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The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate

diagnostic test so that carriers can be isolated at an early stage. Viral RNA in

nasopharyngeal samples by RT-PCR is currently considered the reference method

although it is not recognized as a strong gold standard due to certain drawbacks. Here

we develop a methodology combining the analysis of from human nasopharyngeal (NP)

samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples

collected in two different viral transport media were analyzed with minimal sample

preparation and the subsequent mass spectra data was used to build different ML

models with two different techniques. The best model showed high performance in terms

of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our

results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple,

safe, fast and economic diagnostic test for COVID-19.
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INTRODUCTION

The COVID-19 pandemic not only represents a major health crisis, but has also had unprecedented
economic repercussions. According to the most recent available report of the World Health
Organization (1), the cumulative number of reported cases of SARS-CoV-2 infections worldwide
has now reached over 98 million people and over 2 million people have died of the disease since the
start of the COVID-19 pandemic in December 2019. Moreover, it has been estimated that the gross
domestic product may drop by more than 10-15% in some countries (2). Taking into consideration
how rapidly the COVID-19 pandemic has spread, often through the transmission of SARS-CoV-2
by asymptomatic individuals (3), fast and economic diagnostic tools are essential for the control of
this devastating pandemic.
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While several diagnostic and surveillance technologies for
SARS-CoV-2 have been either developed or used during the
COVID-19 pandemic (4–6), real-time reverse transcription
polymerase chain reaction (RT-PCR) is currently still the
validated assay for early diagnosis in patients with suspected
SARS-CoV-2 infection (7). However, there are certain concerns
regarding RT-PCR (8) as the gold standard analytical
methodology for pandemic control. PCR-based strategies
are costly, require a lot of technical personnel and laboratories,
and the analysis time is relatively long, limiting the number of
samples that can be processed daily. Although some of these
problems can be overcome by using saliva for COVID-19
diagnosis and a dual RT-qPCR test, the time needed to obtain
results remains high (9, 10). Moreover, most countries do not
have sufficient laboratory resources and, due to the enormous
global demand, are not able to obtain a sufficient supply of PCR
kits. Given this situation, new alternative methodologies need to
be developed.

A useful bioanalytical methodology that would allow most
of these limitations to be overcome is matrix-assisted laser
desorption/ionization mass spectrometry coupled to a TOF
analyzer (MALDI-TOF MS). This technique is the current tool
for rapid, accurate, and cost-effective identification of cultured
bacteria and fungi in clinical microbiology (11, 12) and even
though it is not routinely used in hospitals to identify viruses,
it has been shown to be useful for this purpose (13, 14).
Although some MALDI-TOF MS methodologies need time-
consuming sample preparation, such as protein or nucleotide
extraction, simpler protocols are possible. For example, protocols
that consist only of the mixing of a diluted sample with the
matrix have been successfully applied to differentiate samples
from myeloma patients and healthy subjects (15). In that study,
the analyses of biological samples by MALDI-TOF MS allowed
the patterns or fingerprints of different biological samples to be
obtained, which could be further used to differentiate between
samples (e.g., control vs. disease samples).

The large amount of data obtained using MS spectra
fingerprints requires the combination of powerful statistical
strategies (13) and artificial intelligence methods in order to
be able to identify the diagnostic pattern. These strategies have
been successfully applied in medicine and biomedicine (15, 16).
The fingerprint (pattern recognition) approach avoids tedious
biological sample work and eliminates the need to identify
biomarkers, so considerably reducing the analysis time (17).
With regards to the use of biomarkers, it should also be noted
that single biomarkers are generally considered as insufficient
and so it is often necessary to search for a combination
of several different biomarkers to perform effective clinical
diagnosis (18, 19).

A method based on recording the MALDI mass spectra of
nasal swab samples previously tested for SARS-CoV-2 by RT–
qPCR and their subsequent analysis by machine learning (ML)
has recently been proposed for large-scale SARS-CoV-2 testing
(20). In this study, samples were analyzed after adding a CHCA
solution as a matrix and irradiating the MALDI plates with an
ultraviolet light for 20min to inactivate the viruses. However, in
addition to the problems regarding this methodology discussed

by SoRelle et al. (21), other aspects such as the application of safer
sample inactivation protocols, the use of different viral transport
media and the development of more robust machine learning
protocols have required further progress.

In light of the above, the present work has aimed to
develop a new methodology based on MALDI-TOF MS analyses
of nasopharyngeal samples coupled to methods of artificial
intelligence, allowing COVID-19 to be identified. We have
employed a variety of machine learning approaches to analyze
the pattern spectra (fingerprint) of nasopharyngeal samples in
the two most widely used types of virus transport media. The
methodology developed as a result of these approaches is a
promising tool not only in the battle to control the spread of
COVID-19 but also for post-pandemic testing in local settings
to prevent future major outbreaks.

The hypothesis of the present work was that there is a
MALDI-TOF mass spectral pattern (fingerprint) that can be
assigned as a signature accurately characterizing negative and
positive samples for SARS-CoV-2 infection. The application of a
machine learning (ML) approach to the fingerprint mass spectra
of positive and negative samples of SARS-CoV-2 infection will
allow the development of a fast and efficient approach to support
clinical decisions.

MATERIALS AND METHODS

Chemicals
Sinapinic acid was used as a matrix for MALDI-TOF MS
analysis and was purchased from Bruker Daltonics (Bremen,
Germany; #8201345). Trifluoroacetic acid (TFA) was purchased
from Scharlab (#AC31420100; peptide synthesis grade) and
acetonitrile (mass spectrometry grade) was purchased fromVWR
(#83640.29). Protein Calibration Standard I (#8206355) was used
for MALDI-TOFMS calibration and was purchased from Bruker
Daltonics (Bremen, Germany).

Sample Collection
A total of 237 nasopharyngeal samples were provided by the
ICS-IAS Girona Clinical Laboratory (Parc Sanitari Martí i Julià;
Salt, Catalonia, Spain), according to IDIBGI Biobank (Biobanc
IDIBGI, B.0000872) agreement, to carry out the present study,
which was approved by the Clinical Research Ethics Committee
of the Doctor Josep Trueta Hospital in Girona (ref#2020.088).
A consecutive non-probabilistic model was chased since samples
were provided when available at several time points during the
first COVID19 wave (April–July of 2020). Such samples were
provided either in DeltaSwab ViCUM (#304273; DeltaLab) or
DeltaSwab Virus (#304295; DeltaLab) virus transport medium.
Concretely 149 samples were provided in DeltaSwab ViCUM and
88 in DeltaSwab Virus. Before delivering, they were processed
in the Molecular area of the territorial laboratory of Girona
under biosafety II conditions to perform both the chemical
inactivation and the PCR diagnostics. The sample inactivation
was performed using Ribospin vRD Buffer VL (GeneAll, Korea),
which its principal component is guanidine thiocyanate in a
concentration of 60–70%, by mixing 300 ul of the buffer with
300 ul of the transport medium where the NP sample was
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collected. The RT-PCR diagnosis was performed using two
different methodological platforms which detect 2 targets (N and
E qRT-PCR methodology, Xpert SARS-CoV-2, Cepheid, US) or
4 targets (N, E, S and RpRd genes, Allplex 2019-nCoV assay,
Seegen, South Korea). After sample inactivation and the RT-
PCR analysis samples were send to the laboratory of NEOMA
research group.

Sample Preparation for MS
Inactivated samples, previously tested by RT-PCR in the ICS-IAS
Girona Clinical Laboratory, were then processed for MS analysis
in the laboratory of NEOMA research group of the University
of Girona.

All samples were first diluted 10 times with Milli-Q water.
Theyhe were then mixed in 1:1 ratio with a solution of sinapinic
acid (SA) containing 20mg SA/mL in 60%:40% (v/v) acetonitrile
(ACN): milli-Q water with 0.3% trifluoroacetic acid (TFA).
TFA was added in order to increase the ionization. Finally,
1 ul of the mixture was spotted on a purified stainless-steel
target plate (MTP 384 target ground steel; Bruker Daltonics,
Bremen, Germany) in triplicates and allowed to dry at room
temperature before being analyzed by MALDI-TOF MS. To
avoid carry-over contamination, the target plate was regularly
cleaned in an ultrasonic bath using a specific cleaning procedure
with ultrapure solvents sequentially in this order: 2-propanol,
MilliQ water, 2-propanol and TA30 (350ml ACN: 350ml
TFA 0.1%).

Acquisition of Mass Spectra
Mass spectra were acquired using Autoflex maX with Time-
Of-Flight (TOF) analyzer from Bruker Daltonics (Bruker
Daltonics, Bremen, Germany). Ionization was achieved by
irradiation with a solid phase laser (with patented Smartbeam
technology) operating at 2,000Hz. All spectra were acquired
automatically using a regular raster (in random walk mode)
and 20 shots were made in each raster spot; locations were
calibrated prior to each run. Sample mass spectra was the
sum of 1,800 satisfactory shots taken in 300 shots steps. All
measurements were carried out in a positive linear mode
and each spectrum was externally calibrated using a standard
mixture of peptides (Standard Protein I, Bruker Daltonics). All
mass spectra were acquired using FlexControl software (Bruker
Daltonics, Germany) and each spectrum consisted of more
than 25,000 m/z values with the corresponding intensities in
the mass range from 5 to 20 kDa. The smoothing of mass
spectra by Savitzky-Golay method, the baseline subtraction
by Top-Hat method and the recalibration of each mass
spectrum was performed using the FlexAnalysis 3.4 software
(Bruker Daltonics, Germany). The same software was used to
export all the m/z values with the corresponding intensities
into ASCII format for its further analysis using machine
learning approaches.

Machine Learning
To classify the positive and negative samples a machine learning
approach was adopted. The learned model represents the best
solution given the data samples obtained by MALDI-TOF MS.

To study the performance, two of the most well-known and
successfully applied techniques were selected. Extreme Gradient
Boosting Trees (XBOOST) (22) and Support Vector Machines
(SVMs) (23) were tested using different parameters to obtain
their best results to the problem. A cross-validation (CV) was
applied to study the performance of both XBOOST and SVM.
In standard CV, instances are distributed randomly into CV
partitions. But our study involved three replicas of the same
sample and they were related. Therefore, in this study we
considered the 3 replicas of the same individual as a unique
sample in the CV phase. Also, a number of K = 10-folders was
used because the number of samples was small, but a minimum
of four positive and negative examples were added as a constraint
for each fold to ensure that there are samples of at least two
different individuals. Note that previous to the CV process, 10%
of the samples were randomly separated to perform the test
using the best model selected using CV. The test was done 20
times to avoid bias in the results and guarantee that the results
are independent of the samples selected in the training phase
(double-blind test).

Because the number of available features was large (29,393
m/z values) it is expected that many of them were highly
correlated and some of themmay contain irrelevant information.
To overcome some of the problems that arise using high-
dimensional data, all the experiments were performed using
principal component analysis (PCA) as dimensionality reduction
technique. Then, to analyze what was the optimal number of
dimensions, the SVM and XBOOST methods were evaluated for
5, 10, and 50 projected features.

Both SVM and XBOOST have some hyper-parameters
that require tuning in order to improve results. Three
hyperparameters were fitted:

• Number of estimators (XBOOST): 50 and 10
• Tree depth (XBOOST): 5 and 10
• Subsample (XBOOST): between 50 and 80% in steps of 10%
• Learning rate (XBOOST): 0.01 and 0.05
• Kernel (SVM): radial base and linear functions
• Gamma (SVM): 0.01, 0.001 and 0.0001
• C-penalty parameter (SVM): 1 and 10

In order to tune the hyper-parameters, a systematic procedure
known as grid-search was used. This method tries all possible
combinations of hyper-parameter values. Models for each hyper-
parameter combination are trained with the training partition
and evaluated with the validation partition. The best combination
on the validation set is selected.

Finally, F1-Score was used as a performance measure
(Equation 1) to select the most suitable developed model. This
criterion is very appealing when the positive and negative
classes are unbalanced and we are interested in minimizing the
probability that a random positive sample is included into the
negative sample classification area and vice versa.

F1-score = 2 ∗Precision∗ Recall/(Precision+ Recall)

Precision = TP/(TP+ FP)

Recall = TP/(TP+ FN) (1)
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RESULTS AND DISCUSSION

Based on the hypothesis of differences in the fingerprints
of positive and negative samples, a machine learning (ML)
approach was adopted to build a model for the fast and
efficient classification of these two groups of samples. Different
experiments were designed to test the ability of MALDI-TOF
MS to extract these spectral patterns from the data obtained
from human nasopharyngeal (NP) and enable it to detect patients
infected by SARS-CoV-2.

The Optimization of the MALDI Parameters
It is well-known that several factors can influence the results
obtained by MALDI-TOF MS, including matrix and sample
preparation (24). Moreover, finding the mass range in which the
most relevant information can be found is also an important step.
Therefore, the optimization of the methodology was first carried
out with the objective to find the optimal matrix, sample dilution
and mass range in order to develop a simple procedure that
would allow the maximum number of peaks to be obtained with
acceptable resolutions and intensities. Firstly, undiluted samples
were analyzed but no signals at different mass-to-charge (m/z)
values were observed in the mass spectra. When samples were
diluted 10 times, rich mass spectra with acceptable resolution and

intensities were obtained. Since the idea was to develop a simple
and fast methodology, the analysis of the lowmass range (<1,000
Da) was discarded due to the high background noise generated
by the matrix (25, 26). Finally, we selected the mass spectra in
the 5 to 20 kDa range. This mass spectra range was also used
by Nachtigall et al. (20) in developing a similar methodology. In
contrast we decided to use Sinapinic Acid (SA) for MALDI TOF
MS sample analysis as this is particularly recommended for larger
mass range (27).

First Experiment: Using All Collected
Samples
Initially, the transport media in which the nasopharyngeal
(NP) samples were collected was not considered as a main
experimental criterion. In other words, all spectra acquired
from samples collected in either DeltaSwab-ViCUM or
DeltaSwab-Virus transport media were used without splitting
samples by the transporter. Therefore, different strategies
of ML analysis were performed using the whole dataset
composed of the m/z values, in the 5 to 20 kDa range, and
their corresponding intensities for each sample. A total of
708 mass spectra were obtained by MALDI-TOF analysis,
corresponding to samples that were previously analyzed by

FIGURE 1 | Results of the first experiment. (A) Representative mass spectra of NP samples for SARS-CoV-2: positive (red) and negative (green). (B) Precision-recall

curve from the different models. (C) Average confusion matrix and (D) average performance metrics including the standard deviation (note that the test was performed

20 times selecting random different samples for each iteration) of the best model (SVM + 10PCs cross-validation K = 10).
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TABLE 1 | Model learning (cross validation results K = 10) of all the models tested in the different experiments.

PCs used F1-Score Sensitivity (TPR) Specificity (TNR) Accuracy

XGBOOST SVM XGBOOST SVM XGBOOST SVM XGBOOST SVM

Experiment 1 n = 5 0.625 ± 0.041 0.595 ± 0.073 0.658 ± 0.093 0.780 ± 0.115 0.684 ± 0.062 0.580 ± 0.113 0.677 ± 0.043 0.626 ± 0.078

n = 10 0.620 ± 0.043 0.639 ± 0.056 0.580 ± 0.084 0.580 ± 0.110 0.716 ± 0.066 0.739 ± 0.065 0.678 ± 0.043 0.695 ± 0.056

n = 50 0.587 ± 0.045 0.558 ± 0.057 0.283 ± 0.098 0.238 ± 0.094 0.890 ± 0.055 0.891 ± 0.033 0.679 ± 0.065 0.703 ± 0.048

Experiment 2

(VTM1 results)

n = 5 0.749 ± 0.066 0.759 ± 0.086 0.538 ± 0.168 0.525 ± 0.150 0.946 ± 0.033 0.950 ± 0.051 0.852 ± 0.039 0.832 ± 0.070

n = 10 0.793 ± 0.116 0.826 ± 0.088 0.646 ± 0.242 0.652 ± 0.176 0.939 ± 0.070 0.969 ± 0.031 0.884 ± 0.069 0.879 ± 0.065

n = 50 0.754 ± 0.132 0.700 ± 0.160 0.548 ± 0.275 0.487 ± 0.319 0.961 ± 0.058 0.937 ± 0.071 0.876 ± 0.075 0.845 ± 0.080

Experiment 2

(VTM2 results)

n = 5 0.433 ± 0.080 0.418 ± 0.104 0.273 ± 0.081 0.285 ± 0.200 0.618 ± 0.119 0.588 ± 0.196 0.494 ± 0.082 0.491 ± 0.139

n = 10 0.482 ± 0.106 0.515 ± 0.110 0.241 ± 0.162 0.381 ± 0.206 0.762 ± 0.138 0.688 ± 0.133 0.581 ± 0.111 0.594 ± 0.107

n = 50 0.511 ± 0.120 0.476 ± 0.093 0.158 ± 0.172 0.135 ± 0.148 0.914 ± 0.063 0.925 ± 0.075 0.711 ± 0.083 0.654 ± 0.098

Experiment 3 n = 5 0.891 ± 0.109 0.979 ± 0.048 0.922 ± 0.127 0.974 ± 0.076 0.872 ± 0.157 0.988 ± 0.054 0.897 ± 0.109 0.980 ± 0.044

n = 10 0.950 ± 0.050 0.947 ± 0.066 0.930 ± 0.070 0.987 ± 0.040 0.970 ± 0.090 0.918 ± 0.110 0.981 ± 0.052 0.950 ± 0.063

n = 50 0.868 ± 0.109 0.968 ± 0.055 0.911 ± 0.106 0.989 ± 0.484 0.832 ± 0.214 0.941 ± 0.118 0.882 ± 0.093 0.972 ± 0.045

Robustness

analysis

n = 5 0.647 0.964 0.956 1.000 0.377 0.923 0.687 0.964

n = 10 0.609 0.945 0.922 0.964 0.346 0.923 0.654 0.945

n = 50 0.690 0.902 0.956 1.000 0.446 0.795 0.719 0.902

Bold values represent the best model for each experiment using the selected metric F1-score.

RT-PCR, resulting in 180 positive and 528 negative samples for
SARS-CoV-2 infection.

The mass spectra assigned by PCR as positive samples
presented differences both in the intensity of signals and the m/z
values in comparison to the spectra of PCR negative samples.
Despite the differences exhibited, no specific biomarkers for
any of the positive or negative PCR sample groups were found
(Figure 1A). The ML approach was then applied to analyze
the data from the entire range of the selected m/z pattern
(fingerprint) without applying any variable selection method. Six
models were constructed using both XGBOOST and support
vector machine (SVM) algorithms with different numbers of
principal components (PCs) (5, 10 or 50 PCs) to identify
the conditions that would tend toward lower variance. When
training the different models, performance analyses showed that
the models’ accuracies, sensitivities, and specificities did not vary
significantly between the different number of PCs. Based on the
metric F1-score, which is the harmonic-mean of precision and
recall, the best model for this experiment was obtained by SVM
+ 10PCs. The model was able to perform better than baseline
(F1-Score = 0.639 ± 0.056) (Table 1), showing the existence of a
general pattern associated to the mass spectra. These results can
also be observed in the precision-recall (PR) curve (Figure 1B),
providing insights that suggest the best model. Overall, the
resulting model reached an 0.580 ± 0.110 and 0.739 ± 0.065
of sensitivity and specificity, respectively. This model was then
applied to perform the test process. Figures 1C,D shows the
matrix confusion of this experiment with the summary of the
predicted results for all the samples used to perform the test.

The results demonstrated that the developed a methodology,
without considering the viral transport media, enables SARS-
CoV-2-positive and -negative samples to be discriminated with
around 70% accuracy, 60% sensitivity and 74% specificity.
Although these percentages may be lower than the expectations,
it is worth noting that RT-PCR for COVID-19 diagnosis only

reaches clinical sensitivities of between 38 and 78% (28, 29). In
the case of RT-PCR in nasopharyngeal swabs, sensitivity has not
been found to exceed 70% (30, 31). Therefore, our first developed
model using two different transport media would be as useful
as RT-PCR in monitoring the spread of COVID-19 during a
pandemic in which both incidence and prevalence are high. It
is important to note that the mass spectra of the samples used to
train and develop the different ML models were classified in the
control group and in the COVID-19 group based on the previous
RT-PCR result. However, there is a high rate of false negatives
in RT-PCR results, estimated at between 2 and 29% by Arevalo-
Rodriguez et al. (32), which may hinder the learning, validation
and testing steps of the classification model. The drawbacks of
RT-PCR as a diagnostic test for COVID-19 and the lack of a clear
gold-standard complicates the evaluation of new methodologies
(8, 33, 34).

Interestingly, the optimizedmodel for the prediction of SARS-
CoV-2-positive and negative samples shows a greater ability to
detect negative samples than positive ones (despite the standard
deviation of the sensitivity being quite large for the different
tests performed). These results may indicate that the developed
model has a dependence on factors such as the heterogeneity of
the samples and the noise of the data. This heterogeneity of the
data in this first experiment may be caused by the different viral
transport media used for sample collection. The high demand
during the COVID-19 pandemic for the specific transport media
for SARS-CoV-2, resulted in the use of alternative viral transport
media, following the recommendations of the FDA, that had the
effect of increasing the heterogeneity of the samples received in
the laboratories (35).

Second Experiment: Splitting Samples by
the Viral Transport Media
To test the hypothesis that the heterogeneity of the data was a
result of the different viral transport media that were used, the
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FIGURE 2 | Results for DeltaSwab-ViCUM (VTM1). (A) Representative mass spectra of NP samples for SARS-CoV-2: positive (red) and negative (green). (B)

Precision-recall curve from the different models. (C) Average confusion matrix and (D) average performance metrics including their standard deviation (the test was

performed 20 times selecting randomly different samples for each iteration) of the best model (SVM + 10PCs cross-validation K = 10).

dataset was split by DeltaSwab-ViCUM (viral transport medium
1, VTM1) and DeltaSwab-Virus (viral transport medium
2, VTM2).

As for VTM1, 443 mass spectra (111 and 332 from samples
that were positive and negative for SARS-CoV-2, respectively)
were obtained from NP samples collected in this viral transport
media. As observed in the first experiment, the spectra of the
two groups present differences in certain regions (Figure 2A).
The same ML strategy as was used in the previous section was
then applied to analyze the information from the corresponding
pattern of the mass spectra (fingerprint). The results did not
vary substantially between the different ML models applied to
perform the analysis (Figure 2B and Table 1). However, of the
different models tested the best results in terms of the F1-score
were obtained when the SVM using 10 PCs (F1-score = 0.826 ±
0.088) was applied (Table 1).

On the other hand, 264 mass spectra [69 positive and 195
negative for SARS-CoV-2, respectively] were obtained from NP
samples collected in VTM2. In this case, no clear differences
were observed between the spectral pattern of positive and
negative samples (Figure 3A). After analyzing the spectral data
by the different ML models, the best model was obtained
for SVM using 10PCs (F1-score = 0.515±0.110) (Figure 3B
and Table 1).

The results obtained relating to the performance of the two
bestmodels clearly differed. Accuracy (VTM1= 0.879± 0.065 vs.
VTM2 = 0.594 ± 0.107), sensitivity (VTM1 = 0.652 ± 0.176 vs.
VTM2= 0.381± 0.206), and specificity (VTM1= 0.969± 0.031
vs. VTM2 = 0.688 ± 0.133) all varied significantly between the
two transport media (Figures 2C,D, 3C,D). The model that gave
the best results was the one with VTM1, reaching 88, 65, and 97%
for accuracy, sensitivity and specificity, respectively. The results
prove that these two virus transporters behave differently and that
VTM1 is better suited for the detection of SARS-CoV-2 infected
samples. This finding that the model is reagent-dependent is
unsurprising as the use of different analytical platforms in clinical
laboratories require specific sample collectors and reagents in
order to obtain accurate results.

Analyzing the results more deeply, it can be seen that
despite the promising results related to VTM1 in this second
experiment, there was still a significant standard deviation value
in the sensitivity (±0.176), suggesting either internal VTM1
heterogeneity and noisy samples. This heterogeneity might be
due to the nucleic acid amplification technique used for their
analysis since different PCR platforms were used in the clinical
laboratory. The main difference between the used platforms in
this study lies in the number of the targets detected by PCR
amplification related to viral structural proteins. At that time of
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FIGURE 3 | Results for DeltaSwab-Virus (VTM2). (A) Representative mass spectra of NP samples for SARS-CoV-2: positive (red) and negative (green). (B)

Precision-recall curve from the different models. (C) Average confusion matrix and (D) average performance metrics including their standard deviation (the test was

performed 20 times selecting randomly different samples for each iteration) of the best model (SVM + 10 PCs cross-validation K = 10).

the pandemic that we collected the samples, two targets (N and
E qRT-PCR methodology, Xpert SARS-CoV-2, Cepheid, US) or
four targets (N, E, S and RpRd genes, Allplex 2019-nCoV assay,
Seegen, South Korea) were detected, considering both platforms
methodologically equivalents. However, these platforms provide
positive or negative results for the SARS-CoV-2 detection by
using different diagnostic algorithms (true positive is considered
when we observe at least two targets amplified). It has to be
highlighted that the sensibility and the specificity of the RT-PCR
is assay-dependent (6, 30, 33, 36). So, it is important to remark
that the analytical sensitivity and specificity of these platforms,
which are both qualitative, can change due to the difference in
the number of the targets detected.

Despite this methodological platform variability, we
hypothesize that the greatest source of heterogeneity might
be the moment during the pandemic at which the samples
were collected. It is known that disease prevalence plays an
important role in the accuracy of a specific test (33, 37, 38). The
prevalence of COVID-19 was different during the peak of the
pandemic than at the beginning of the de-escalation phase when
the incidence of infections was much lower. Remarkably, the
available number of SARS-CoV-2-positive samples for analysis
was extremely low when compared with the negative ones. As
a result, the class imbalance observed in the dataset was due to

the low number of samples collected at the beginning of the
de-escalation phase.

In light of the above, we decided to split the samples
collected in viral transport media 1 into two groups based
on the moment during the pandemic at which they were
collected. Hence, in a third experiment, samples collected
during the peak of the pandemic period were used for
ML calculations due to their greater homogeneity, while
those collected later during the de-escalated phase when the
incidence of infections was much lower were discarded for
this purpose.

Third Experiment Focusing on
DeltaSwab-ViCUM Transport Media
For this third experiment, NP samples collected in VTM1
between April and the beginning of May were analyzed. A total
of 173 mass spectra (89 and 84 from samples that were positive
and negative for SARS-CoV-2, respectively) were obtained and
analyzed in this experiment.

When the mass spectra of positives NP samples were
compared with the mass spectra of the negative ones,
noticeable differences were observed in the profile of the mass
spectra (Figure 4A). None of the performance measures varied
significantly with the different numbers of PCs selected nor
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FIGURE 4 | Results for DeltaSwab-ViCUM (VTM1) within the high incidence pandemic period. (A) Representative mass spectra of NP samples for SARS-CoV-2:

positive (red) and negative (green). (B) Precision-recall curve from the different models. (C) Average confusion matrix and (D) average performance metrics including

their standard deviation (the test was performed 20 times selecting randomly different samples for each iteration) of the best model (SVM + 5PCs cross-validation

K = 10).

with the different ML approaches. Although all of the models
showed good results, the one with the highest F1-score was
the SVM using 5 PCs (F1-score = 0.979 ± 0.048) and so
this was considered to be the best model (Figure 4B and
Table 1). These results were not only highly precise but also
had low variability, demonstrating that the learned models
are independent of the training data selected and valid for
SARS-CoV-2 infection detection in future samples. The average
confusion matrix (Figures 4C,D) shows the high performance
obtained for both negative and positive samples in terms
of accuracy, sensitivity and specificity, in all cases reaching
values higher than 90% (0.981 ± 0.052, 0.993 ± 0.040, and
0.974± 0.085, respectively).

Considering the promising results obtained in this third
experiment, a final experiment was performed to evaluate the
robustness of the methodology in which the results of an
independent set of samples were tested.

Robustness Analysis and Applicability
As has been said, two different sample sets were acquired
during the peak of the pandemic. Since the final objective
is to develop a methodology that is able to discriminate
between a SARS-CoV-2-positive and -negative sample,
we needed to test whether an independent data set was

correctly classified using the model that was built using a
different sample set.

With all the previous results described above, we decided to
test the methodology using the same samples as in the third
experiment, consisting of NP samples collected in VTM1 during
the peak of the pandemic but selecting different time periods to
train and test. Thereof, these group of samples consists of two
independent sample sets. The first set (Set 1; S1) consisted of NP
samples collected in VTM1 at the end of April 2020 while the
second set (Set 2; S2) corresponded to those samples collected in
the same transport media at the beginning of May. Unlike the
third experiment where all samples were considered as a single
group, in this experiment the 89 mass spectra (45 positive and 44
negative) of the samples of set 1 (S1) were used to train a model
and the 84mass spectra (45 positive and 39 negative) of set 2 were
used to test it.

The mass spectra of the two sets of samples are shown in
Figure 5A. As can be seen, the positive and negative samples for
SARS-CoV-2 infection have clearly distinct fingerprints. In this
experiment, the best model, which was the SVM using 5 PCs,
had a F1-score of 0.964 (Figure 5B and Table 1). Excellent results
were obtained in terms of accuracy, sensitivity and specificity,
reaching values of 97, 100 and 92%, respectively (Figure 5C).
Moreover, these high values with low variation errors showed
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FIGURE 5 | Developed methodology robustness. (A) Representative mass spectra of NP samples [positive (red) and negative (green)] for SARS-CoV-2 of S1 (top

mass spectra) and S2 (down mass spectra). (B) Precision-recall curve from the different models. (C) Matrix confusion showing the summary of the results of all the

samples used in the test phases and performance measures of the best model (SVM + 5PCs cross-validation K = 10). Note that no errors are included given that the

results correspond to a single test set.

the robustness of the developed methodology when used for the
detection of SARS-CoV-2-positive samples.

Overall, our results demonstrate that the developed method
represents a promising method for the detection of SARS-
CoV-2-positive samples. As it can be seen, the best results are
achieved using the VTM1. However, a similar methodology
was also described by Nachtigall et al. (20) where another
viral transport media (Cary-Blair transport medium) was used.
In contrast to what we have undertaken here, they did
not study neither the effect that the use of different viral
transport media might have in the results nor performed
double-blind test in the ML. Another difference is that
the samples used in our study were chemically inactivated
whereas only ultraviolet irradiation was performed in their
study. This detail is of great significance given that SARS-
CoV-2 is extremely infectious and working with inactivated
samples not only reduces the risk of in-lab infection during
the experimental procedure but also reduces the mental
stress that could be experienced by laboratory staff (39). In
line with our results, an earlier study has also found that
using inactivated samples does not interfere with RT-PCR
results (40).

Due to the high infectivity rate of SARS-CoV-2, an accurate
and rapid diagnosis of both symptomatic and asymptomatic
patients is needed to reduce the spread of the virus (31, 40).
Different diagnostic methodologies have been developed, each
with its own specific applications as well as its own its advantages
and drawbacks (5). However, all these methodologies share
certain limitations: low sensitivity, high rate of false negatives,
high dependence on the moment of the diagnostic window in

which the sample is collected, etc. (8, 28, 30, 34, 41). Given
that asymptomatic infected people can also spread the virus,
a rapid and economic screening test is needed to detect those
SARS-CoV-2-positive patients without symptoms (3, 5, 42).
Considering the cost of materials per specimen, we estimate that
the cost of MALDI-TOFMS will be no more than 25% of the cost
of RT-PCR analysis. With regards to the length of time required
to receive results, the turn-around-time of a conventional RT-
PCR in which an RNA extraction phase is also needed is around
6 h (40) whereas the analysis of the NP samples by MALDI-
TOF MS takes less than a third part of this. Therefore, the
use of MALDI-TOF -MS analysis, which is widely available in
clinical laboratories, as a screening technique for SARS-CoV-
2 infection detection will offer enormous savings both in time
and cost.

As said, community prevalence and pre-test probability have
an important effect on the positive and negative predictive
value of a diagnostic test (37, 38). Under a clinical point
of view, this pandemic situation has been one of the most
challenging experiences in the laboratories; recruiting resources,
reagents, methodological platforms and personal staff has been
the most difficult goal to achieve for the very last months.
Nowadays, this new situation is extremely demanding due to
the high incidence and prevalence in the general population.
Vaccines are ready to be used as immunological protection
against SARS-CoV-2 (43) so we will probably notice shortly a
descent of the cases. In this future and new scenario and with
lower prevalence in the population, we will need a strong and
accurate methodology that provides results requiring less time
and investment. MALDI-TOF is the best option available in
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FIGURE 6 | Infographic of the simulation of the results in the society. (A) Simulation in a pandemic situation. (B) Simulation in a post-pandemic situation.

clinical laboratories that can reach this purpose. Moreover, this
equipment is commonly found in clinical laboratories also in
the developing countries, which means that the implementation
of the developed methodology would not require a huge
economic cost.

Finally, in order to estimate the benefit to society of this
innovation, we have used the online calculator of the BMJ (33)
applying our best developed model. Firstly, a pandemic situation
was simulated taking an estimated prevalence of COVID-19
in Europe of 80%, which was a pre-test probability calculated
by the WHO. If 100 people were tested, and only 1 false
negative and 1 false positive were obtained (Figure 6A), the
probability of having COVID-19 if the test is negative is only
5%. To simulate the results in a post-pandemic situation, the
pre-test probability was set at 16% which is the estimated
prevalence of the influenza virus in Europe. In this case,
only 3 false positives and no false negatives were obtained
(Figure 6B). These two simulations strongly support our own
conclusion that the developed methodology, consisting in
the analysis NP samples by MALDI-TOF-MS in combination

with machine learning approaches, is suitable to diagnose
COVID-19 patients not only in pandemic situations but also
in an epidemic situation as a screening tool in the first steps
of diagnosis.
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