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a b s t r a c t

On July 23, 2022, monkeypox disease (mpox) was declared a Public Emergency of International Concern 
(PHEIC) by the World Health Organization (WHO) due to a multicountry outbreak. In Europe, several cases 
of mpox virus (MPXV) infection related to this outbreak were detected in the Canary Islands (Spain). Here 
we describe the combination of viral DNA sequencing and bioinformatic approaches, including methods for 
de novo genome assembly and short- and long-read technologies, used to reconstruct the first MPXV 
genome isolated in the Canary Islands on the 31st of May 2022 from a male adult patient with mild 
symptoms. The same sequencing and bioinformatic approaches were then validated with three other po-
sitive cases of MPXV infection from the same mpox outbreak. We obtained the best results using a re-
ference-based approach with short reads, evidencing 46–79 nucleotide variants against viral sequences 
from the 2018–2019 mpox outbreak and placing the viral sequences in the new B.1 sublineage of clade IIb of 
the MPXV classification. This study of MPXV demonstrates the potential of metagenomics sequencing for 
rapid and precise pathogen identification.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Monkeypox (mpox) virus (MPXV) is a zoonotic Orthopoxvirus 
(OPV) (family Poxviridae) [1,2] endemic to West and Central Africa 
[3,4] that causes mpox disease [5]. Mpox has been described in 
humans in Central and Western Africa (occurring mainly in tropical 

forest areas of Central Africa) as well as in other parts of the world 
[6–11]. On approximately 23 July 2022, because mpox cases were 
reported in several non-endemic countries, predominantly in Europe 
[12–17], the WHO declared community transmission of the virus 
[18,19]. This global outbreak requires epidemiological surveillance 
due to newly reported mutations of the virus [20,21]. Most cases 
reported by the 7th of November 2022 have been presented through 
sexual health or other health services and have involved mainly men 
who have sex with men (MSM) [22–25]. Several clinical studies have 
demonstrated the human transmission of the virus through sexual 
contact [26–28]. By early June 2022, 129 viral genomes had been 
deposited into GISAID (https://gisaid.org) [29] with 46 single 
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nucleotide variants (SNPs) shared by all these sequences and dif-
fering from the viral genome sequences from the 2018–2019 mpox 
outbreak [30]. Preliminary data from polymerase chain reaction 
(PCR) assays indicate that these MPXV strains detected in Europe 
and other non-endemic areas belong to clade two (II) [31–38].

In Europe, several cases of MPXV infection have been associated 
with 2022 outbreaks in the Canary Islands and Spain [31]. A few viral 
sequences from samples collected in Spain have been reported [39]. 
As of June 2022, a total of 15 positive cases were confirmed in the 
Canary Islands [40], and this number increased to a total of 176 by 
early November 2022 [41]. Here, we describe the combination of 
methodological approaches to obtain the draft sequences of the first 
MPXV genomes isolated in the Canary Islands on the 31st of May 
2022 from a male adult patient with one week-onset mild symptoms 
(fever, odynophagia) who presented at the emergency room but did 
not necessitate hospital admission. An expedited description of the 
case and the resulting draft sequences was publicly posted in mid- 
June 2022 [12]. Validation of procedures and results was performed 
using samples from three other positive cases isolated in the Canary 
Islands from the same mpox outbreak.

2. Materials and methods

2.1. DNA extraction and PCR testing

For the first incident mpox case (MPXV01), viral DNA was ex-
tracted at the Hospital Universitario Ntra. Sra. de Candelaria (Santa 
Cruz de Tenerife, Spain) from five samples (nasopharyngeal swab, 
lesion crust, and vesicles) from the same patient using the eMAG 
system (Biomerieux) following the manufacturer’s instructions. 
Virus inactivation was conducted under a biosafety class II cabinet 
(TELSTAR bio-II-A) following ECDC procedures [42]. The diagnosis of 
the MPXV infection was confirmed using the LightMix Modular Or-
thopox (Roche) and a real-time PCR assay described elsewhere [43]. 
This assay yielded threshold cycle values in the range of 17–33 in 
these samples. To further validate the sequencing data and bioin-
formatic analysis results, additional viral DNA samples were ob-
tained from three other patients (MPXV05 to 07) from the same 
outbreak (Table 1).

2.2. Short- and long-read DNA sequencing

Five independent DNA dual index libraries (one for each sample) 
were processed from the first positive case at Instituto Tecnológico y 
de Energías Renovables (ITER) with a Nextera XT DNA Library 
Preparation Kit (Illumina Inc.), following the manufacturer’s re-
commendations with manual library normalization, and pooled 
prior to sequencing. The quality of the libraries was assessed with a 
D1000 ScreenTape kit on the 4200 TapeStation System (Agilent). 
Library concentrations ranged from 7.4 to 10.4 nM and showed a 
fragmentation profile ranging from 721 to 808 bp. The mean frag-
ment size for the sequencing pool was 677 bp, as measured with a 

D1000 High Sensitivity ScreenTape kit (Agilent). Paired-end se-
quences were obtained on a MiSeq Sequencing System (Illumina 
Inc.) using reagent kit v3 chemistry with 150 cycles and an expected 
throughput of 3.3–3.8 Gb. The pool concentration was 15 pM, and 5% 
of PhiX Control V3 was used as the internal control.

DNA libraries for nanopore sequencing were also prepared from 
the sample with the highest yield (taken from a skin lesion exudate) 
from this first mpox case using the Rapid Barcoding kit (SQK- 
RBK004) from Oxford Nanopore Technologies (ONT). To increase the 
quantity of the starting material, the protocol used 30–45 ng of the 
DNA extract in 7.5 μl of reaction to generate 12 independently bar-
coded libraries that were pooled to obtain the maximum yield from 
the run. The pooled libraries were loaded onto an R9.4.1 flow cell and 
run in a MinION (ONT) for 42 h. Basecalling of raw ONT signal data as 
well as demultiplexing and adapter trimming was carried out using 
Guppy v.6.0.7 with default parameters and the high-accuracy base-
calling model.

The three additional samples from the same outbreak were se-
quenced with an Illumina Nextera XT DNA Library Preparation Kit 
(Illumina Inc.) following the same protocol as for the first positive 
sample. Library concentrations ranged from 8.3 to 10.7 nM and 
showed a fragmentation profile ranging from 603 to 646 bp. For ONT 
sequencing, the same Rapid Barcoding kit (SQK-RBK004) was used, 
and three barcoded libraries for each sample were pooled to max-
imize the run performance.

2.3. Bioinformatic analyses and assembly comparisons

As the first step, the pair individual demultiplexed FASTQ of 
Illumina files was interleaved with BBMap (Reformat tool) and then 
merged into a single interleaved FASTQ file. Then, two different 
bioinformatic tools were tested to identify and remove the human 
reads: Kraken2 [44] and NCBI SRA Human Scrubber v.1.0.2021_05_05 
(only used for Illumina sequencing data). The remaining Illumina 
and ONT reads were subjected to different bioinformatic procedures 
to obtain draft sequences (Fig. 1).

A reference-based analysis was conducted with Illumina un-
classified reads that were mapped to the MPXV genome MPXV- 
UK_P2 (GenBank MT903344.1) by means of three alternative 
aligners: minimap2 v.2.24-r1122 [45], BWA-MEM v.0.7.17 [46], and 
Bowtie2 v.2.4.5 [47]. At this stage, duplicate metrics from PICARD 
v.2.18.7 [48] and coverage metrics from SAMtools v.1.6 [49] and 
mosdepth v.0.3.3 [50] were obtained from the remaining interleaved 
paired-end reads. Variant calling was carried out with two alter-
native algorithms, iVar v1.3.1 [51] and LoFreq v.2.1.5 [52], using de-
fault parameters against the MPXV MT903344.1 genome. For 
downstream analyses, a consensus sequence was obtained by piping 
a SAMtools v.1.6 pileup with iVar v.1.3.1 consensus as described 
elsewhere [53].

Additionally, a hybrid de novo assembly was obtained by com-
bining the filtered Illumina and ONT reads using custom script based 
on the Unicycler v.0.5.0 [54] assembler. Bandage v.0.9.0 [55] was 
used to visualize the resulting contigs in the assembly. A refined 
version of this hybrid de novo assembly was obtained after running 
Kraken2 v.2.1.2 with the PlusPF database to remove nonviral as-
sembled contigs. The consensus sequence of this assembly was ob-
tained by mapping the resulting contigs to the MT903344.1 genome 
and piping SAMtools v.1.6 pileup with BCFtools v.1.6 and seqtk 
v.1.3-r106.

Finally, the two selected consensus sequences (Illumina-only and 
hybrid de novo assembly) were compared against MT903344.1 as the 
reference genome with QUAST v.5.0.2 [56].

Table 1 
Sample information from the four patients analyzed in the study. 

Sample Age Sex Collection date 
(mm-day-year)

Sample type Ct

MPXV01 36 Male 05–31–2022 Skin lesion 17
Nasopharyngeal 33
Skin lesion 21
Skin lesion 22
Skin lesion 17

MPXV05 37 Male 07–01–2022 Skin lesion 17
MPXV06 34 Male 07–01–2022 Skin lesion 15
MPXV07 30 Male 07–05–2022 Skin lesion 21

Ct, Cycle threshold.
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2.4. Phylogenetic analysis

The most complete consensus sequence resulting from the pre-
vious stage was aligned with 126 MPXV sequences downloaded from 
NCBI GenBank (Table S1) using MAFFT v.7.505 [57]. A phylogenetic 
analysis was performed using both IQ-TREE v.2.2.0.3 [58] with the 
K3Pu+F+I model as the best-predicted model and default parameters 
and using a local instance of Nextstrain [59].

3. Results

The Illumina sequencing run produced 3.88 Gb and 25.5 M reads 
in total. A mapping of 101,814 and 100,897 Illumina reads was ob-
tained using minimap2 on the NCBI SRA Human Scrubber (mean 
depth: 38.3×) and Kraken2 (mean depth: 38.1×), respectively, thus 
providing equivalent results (Table 2). We estimated as few as 2.81% 
of the reads as duplicates and that 99% of the MPXV genome was 
covered ≥ 1×, with a fraction of 85% of the viral genome covered at 
≥ 10×. The combinations of mapper and variant caller that yielded 

the smallest and largest number of nucleotide variants against the 
reference were BWA+LoFreq (46 nucleotide variants) and 
minimap2 +iVar (67 nucleotide variants), respectively (Table 2). To 
maintain the maximum sequence variability for downstream ana-
lyses, the consensus sequence for Illumina-only reads was obtained 
for the minimap2 +iVar combination (total size of 197,221 bp), pro-
viding a near-fully complete viral genome (99.91%) against the re-
ference.

The ONT run provided 1.98 Gb and a total of 1.38 M reads, ranging 
from 499 to 101,895 bp in length, with a mean length of 1,432 bases. 
ONT sequencing provided 2,246 nonhuman mapping reads after 
filtering with Kraken2, resulting in a theoretical viral genome depth 
of 14.9×. A hybrid de novo assembly based on Illumina and ONT 
Kraken2-filtered reads was performed and resulted in four contigs 
(Fig. 2). Contigs 1 and 2 accounted for 186,315 bp and 4,703 bp 
(191,018 bp total), respectively, and mapped to the MPXV genome 
Zaire-96-I-16. Contigs 3 and 4 spanned 10,530 bp in total but did not 
map to the MPXV reference. Thus, a consensus sequence was built 
from this hybrid de novo assembly (including only contigs 1 and 2) 

Fig. 1. Full bioinformatic pipeline to obtain the MPXV sequences from Illumina-read only and the hybrid de novo assembly to infer phylogenetic relationships with other MPXV 
genomes available from public repositories.

Table 2 
Comparative of mapped Illumina reads and coverage using different aligners (Bowtie2, BWA, Minimap2) and called variants using iVar and LoFreq callers. 

MPXV01 Kraken2 NCBI SRA Human Scrubber

Total reads Non-human Reads Aligners Mapped reads Coverage iVar LoFreq Non-human Reads Aligners Mapped reads Coverage iVar LoFreq

51,042,414 4,009,480 Bowtie2 101,092 (2.52%) 38.15 65 47 10 Bowtie2 100,851 (0.96%) 38.34 54 30
BWA 101,456 (2.53%) 38.25 56 46 BWA 105,484 (1.00%) 38.84 58 46
Minimap2 100,907 (2.52%) 38.08 67 48 Minimap2 101,838 (0.96%) 38.28 67 48

A. Muñoz-Barrera, L. Ciuffreda, J. Alcoba-Florez et al. Computational and Structural Biotechnology Journal 21 (2023) 2197–2203

2199



and the MT903344.1 MPXV reference genome, spanning a total size 
of 197,222 bp. It should be noted, however, that because this se-
quence includes 6,471 undetermined bases, the consensus sequence 
only covered 96.75% of the reference genome (Table 3).

In addition to the number of undetermined bases, which were 
much higher in the hybrid de novo assembly sequence than in the 
Illumina-only consensus sequence, we observed small differences 
overall between the two MPXV genome assemblies obtained 
(Table 3). In brief, the hybrid de novo assembly was able to retrieve a 
slightly lower proportion of the reference genome, although it had a 
similar GC content and fewer mismatches than the Illumina-only 
assembly.

Based on the above findings supporting more completeness for 
the Illumina-only assembly, we opted to place this consensus se-
quence in a phylogenetic context (Fig. 3). This analysis indicated that 
the draft MPXV genome sequence belongs to the new B.1 sublineage 
of clade II [60–65]. In addition, the closest sequences were related to 
the Slovenian-Mpox GenBank-released genomes, contributing 

further evidence of community spread in the present worldwide 
mpox outbreak.

To validate the utility of these approaches, samples from three 
other positive patients from the same mpox outbreak detected in the 
Canary Islands were sequenced with both sequencing technologies 
following the same laboratory and bioinformatic procedures. All 
samples offered similar sequencing results to those described for the 
first positive case in terms of the number of nonhuman sequenced 
reads, ranging from 48.2 to 307.3 M short reads and 2.4–24.3 M long 
reads. For the analysis of these data, as part of the Illumina-only 
strategy, minimap2 and iVar were used for mapping and variant 
calling, following the selected combination as for the first positive 
case to maximize sequence variability. For the hybrid de novo as-
sembly, variants were calculated from the mismatches in the se-
quences reported by QUAST. The results also showed the best 
performance for the Illumina-only assembly approach, supporting 
the previous results and placing all three viral sequences in the B.1 
sublineage of clade IIb (Table 4).

4. Discussion

Here, we provide the draft sequences of the first MPXV viral 
genomes isolated in the Canary Islands on 31 May 2022, corre-
sponding to the B.1 sublineage of clade IIb. We used diverse se-
quencing and bioinformatic approaches, including methods for de 
novo genome assembly and combining short and long sequencing 
reads. The best results (higher sequence similarity and higher 
genome coverage compared to the reference) were obtained using a 
reference-based approach with Illumina-only reads. With this ap-
proximation and using combinations of mappers and variant callers, 
between 46 and 67 nucleotide variants were observed for the viral 
sequence isolated from the first patient when compared to the re-
ference viral genome, which is compatible with the divergence of 
this new mpox outbreak from that of the 2018–2019 outbreak 
[21,30,66–68]. Both the procedures and findings were validated with 
samples isolated from three other positive patients infected with 
MPXV during the same Canary Islands outbreak.

For this first characterization, we relied on a metagenomic se-
quencing approach, providing a low proportion of sequence reads 
corresponding to the viral genome. In the study of the first patient, 
only 0.39% and 0.16% of the reads obtained from the Illumina and 
ONT runs, respectively, mapped to the MPXV reference. These data 
were further validated in independent viral samples from three 
other patients from the same mpox outbreak. As we demonstrate 
and other studies also report [69–71], this approach is straightfor-
ward and is not as dependent on viral sequence rearrangements in 
outbreaks, as is common for OPVs, demonstrating its value for de-
tecting RNA and DNA viral pathogens in a few hours [72]. However, 
the costs per sample as well as the viral DNA concentration re-
quirements in the patient samples hinder extended use. The use of 
alternative DNA extraction methods that enrich for viral DNA or 
remove host DNA could help to further improve the cost-efficiency 
of the overall procedure. After this work was completed [12], a more 
sensitive approach based on tiling amplicon sequencing for both 
Illumina and ONT workflows was developed and validated across a 
number of laboratories for MPXV [73]. Despite this method being 
more cost-efficient, periodic long-read metagenomics sequencing 
was recommended by the authors to monitor the emergence of viral 
variants with genomic rearrangements.

The main limitation of this study was the low viral genomic di-
versity of the samples that were circulating in the island throughout 
the study period, which hindered the possibility of testing our 
method for the detection of different lineages. However, we predict 
that because we used a metagenomics-based approach, our methods 
will be able to easily identify the presence of diverse viral variants 
and can be used to study genomic diversity in the future. Notably, all 

Fig. 2. Bandage representation of the hybrid de novo assembly based on long-read 
sequencing technology. Contigs 1 and 2 (solid blue line) contained MPXV sequences 
and accounted for a total of 191,018 bp. Contigs 3 (solid green line) and 4 (solid brown 
line) contained sequences that corresponded to non-viral assembled contigs and that 
were discarded from further analyses. Whenever necessary, continuity between or 
within contigs is represented as a thin black line to indicate that there is a gap be-
tween them.

Table 3 
Assessment of the two MPXV genome assemblies from the first patient (MPXV01) 
against the MPXV genome reference. 

Metrics Hybrid de novo assembly 
(ON782054)

Illumina-only 
(ON782055)

# contigs 1 1
Largest contig (bp) 197,222 197,221
Total length (bp) 197,222 197,221
Reference length (bp) 197,233 197,233
GC (%) 32.93 33.02
Reference GC (%) 33.02 33.02
N50 197,222 197,221
L50 1 1
# misassemblies 0 0
Genome fraction (%) 96.75 100.00
Duplication ratio 1.034 1.000
# N's per 100 kbp 3,281.07 92.79
# mismatches per 100 kbp 22.01 25.86
# indels per 100 kbp 0.00 1.52
Largest alignment (bp) 190,825 197,221
Total aligned length (bp) 190,825 197,221
NA50 190,825 197,221
LA50 1 1
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MPXV genome sequences analyzed here correspond to the same 
viral B.1 lineage, which was observed across Europe and other non- 
endemic areas during the 2022 outbreak, confirming the reliability 
of our results [60–65]. Another major limitation of this study is the 
poor quality of the read alignments at both ends of the MPXV re-
ference genome due to the presence of tandem repeat regions (TRs) 
[74]. TRs produce high variability and structural complexity resulting 
in assembly and alignment limitations, increasing the likelihood of 
false-positive SNPs in the variant calling in these regions [69,75,76].

Overall, our results provide a proof of concept of the potential of 
introducing sequencing technologies, and metagenomics in parti-
cular, for rapid and precise pathogen diagnosis and surveillance, as is 
the case for the ongoing mpox outbreak caused by the emer-
ging MPXV.
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