CNNs)
stand out, although alternatives have recently appeared, such as Vision Transformers (ViTs) or hybrid
systems, which are also highly efficient in image processing. The question that arises in the face
of so many emerging methods is whether all these new techniques are really more efficient for
the problem of glaucoma diagnosis than the CNNs that have been used so far. In this article, we
present a comprehensive comparative study of all these DL models in glaucoma detection, with the
aim of elucidating which strategies are significantly better. Our main conclusion is that there are
no significant differences between the efficiency of both DL strategies for the medical diagnostic
problem addressed.

Keywords: convolutional neural network; vision transformer-based system; glaucoma; fundus
imaging

1. Introduction

Glaucoma is a disease that damages the patient’s optic nerve and is the leading cause of
irreversible blindness worldwide [1]. A patient with glaucoma may remain asymptomatic
until the disease reaches very advanced stages of development, making early diagnosis
difficult. For the same reason, the number of people affected is assumed to be much higher
than the number of diagnosed patients [2].

The optic nerve head, or “optic disc”, is a structure located in the retina made up
of various tissues (neural, vascular, and connective). Inside it is a depression called the
“optic cup” (Figure 1). Glaucoma damages the optic nerve tissues, causing molecular and
functional changes in this region. This results in alterations of the microcirculation, atrophy
of nerve neurons, and an enlargement of the cup, leading to visual loss [2]. All these
changes can be seen in fundus imaging or retinography, which makes this type of imaging
useful for the diagnosis of glaucoma [3].

The visual study of these images is a very subjective and not always simple operation,
especially in the most incipient cases of the disease. For this reason, automated methods
such as Deep Learning (DL) algorithms can reduce costs and make fast and consistent
predictions, helping the specialist in the diagnosis.

In recent years, these DL algorithms have had a high impact on medicine. When the
problem being addressed involves image processing and classification, it is quite common
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to use Convolutional Neural Networks (CNNs). These networks are able to automatically
extract the most relevant features of the image and take advantage of the available spatial
information. For this purpose, they apply convolutional filters (kernels) to the images [4].
Each of these filters is adjusted during the training of the network to detect a particular
feature on the image so that the first layers of the network detect simple features (edges,
textures, etc.), and as it goes deeper, the filters of the last layers are able to recognise more
complex features [5].
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In medicine, the application of CNNs can be found in several fields: skin cancer [6],
lung diseases [7], heart diseases [8], breast cancer [9], vascular diseases [10], etc. In the
case of Ophthalmology, these CNNs have been widely used for the diagnosis of diabetic
retinopathy [11], macular degeneration [12], cataracts [13], and glaucoma [14–17].

In relation to glaucoma, the performance of three well-known CNNs is studied in [14].
The three best-fit models have very similar performance, offering accuracy values around
98% for a particular dataset. Similarly, in [16], the authors study the efficiency of ten well-
known CNNs, obtaining a balanced accuracy of 87.48% with the VGG19 architecture [18].
A comparative study of the efficiency of three well-known CNNs and an ensemble model
that combines the individual predictions of these three models is presented in [15]. In the
training stage of these systems, several experiments are performed using four separate
public and private datasets and, finally, with all these datasets fused together. The ensemble
model proves to be superior in all tests, with accuracy values in the range of 88–98%. In [17],
a new CNN architecture is proposed, trained, and tested with two different retinography
databases, and the efficiency achieved in both cases is compared, which is around 0.831
and 0.887 (Area Under de Curve—AUC values).

On the other hand, Transformers [19], a DL architecture initially designed for Natu-
ral Language Processing (NLP), have recently appeared. Their results in NLP have been
spectacular, which has sparked interest in adapting them for image processing. These Trans-
formers adapted to work with images are known as Vision Transformers (ViTs) [20–22].
Broadly speaking, the Transformers apply a mechanism called “attention”, which allows
the model to focus on the most relevant parts of the input sentence, assigning each word
a weight proportional to its importance. When this architecture is adapted to work with
images instead of words, the inputs to the attention mechanism are now portions (patches)
of the input image. When these patches are introduced into the system, the spatial informa-
tion of the image is lost, so it is necessary to introduce a positioning system that identifies
each patch (positional embedding).



Appl. Sci. 2023, 13, 12722 3 of 23

In the literature, we can already find several works that process images using ViTs
instead of CNNs, for example, in remote sensing [23], traffic sign classification [24], forest
fire segmentation [25], etc. However, there are also proposals for hybrid systems, which
combine CNNs and ViTs with the intention of exploiting the advantages of each method
separately [26–29]. Transformers [30] and ViTs [31,32] are starting to be used in medicine
due to the multimodal nature of the data used in this field, where both text and image
can be useful for diagnosis. An extensive review of the application of Transformers in
healthcare is presented in [32].

Focusing on the field of Ophthalmology, we can cite the first works using ViTs to aid
in the diagnosis of diabetic retinopathy [33] and macular degeneration [34]. In the case of
glaucoma, there are still very few studies [35,36]. It is also worth mentioning the residual
ResMLP architecture. ResMLP models are based on Vision Transformers but replace the
attention mechanisms with classical Multi-Layer Perceptron (MLP) networks [37]. They
have been applied very recently in glaucoma detection [35]. In some of these works, it can
be interpreted that ViTs can become more efficient than CNNs. However, it is difficult to
find papers that really compare the performance of both systems comprehensively. The
most complete review we have found is [38], but it is not in the field of medicine. In
glaucoma detection, we can only cite [35,36,39].

The work [39] compares a ViT-based architecture, the DeiT model [27], and a well-
known residual CNN, the ResNet50 [40]. They train the models with a dataset and subse-
quently test them on other datasets. Their experimental results show that the efficiency of
DeiT is superior when classifying these external databases. A comparative study between
the efficiency of four well-known CNNs, the original ViT model, and two variants of the
original ViT architecture is presented in [36]. Three public databases are used together for
the design of the training and test sets. The best accuracy values were obtained with the
ViT architectures (accuracy values of 95.8% and 93.8%). However, the best AUC value,
0.987, was provided by a CNN, a VGG19 model. In [35], a comparison study collects the
efficacy in glaucoma detection of eight different ViT-based models. The authors fuse nine
datasets (public and private) to train and test the selected models. The best architecture is
CaiT [26], with an accuracy value of 94.5% and an AUC value of 0.979.

The aim of this work is to perform a comprehensive comparative study between CNN
and ViT models, hybrid systems, and ResMLP architecture for the problem of glaucoma
detection with retinographies. In our research work, we have tried to include a wide
variety of CNNs (VGG19 [18], ResNet50 [40], InceptionV3 [41], and Xception [42]), the base
architecture of ViT [20], variations in ViT (Swin Transformer [21] and Twins-PCPVT [22]),
several hybrid systems (CaiT [26], DeiT [27], CeiT [28], and ConViT [29]), and, also, the
very recent residual architecture ResMLP [37].

For the training and testing of all these models, we have used images provided by
the collaborating medical expert of the Canary Islands University Hospital together with
images from Rim-ONE-DL [43], a publicly available glaucoma database. In addition, the
efficiency of the models has been analysed using other public databases: Refuge [44],
Drishti-GS1 [45], and Papila [46]. The inclusion of multiple datasets improves the reliability
of the study results and contributes to a complete understanding of the efficiency of each
DL system used.

This paper is organised as follows: first, we present the datasets we worked with, a
brief description of all the DL models selected in the study, and an explanation of how
the experiments were designed. Next, we present the experimental results obtained and a
comparative study of them. Finally, the conclusions of the study are given.

2. Materials and Methods

This paper presents a comparative study of the efficiency of different DL models in
the classification of retinographies for the diagnosis of glaucoma. Therefore, this section
will present the retinography datasets used, explain the basic fundamentals of the selected
DL models, and finally, detail the conditions under which the experiments were performed.



Appl. Sci. 2023, 13, 12722 4 of 23

Within the exposition of the models considered in this study, CNNs, ViTs, hybrid CNN-ViT
systems, and ViT-inspired systems are distinguished.

2.1. Description of the Datasets

The dataset used to train and test the different DL models employed in this study is
composed of:

• The public database Rim-ONE DL [43] is composed of 172 images of glaucoma and
313 of normal eyes;

• Fundus images were collected by the medical specialist of our research team, belonging
to the Canary Islands University Hospital (Spain). This set is composed of 191 images
of glaucoma and 63 of normal eyes. These images, which are not public, were acquired
with the Topcon TRC-NW8 multifunctional non-mydriatic retinograph. This study
was conducted in accordance with the Declaration of Helsinki and approved by the
Research Ethics Committee of the Canary Islands University Hospital (CHUC_2023_41,
27 April 2023). Confidentiality of personal data was guaranteed.

A total of 739 images were used: 363 retinographies of glaucoma and 376 of normal eyes.
To perform a more thorough validation of the DL models, we used other publicly

available databases:

• The Drishti-GS1 database [45] consists of 101 images, of which 70 are classified as
having glaucoma and 31 as having healthy eyes;

• The Papila dataset [46] consists of 421 images, of which 87 are classified as having
glaucoma and 334 as having healthy eyes;

• The REFUGE challenge database [44] consists of 1200 retinal images. Of the total
dataset, 10% (120 samples) correspond to glaucomatous subjects.

2.2. Description of the Selected DL Architectures

CNNs and ViT-based systems have some differences that may make their application
more appropriate in one scenario or another [38]. The most important ones are:

• CNNs are designed to exploit local spatial correlations through the use of convolu-
tional layers, which makes them effective at capturing local patterns and features
in an image. In contrast, ViT-based systems employ an attention mechanism that
allows them to capture global relationships between image patches, which makes
these systems more suitable for handling long-range dependencies and capturing the
global context of an image.

• CNNs require a larger number of parameters, which makes them computationally
expensive. ViTs take advantage of attention mechanisms to capture the global context
more efficiently with fewer parameters. This can be advantageous when computing
resources or memory are limited.

• CNNs are intrinsically translation-invariant, thanks to the use of shared weights in the
convolutional layers. This property is very useful for image classification. In contrast,
ViTs do not have this inherent translation invariance due to their self-attenuation
mechanism, although it can be incorporated by positional embedding.

• Both CNNs and ViT-based systems have been shown to have a high generalisability
capacity when trained on large datasets. In this sense, ViT-based systems are more
sensitive to the size of the training set, as they tend to require larger sets than CNNs.

• CNNs lack interpretability; it is difficult to understand how they make their decisions,
and they are often used as “black boxes”. In that sense, the attention mechanisms
of ViT-based systems are more useful, as they allow for analysing which parts of an
image are more relevant when making predictions.

In the following subsections, we detail the most relevant features of all the DL models
used in this study.
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2.2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network with a large
number of internal layers specifically designed for image processing. They consist mainly
of convolutional layers, which apply convolutional filters to the input images and learn
local patterns in small, two-dimensional windows. The purpose of these layers is to detect
features in the images (edges, color, texture, etc.). Once it learns to recognise a feature
somewhere in the image, it is able to detect it anywhere in the image [5]. Another important
aspect of CNNs is that convolutional layers can learn spatial hierarchies of patterns while
preserving spatial relationships, so that features detected by one layer can be combined in
subsequent layers to form more complex patterns.

There are several popular CNN architectures pre-trained with the Imagenet database
available to the scientific community. In the present work, the VGG19 [18], ResNet50 [40],
InceptionV3 [41], and Xception [42] networks have been selected. In the following, we
briefly describe their fundamentals:

• VGG19 contains 19 layers: 16 convolutional layers grouped into 5 blocks and 3 full
connection layers [18]. After each convolutional block, there is a pooling layer that
decreases the size of the obtained image and increases the number of convolutional
filters applied (Figure 2). The dimensions of the last three full connection layers are
4096, 4096, and 1000, respectively, because VGG19 was designed to classify Imagenet
images into 1000 categories;

• ResNet50 is a network that allows hops in layer connections to facilitate training and
improve its performance. It consists of 49 convolutional layers, two pooling layers,
and a full connection layer (Figure 3). The blocks that make up the network follow
a bottleneck design that reduces the number of parameters and matrix multiplica-
tions [40];

• InceptionV3 consists of 48 depth layers combining convolutional, pooling, and fully
connected layers with concatenation filters (Figure 4). The network is distributed in
“spatial factorisation” modules, which apply different convolutional layers of different
sizes to the input image to obtain general and local features. The concatenation filter
combines the results provided by the spatial factorisation module into a single output,
which will be the input of the next module [41];

• Xception is a variant of the Inception architecture that focuses on the use of separable
convolutions instead of standard convolutions. Separable convolutions split the
convolution operation into two stages: a first stage that performs convolutions on
each input channel individually, followed by a linear combination stage that fuses
the learned features [42]. The architecture of this network, which is 71 layers deep, is
shown in Figure 5.
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All these CNNs have been designed to classify, as efficiently as possible, the Imagenet
images into 1000 classes. For this reason, the last full connection layer of all of them is
composed of 1000 neurons. When applying these networks to other classification problems,
it is necessary to change the dimension of this last full connection layer. For example, in
our case, the last layer contains only two neurons because the retinal images are classified
into two categories: “normal” and “glaucoma”.

2.2.2. Vision Transformers

Transformers are DL systems that originally emerged to improve the performance
of Recurrent Neural Networks (RNNs) in Natural Language Processing (NLP) tasks [19].
They were later adapted to image processing, giving rise to the recent Vision Transform-
ers (ViTs) [20]. To understand the basic features of ViTs, it is necessary to know some
fundamentals of Transformers.

Most classical text processing systems apply a sequential, word-by-word analysis
strategy. This implies that the influence of the first words of a sentence can be lost if the text
is very long. Transformers avoid this because they are able to analyse all words in parallel,
retaining a measure of the position of each word in the sentence (positional encoding).
Also, in order for the system to be able to work with the words, they are transformed into
vectors in a semantic space, so that words with similar meanings have more similar and
closer vectors [19]. This transformation of words into vectors allows the application of
attention mechanisms, whose mission is to calculate the importance of each word within a
sentence and how it relates to the rest of the words in the sentence. These mechanisms are
included in Multi-Head Attention (MHA) layers, which are contained in the “encoder” and
“decoder” blocks of the transformer. The basic structure is shown in Figure 6.
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Vision Transformers (ViTs) are a variation of Transformers for image processing. The
input image is divided into patches, which are processed by the system in parallel in the
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same way as transformers do with words (Figure 7). The positional encoding and the
attention mechanisms described above are applied to these patches. An additional patch,
called “token class”, is added to the image to perform the image classification. Vision
Transformers have only encoder blocks [20].
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In this paper, we have applied the original ViT [20] to the classification of eye fundus
images for glaucoma diagnosis. In addition, we have also considered the inclusion in
our study of two modifications of the original ViT called “Swin transformer” [21] and
“Twins-PCPVT” [22].

The Swin Transformer [21] allows the windows of the attention mechanism to be
scaled and shifted efficiently to reduce computational cost and improve performance
(Figure 8). As the windows have neither a fixed size nor a fixed position, this architecture
uses a relative positioning system instead of the absolute positioning used in the original
ViT. In our comparative study, we tested two versions of this model: the “Swin Tiny”
version, which has 96 layers and 28 million parameters, and the “Swin Base” version, with
128 layers and 88 million parameters.
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The Twins-PCPVT model [22] also divides the image into patches or windows of
variable size. In this case, the windows are progressively decreased in a pyramidal scheme.



Appl. Sci. 2023, 13, 12722 9 of 23

In addition, the attention mechanism is combined with the use of conditional position
encodings (CPE) to replace the absolute positioning used in ViT. The Position Encoding
Generator (PEG) is responsible for generating these conditional positionings (Figure 9).
The use of the CPE is inspired by the Swin Transformer model explained above.
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2.2.3. Hybrid Systems

Hybrid systems combine ViTs and CNNs with the aim of further improving image
processing efficiency. In the hybrid system, local features are captured with CNNs, while
more global relations are obtained with the attention mechanisms of ViTs. These systems
have been included in the comparative study carried out in this work because they are
increasingly used in the medical field.

Hybrid systems are very recent, but there are already several architectures trained
with Imagenet and available to the scientific community. In the present work, DeiT [27],
CaiT [26], CeiT [28], and ConViT [29] have been used. We describe them briefly below:

• DeiT is a ViT trained with a transfer learning technique called “knowledge distilla-
tion” [27]. A larger convolutional model is used as a “teacher” to guide the training of
the smaller model, which is the ViT part. For this purpose, the “distillation token” is
introduced, and the goal of the ViT part is to reproduce this label instead of the class
label (Figure 10);

• CaiT [26] is based on DeiT and also uses distillation training. In CaiT, a LayerScale
normalisation is added to the output of each residual block, and new layers called
“attention class” layers are incorporated. These layers allow the separate computation
of inter-patch self-attention and classification attention to be finally processed by a
linear classifier (Figure 11). In our work, we have tested two versions of this model:
the “CaiT_XXS36” version with 17.3 million parameters and the “CaiT_S24” version
with 46.9 million parameters;

• CeiT [28] incorporates several modifications over the original ViT. Firstly, it uses a
low-level feature extraction module (image-to-token) that is applied to the input image.
In the encoder blocks, the Feed-Forward Network (FFN) is replaced with a Locally
Enhanced Feed-Forward Network (LeFF), which promotes correlation between tokens
with convolution operations (Figure 12). Finally, a new type of block called “Layer-
wise Class Token Attention” (LCA) is added, which contains a Multi Self-Attention
MSA layer and an FFN. Its mission is to compute attention only on the class token,
thus reducing the computational cost;

• ConViT [29] introduces a new attention network called “gated positional self-attention”
(GPSA). This network consists of a subnetwork that mimics convolutional behaviour
and an attention head. There is a parameter that regulates the influence of both parts
(Figure 13).



Appl. Sci. 2023, 13, 12722 10 of 23

Appl. Sci. 2023, 13, 12722 9 of 24 
 

In addition, the attention mechanism is combined with the use of conditional position 
encodings (CPE) to replace the absolute positioning used in ViT. The Position Encoding 
Generator (PEG) is responsible for generating these conditional positionings (Figure 9). 
The use of the CPE is inspired by the Swin Transformer model explained above. 

 
Figure 9. Architecture of Twins-PCPVT. 

2.2.3. Hybrid Systems 
Hybrid systems combine ViTs and CNNs with the aim of further improving image 

processing efficiency. In the hybrid system, local features are captured with CNNs, while 
more global relations are obtained with the attention mechanisms of ViTs. These systems 
have been included in the comparative study carried out in this work because they are 
increasingly used in the medical field. 

Hybrid systems are very recent, but there are already several architectures trained 
with Imagenet and available to the scientific community. In the present work, DeiT [27], 
CaiT [26], CeiT [28], and ConViT [29] have been used. We describe them briefly below: 

• DeiT is a ViT trained with a transfer learning technique called “knowledge distilla-
tion” [27]. A larger convolutional model is used as a “teacher” to guide the training 
of the smaller model, which is the ViT part. For this purpose, the “distillation token” 
is introduced, and the goal of the ViT part is to reproduce this label instead of the class 
label (Figure 10); 

 
Figure 10. Architecture of DeiT. Figure 10. Architecture of DeiT.

Appl. Sci. 2023, 13, 12722 10 of 24 
 

• CaiT [26] is based on DeiT and also uses distillation training. In CaiT, a LayerScale 
normalisation is added to the output of each residual block, and new layers called 
“attention class” layers are incorporated. These layers allow the separate computation 
of inter-patch self-attention and classification attention to be finally processed by a 
linear classifier (Figure 11). In our work, we have tested two versions of this model: 
the “CaiT_XXS36” version with 17.3 million parameters and the “CaiT_S24” version 
with 46.9 million parameters; 

 
Figure 11. Architecture of CaiT. 

• CeiT [28] incorporates several modifications over the original ViT. Firstly, it uses a 
low-level feature extraction module (image-to-token) that is applied to the input im-
age. In the encoder blocks, the Feed-Forward Network (FFN) is replaced with a Lo-
cally Enhanced Feed-Forward Network (LeFF), which promotes correlation between 
tokens with convolution operations (Figure 12). Finally, a new type of block called 
“Layer-wise Class Token Attention” (LCA) is added, which contains a Multi Self-At-
tention MSA layer and an FFN. Its mission is to compute attention only on the class 
token, thus reducing the computational cost; 

 
Figure 12. Architecture of CeiT. 

Figure 11. Architecture of CaiT.

Appl. Sci. 2023, 13, 12722 10 of 24 
 

• CaiT [26] is based on DeiT and also uses distillation training. In CaiT, a LayerScale 
normalisation is added to the output of each residual block, and new layers called 
“attention class” layers are incorporated. These layers allow the separate computation 
of inter-patch self-attention and classification attention to be finally processed by a 
linear classifier (Figure 11). In our work, we have tested two versions of this model: 
the “CaiT_XXS36” version with 17.3 million parameters and the “CaiT_S24” version 
with 46.9 million parameters; 

 
Figure 11. Architecture of CaiT. 

• CeiT [28] incorporates several modifications over the original ViT. Firstly, it uses a 
low-level feature extraction module (image-to-token) that is applied to the input im-
age. In the encoder blocks, the Feed-Forward Network (FFN) is replaced with a Lo-
cally Enhanced Feed-Forward Network (LeFF), which promotes correlation between 
tokens with convolution operations (Figure 12). Finally, a new type of block called 
“Layer-wise Class Token Attention” (LCA) is added, which contains a Multi Self-At-
tention MSA layer and an FFN. Its mission is to compute attention only on the class 
token, thus reducing the computational cost; 

 
Figure 12. Architecture of CeiT. Figure 12. Architecture of CeiT.



Appl. Sci. 2023, 13, 12722 11 of 23

Appl. Sci. 2023, 13, 12722 11 of 24 
 

• ConViT [29] introduces a new attention network called “gated positional self-atten-
tion” (GPSA). This network consists of a subnetwork that mimics convolutional be-
haviour and an attention head. There is a parameter that regulates the influence of 
both parts (Figure 13). 

 
Figure 13. Architecture of ConViT.  

2.2.4. Other Architectures Inspired by Vision Transformers 
In this section, we will focus on the ResMLP neural network [37], which is inspired by 

ViTs. The model follows the same distribution of layers and operations as ViTs, as well as 
working with the image divided into patches. However, it cannot be considered a ViT vari-
ant as it does not include the characteristic ViT attention mechanisms. Instead of attention 
layers, it uses linear Multi-Layer Perceptron (MLP) layers and non-linear Gaussian Error 
Linear Unit (GELU) layers. It also replaces the normalisation of the layers with a transfor-
mation that only shifts and rescales the input elements (“affine” blocks in Figure 14). 

In the study presented in this article, two versions of this model of different sizes 
have been tested: “ResMLP_12” with 15 million parameters and “ResMLPB_24” with 129 
million parameters. 

 
Figure 14. Architecture of ResMLP. 

2.3. Design of the Experiments 
In this section, we describe the experimental methodology followed in the compara-

tive study: how the training and test sets were designed with the available data, the train-
ing strategy, and the parameters selected for each model. We have tried to design an ex-
perimental framework that is as similar as possible for all models so that their efficiency 
results can be comparable. 

Figure 13. Architecture of ConViT.

2.2.4. Other Architectures Inspired by Vision Transformers

In this section, we will focus on the ResMLP neural network [37], which is inspired
by ViTs. The model follows the same distribution of layers and operations as ViTs, as
well as working with the image divided into patches. However, it cannot be considered
a ViT variant as it does not include the characteristic ViT attention mechanisms. Instead
of attention layers, it uses linear Multi-Layer Perceptron (MLP) layers and non-linear
Gaussian Error Linear Unit (GELU) layers. It also replaces the normalisation of the layers
with a transformation that only shifts and rescales the input elements (“affine” blocks in
Figure 14).
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In the study presented in this article, two versions of this model of different sizes
have been tested: “ResMLP_12” with 15 million parameters and “ResMLPB_24” with
129 million parameters.

2.3. Design of the Experiments

In this section, we describe the experimental methodology followed in the compar-
ative study: how the training and test sets were designed with the available data, the
training strategy, and the parameters selected for each model. We have tried to design an
experimental framework that is as similar as possible for all models so that their efficiency
results can be comparable.

For the training of all models used in this work, the initial set of 739 images was
randomly divided into training and test sets with a ratio of 80/20, respectively.

• Training set: 290 retinographies of glaucoma and 301 of healthy eyes;
• Test set: 73 glaucoma retinographies and 75 healthy eyes.
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The training set was further divided into five different training and validation sets
following a 5-fold approach.

The selected CNN models (VGG19, ResNet50, InceptionV3, and Xception) are available
in the Keras module of the Tensorflow v2 package [47]. To adapt these neural network
models to our classification problem, we replaced the top layer of each network with a
DropOut layer, followed by a Flatten layer, followed by a Dense layer with 128 neurons
with RELU activation, followed by a DropOut layer, and finally, a Dense layer with two
outputs using the SoftMax activation function. This modification to the original CNNs’
architectures has been made because we have found in previous works that it improves
the classification efficiency of the CNNs. For VGG19, the DropOut was set to 0.5. For
InceptionV3, ResNet50, and Xception, the DropOut was set to 0.2. As for the size of the
input layer, it was set to 224 × 224 × 3 for ResNet50 and VGG19 and 299 × 299 × 3 for
InceptionV3 and Xception.

Our training strategy is the same for all CNN models. First, starting from the pre-
trained ImageNet weights, we freeze the base model and train the new top layer for
200 epochs using an Adam optimiser, with a learning rate of 1e-6 and categorical cross-
entropy as a loss function (fine tuning). Second, we unfroze the base model and trained
the entire model end-to-end for 250 epochs using the same optimiser, with a learning rate
of 10−5 and the same loss function as before (deep tuning). In all cases, a batch size of
8 was used.

Regarding the pre-processing step, we applied the pre-processing function included
in Keras to each of the networks. To avoid overfitting, we applied data augmentation to the
input samples, consisting of random contrast with a factor of +/− ±0.3, random brightness
with a factor of ±0.3, random horizontal flip, random rotation ±45◦ with “nearest” fill
mode, random horizontal and vertical translation with a factor of ±0.05 with “nearest” fill
mode, and random zoom with a factor of ±0.2 preserving the aspect ratio with “nearest”
fill mode.

The final weights for each model were chosen from the epoch that maximised the
validation accuracy among the five folds. This results in 5 different models per CNN
architecture, or 20 models in total.

On the other hand, the original ViT model is integrated into the Torchvision library
of Pytorch [48]. The rest of the ViT models, hybrid systems, and ResMLP network have
been obtained from the GitHub of the research groups that created them: CaiT, DeiT, and
ResMLP from [49], CeiT from [50], the Swin models from [51], Twins-PCPVT from [52],
and ConViT from [53].

We have retained the original architecture of each model, modifying only the last layer
to adapt it to our two-class classification problem. For this reason, we replaced the top
layer with a dense layer with two outputs. Regarding the DropOut, we have not added
additional layers, and it is only used in the models that already have it integrated with
its default values. Regarding the size of the input layer, it was set to 224 × 224 × 3 for
all models.

As the original architecture of these models was not modified in any way (except for
the last layer), all models were directly deep-tuned. Starting with the pre-trained weights
from ImageNet, we trained the entire model end-to-end for 50 epochs using the Adam
optimizer, with a learning rate of 10−5 and the categorical cross-entropy loss function. The
value of 50 epochs was set empirically, as we observed in all tests the worsening behaviour
of the models as training continued. Batch size was variable depending on what was
allowed in each model: 32 for CaiT_XXS36, DeiT, ResMLP_12, CeiT, Swin Base, Swin Tiny,
and Twins-PCPVT, 16 for CaiT_S24 and ConViT, and 4 for ResMLPB_24.

In the pre-processing step, we applied the pre-processing functions included in the
library Torchvision of Pytorch [48]. To avoid overfitting, we applied data augmentation to
the input samples, consisting of random brightness with a factor of ±0.5, random horizontal
flip, random rotation ±15◦ with “nearest” fill mode, and normalisation.
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Also, for these models, the final weights for each one were chosen from the epoch that
maximised the validation accuracy among the five folds. This results in 5 different models
per ViT-based system architecture, or 55 models in total.

All the trained DL models were tested with an independent set (test set) consisting of
75 samples from healthy subjects and 73 samples from glaucoma subjects. Subsequently, all
these models were applied to other external retinography sets: the Drishti-GS1 database [45],
the Papila dataset [46], and the REFUGE challenge database [44] to perform a more objective
and comprehensive validation of their behaviour. The performance results corresponding
to each network architecture are calculated in terms of sensitivity, specificity, accuracy,
balanced accuracy, and F1 score [54].

3. Results

All the models were trained under the conditions described above and tested first with
an independent set consisting of 75 samples from healthy subjects and 73 samples from
glaucoma subjects (test set). The results corresponding to the best and worst performance,
per architecture, in terms of balanced accuracy have been included in Table 1. Tables 2–4
show the results obtained by evaluating the different network models on REFUGE, Drishti-
GS1, and Papila as test sets. Table 5 shows a ranking of the five models with the best-
balanced accuracy in the classification of each dataset.

Table 1. Summary of the results obtained by evaluating the different DL models on the test dataset
according to different metrics. For simplicity, only the results corresponding to the folds with
minimum and maximum balanced accuracy (B. Accuracy) are displayed.

Architecture Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

CNNs

VGG19 fold_1 0.8767 0.9467 0.9122 0.9117 0.9078
VGG19 fold_4 0.9863 0.9467 0.9662 0.9665 0.9664

ResNet50 fold_1 0.9315 0.9067 0.9189 0.9191 0.9189
ResNet50 fold_3 0.9863 0.9600 0.9730 0.9732 0.9730

InceptionV3 fold_2 0.9452 0.8667 0.9054 0.9059 0.9079
InceptionV3 fold_3 0.9726 0.9067 0.9392 0.9396 0.9404

Xception fold_5 0.9315 0.8133 0.8716 0.8724 0.8774
Xception fold_1 0.9452 0.9067 0.9257 0.9259 0.9262

ViTs

Original ViT fold_5 0.9178 0.8933 0.9054 0.9056 0.9054
Original ViT fold_4 0.9726 0.8667 0.9189 0.9196 0.9221

Swin Base fold_5 0.9452 0.8667 0.9054 0.9059 0.9079
Swin Base fold_1 0.9863 0.9333 0.9595 0.9598 0.9600

Swin Tiny fold_1 0.9315 0.8933 0.9122 0.9124 0.9128
Swin Tiny fold_2 0.9863 0.8933 0.9392 0.9398 0.9412

Twins-PCPVT fold_3 0.9452 0.8800 0.9122 0.9126 0.9139
Twins-PCPVT fold_2 1.0000 0.9333 0.9662 0.9667 0.9669

Hybrid models

DeiT fold_5 0.9178 0.9200 0.9189 0.9189 0.9178
DeiT fold_4 0.9863 0.9600 0.9730 0.9732 0.9730

CaiT_XXS36 fold_1 0.9041 0.8800 0.8919 0.8921 0.8919
CaiT_XXS36 fold_4 0.9315 0.9333 0.9324 0.9324 0.9315

CaiT_S24 fold_2 0.9178 0.8800 0.8986 0.8989 0.8993
CaiT_S24 fold_4 0.9178 0.9333 0.9257 0.9256 0.9241

CeiT fold_3 0.9041 0.8667 0.8851 0.8854 0.8859
CeiT fold_2 0.9863 0.9067 0.9459 0.9465 0.9474

ConViT fold_3 0.9589 0.8933 0.9257 0.9261 0.9272
ConViT fold_5 0.9863 0.9333 0.9595 0.9598 0.9600

Others inspired
in ViT

ResMLP_12 fold_3 0.9315 0.8533 0.8919 0.8924 0.8947
ResMLP_12 fold_1 0.9452 0.9067 0.9257 0.9259 0.9262

ResMLPB_24 fold_1 0.9452 0.9467 0.9459 0.9459 0.9452
ResMLPB_24 fold_5 0.9863 0.9467 0.9662 0.9665 0.9664
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Table 2. Summary of the results obtained by evaluating the different DL models on the Refuge
dataset according to different metrics. For simplicity, only the results corresponding to the folds with
minimum and maximum balanced accuracy (B. Accuracy) are displayed.

Architecture Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

CNNs

VGG19 fold_4 0.7833 0.8537 0.8467 0.8185 0.5054
VGG19 fold_5 0.8833 0.8898 0.8892 0.8866 0.6145

ResNet50 fold_5 0.8083 0.8065 0.8067 0.8074 0.4554
ResNet50 fold_2 0.8417 0.9009 0.8950 0.8713 0.6159

InceptionV3 fold_4 0.6750 0.9843 0.9533 0.8296 0.7431
InceptionV3 fold_3 0.8500 0.9389 0.9300 0.8944 0.7083

Xception fold_5 0.9250 0.6898 0.7133 0.8074 0.3922
Xception fold_2 0.8083 0.8963 0.8875 0.8523 0.5897

ViTs

Original ViT fold_1 0.7000 0.9667 0.9400 0.8333 0.7000
Original ViT fold_4 0.8167 0.9343 0.9225 0.8755 0.6782

Swin Base fold_2 0.6833 0.9389 0.9133 0.8111 0.6119
Swin Base fold_5 0.8167 0.9194 0.9092 0.8681 0.6426

Swin Tiny fold_1 0.5500 0.9454 0.9058 0.7477 0.5388
Swin Tiny fold_2 0.7667 0.9315 0.9150 0.8491 0.6434

Twins-PCPVT fold_4 0.7750 0.8546 0.8467 0.8148 0.5027
Twins-PCPVT fold_2 0.8417 0.8713 0.8683 0.8565 0.5611

Hybrid models

DeiT fold_5 0.7417 0.9370 0.9175 0.8394 0.6426
DeiT fold_4 0.7833 0.9352 0.9200 0.8593 0.6620

CaiT_XXS36 fold_3 0.5000 0.9741 0.9267 0.7370 0.5769
CaiT_XXS36 fold_5 0.7917 0.9083 0.8967 0.8500 0.6051

CaiT_S24 fold_3 0.7083 0.9417 0.9183 0.8250 0.6343
CaiT_S24 fold_1 0.8333 0.9009 0.8942 0.8671 0.6116

CeiT fold_3 0.6833 0.8481 0.8317 0.7657 0.4481
CeiT fold_4 0.7917 0.8935 0.8833 0.8426 0.5758

ConViT fold_1 0.6250 0.9667 0.9325 0.7958 0.6494
ConViT fold_2 0.8333 0.9435 0.9325 0.8884 0.7117

Others inspired
in ViT

ResMLP_12 fold_4 0.6417 0.8750 0.8517 0.7583 0.4639
ResMLP_12 fold_1 0.8333 0.8296 0.8300 0.8315 0.4950

ResMLPB_24 fold_2 0.7250 0.9833 0.9575 0.8542 0.7733
ResMLPB_24 fold_3 0.8333 0.9380 0.9275 0.8856 0.6969

Table 3. Summary of the results obtained by evaluating the different DL models on the Drishti-Gs1
dataset according to different metrics. For simplicity, only the results corresponding to the folds with
minimum and maximum balanced accuracy (B. Accuracy) are displayed.

Architecture Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

CNNs

VGG19 fold_4 0.8857 0.7419 0.8416 0.8138 0.8857
VGG19 fold_3 0.8429 0.8065 0.8317 0.8247 0.8741

ResNet50 fold_3 0.8143 0.7419 0.7921 0.7781 0.8444
ResNet50 fold_1 0.9286 0.7742 0.8812 0.8514 0.9155

InceptionV3 fold_2 0.8571 0.7419 0.8218 0.7995 0.8696
InceptionV3 fold_5 0.8857 0.7742 0.8515 0.8300 0.8921

Xception fold_2 0.8714 0.6774 0.8119 0.7744 0.8652
Xception fold_3 0.8286 0.7419 0.8020 0.7853 0.8529

ViTs

Original ViT fold_2 0.5429 0.9032 0.6535 0.7230 0.6847
Original ViT fold_3 0.7857 0.8387 0.8020 0.8122 0.8462

Swin Base fold_2 0.6429 0.8065 0.6931 0.7247 0.7438
Swin Base fold_5 0.8714 0.7742 0.8416 0.8228 0.8841

Swin Tiny fold_2 0.6857 0.8387 0.7327 0.7622 0.7805
Swin Tiny fold_3 0.8000 0.8065 0.8020 0.8032 0.8485

Twins-PCPVT fold_3 0.6571 0.8065 0.7030 0.7318 0.7541
Twins-PCPVT fold_2 0.9000 0.6774 0.8317 0.7887 0.8811
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Table 3. Cont.

Architecture Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

Hybrid models

DeiT fold_2 0.6286 0.8710 0.7030 0.7498 0.7458
DeiT fold_5 0.8429 0.7419 0.8119 0.7924 0.8613

CaiT_XXS36 fold_3 0.6000 0.8387 0.6733 0.7194 0.7179
CaiT_XXS36 fold_1 0.7571 0.9032 0.8020 0.8302 0.8413

CaiT_S24 fold_4 0.6714 0.8065 0.7129 0.7389 0.7642
CaiT_S24 fold_1 0.8286 0.8065 0.8218 0.8175 0.8657

CeiT fold_1 0.7857 0.6774 0.7525 0.7316 0.8148
CeiT fold_3 0.7286 0.8387 0.7624 0.7836 0.8095

ConViT fold_1 0.6857 0.8065 0.7228 0.7461 0.7742
ConViT fold_3 0.8429 0.7742 0.8218 0.8085 0.8676

Others inspired
in ViT

ResMLP_12 fold_3 0.5286 0.9032 0.6436 0.7159 0.6727
ResMLP_12 fold_5 0.8429 0.8065 0.8317 0.8247 0.8741

ResMLPB_24 fold_2 0.7429 0.7742 0.7525 0.7585 0.8062
ResMLPB_24 fold_3 0.9143 0.7419 0.8614 0.8281 0.9014

Table 4. Summary of the results obtained by evaluating the different DL models on the Papila
dataset according to different metrics. For simplicity, only the results corresponding to the folds with
minimum and maximum balanced accuracy (B. Accuracy) are displayed.

Architecture Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

CNNs

VGG19 fold_5 0.7816 0.7538 0.7595 0.7677 0.5738
VGG19 fold_2 0.7586 0.8438 0.8262 0.8012 0.6439

ResNet50 fold_5 0.7011 0.7868 0.7690 0.7440 0.5571
ResNet50 fold_2 0.7126 0.8679 0.8357 0.7903 0.6425

InceptionV3 fold_2 0.8276 0.6907 0.7190 0.7591 0.5496
InceptionV3 fold_1 0.7931 0.8018 0.8000 0.7975 0.6216

Xception fold_3 0.8851 0.6336 0.6857 0.7593 0.5385
Xception fold_1 0.7931 0.7538 0.7619 0.7734 0.5798

ViTs

Original ViT fold_4 0.8621 0.5000 0.5748 0.6810 0.4559
Original ViT fold_5 0.8161 0.7126 0.7340 0.7643 0.5591

Swin Base fold_4 0.5862 0.7934 0.7506 0.6898 0.4928
Swin Base fold_1 0.7356 0.8174 0.8005 0.7765 0.6038

Swin Tiny fold_5 0.8161 0.6048 0.6485 0.7104 0.4897
Swin Tiny fold_4 0.7356 0.7814 0.7720 0.7585 0.5714

Twins-PCPVT fold_5 0.8046 0.5299 0.5867 0.6673 0.4459
Twins-PCPVT fold_3 0.7701 0.7844 0.7815 0.7773 0.5929

Hybrid models

DeiT fold_5 0.7931 0.6048 0.6437 0.6989 0.4792
DeiT fold_4 0.6552 0.8443 0.8052 0.7497 0.5816

CaiT_XXS36 fold_3 0.6437 0.8234 0.7862 0.7335 0.5545
CaiT_XXS36 fold_1 0.7241 0.7814 0.7696 0.7528 0.5650

CaiT_S24 fold_4 0.6437 0.8353 0.7957 0.7395 0.5657
CaiT_S24 fold_1 0.7701 0.8054 0.7981 0.7878 0.6119

CeiT fold_4 0.7126 0.7246 0.7221 0.7186 0.5145
CeiT fold_5 0.7701 0.8054 0.7981 0.7878 0.6119

ConViT fold_5 0.7931 0.6317 0.6651 0.7124 0.4946
ConViT fold_1 0.7471 0.7305 0.7340 0.7388 0.5372

Others inspired
in ViT

ResMLP_12 fold_4 0.6092 0.7605 0.7292 0.6848 0.4818
ResMLP_12 fold_1 0.5862 0.8922 0.8290 0.7392 0.5862

ResMLPB_24 fold_4 0.7126 0.7964 0.7791 0.7545 0.5714
ResMLPB_24 fold_5 0.7241 0.8683 0.8385 0.7962 0.6495
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Table 5. Summary of the top five models for each dataset and their values of balanced accuracy.

Ranking Position Test Set Refuge Drishti-GS1 Papila

1 ResNet50
97.32%

InceptionV3
89.44%

ResNet50
85.14%

VGG19
80.12%

2 DeiT
97.32%

ConViT
88.84%

CaiT_XXS36
83.02%

InceptionV3
79.75%

3 Twins-PCPVT
96.67%

VGG19
88.66%

InceptionV3
83.00%

ResMLPB_24
79.62%

4 ResMLPB_24
96.65%

ResMLPB_24
88.56%

ResMLPB_24
82.81%

ResNet50
79.03%

5 VGG19
96.65%

Original ViT
87.55%

VGG19
82.47%

CaiT_S24
78.78%

4. Discussion

The results of Tables 1–4 clearly show that all architectures present the highest perfor-
mance when classifying the images of the test set (Table 1). For this set, most of the trained
models of each architecture have a balanced accuracy exceeding 90%. Such optimal results
are not repeated when the set of retinographies to be classified changes. For example, in
the case of Refuge, the best models classify with a balanced accuracy of around 83–89%
(Table 2). In Drishti-GS1, the best results are in the range of 78–85% (Table 3), and in Papila,
the most efficient models present a balanced accuracy of 74–80% (Table 4). These results are
quite logical, considering that the test set belongs to the same set of images with which the
DL models were trained, while the other three sets are different. Although these datasets
are also composed of retinographies of healthy and glaucoma eyes, the images have been
acquired with other cameras, under other conditions, and have been diagnosed by different
medical experts. Another important factor to consider is that these external datasets are
unbalanced, which is why we are using the balanced accuracy measure as a reference in
our comparison.

Table 5 shows a ranking of the five models with the best-balanced accuracy in the
classification of each dataset. It is interesting to note that, for all the datasets, the best model
found is some type of CNN. However, the difference in efficiency with the second-ranked
models, where some hybrid methods already appear, is very small. There are no significant
differences between the best CNNs and ViT-based models when classifying the different
datasets considered.

To study the variability of the five trained models of each architecture when performing
the same classification task, we have plotted their balanced accuracy values in a Boxplot for
each dataset: test set (Figure 15), Refuge dataset (Figure 16), Drishti-GS1 dataset (Figure 17),
and Papila dataset (Figure 18).

In the case of the test set classification (Figure 15), the architecture with the lowest
efficiency variability is ResMLPB_24. Of the five ResMLPB_24 models, four have a bal-
anced accuracy of around 94%. On the other hand, the architecture ResNet50, previously
presented as the best for classifying the test set (ranked 1st in Table 5), is the one with the
highest balanced accuracy variability among its five trained models. Another interesting
observation is that the VGG19 architecture is the one with the highest median value. This
might lead us to think that this architecture may perform globally better for classifying the
test set; however, it is the last to appear for this task in Table 5.

With the Refuge dataset, the architecture with the lowest balanced accuracy variabil-
ity continues to be ResMLPB_24 (Figure 16). There are other architectures that present
low variability as well but with worse balanced accuracy values (e.g., DeiT and VGG19).
ResMLPB_24 is also the architecture that presents the highest median value, but it is ranked
4th in the ranking (Table 5). On the other hand, the CaiT_XXS36 architecture presents
the highest variability with the worst efficiency values. It is interesting to note that by
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increasing the depth of this model and using its more complex version, CaiT_S24, both
aspects improve notably.
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In the Drishti-GS1 dataset classification, the architecture with the lowest balanced
accuracy variability is Xception, but its efficiency is not among the best. Taking both factors
into account, perhaps VGG19 is more optimal since its variability is low and its balanced
accuracy values are higher. Table 5 shows that the architecture with the model with the
highest balanced accuracy value is ResNet50. This architecture, as shown in Figure 17,
has a medium variability. The original ViT is the one with the highest variability in this
classification problem.
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The architecture with the lowest efficiency variability when classifying the Papila
dataset is CaiT_XXS36, but its efficiency improves notably when, again, the deepest version
of this model, CaiT_S24, is used (Figure 18). VGG19 and ResMLP_24 seem to behave
globally in a similar way, with VGG19 being slightly superior. This coincides with what is
recorded in the ranking presented in Table 5.

One thing that occurs in all cases is that the ResMLP_12 architecture tends to present
significantly lower balanced accuracy values and much higher variability than its deeper
version, ResMLPB_24, just as with the versions of CaiT and Swin selected. Therefore,
it seems convenient to choose, within the same architecture, the deeper versions of the
glaucoma problem addressed in this article. If we do not consider these simplified versions
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of the studied architectures, we can observe that CNNs and ViT-based architectures present
a similar behavior when classifying retinographies.

Whenever a comparative study such as the one proposed in this article is presented, it
is always interesting to analyse the similarities and differences with other related works
published in the scientific literature. In our case, we have not found any work that fol-
lows the experimental methodology we have developed, consisting of training models of
15 different architectures (between CNNs and ViT-based systems) with the retinographies
of two databases (RIM_ONE DL and private data) and testing them with public databases
not used in training (Refuge, Papila, and Drishti-GS1).

In the Introduction Section, we have briefly described other related published
works [14–17,35,36,39]. Some of them analyse and compare the efficiency of some architec-
tures studied in our work, such as ResNet50 [15,16,36,39], VGG19 [16,36], Xception [36],
ViT and Swin Transformer [35,36], DeiT, ResMLP, and CaiT [35]. However, the training
and test conditions are significantly different. On the other hand, there are works that
propose their own architectures, as in [15,17]. Regarding the datasets used in the training
and testing stages, each work uses and combines them differently. Some datasets are public
and match those used in our work, e.g., Drishti-GS1 [14–16,35,36], Rim-ONE DL or some
of its earlier versions [16,35,36,39], and Refuge [35,36], but others are different and, in some
cases, private (ACRIMA [14,35,39], ORIGA [14,17,35,39], SCES [17], HVD [14], OHTS [39],
HRF [15,35], DRIONS-DB [15], LAG [35,39], ESPERANZA [16], ODIR 5K [35]). Taking all
this into account, we will now compare our results with those of these works indicatively.

In [14], the authors use several retinography datasets to train and test three different
types of CNNs (ResNet101, NasNet, and NasNet_large). None of these networks has been
studied in our work, and the only dataset we have used in common is Drishti-GS1. Their
best classification results on this dataset (accuracy 77.23–82.18%) are worse than those
obtained by the CNN architectures used in our study (accuracy 79.21–88.12%).

A comparative study between three CNNs (GoogleNet, VGG, and ResNet50) and an
ensemble model of these architectures is presented in [15]. The datasets used are, again,
different from those used by us, except for Drishti-GS1. With the two CNN architectures
we have in common, VGG and ResNet50, the authors of [15] achieve high accuracy values
of 91.08% and 93.06%, respectively. In our experiments with this dataset, the best VGG19
model presented an accuracy value of 84.16%, and the best ResNet50 model presented an
accuracy value of 88.12%. Our values are lower, but we have not included retinographies
of this dataset in our training, as in [15].

In [16], five different CNN architectures are trained using the Rim-ONE base for
fine-tuning and the ESPERANZA and Drishti-GS1 datasets for deep tuning and the sub-
sequent test process. Of the five architectures, two are analysed in our work: VGG19 and
ResNet50. The best-balanced accuracy value obtained in [16] with VGG19 is 87.48%, and
with ResNet50, it is 85.08%. These values are very similar to those obtained by us in the
classification of the Drishti-GS1 dataset: 85.14% with ResNet50 and 82.47% with VGG19.

A comparison between different CNNs (VGG19, VGG16, Xception, ResNet50, Con-
vNext) and ViT-based (original ViT, Swin Transformer) architectures is presented in [36].
The authors merge the Drishti-GS1, Refuge, and Rim-ONE datasets to train and test the
models. The best accuracy values they found are the following: 93.2% with VGG19, 91.8%
with Xception, 91.1% with ResNet50, 95.8% with ViT, and 91.8% with Swin Transformer. It
can be observed that there are no very significant differences in the performance of CNNs
and ViT-based systems, which is something that we have also found in our experiments.
The results presented in [36] are similar to those obtained in our experiments with the test
set. With Refuge, the results of the CNNs in [36] are slightly higher than those obtained
by our CNNs, and the accuracy values of the ViT-based systems remain similar. With
Drishti-GS1, our results are noticeably worse than those found in [36] for all models. This
difference between accuracy values is logical since, in our study, the Refuge and Drishti-GS1
datasets have been used exclusively for testing, unlike [36], which uses them both to train
and test the models.
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In [35], a comparative study of the performance of eight architectures based on ViTs
is presented, among which we highlight five that coincide with those analysed in our
work: Swin Transformer, CaiT, DeiT, original ViT, and ResMLP. To train and test all the
models, the authors merge nine different public and private datasets so that they manage
to reach a very high number of samples for training. Therefore, they achieved very high
accuracy values: 93.2% with Swin Transformer, 94.5% with CaiT, 88.0% with DeiT, 87.4%
with original ViT, and 91.5% with ResMLP. It is difficult to compare these results with ours
since our training set is much smaller. Even so, we find it important to highlight that the
accuracy values presented in Table 1 (test set classification results) are similar and even
higher in some cases.

Finally, in [39], ResNet50 is compared with DeiT. The experimental methodology
followed in this work is similar to ours: the architectures are trained with a single dataset
(OHTS) and tested with other different datasets (DIGS/ADAGES, ACRIMA, LAG, Rim-
ONE, ORIGA). The authors found that the DeiT architecture generalises better than
ResNet50 in all the experiments. However, in our study, ResNet50 is superior to DeiT
in almost all experiments. This may be because, in both works, the datasets chosen for
training and testing are different.

5. Conclusions

In this research work, we have carried out an exhaustive comparison between the effi-
ciency of CNNs and the most recent ViT-based architectures for the detection of glaucoma
with fundus images. We have observed in the scientific literature that ViT-based systems
are increasingly being used to aid in the diagnosis of glaucoma. These new works defend
the superiority of ViT-based architectures over previous CNNs without having carried out
a detailed study to support this conclusion. Considering the importance of the application
of these systems in medical diagnosis, we consider that an in-depth study such as the one
presented in our work is necessary.

We have tried to include a wide number of CNNs and ViT-based systems to make
the conclusions as substantiated as possible. We have also considered the inclusion of
multiple datasets to improve the reliability of the study’s findings and contribute to a
more complete understanding of the performance of each DL system. All this makes the
present comparative study very extensive. We have made a special effort in the results and
discussion sections to condense all the information into tables and graphs that are useful
for comparing the efficiency of the different architectures.

As a general conclusion, we can observe that the performance is quite similar between
CNNs and ViT-based systems in the test set. With other external test sets, especially
with Drishti-GS1 and PAPILA, CNNs show higher generalisation capacity than ViT-based
systems. This may be because the efficiency of ViT-based systems is highly dependent on
the size of the training set. Perhaps if trained with more samples, ViT-based systems could
become superior to CNNs. Therefore, we consider the size and composition of the datasets
to be very important factors.

A major difficulty encountered in the preparation of this work has been the attempt to
compare the results with other similar studies already published. There is no consensus
on developing a similar experimental methodology to allow an accurate comparison of
architectures. In addition, there is a scarcity of datasets, and the few that exist present great
variability in the way images are acquired and diagnosed.
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