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HIV Nef is a central auxiliary protein in HIV infection and pathogenesis. Our results

indicate that HDAC6 promotes the aggresome/autophagic degradation of the viral

polyprotein Pr55Gag to inhibit HIV-1 production. Nef counteracts this antiviral activity

of HDAC6 by inducing its degradation and subsequently stabilizing Pr55Gag and Vif

viral proteins. Nef appears to neutralize HDAC6 by an acidic/endosomal-lysosomal

processing and does not need the downregulation function, since data obtained with

the non-associated cell-surface Nef-G2A mutant – the cytoplasmic location of HDAC6 –

together with studies with chemical inhibitors and other Nef mutants, point to this

direction. Hence, the polyproline rich region P72xxP75 (69–77 aa) and the di-Leucin

motif in the Nef-ExxxLL160-165 sequence of Nef, appear to be responsible for HDAC6

clearance and, therefore, required for this novel Nef proviral function. Nef and Nef-

G2A co-immunoprecipitate with HDAC6, whereas the Nef-PPAA mutant showed a

reduced interaction with the anti-HIV-1 enzyme. Thus, the P72xxP75 motif appears to

be responsible, directly or indirectly, for the interaction of Nef with HDAC6. Remarkably,

by neutralizing HDAC6, Nef assures Pr55Gag location and aggregation at plasma

membrane, as observed by TIRFM, promotes viral egress, and enhances the infectivity

of viral particles. Consequently, our results suggest that HDAC6 acts as an anti-HIV-1

restriction factor, limiting viral production and infection by targeting Pr55Gag and Vif.

This function is counteracted by functional HIV-1 Nef, in order to assure viral production

and infection capacities. The interplay between HIV-1 Nef and cellular HDAC6 may

determine viral infection and pathogenesis, representing both molecules as key targets

to battling HIV.
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INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) has developed
multiple strategies to evade the immune system and to establish
a persistent and chronic infection (Moir et al., 2011; Towers and
Noursadeghi, 2014; Pyndiah et al., 2015; Sauter and Kirchhoff,
2016; Sumner et al., 2017). The viral accessory proteins of
HIV-1 are responsible for deploying several of these strategies,
which overall ensure virus infection and survival (Pyndiah et al.,
2015; Sumner et al., 2017). The negative regulatory factor,
Nef, is one of these auxiliary proteins with a decisive role in
viral replication and pathogenesis (Kestler et al., 1991; Foster
and Garcia, 2007; Gorry et al., 2007; Kirchhoff et al., 2008).
HIV-1-Nef is a myristoylated protein (206 amino acids; 27–
35 kDa) that is expressed in the early phase of HIV-1 infection
(Guy et al., 1987; Foster et al., 2011), being highly conserved
among primate lentiviruses HIV-1, HIV-2, and SIV (Stevenson,
1996; Renkema and Saksela, 2000). Because of the over-lapping
effector domains on it to interact with multiple cellular proteins,
this small viral protein is functionally complex. Hence, Nef
fosters a favorable environment for viral replication, subverting
a plethora of host cell factors and functions (Arold et al., 1997;
O’Neill et al., 2006; Kirchhoff et al., 2008; Lindwasser et al.,
2008; Noviello et al., 2008; Foster et al., 2011). In fact, the
ability of Nef to internalize and/or downregulate membrane
receptors is integral to the effects and key functions it has
during infection. Nef promotes either degradation or intracellular
sequestration of host receptors, including restriction factors
and immune cell receptors, thereby facilitating the escape of
HIV-1 from the immune responses (Sugden et al., 2016). By
hijacking the adaptor proteins (AP)-1, AP-2, and AP-3 involved
in membrane trafficking, Nef alters the intracellular distribution
of different membrane receptors and affects their stability. For
example, Nef captures AP-1 to facilitate the endocytosis and
sequestration of major histocompatibility complex type I (MHC-
I) molecules (Roeth et al., 2004; Jia et al., 2012; Pawlak and
Dikeakos, 2015; Dirk et al., 2016), limiting recognition of infected
cells by the immune system (Collins et al., 1998). In parallel,
the ability of Nef to bind p56Lck, AP-2, and AP-3 promotes
the endocytosis and degradation of CD4, in CD4+ T-cells,
which limits superinfection, antibody-dependent cell-mediated
cytotoxicity, and viral egress (Schwartz et al., 1995; Piguet et al.,
1999; Ross et al., 1999; Michel et al., 2005; Wildum et al., 2006;
Chaudhuri et al., 2007; Pham et al., 2014; Ren et al., 2014; Veillette
et al., 2014). Recently, it has been described that Nef targets
CD28, an immune co-stimulatory receptor, driving its lysosomal
degradation. Thus, the ability of infected cells to respond to
CD28-mediated stimulation would depend on the amount of
intracellular Nef, maybe helping in the mechanism of HIV-1
latency (Pawlak et al., 2018).

However, the involvement of Nef in HIV-1 pathogenesis,
its role in triggering viral infection, and in the development
of AIDS is not mechanistically well understood (Kestler et al.,
1991; Deacon et al., 1995; Kirchhoff et al., 1995; Foster and
Garcia, 2007). Although incorporated in the viral particle,
Nef ’s key functions during viral replication rather concerns its
early expression upon viral infection (Laguette et al., 2009).

Some on the inhibition of lysosome- and proteasome-associated
degradative activities, together with the use of different Nef
mutants, suggest that Nef-mediated enhancement of infectivity
requires alteration of protein stability and/or membrane
trafficking, as well as cell-signaling pathways (Goldsmith et al.,
1995; Madrid et al., 2005; Wei et al., 2005; Coleman et al.,
2006). So far, two cellular factors have been mainly involved
in Nef-mediated enhancement of virion infectivity: dynamin
2 and myeloid-restricted tyrosine kinase p59Hck (Saksela
et al., 1995; Briggs et al., 2001; Madrid et al., 2005; Pizzato
et al., 2007). Nef also targets the host transmembrane, serine
incorporator 5 protein (SERINC5), impairing its incorporation
into nascent virions and its antiviral activity at a post-fusion
step, where SERINC5 may abrogate some events required for
the translocation of the viral core into the cytoplasm (Rosa
et al., 2015; Trautz et al., 2016). Nef targets SERINC5 by
two distinct events, impairing its endosomal targeting and
promoting its internalization from the cell-surface (Trautz et al.,
2016). SERINC3 also has anti-HIV-1 activity, with Nef as
its viral antagonist (Fackler, 2015; Usami et al., 2015). These
Nef actions occur early upon infection of permissive cells,
and is related to the CD4 downregulation function (reviewed
in Pereira and daSilva, 2016).

Although the fact that Nef stabilizes HIV-1 Gag at the plasma
membrane, that it facilitates cell-to-cell viral transfer (Malbec
et al., 2013), and its further processing have been reported
on, little is known about the role of Nef in viral production
rate (Costa et al., 2004; Mendonca et al., 2014). Our previous
studies indicate that the inhibition of the functional cytoplasmic
enzyme, histone deacetylase 6 (HDAC6), significantly enhances
HIV-1 replication in primary peripheral blood lymphocytes
(Valenzuela-Fernandez et al., 2005, 2008). Moreover, HDAC6
regulates infectivity of nascent HIV-1 virions by interacting with
APOBEC3G (A3G; Apolipoprotein B mRNA-editing enzyme-
catalytic, polypeptide-like 3G), stabilizing it and promoting
the autophagic degradation of Vif, thereby impairing the
incorporation of Vif in nascent viral particles (Valera et al.,
2015). Recently, we have reported a direct correlation between
the inability of primary HIV-1 envelope complexes (Envs) to
signal through CD4 and to infect, and the natural control of the
HIV-1 infection in a cluster of long-term non-progressor, elite
controllers (LTNP-EC)’ individuals (Casado et al., 2018). These
Envs are unable to bind CD4 with high affinity and to signal
stabilizing acetylated α-tubulin, correlating these facts with the
low fusion, infection, and replication activities of viruses from
this LTNP-EC cluster. Hence, HIV-1 Envs that cannot inhibit
HDAC6-tubulin deacetylase antiviral activity are not infectious,
whereas HIV-1 Envs able to signal through CD4 to overcome
HDAC6-deacetylase activity stabilize acetylated α-tubulin and are
therefore infectious and pathogenic, in viremic non-progressor,
progressor and rapid progressor patients (Casado et al., 2018;
Cabrera-Rodriguez et al., 2019). Therefore, HDAC6 represents
a new antiviral factor capable of determining viral infection
and disease progression in HIV+ individuals. In this context,
we aim to seek for a potential interplay between HDAC6
and Nef, which could be key in the control of HIV-1 viral
production and infection.
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In this work, we present new data that indicate that HDAC6
inhibit HIV-1 production by promoting the degradation of
the viral polyprotein Pr55Gag. Remarkably, Nef counteracts
this HDAC6 activity by associating with the enzyme and
inducing its degradation. Nef appears to target HDAC6 by
an acidic/endosomal-lysosomal processing independently of its
effects on protein downregulation. This new Nef proviral
function stabilizes Pr55Gag and Vif viral proteins, and assures
Pr55Gag location and aggregation at plasma membrane, viral
egress, and the infectivity of viral particles. Therefore, it is
plausible to consider HDAC6 as an anti-HIV restriction factor
neutralized by Nef to foster a favorable environment for viral
production and infection.

MATERIALS AND METHODS

Antibodies and Reagents
Rabbit anti-HDAC6 (H-300; sc-11420), rabbit anti-GFP (FL;
sc-8334), and rabbit anti-HA-probe (Y-11; sc-805), polyclonal
antibodies (polyAbs), and mouse monoclonal antibodies (mAbs),
anti-HIV-1-Nef (sc-65906), anti-HIV-1-Vif (319; sc-69731), anti-
GFP (B-2; sc-9996), anti-p62/SQSTM1 (D-3; sc-28359), and
anti-HA-probe (F-7; sc-7392), and Polybrene (sc-134220)
were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, United States). Rabbit anti-(HIV1 p55 + p24 + p17)
(ab63917) polyAb was from Abcam (Cambridge Science
Park, Cambridge, United Kingdom). The neutralizing
mAb RPA-T4 (eBioscience, San Diego, CA, United States)
directed against CD4 was phycoerythrin (PE)-labeled (for
flow cytometry). Mabs anti-α-tubulin (T6074) and anti-
acetylated α-tubulin (T7451); Z-Leu- Leu-Leu-al or MG132
(C2211), 3-Methyladenine (M9281), E-64d (E8640), Pepstatin
A (77170) and Bafilomycin A1 Ready Made Solution (SML
1661) inhibitors, and secondary horseradish peroxidase (HRP)-
conjugated Abs, specific for any Ab species assayed were
purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis,
MO, United States), and secondary Alexa Fluor 568-labeled
goat-anti-mouse Ab was from Molecular Probes (Eugene,
OR, United States). CompleteTM Protease Inhibitor Cocktail
(11697498001) was obtained from Roche Diagnostics (GmbH,
Mannheim, Germany).

DNA Plasmids and Viral DNA Constructs
Vectors for expression of full-length wild-type (wt) or mutated
HIV-1Lai-Nef were constructed in the pRcCMV plasmid, and
Nef mutants (Nef-G2A; Nef-E160A, Nef-EA; Nef-LL164-5/AA,
Nef-LLAA; and Nef-P72xxP75/A, Nef-PPAA) were generated
by PCR-directed mutagenesis using appropriate primers as
described (Erdtmann et al., 2000; Madrid et al., 2005). Vectors
for expression of wt or mutated Nef-GFP were constructed in the
pEGFP as described (Greenberg et al., 1998). Nef-CFP expression
plasmids were constructed in the pECFP-N1 by PCR and cloning
in frame to CFP using EcoRI/BamHI restriction sites. HDAC6
construct was provided by Drs. X.-J. Yang and N. R. Bertos
(Molecular Oncology Group, Department of Medicine, McGill
University Health Centre, Montreal, QC, Canada) (Bertos et al.,

2004; Valenzuela-Fernandez et al., 2005; Valera et al., 2015).
When indicated, these plasmids were cloned into pEGFP-C1,
pDSRED2 (using AgeI/NotI restrictions sites) (Clontech, Palo
Alto, CA, United States) or N-terminal tagged with the terminal
influenza hemagglutinin (HA) epitope, as reported (Madrid
et al., 2005; Valenzuela-Fernandez et al., 2005; Valera et al.,
2015). The pcDNA3.1 (Life Technologies) or pEGFP-C1/ECFP-
C1 (Clontech, Palo Alto, CA) vectors were used as a control of
cDNA transfection or to express free EGFP/ECFP. The pNL4-
3.Luc.R-E- provirus (�nef /�env) and the R5.tropic BaL.01-
envelope (env) glycoprotein plasmid were obtained via the NIH
AIDS Research and Reference Reagent Programme (catalog
numbers 6070013 and 11445, respectively). The pGag-EGFP
vector (catalog no. 11468; from Marilyn Resh), allowing imaging
of intracellular and cell-surface aggregated Gag in live cells, which
directs Rev-independent expression of an HIV-1-Gag-EGFP
fusion protein (Schwartz et al., 1992), were obtained through
the NIH AIDS Research and Reference Reagent Program, and
used as we previously reported (Garcia-Exposito et al., 2011).
In this study, in general, we will use these working plasmids
amounts: for Nef 0.5 μg cDNA, and 1 μg cDNA for HDAC6, as
in Figure 1A.

Cells
The human CEM.NKR-CCR5 permissive cell line (catalog
number 4376, NIH AIDS Research and Reference Reagent
Program) and the HEK-293T cells (catalog number 103, NIH
AIDS Research and Reference Reagent Program) were grown
at 37◦C in a humidified atmosphere with 5% CO2 in RPMI
1640 medium (Lonza, Verviers, Belgium) in the case of the
CEM.NKR-CCR5 cells, and in DMEM (Lonza) in the case of
HEK-293T, both medium supplemented with 10% fetal calf
serum (Lonza), 1% L-glutamine, and 1% penicillin-streptomycin
antibiotics (Lonza) and mycoplasma free (Mycozap antibiotics,
Lonza), and both cell lines were regularly split every 2–3 days. The
HEK-293T cell line was cultured to 50–70% confluence in fresh
supplemented medium 24 h before cell transfection with viral or
human DNA constructs.

Western Blotting
Protein expression was determined by SDS-PAGE and Western
blotting in cell lysates. HEK-293T cells co-transfected with
different cDNA constructs using linear polyethylenimine, with
an average molecular mass of 25 kDa (PEI25K) (Polyscience,
Warrington, PA, United States) dissolved in 150 mM NaCl.
A mixture of PEI25k/plasmids (3:1 ratio (wt/wt) was gently
vortexed, incubated for 20–30 min at room temperature
(RT), and then added to cells in culture. Briefly, 48 h
after transfection, cells were lysated in lysis buffer (1%
Triton-X100, 50 mM Tris-HCl pH 7,5, 150 mM NaCl,
0.5% sodium deoxycholate, and protease inhibitor (Roche
Diagnostics), for 30 min and sonicated for 30 s at 4◦C.
The effects of the different inhibitors were similarly assayed
in HEK-293T cells. Twenty four hour post-transfection cells
were treated for 5 h at 37◦C with any of the following
inhibitors: MG132, 20 μM dissolved in dimethyl sulfoxide
(DMSO), to inhibit the proteasome; 3-MA, 5 mM in PBS, to
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FIGURE 1 | Continued
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FIGURE 1 | Effect of HIV-1 Nef on HDAC6 degradation. (A) Quantitative western blot analysis of wt-Nef-EGFP, dose-response degradative effects on endogenous

HDAC6 (left) and over-expressed HA-wt-HDAC6 (1 μg; right). Acetylated α-tubulin/α-tubulin and HDAC6/α-tubulin intensity band ratios are shown, where

enhancement of acetylated α-tubulin levels is a read-out for loss of HDAC6-deacetylase activity. A representative western blot performed in HEK-293T cells is shown.

Histograms show intensity bands quantitation of top western blots for wt-Nef-EGFP-mediated HDAC6 degradation for the endogenous and the over-expressed

enzyme, normalized by the total amount α-tubulin, under any experimental condition. Data are means ± standard errors of the means (SEM) of six independent

experiments, in the case of endogenous HDAC6, and nine independent experiments for over-expressed HDAC6 (1 μg). (B) Quantitative western blot analysis of the

efficiency of an intermediate concentration of Nef (0.5 μg) to degrade a high amount of HA-wt-HDAC6 (2 μg-cDNA). Acetylated α-tubulin/α-tubulin and

HDAC6/α-tubulin ratios are shown, and α-tubulin is the control for total protein. Acetylated α-tubulin levels observed are a read-out for loss of HDAC6-deacetylase

activity. Histograms show intensity bands quantitation of western blot for wt-Nef-EGFP-mediated over-expressed HDAC6 degradation, normalized by the total

amount α-tubulin, under this experimental condition. Data are expressed as mean ± S.E.M. of nine independent experiments. In (A,B), acetylated α-tubulin/α-tubulin

and HDAC6/α-tubulin ratios are shown in arbitrary light units (a.u.). When indicated, ∗P < 0.05 and ∗∗P < 0.01 are P-values for Student’s t-test.

inhibit autophagosome formation and subsequent autophagic
degradation, monitored by detecting p62/SQSTM1 protein; or
Bafilomicyn A1, 100 nM in DMSO, as a specific inhibitor of
vacuolar-typeH+-ATPase, to inhibit acidification and protein
degradation in lysosomes of cultured cells; and E-64d + PepsA,
10 μg/mL in DMSO, as protease inhibitors. Equivalent amounts
of protein (40 μg), determined using the bicinchoninic
acid (BCA) method (Millipore Corporation, Billerica, MA,
United States), were resuspended and treated by Laemmli buffer
and then were separated in 12% SDS-PAGE and electroblotted
onto 0.45 μm polyvinylidene difluoride membranes (PVDF;
Millipore) using Trans-blot Turbo (Bio-Rad, Hercules, CA,
United States). Membranes were blocked 5% non-fat dry milk
in TBST (100 mM Tris, 0.9% NaCl, pH 7.5, 0.1% Tween 200)
for 30 min and then incubated with specific antibodies. Proteins
were detected by luminescence using the ECL System (Bio-Rad),
and analyzed using a ChemiDoc MP device and Image LabTM
Software, Version 5.2 (Bio-Rad).

Co-immunoprecipitation Assays
HEK-293T cells (3 × 105 in a 6-well plates) were co-transfected
with different plasmids using PEI25k to express the tagged
proteins: HA-wt-HDAC6 (1 μg), wt-Nef-EGFP (0.5 μg), Nef-
G2A-EGFP (0.5 μg), and Nef-PPAA-EGFP (0.5 μg). HA-wt-
PI4P5-K Ia (0.5 μg) and pEGFPC1 (0.5 μg) plasmids were used
as tag controls conditions. For HDAC6/Nef interaction, protein
G magnetic beads (Millipore) were incubated with 2 μg of the
different antibodies (anti-HA and anti-EGFP) for 2 h at RT and
then were washed three times with cold PBS 0.1% Tween (Sigma-
Aldrich) using a magnet. Cells were lysed and the proteins were
quantified in the cleared lysates by the BCA assay. Cell lysates
were incubated with the different antibodies and with 1 mg/mL
RNAse A enzyme (Roche) overnight on a rotating wheel at 4◦C.
Beads were then washed three times and resuspended in Laemmli
buffer. Bound proteins were analyzed by SDS-PAGE and western
blotting together with the input cell fractions.

Fluorescence Confocal Microscopy

Assay
HEK-293T cells (3 × 105 cells in sterile glass coverslips-Ø
12 mm) were co-transfected with the different plasmids (wt-
HDAC6-EGFP (1 μg) and wt-Nef-ECFP (0.5 μg) using PEI25k,
in order to analyze their co-distribution. Forty eight hours
post-transfection, cells were washed three times with PBS, fixed
for 20 min in 2% paraformaldehyde in PBS. Coverslips were

mounted in Mowiol-antifade (Dako, Glostrup, Denmark) and
image acquisition was performed by confocal microscopy (Leica
TCS SP5; Leica Microsystems, Wetzlar, Germany). For high-
resolution acquisition a 1.35 NA objective (60x) was used. The
co-distribution of fluorescent HDAC6 and Nef proteins was line
scan quantified using MetaMorph software (Universal Imaging,
Downington, PA, United States), as we previously described
(Barroso-Gonzalez et al., 2009a,b; Garcia-Exposito et al., 2011).

Flow Cytometry Analysis
Nef effects on CD4 cell-surface expression in HDAC6-expressing
permissive CEM.NKR-CCR5 cells was studied by flow cytometry
analysis. Briefly, 24 h nucleofected cells with fluorescent
constructs were incubated, in ice-cold PBS buffer, with an anti-
CD4 antibody coupled to PE. Labeling of cell-surface receptors
was performed by staining with a PE-conjugated IgG isotype.
Cells were then washed by ice-cold PBS, fixed in PBS with 1%
paraformaldehyde, and analyzed by flow cytometry (XL-MCL
system; Beckman-Coulter, CA, United States), measuring cell-
surface CD4 receptor labeling as similarly described (Valenzuela-
Fernandez et al., 2005; Barrero-Villar et al., 2008, 2009; Barroso-
Gonzalez et al., 2009a; Garcia-Exposito et al., 2013). Basal
cell fluorescence intensity for CD4 labeling was determined by
staining cells with a PE-conjugated IgG isotype control in cells
over-expressing free EGFP/ECFP proteins, measured through
argon single-laser excitation at 458 nm, and both detected in
the FL1 channel. Flow cytometry data were analyzed by Flowing
software 2.5.1 (Turku Centre for Biotechnology, University of
Turku, Turku, Finland).

Total Internal Reflection Fluorescence

Microscopy (TIRFM) and Analysis of Gag

Localization and Aggregation at Plasma

Membrane
Living HEK-293T cells, transiently over-expressing Pr55Gag-
EGFP, alone or with wt-Nef-DsRed and/or wt-HDAC6-ECFP,
seeded in poli-D-Lysine coated coverslips were imaged at
48 h from transfection in chambers containing a Krebs-
HEPES buffer with 2 mM Ca2+, with an inverted microscope
Zeiss 200M (Zeiss, Jena, Germany) through a 1.45 NA
objective (αFluar, 100×, Zeiss) using an immersion fluid
(n488 = 1.518, Zeiss) and under TIRF illumination, as we
similarly reported for HIV-1 and cellular studies (Barroso-
Gonzalez et al., 2009a,b; Garcia-Exposito et al., 2011). The
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expanded beam of an argon ion laser (LASOS Lasertechnik,
Jena, Germany) was band-pass filtered, aligned with precise
angle measured as described (Barroso-Gonzalez et al., 2009a,b;
Garcia-Exposito et al., 2011), and used to selectively excite
fluorescent proteins only located near to plasma membranes.
Each cell was imaged using HC Image acquisition software
(Hamamatsu Photonics) with 0.25 s exposures by EM-CCD
digital camera (C9100-13, Hamamatsu Photonics, Hamamatsu
City, Japan). Epifluorescence images were taken using an Hg
lamp that were projected onto a back-illuminated CCD camera
(AxioCam MRm, Zeiss) through a dichroic and specific band-
pass filter for fluorescent wt-Nef-DsRed and wt-HDAC6-ECFP.
To quantify the degree of Pr55Gag-EGFP aggregation at plasma
membrane, the TIRFM images were background subtracted
using MetaMorph (Universal Imaging), and analyzed by plotting
3 lines of 15 μm-length along the cell diameter. Signal was
scored positive when the fluorescence of the spots in the line
scans were at least mean ± 2SD of the local background.
Data were pooled in histograms that show averaged number of
aggregates per cell.

Production of Viral Particles
Pseudotyped HIV-1 viral particles were obtained as previously
described (Valenzuela-Fernandez et al., 2005; Barrero-Villar
et al., 2008, 2009; Barroso-Gonzalez et al., 2009a; Garcia-
Exposito et al., 2011, 2013; Valera et al., 2015; Casado et al.,
2018; Cabrera-Rodriguez et al., 2019). Briefly, replication-
deficient viral particles were derived from the luciferase-
expressing reporter virus HIV/�nef /�env/luc+ (in which the
luciferase gene is inserted into the nef ORF and does not
express the envelope glycoprotein) with an R5-tropic (BaL.01)
glycoprotein env plasmid. R5-tropic HIV-1 viral particles
were produced in 12-wells plates by co-transfecting HEK-
293T packaging cells (70% confluence) with pNL4-3.Luc.R-
E- (1 μg) and R5-tropic (BaL.01) Env-glycoprotein vector
(1 μg) and also over-expressing different plasmid combinations
of HDAC6 construct and/or Nef constructs. Viral plasmids
were transduced in HEK-293T cells using X-tremeGENE HP
DNA transfection reagent (Roche). After the addition of
X-tremeGENE HP to the viral plasmids the solution was
mixed in 100 μL of DMEM medium without serum or
antibiotics, and incubated for 20 min at RT prior to adding
it to HEK-293T cells. The cells were cultured for 48 h to
allow viral production; after this time viral particles were
harvested and HEK-293T cells were lysed to analyze the
expression of the different proteins. Viral stocks were normalized
by p24-Gag content as measured with an enzyme-linked
immunosorbent assay test (GenscreenTM HIV-1 Ag Assay;
Bio-Rad, Marnes-la-Coquette, France). Virions were used to
infect CEM.NKR-CCR5 cells after ELISA-p24 quantification
and normalization.

Luciferase Viral Infection Assay
Untreated CEM.NKR-CCR5 cells (9 × 105 cells in 24-
well plates with 20 μg/mL of polybrene) were infected
for 2 h with a synchronous dose of viral inputs (100 ng
of p24), in a total volume of 1 mL RPMI 1640 (by

centrifugation for 2 h at 335 g at 25◦C), and for 4 h at
37◦C, as described previously (Valenzuela-Fernandez et al.,
2005; Barrero-Villar et al., 2008, 2009; Barroso-Gonzalez et al.,
2009a; Garcia-Exposito et al., 2011, 2013; Valera et al.,
2015; Casado et al., 2018; Cabrera-Rodriguez et al., 2019).
Unbound virus was then removed by washing the infected
cells, and 48 h after infection luciferase activity (associated to
productive viral entry into infected cells) was measured using
a Luciferase Assay System (Promega Corporation, Madison,
WI, United States) and a microplate reader (VictorTM X5,
PerkinElmer, Waltham, MA, United States). Data were analyzed
using GraphPad Prism 6.0 software (GraphPad Software, San
Diego, CA, United States).

RESULTS

HIV-1 Nef Induces HDAC6 Degradation
To ascertain the ability of the Nef viral protein to overcome
the anti-HIV-1 activity of HDAC6 (Valenzuela-Fernandez
et al., 2005, 2008; Valera et al., 2015; Casado et al., 2018;
Cabrera-Rodriguez et al., 2019), we first analyzed HDAC6
enzyme degradation by full-length recombinant HIV-1
Nef in HEK-293T cells (Figure 1). We observed that Nef
degrades endogenous (Figure 1A, left blot) as well as over-
expressed HDAC6 (Figure 1A, right blot, and Figure 1B),
in a dose-dependent manner. This fact correlates well
with the increase observed in the acetylation of α-tubulin
(Figure 1A, dot histograms), a main substrate for the
HDAC6-tubulin deacetylase enzyme (Hubbert et al., 2002;
Valenzuela-Fernandez et al., 2005, 2008; Casado et al., 2018;
Cabrera-Rodriguez et al., 2019). We further detected that Nef
induced the degradation of a higher amount of over-expressed
HDAC6, thereby confirming the efficiency of Nef to degrade
HDAC6 (Figure 1B).

Inhibitors Affecting Acidification of

Organelles and Lysosomal Proteinases

Impair HIV-1 Nef-Promoted HDAC6

Degradation
We next aimed to pinpoint the mechanism involved in
Nef-mediated degradation of HDAC6. For that purpose, we
performed the same experiments above in the presence of
some inhibitors for autophagy (3-methyladenine; 3-MA) and
proteasome (MG132) degradative pathways, in HEK-293T cells.
These chemical inhibitors were used as we previously reported
(Valera et al., 2015) to inhibit aggresome formation (3-MA)
and associated HDAC6-triggered autophagy degradation of
target proteins (Seglen and Gordon, 1982; Liang et al., 1999;
Klionsky et al., 2008a; Valera et al., 2015), and to inhibit
the proteasome degradation route (MG132) (Valera et al.,
2015). We observed that neither 3-MA nor MG132 altered
the ability of Nef to degrade HDAC6 (Figures 2A,B). In
control conditions, Nef triggers HDAC6 clearance (Figure 2A,
Control blot), thus leading to an accumulation of p62/SQSTM1,
which interacts and works with HDAC6 in the autophagic
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FIGURE 2 | Nef targets HDAC6 by an acidic, endocytic/lysosomal degradative route. (A) Quantitative western blot analysis of Nef-mediated HDAC6 degradation in

HEK-293T cells transfected with wt-Nef-EGFP (0.5 μg), HA-wt-HDAC6 (1 μg), and treated with the 3-MA inhibitor and the vehicle control (PBS). HDAC6/α-tubulin

ratios are shown in arbitrary light units (a.u.). Histograms show quantification of western blot bands for the HDAC6/α-tubulin ratio in the absence of the presence of

Nef, under inhibitor or control experimental condition. Data are mean ± S.E.M. of four independent experiments. ∗P < 0.05 value for Student’s t-test.

(B) Quantitative western blots analysis of Nef-mediated HDAC6 degradation in HEK-293T cells transfected with wt-Nef-EGFP (0.5 μg), HA-wt-HDAC6 (1 μg), and

treated with different chemical inhibitors, such as MG132, Bafilomycin A1 and “E-64d + PepsA” combination. DMSO is vehicle control. HDAC6/α-tubulin ratios are

shown (a.u.). Histograms show quantification of the inhibitory effect exerted by Bafilomycin A1 and E-64d + PepsA on wt-Nef-EGFP-mediated HA-wt-HDAC6

degradation. Data are mean ± S.E.M. of five independent experiments in the case of MG132 inhibitor and two in the case of the Bafilomycin A1 and E-64d + PepsA

inhibitors ∗P < 0.05 value for Student’s t-test.
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clearance of ubiquitinated protein aggregates, where p62
fades too (Bjorkoy et al., 2006; Pankiv et al., 2007; Valera
et al., 2015; Yan et al., 2019). Because Nef-mediated HDAC6
degradation increases acetylation of α-tubulin and stabilizes
p62 (Figure 2A, Control blot), Nef is not recruiting HDAC6
to the aggresome/autophagy degradative pathway. MG132-
mediated inhibition of proteasome degradation has been
described to indirectly favor autophagy, due to the cytoplasmic
accumulation of polyubiquitinated chains, derived from
polyubiquitinated proteins non-degraded by the proteasome,
which triggers this optional degradative pathway (Hao et al.,
2013), as we also reported (Valera et al., 2015). In this matter,
we monitored low levels of p62 protein in MG132 treated cells
compared to control, vehicle-treated cells (Figure 2B, MG132
blot), being indicative of a more active autophagic pathway,
even under Nef-mediated HDAC6 degradative experimental
conditions. On the contrary, in control cells treated with
DMSO, Nef promotes HDAC6 degradation while p62 is
stabilized. Indeed, there is an increase in the level of p62 in
Nef-expressing cells (Figure 2B, DMSO blot), compared to
non-transfected cells (Figure 2B, DMSO blot). This suggests
that HDAC6-mediated p62 autophagic clearance seems to
be impaired by Nef-mediated HDAC6 degradation, and this
Nef activity is, in turn, not blocked by 3-MA (Figure 2A,
3-MA blot). Moreover, in the presence of an inhibitor of
vacuolar H+-ATPases (V-ATPases), Bafilomycin A1, which
abrogates endosome-lysosome acidification (Werner et al., 1984;
Bowman et al., 1988; Yoshimori et al., 1991; Paroutis et al.,
2004), Nef does not promote HDAC6 degradation (Figure 2B,
Bafilomycin A1 blots). Hence, the impairment of Nef-mediated
HDAC6 degradation by this inhibitor could be indicative of
an HDAC6-suffered endocytic/lysosomal degradation pathway
triggered by Nef.

To analyze the effects on Nef-induced HDAC6 degradation,
we next assayed a combination of two proteinase inhibitors,
as the broad-spectrum inhibitors of lysosomal cathepsins E-
64d and the Pepstatin A, a cysteine and an aspartyl proteinase
inhibitor, respectively (McGrath, 1999; Zhang et al., 2000;
Muller et al., 2012; Verma et al., 2016; Agbowuro et al.,
2018). We observed that a combination of these two inhibitors
abrogated Nef-induced degradation of HDAC6 (Figure 2B,
E-64d + PepsA blot), compared to mock cells (Figure 2B,
DMSO blot). As shown in Figure 2B (E-64d + PepsA blot),
the level of p62 or acetylated α-tubulin was similar to those
observed under Bafilomycin A1 treatment (Bafilomycin A1
blots). The clearance of p62 and the low amount of acetylated
α-tubulin detected are indicative of a functional HDAC6
enzyme, under these experimental conditions. Therefore, it
is plausible to suggest that Nef does not affect HDAC6
enzymatic activity. Furthermore, the effect of the E-64d and
Pepstatin A combination was compared to that of Bafilomycin
A1 on the inhibition of Nef-mediated HDAC6 degradation
(Figure 2B). Altogether these data prompted us to suggest
that Nef could mediate its degradative action on HDAC6
by targeting this deacetylase enzyme at low pH organelles,
where it would be degraded by the action of proteinases
sensitive to Bafilomycin A1 and/or E-64d + Pepstatin A

inhibitors, such as the endosomal and lysosomal cathepsins
(Muller et al., 2012).

Nef Mutant Lacking Endocytic Function

Does Not Promote HDAC6 Degradation
Considering that the anti-HIV-1 enzyme HDAC6 (Valenzuela-
Fernandez et al., 2005, 2008; Valera et al., 2015; Casado
et al., 2018; Cabrera-Rodriguez et al., 2019) is a non-cell-
surface protein, mainly expressed at cytoplasm (Hubbert et al.,
2002; Valenzuela-Fernandez et al., 2005, 2008; Valera et al.,
2015), we first studied the degradation of HDAC6 in cells
expressing a non-myristolated Nef mutant, Nef-G2A (Figure 3),
which is unable to directly anchor to membranes (Saksela
et al., 1995; Lee et al., 1996; Piguet et al., 1998; Mandic
et al., 2001; Fackler and Baur, 2002; Madrid et al., 2005;
Chaudhuri et al., 2007; Arhel and Kirchhoff, 2009; Kwak
et al., 2010; Nobile et al., 2010; Foster et al., 2011). We
observed that Nef-G2A-EGFP promotes HDAC6 degradation
to a similar extent that wt-Nef-EGFP does (Figure 3A,
quantified in Figure 3B). This finding suggests that Nef is
able to target cytoplasmic HDAC6. We next assayed two Nef-
defective mutants, Nef-EA and Nef-LL/AA, for its association
with the adaptor proteins AP-1, -2, and -3, host proteins
governing internalization, recycling, and lysosomal degradation
processes. We observed that Nef-EA is able to promote HDAC6
degradation (Figure 3A, quantified in Figure 3B), whereas the
Nef-LLAA mutant loses this degradative ability (Figure 3A,
quantified in Figure 3B). Thus, this di-Leucin motif (L164-
L165) in Nef appears to be critical for its degradative action
on HDAC6. On the contrary, the Nef-EA mutant, reported to
conserve the ability to interact with AP-1 (Bresnahan et al.,
1998), promotes HDAC6 degradation (Figure 3A, quantified
in Figure 3B). Taken into account our results using chemical
inhibitors and Nef-mutants, it is conceivable that Nef interacts
with and drives intracellular HDAC6 degradation into acidic,
endocytic/lysosomal compartments related to the Nef/AP-1
trafficking route.

Nef Mutant Lacking the Proline-Rich

SH3-Ligand Domain Does Not Promote

HDAC6 Degradation
Another key motif in Nef is a proline rich sequence
(P69xxP72xxP75xR), a SH2/3-binding domain with effects on
cell signaling. This Nef motif has been reported to interact with
the p59Hck kinase and to be key for viral replication and egress
(Saksela et al., 1995). We next assayed the Nef-P72xxP75/AxxA
(Nef-PPAA) mutant, impaired for its interaction with SH2/3
domains of the Src-family of tyrosine kinases and dispensable
for CD4 internalization in non-T cells (Saksela et al., 1995). We
observed that Nef-PPAA did not promote HDAC6 degradation
(Figure 3A, quantified in Figure 3B). This fact may indicate
that this motif is involved in Nef-mediated HDAC6 interaction
and/or processing, or that a conformational change in the
mutated viral protein abrogates the degradative activity observed
with the wt-Nef (Figures 1–3). This possibility is further
analyzed in this work.
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FIGURE 3 | Characterization of different Nef mutants in their ability to promote HDAC6 degradation. (A) Quantitative western blot analysis of the effect of different

Nef mutants on HDAC6 degradation, and compared to wt-Nef-triggered HDAC6 degradation. All experiments were performed in HEK-293T cells, transfected with

1 μg of HA-wt-HDAC6 and 0.5 μg of each assayed C-terminal EGFP-tagged Nef mutant: Nef-G2A, Nef-EA, Nef-PPAA, and Nef-LLAA. HDAC6/α-tubulin ratios are

shown in arbitrary light units (a.u.). In all western blots, α-tubulin is the control for total protein. (B) Histograms show quantification of HDAC6/α-tubulin western blot

intensity band ratios, under any experimental condition, indicating that Nef-PPAA and Nef-LLAA are not able to degrade HDAC6. Data are expressed as

mean ± S.E.M. of three independent experiments. ∗∗∗P < 0.001 and ∗P < 0.05 values for Student’s t-test, respectively.
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Nef Co-immunoprecipitates and

Co-distributes With HDAC6
We next sought to study whether Nef interacts with HDAC6.
Co-immunoprecipitation experiments (co-IP) were performed
in HEK-293T cells transiently expressing Nef-EGFP and HA-
wt-HDAC6. We observed that HA-wt-HDAC6 specifically co-
immunoprecipitates with Nef-EGFP (Figure 4A, a-HA co-IP).
As a control for co-IP specificity, we expressed HA-wt-PI4P5-
K Iα, a kinase involved in efficient HIV-1 viral entry and
infection (Barrero-Villar et al., 2008). Data obtained indicate that
Nef-EGFP did not interact with the HA-wt-PI4P5-K Iα kinase
(Figure 4A, a-HA co-IP). Altogether these data confirm that
Nef and HDAC6 co-immunoprecipitate together, maybe through
a direct interaction or being part of an associated complex
of proteins. Next, using fluorescence confocal microscopy, we
observed that transiently over-expressed Nef-ECFP and HDAC6-
EGFP co-distributed in permissive HEK-293T cells (Figure 4B,
merged image and line scans in the zoom area). Moreover, Nef-
ECFP activity on CD4 expression was assayed by flow cytometry,
in permissive CEM.NKR-CCR5 CD4+ T-cells (Figure 4C). As
expected, over-expressed Nef efficiently decreases cell-surface
levels of CD4. However, the over-expression of wt-HDAC6-
EGFP appears to enhance the amount of cell-surface CD4,
which is similarly down-regulated by Nef (Figure 4C). Altogether
these data suggest that functional Nef co-distributes and co-
immunoprecipitates with HDAC6, and maintains the ability
to internalize CD4 at the same time, even in cells over-
expressing HDAC6.

To further explore the potential regions on Nef involved in the
interaction with HDAC6, we assayed a co-IP experiment in cells
over-expressing the Nef-G2A or Nef-PPAAmutant together with
HDAC6 (Figure 5A). We observed that wt-Nef and Nef-G2A
specifically co-immunoprecipitate with HA-wt-HDAC6, while
the Nef-PPAA mutant showed a reduced interaction with the
deacetylase (Figure 5B, α-EGFP co-IP). As controls, we observed
that HA-wt-HDAC6 did not co-immunoprecipitate with free
EGFP, and wt-Nef is not pulling-down PI4P5-K Iα (Figure 5B,
α-EGFP co-IP).

Therefore, these data suggest that Nef co-distributes and co-
immunoprecipitates with and promotes HDAC6 degradation.
This Nef activity seems not to require its expression in
membranes, since Nef-G2A mutant is fully active. Moreover,
results indicate that the integrity of the P72xxP75 motif is
required for the association with HDAC6, either directly or
indirectly. Indeed, Nef-PPAA mutant does not efficiently co-
immunoprecipitates with HDAC6, which correlates with its poor
activity to promote HDAC6 degradation. Our results suggest that
the P72xxP75 motif is central for Nef activity in the targeting of
HDAC6, in order to exert its proviral function.

HDAC6 Is a Restriction Factor for HIV-1

Counteracted by Nef
We next aimed to understand the importance of Nef-mediated
HDAC6 degradation in the late steps of the HIV-1 viral cycle.
In HEK-293T cells, producing HIV-1 �nef viral particles, we
observed that over-expression of HDAC6 efficiently promotes

Pr55Gag degradation (Figure 6A, lane 4; quantified in right
histogram), thereby inhibiting viral production (Figure 6B, lane
4). Moreover, we observed that HDAC6 concomitantly degrades
Vif, under this HIV-1 �nef experimental condition (Figure 6A,
lane 4; quantified in right histogram). The anti-Vif activity is
mediated by the HDAC6-proautophagy function, thus impairing
HIV-1 infectiveness as we reported (Valera et al., 2015), and
correlates with a less infectious cell-supernatant, as further
measured in early infection experiments in permissive T-cells
(Figure 6C, lane 4). Remarkably, over-expression of functional
Nef degrades HDAC6, either the endogenous or the over-
expressed enzyme (Figure 6A, lanes 3 and 5, respectively). Under
these experimental conditions, Pr55Gag and Vif are stabilized
(Figure 6A, lanes 3 and 5, quantified in right histograms),
observing an enhancement in viral production (Figure 6B,
lanes 3 and 5), and supernatant infectivity as measured in
permissive T-cells (Figure 6C, lanes 3 and 5), compared
to cells only over-expressing HDAC6 (Figure 6, lane- and
histograms-4). This proviral function is strictly dependent on
Nef expression and HDAC6 targeting, as it was not observed
in nef -defective viruses. Hence, Pr55Gag and Vif expression
levels were significantly reduced in cells producing HIV-1
�nef virions, compared to those found in cells co-transduced
with a functional nef construct (Figure 6A, lanes 2, 3, and
5, quantified in right histograms). Of note, the ability of wt-
Nef to rescue Pr55Gag and Vif levels was, via degrading the
endogenous levels of HDAC6, an almost 5 and 3-fold increase,
respectively, compared with control condition, where Nef was
absent. This competence was also reproduced in the presence of
exogenously expressed HDAC6, where both viral proteins were
recovered nearly completely. Also, in terms of viral production
and infectivity, the impact of Nef always yields a gain of fitness
with or without the overexpression of HDAC6 (until double
production of viral particles, and as far as 6-fold increase in
the capacity to infect). These results indicate that endogenous
HDAC6 is able to restrict viral production and infection, in
the absence of Nef. Indeed, over-expressed HDAC6 promotes
Pr55Gag and Vif degradation in a dose-dependent manner
(Figure 7A, and quantified in Figures 7C,D, respectively). This
degradative process appears to occur by autophagy, as monitored
by concomitant p62 clearance (Figure 7A), and by the inhibitory
action of 3-MA which blocks HDAC6-mediated Pr55Gag and Vif
degradation, thus stabilizing p62 (Figure 7B, and quantified in
Figures 7C,D).

We next aimed to study, by total internal reflection
fluorescence microscopy (TIRFM), the ability of HDAC6 to
alter Pr55Gag location and aggregation pattern at plasma
membrane of living cells, and the effect exerted on them by
Nef (Figure 8). As reported, recombinant Gag-EGFP directs
the budding of viral-like particles (VLPs) from cells (Pornillos
et al., 2003; Muller et al., 2004; Garcia-Exposito et al., 2011).
We therefore used a Pr55Gag-EGFP construct (indicated as
Gag-EGFP) that allows the monitoring and quantification of
Pr55Gag aggregation at plasma membrane in single cell by
tracking the associated fluorescence in the evanescent field
(Barrero-Villar et al., 2009; Barroso-Gonzalez et al., 2009a,b;
Garcia-Exposito et al., 2011). Over-expressed Gag-EGFP presents
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FIGURE 4 | Continued
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FIGURE 4 | Nef co-immunoprecipitates and co-distributes with HDAC6. (A) Biochemical immunoprecipitation analysis of the HDAC6/Nef interaction in permissive

HEK-293T cells. Left panel; western blot analysis of the input expression of the different over-expressed proteins, in cells expressing HA-wt-HDAC6, or wt-Nef-EGFP,

or both HA-wt-HDAC6/wt-Nef-EGFP constructs, HA-wt-PI4P5-K Iα or pEGFP-C1 plasmid for free EGFP protein (these last two constructs are for tag and specificity

of binding controls). Cell lysates under control conditions are indicated by the entire (-) lane which represents cells transduced with an empty pcDNA3.1 vector. Right

panel; these cell lysates were further subjected to co-immunoprecipitation (co-IP) with anti-HA Ab, followed by immunoblotting with anti-HDAC6, anti-Nef and

anti-HA specific Abs. Data are from a representative experiment of three. (B) Fluorescent confocal merge image, xy midsection, shows HDAC6 (green) and Nef (blue)

co-distribution, together with microtubules (red) in HEK-293T cells. In the associated zoom area is shown the expression and co-distribution (merge) of these

Nef/HDAC6 proteins. Line scans analysis show quantification of the fluorescence intensity profiles (in arbitrary light units, a.u.), associated to these two proteins, and

representing the amount of these proteins and their co-localization along each differently oriented line scans (A-D). Data are from a representative experiment of

three. (C) Flow cytometry analysis of Nef-mediated down-regulation of CD4 in permissive CEM.NKR-CCR5+/CD4+ T-cells (EGFP/Nef-ECFP), or in cells

over-expressing HDAC6 and Nef (wt-HDAC6-EGFP/Nef-ECFP). CD4 cell-surface expression in control, non-Nef-, non-HDAC6-treated cells (EGFP/ECFP) and in

cells only over-expressing HDAC6 are also shown (wt-HDAC6-EGFP/ECFP). Data are mean ± S.E.M. of three independent experiments. Right Dot-Plots show a

representative flow cytometry analysis for the number of cells transiently expressing the different constructs. Numbers indicate the percent of cells positive for

fluorescence protein expression (FL1 channel) in the Right Bottom quadrant (RBq). In parentheses, data are mean ± S.E.M. of three independent experiments.

a homogeneous aggregation pattern at plasma membrane,
as observed under the evanescent field in HEK-293T cells
(Figure 8A, evanescent field image; and quantified in Figure 8E).
Over-expression of a wt-Nef-DsRed construct, which stabilizes
Gag-EGFP (Figure 8F, track 3, and compared to track 2),
leads to an increase in the number of Gag-EGFP aggregates
at plasma membrane (Figure 8B, evanescent field image; and
quantified in Figure 8E). Here, we observed again that Nef
counteracts the antiviral effect of the endogenous HDAC6,
thus favoring Gag-EGFP location and aggregation at plasma
membrane (Figure 8B, evanescent field image; and quantified in
Figure 8E). Furthermore, HDAC6 over-expression (Figure 8C,
wt-HDAC6-ECFP epifluorescence image) abrogates Gag-EGFP
aggregation at plasma membrane. In fact, we do not observe any
Gag-associated aggregates under the evanescent field (quantified
in Figure 8E). EGFP-associated fluorescent is only observed
when we modify the angle of the laser bin away from the
angle required to create an evanescent field. This means that
we are far from the plasma membrane, inside the cell, and
that we are not able to detect any aggregation pattern for
Gag. Residual fluorescence signal detected by epifluorescence
is likely related to free EGFP (Figure 8C, Gag-EGFP∗ and
associated zoom area∗). In this matter, when lysates of
these cells are biochemically analyzed, Pr55Gag-EGFP is not
detected under this experimental condition (Figure 8F, track
4). The expression of HDAC6-ECFP abolished the Gag-EGFP
aggregation in more than 98% of cases, but the only expression
of wt-Nef-DsRed could recover almost half compared with
the control conditions (Figure 8E). Hence, wt-HDAC6-DsRed
degrades Gag-EGFP (Figure 8F, track 5), indicating that the
C-terminal fluorescent tag is neither affecting nor responsible
for the HDAC6 degradative action. Remarkably, wt-Nef-DsRed
over-expression (Figure 8D, associated epifluorescence image)
restores Gag-EGFP export to, and aggregation at, plasma
membrane (Figure 8D, evanescent field image; and quantified
in Figure 8E), correlating with the degradation of wt-HDAC6-
ECFP and the concomitant Pr55Gag (Gag-EGFP) stabilization
observed in the associated cell lysates (Figure 8F, track 6).
Therefore, HDAC6 degrades Pr55Gag inhibiting its localization
and aggregation pattern at plasma membrane. Nef targets
HDAC6 neutralizing its anti-HIV-1 action, in order to assure
Pr55Gag stability, and its location and aggregation pattern at
plasma membrane.

Taking together all the data, it is plausible to propose
that HDAC6 is an anti-HIV-1 restriction factor, limiting viral
production and infection, acting in the late steps of the viral cycle.
Indeed, Nef targets HDAC6, being key to guarantee these late
steps of the viral cycle.

Full-Length Nef Targets HDAC6 Assuring

Viral Production and Infection
To further decipher which Nef determinants are responsible
for HDAC6 neutralization, we studied the effects of different
mutants on viral production. We observe that wt-Nef and the
Nef-G2A, but not the Nef-PPAA mutant, efficiently abrogate
HDAC6-mediated Pr55Gag and Vif degradation (Figure 9A;
quantified in Figure 9B). We also observed that HDAC6-
mediated inhibition of virus production was neutralized by wt-
Nef, Nef-G2A, and Nef-EA mutants (Figure 9C, viral production
histograms). In contrast, Nef-PPAA and Nef-LLAA mutants
cannot restore efficient viral production (Figure 9C, viral
production histograms), in agreement with their inability to
degrade HDAC6 (Figure 3 and Figure 9A).

Next, we analyzed the infection capacity of virions produced
under these experimental conditions. In permissive CEM.NKR-
CCR5 T-cells, we assayed virions obtained in packaging cells
expressing different Nef constructs and the same pNL4.3-�nef
backbone (see section Materials and Methods). We observed
that �nef -virions lose their infection capacity when viral
particles are produced in the presence of over-expressed HDAC6
(Figure 9C, HIV-1 infection capacity/HDAC6 histogram). As
expected, infectivity levels were restored in the presence of
full-length Nef (Figure 9C, HIV-1 infection capacity/wt-Nef
histogram). Despite its ability to target HDAC6, stabilizing
Pr55Gag, virions obtained with the Nef-G2A mutant are
poorly infectious (Figure 9C, HIV-1 infection capacity/Nef-G2A
histogram). Interestingly, the small amounts of viral particles
produced in the presence of wt-HDAC6 and the Nef-PPAA
mutant, which is unable to target HDAC6 (Figures 3, 9),
also presented lower infection capacities (Figure 9C, HIV-
1 infection capacity/Nef-PPAA histogram). Similar results are
obtained in infection experiments with virions obtained with
the Nef-LLAA mutant (Figure 9C, HIV-1 infection capacity/Nef-
LLAA histogram), which cannot target HDAC6. We and others
have previously reported a weak infection capacity of HIV-1
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FIGURE 5 | Study of the ability of two different Nef mutants, presenting divergence to target HDAC6, to co-immunoprecipitate with HDAC6. Biochemical

immunoprecipitation analysis of the interaction of Nef-G2A and Nef-PPAA Nef mutants with HDAC6 in HEK-293T cells. (A) Western blot analysis of the input

expression of the different over-expressed C-terminal EGFP-tagged Nef constructs (wt or mutants: Nef-G2A or Nef-PPAA), cells expressing HA-wt-HDAC6 or

HA-wt-PI4P5-K Iα (these two constructs are for tag and specificity of binding controls), free EGFP (pEGFP-C1 expressing cells for EGFP control) or co-expressing

HA-wt-HDAC6 with wt-Nef-EGFP, Nef-G2A-EGFP, or Nef-PPAA-EGFP constructs. Cell lysates under control conditions, are indicated by the entire first left column

which represents cells transduced with an empty pcDNA3.1 vector. (B) These cell lysates were further subjected to co-immunoprecipitation (co-IP) with anti-EGFP

Ab, followed by immunoblotting with anti-HDAC6, anti-HA, anti-Nef and anti-EGFP specific Abs. Data are from a representative experiment of three.
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FIGURE 6 | HDAC6 degrades Pr55Gag and Vif, inhibiting viral production and virus infection. Whereas Nef counteracts HDAC6, assuring Pr55Gag and Vif stability,

and subsequent viral production and virus infection. (A) Quantitative western blot analysis of proviral pNL4.3-Luc-R-E-(�nef )-derived Pr55Gag and Vif proteins, in

HIV-1(bering R5-tropic Env-BaL) virions-producing HEK-293T cells, over-expressing either HDAC6 (lane 4), Nef (lane 3) or both HDAC6/Nef constructs (lane 5). Lane

1 represents control, untrasduced cells that do not produce virions, and lane 2 pNL4.3.Luc.R-E-(�nef )/Env-BaL virus packaging cells. Right Histograms quantify the

amounts of Pr55Gag and Vif viral proteins, normalized by total α-tubulin, under any experimental condition. Data are mean ± S.E.M. of three independent

experiments. (B) Quantitative analysis of viral production in supernatants of HEK-293T cells, measured by quantitative p24-ELISA test, under any experimental

condition as indicated in (A). (C) Effects of HDAC6 and Nef-mediated HDAC6 targeting on HIV-1 infection assayed in CEM.NKR.CCR5 permissive T-cells, incubated

with synchronous HIV-1 (�nef )/Env-BaL viral inputs, of virus isolated from supernatants of Nef construct-expressing cells of (A). Data are mean ± S.E.M. of three

independent experiments. ∗∗P < 0.01 and ∗P < 0.05 values Student’s t-test, respectively.

obtained with Nef-LLAA (Madrid et al., 2005; Pizzato et al., 2007;
Xu et al., 2009; Basmaciogullari and Pizzato, 2014). Interestingly,
we observed that virions produced with the Nef-EA mutant,
which is able to target HDAC6, present a weak infection capacity
(Figure 9C, HIV-1 infection capacity/Nef-EA histogram). All
these Nef mutants have already been reported to be responsible
for a defect in virus infection capacity (reviewed in Vermeire
et al., 2011), explaining our results. Therefore, all these data
prompted us to suggest that HDAC6 targets Pr55Gag and Vif,
limiting viral production and infection, antiviral functions that
are only entirely neutralized by full-length functional Nef (see
Figure 10, summary illustrations). Hence, HDAC6 appears to be
an important anti-HIV-1 restriction factor.

DISCUSSION

In the present work, we propose a new function for Nef through
targeting HDAC6, thereby neutralizing its antiviral functions.
HDAC6 appears to limit viral production and infection by
promoting the autophagic degradation of Pr55Gag and Vif.
In this matter, Nef seems to promote HDAC6 degradation,
in a dose-dependent manner. Nef co-distributes and co-
immunoprecipitates with HDAC6, driving its clearance by an
acidic, endosomal/lysosomal degradative pathway. This Nef-
mediated anti-HDAC6 activity stabilizes Pr55Gag, assuring
Pr55Gag location and aggregation at plasma membrane, as
observed by TIRFM, and favoring efficient viral production.
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FIGURE 7 | HDAC6-mediated Pr55Gag and Vif degradation is inhibited by 3-MA. Quantitative western blot analysis of dose-response HDAC6-mediated viral

Pr55Gag and Vif degradation in virus-packaging HEK-293T cells, under control (vehicle PBS) (A) and 3-MA (B) conditions. When indicated, HEK-293T cells were

transfected with proviral pNL4.3.LucR-E-(�nef ) (1 μg) and BaL.01 env (1 μg) plasmids, and HA-wt-HDAC6. (C,D) Show histogram quantifications of the inhibitory

effect of 3-MA on HDAC6-mediated Pr55Gag and Vif autophagic degradation, respectively. Data are mean ± S.E.M. of three independent experiments carried out in

quadrupled: ∗∗P < 0.01 and ∗P < 0.05 values Student’s t-test, respectively.

Moreover, and instead with HDAC6 over-expression conditions,
nascent virions obtained in the presence of functional Nef present
enhanced infection capacities compared to �nef -virions, which
are poorly produced in the presence of HDAC6, as occurred with
Nef mutants unable to target HDAC6. Moreover, Nef-mediated
HDAC6 targeting restores Vif stability, which is crucial for viral
infectiveness, as we reported (Valera et al., 2015).

Our data shows for the first time that HIV-1 Nef degrades
HDAC6. This event leads to an increase in α-tubulin acetylation,
a main HDAC6 substrate. This α-tubulin post-transductional
modification is required for efficient HIV-1 viral infection and
replication (Valenzuela-Fernandez et al., 2005, 2008; Casado
et al., 2018; Cabrera-Rodriguez et al., 2019). In terms of the
Nef-associated route to degrade HDAC6, our results indicate
that neither MG132 nor 3-MA altered the ability of Nef to
degrade HDAC6 (Figures 2A,B). These data suggest that Nef

is not targeting HDAC6 to the proteasome, and that Nef is
not recruiting HDAC6 to the aggresome/autophagy degradative
pathway. However, a V-ATPases inhibitor, Bafilomycin A1, which
abrogates endosome, lysosome and others vesicles/organelles
acidification (Yoshimori et al., 1991), avoids Nef-mediated
HDAC6 degradation (Figure 2B, Bafilomycin A1 blots).
A comprehensive study points to the idea that Bafilomycin A1
does not affect autophagosome-lysosome fusion (Klionsky et al.,
2008b). Hence, its main action would rely on the inhibition
of lysosome acidification (Fass et al., 2006; Yamamoto et al.,
1998). In this matter, it has been described that in the presence
of Bafilomycin A1, a high autophagic flux into the lysosome is
still maintained, even if an accumulation of early autophagic
vacuoles is observed (Mousavi et al., 2001). This event could
account for the lower amounts of p62 we detected in the
presence of Bafilomycin A1, together with the fact that this
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FIGURE 8 | Continued

Frontiers in Microbiology | www.frontiersin.org 16 October 2019 | Volume 10 | Article 2437



Marrero-Hernández et al. Nef Neutralizes HDAC6-Anti-HIV Functions

FIGURE 8 | Nef assures Gag localization and aggregation at plasma membrane by targeting HDAC6 (TIRFM study). A series of epifluorescence and TIRFM images,

in HEK-293T living cells, showing the expression, localization and aggregation pattern of the Gag-EGFP protein at plasma membrane, monitored by the EGFP

associated fluorescence observed in the evanescent field, under different experimental conditions. (A) Images correspond to data obtained in control, Gag-EGFP

expressing cells. Zoom area image shows Gag-EGFP aggregates at plasma membrane. (B) Images correspond to data obtained in wt-Nef-DsRed and Gag-EGFP

co-expressing cells. Zoom area image shows Nef enhanced Gag-EGFP aggregates at plasma membrane. (C) Images correspond to data obtained in

wt-HDAC6-ECFP and Gag-EGFP co-expressing cells. Zoom area image shows HDAC6-mediated impairment of Gag-EGFP aggregates at plasma membrane. In

fact, under the evanescent field is not possible to observe Gag-EGFP aggregates, under this experimental condition. We need to explored inside the cell to detect

EGFP-associated fluorescent without any specific pattern. The associated, non-evanescent field images are indicated by a green asterisk. (D) Images correspond to

data obtained in wt-Nef-DsRed, wt-HDAC6-ECFP and Gag-EGFP co-expressing cells. Zoom area image, under the evanescent field, shows Nef-mediated

enhancement of Gag-EGFP aggregates at plasma membrane, by Nef-targeting of HDAC6 which is weak observed by epifluorescence. Data are representative of

three independent experiments. (E) Histograms show quantification of the aggregation level of Gag at plasma membrane, monitored in the evanescent field, under

the experimental conditions indicated in (A–D). To quantify the degree of Gag-EGFP aggregation at plasma membrane, TIRFM images were background subtracted

using MetaMorph and analyzed plotting 3 lines of 15 μm-length along the cell diameter. These data and quantitative analysis is presented in the table underneath.

The difference observed in the Gag-EGFP punctuated pattern between the control condition (Gag-EGFP) and cells coexpressing Gag-EGFP and wt-HDAC6-ECFP

is significant ∗∗P = 0.0078 value of Student’s t-test. HDAC6 inhibits Gag location and aggregation at plasma membrane by 98% respect to control condition (A). The

recovery of the punctate expression pattern over-expressing Nef was also significant ∗P = 0.0277 value of Student’s t-test. Signal was scored positive when the

fluorescence of the spots in the line scans were at least mean ± 2SD of the local background. Data were pooled in histograms that show averaged number of

aggregates per cell. Data are mean ± S.E.M. of six independent experiments. (F) Quantitative western blot analysis of the different proteins expressed in cells used

in TIRFM studies from (A–D). We observed that fluorescent tags do not affect the ability of HDAC6 (either C-terminal ECFP or DsRed tagged) to degrade Gag-EGFP,

the ability of Nef (C-terminal DsRed tagged) to target HDAC6 and to stabilize and enhance Gag protein level of expression. Pr55Gag-EGFP/α-tubulin rations are

shown. α-tubulin bands represent the control for the total amount of protein. A representative western blot is shown of the six independent experiments performed,

corresponding with cells assayed in TIRFM (A–D) panels.

inhibitor abrogates Nef-mediated HDAC6 degradation. Then,
HDAC6/p62-mediated autophagic flux could be still functional,
accounting for the p62 clearance observed during Bafilomycin
A1 treatment. In fact, Bafilomycin A1 appears to block fusion
between late endosomes and lysosomes (Mousavi et al., 2001),
affecting intracellular protein trafficking toward endosomal
or lysosome compartments (Clague et al., 1994; van Weert
et al., 1995; van Deurs et al., 1996; Mousavi et al., 2001). It is
therefore plausible that some markers for autophagic flux and
degradation, such as p62, are not significantly accumulated
by the general action of Bafilomycin A1 (Klionsky et al.,
2008b), as we observed in this work. Hence, Bafilomycin A1
fails to elevate ubiquitinated proteins, as well as p62, unless
the proteasome is affected (Myeku and Figueiredo-Pereira,
2011). We also observed that the combined action of E-64d
and Pesptatin A inhibitors blocked the degradative Nef action
on HDAC6. These two proteinases’ inhibitors act on low
pH (McGrath, 1999; Zhang et al., 2000; Muller et al., 2012;
Verma et al., 2016; Agbowuro et al., 2018), and are broad-
spectrum inhibitors of lysosomal cathepsins, such as cysteine
(E-64d) and aspartyl (Pepstatin A) proteinases (Muller et al.,
2012). Altogether these data prompted us to suggest that Nef
could mediate its degradative action on HDAC6 by targeting
this anti-HIV-1 deacetylase enzyme at low pH organelles,
where it would be degraded by the action of proteinases,
such as endosomal and lysosomal cathepsins, sensitive to
Bafilomycin A1 and/or E-64d + Pepstatin A inhibitors
(Muller et al., 2012).

All these observations are consistent with data obtained
with the Nef-LLAA mutant that lacks endocytic functions.
The di-Leucin motif (L164-L165) in Nef appears to be critical
for its degradative action on HDAC6, since this Nef mutant
is unable to target HDAC6. Mutations in the di-Leucin
motif have been reported to negatively affect Nef-mediated
internalization and endosomal trafficking, such as for CD4

and other factors, through inhibiting Nef-mutant association
with AP-1 (Bresnahan et al., 1998; Janvier et al., 2003a,b;
Madrid et al., 2005). Interestingly, we observed that the Nef-
EA mutant, reported to slightly interact with AP-1 and to
internalize CD4 (Bresnahan et al., 1998), conserves the ability
to trigger HDAC6 degradation. This Nef-EA mutant is altered
in the Nef-ExxxLL160-165 sequence, critical for internalization,
intracellular trafficking, and fade of several proteins and receptors
targeted by HIV-1 Nef (Lee et al., 1996; Bresnahan et al.,
1998; Janvier et al., 2003a,b; Madrid et al., 2005). Moreover,
it seems that Nef promotes HDAC6 degradation without the
need to be membrane-anchored for Nef, or to be a plasma
membrane protein for HDAC6. Nef-G2A-mediated HDAC6
degradation and co-immunoprecipitation, observed in this work,
point to this direction. Furthermore, results obtained with
the Nef-PPAA mutant indicate that the P72xxP75 motif, in
the PxxPxxPxR (69-77 aa) sequence of Nef, may be involved
in the association with HDAC6, since Nef-PPAA mutant is
not able to co-immunoprecipitate with HDAC6. Similarly,
some Src-family tyrosine kinases that interact with Nef cannot
be targeted by the Nef-PPAA mutant, as reported (Saksela
et al., 1995; Lee et al., 1996; Arold et al., 1997; Manninen
et al., 1998). In this matter, Nef-PPAA mutant also lack
the capacity to promote HDAC6 degradation. This fact may
be indicative that this motif is involved in Nef-mediated
HDAC6 processing, or that a conformational change in the
mutated Nef protein abrogates the activity presented by other
parts of the molecule, as observed with the full-length Nef
(Figures 1–3). Altogether, the data indicate that Nef interacts,
directly or indirectly, with HDAC6, with the association of
the integrity of the PPAA motif in Nef being important, and
that mutants that co-immunoprecipitate with HDAC6 and
conserve the endocytic functions of Nef are able to promote
HDAC6 clearance through an acidic, endosomal/lysosomal
pathway. Indeed, Nef promotes HDAC6 degradation without
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FIGURE 9 | Continued
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FIGURE 9 | Only full-length functional Nef neutralizes HDAC6 to assure virus production and infection capacities. (A) Quantitative western blot analysis of proviral

pNL4.3-Luc-R-E-(�nef )-associated Pr55Gag and Vif proteins expression, in HIV-1 (R5-tropic Env-BaL) virus packaging HEK-293T cells (from lanes 2 to 9), after

over-expressing HDAC6 (lane 3), Nef (lane 5) or both HDAC6/Nef constructs conditions (lane 4). The effect of Nef-G2A and Nef-PPAA mutants, expressed alone

(lanes 7 and 9, respectively) or together with HDAC6 (lanes 6 and 8, respectively) on Pr55Gag and Vif stability are similarly shown. Lane 1 represents control for

non-transduced, non-virus producing cells, and lane 2 is the control for HIV-1 (�nef/env-BaL) virus production. A representative experiment of three is shown.

(B) Histograms quantify the intensities of western blot bands, representing the amounts of Pr55Gag and Vif viral proteins detected, under any experimental condition

from (A) experiments, and normalized by total α-tubulin. Data are mean ± S.E.M. of three independent experiments. (C) Left; Quantitative analysis of the effect of

different Nef constructs on viral production in supernatants of over-expressing-HDAC6, virus-packaging HEK-293T cells, measured by a quantitative p24-ELISA test,

under similar experimental conditions as in (A). Right; Effects of different Nef constructs on HIV-1 infection capacity. Synchronous HIV-1 (�nef/env-BaL) viral inputs,

from supernatants of left-panel (C) experimental conditions, were incubated with CEM.NKR.CCR5 permissive T-cells, and assayed in luciferase-quantified viral

infection experiments. Data are mean ± S.E.M. of three independent experiments. In (B,C), a.u., arbitrary light units.

the need to be membrane-anchored for Nef or to be a plasma
membrane protein for HDAC6, as results with the Nef-G2A
mutant indicate.

Our data suggests that this Nef-mediated HDAC6 degradation
is for the late steps of the HIV-1 viral cycle. In fact, HDAC6
represents a barrier for viral production and infection, as over-
expression of HDAC6 promotes Pr55Gag and Vif degradation.
This HDAC6 anti-Vif activity impairs HIV-1 infectiveness, as
we reported (Valera et al., 2015). However, in the presence of
functional Nef, HDAC6 cannot exert its anti-HIV-1 functions.
Nef degrades HDAC6, stabilizing Pr55Gag and Vif, just assuring
and enhancing viral production and infectiveness. TIRFM results
help to monitor the effect exerted by HDAC6 on the Pr55Gag
location and distribution pattern at plasma membrane, and
how Nef neutralizes these effects. In the absence of over-
expressed HDAC6, recombinant Gag presents a homogeneous
aggregation pattern at plasma membrane, as observed under the
evanescent field. Over-expression of Nef degrades endogenous
HDAC6, stabilizes Gag protein, and enhances formation of Gag
aggregates at plasma membrane. These data fit well with data
obtained in cells producing viral particles, when Nef is over-
expressed and neutralizes the basal anti-HIV-1 activity of the
endogenous HDAC6. On the contrary, in the absence of Nef,
HDAC6 over-expression targets Gag and avoids Gag location
and aggregation at plasma membrane. Remarkably, Nef over-
expression degrades over-expressed HDAC6 and restores Gag
distribution and aggregation at plasma membrane. Therefore,
HDAC6 degrades Pr55Gag, inhibiting its plasma membrane
localization and aggregation pattern. Nef targets HDAC6
neutralizing its anti-HIV-1 action, in order to assure Pr55Gag
stability, plasma membrane location and the aggregation pattern,
thereby explaining the enhancement observed for viral egress.
These observations were further confirmed by studying viral
production and virus infection with different Nef mutants and
over-expressing HDAC6. We observed that the antiviral HDAC6
functions were only neutralized by wt-Nef and Nef mutants able
to target HDAC6, such Nef-G2A and Nef-EA, whereas mutants
that cannot target HDAC6, such as Nef-PPAA andNef-LLAA, are
unable to restore efficient viral production. Hence, �nef -virions
lose their infection capacity when viral particles are produced in
the presence of over-expressed HDAC6. Indeed, this correlates
well to the HDAC6-mediated Vif autophagy degradation that
negatively affects HIV-1 infection, as reported (Valera et al.,
2015). However, when viral particles are obtained in the presence
of functional Nef, HDAC6 is degraded (either the endogenous or

the over-expressed enzyme) and Vif is stabilized, assuring virion
production with restored infection capacities.

Some interesting data were obtained when analyzing the
infection capacity of viral particles obtained over-expressing
HDAC6 together with the different Nef mutants. Despite
stabilizing Pr55Gag, virions obtained with the Nef-G2A mutant
were poorly infectious. This was previously reported for this
mutant (Fackler et al., 2006), and may point to the necessity
of Nef to be associated to the plasma membrane, in order to
assure viral infectiveness by targeting other cell factors, during
viral egress, such as dynamin 2, SERINC5, and 3 (Pizzato
et al., 2007; Fackler, 2015; Rosa et al., 2015; Usami et al.,
2015). In addition, viral particles produced under Nef-PPAA
mutant condition also presented weak infection capacities. This
observation is in accordance with a reported study suggesting
that the Nef-SH3 binding motif, absent in Nef-PPAA, is required
for enhanced growth of HIV-1 viruses, suggesting to the authors
that the phenotypic effect of Nef may be explained by a
higher infectivity of virus particles produced in Nef-expressing
cells, rather a higher rate of virus production in infected
cells (Saksela et al., 1995). Furthermore, P/A mutations in the
Nef-P72xxP75 motif have been reported to entirely inhibit or
impair Nef ability to enhance virion infectivity (Goldsmith
et al., 1995; Pizzato et al., 2007; Foster et al., 2011). In this
regard, our results suggest that Nef-PPAA poorly interacts
with and does not target HDAC6, thereby being unable to
prevent HDAC6 restrictions for viral production and infection,
acting on Pr55Gag and Vif. Interestingly, we observed that
virions produced with the Nef-EA mutant, despite being able
to target HDAC6, present a low infection capacity. We have
reported that Nef-induced disruption of the endocytic recycling
compartment (ERC) is also lost with the Nef-EA(E160A)
mutation (Madrid et al., 2005). It appears that the 160glutamate
residue is important for canonical interactions of the di-
Leucine motif, (E/D)XXXL(L/I) (Bonifacino and Traub, 2003).
It is conceivable that despite its ability to target HDAC6
and assure viral production, and as observed with the Nef-
LLAA mutant, Nef-EA may not be able to interplay with
other LL (or LI) domains (reviewed in Foster et al., 2011),
and to assure a post-viral egress function required for viral
infectiveness. In this regard, virions obtained with the Nef-
LLAA mutant present weak infection capacity, as we and others
have previously reported (Madrid et al., 2005; Pizzato et al.,
2007; Xu et al., 2009). This Nef mutant is unable to reduce
the ERC compartment, composed of narrow diameter tubules
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FIGURE 10 | Continued

Frontiers in Microbiology | www.frontiersin.org 20 October 2019 | Volume 10 | Article 2437



Marrero-Hernández et al. Nef Neutralizes HDAC6-Anti-HIV Functions

FIGURE 10 | Schematic representation of the interplay between HDAC6 and HIV-1 viral proteins Nef, Pr55Gag and Vif, in the control and fostering of viral production

and virus infection. (A) Schematic illustration showing the different stages of HIV-1 assembly, budding and maturation, all processes mainly driven by the HIV-1

structural Gag protein (Pr55Gag). (B) Schematic illustration of the anti-HIV-1 action of HDAC6 inhibiting viral production and virus infection capacity, thereby targeting

Pr55Gag and Vif to the aggresome/autophagic clearance pathway. This process is blocked by 3-methyladenine (3-MA), a chemical inhibitor of

aggresome/phagosome formation. (C) Schematic illustration of the HIV-1 Nef proviral action counteracting HDAC6. Nef targets HDAC6 to degradation by an

acidic-endocytic/lysosomal route, where endosomal and lysosomal cathepsins proteinases could be involved, which are sensitive to E-64d and Pestatin A

proteinase inhibitors, and Bafilomycin A1, an inhibitor of vacuolar H+-ATPases (V-ATPases) that abrogates endosome-lysosome acidification. Indeed, the Nef mutant

(mut-Nef∗) Nef-LLAA, disconnected of the AP-1 endocytic route, cannot trigger HDAC6 degradation. Similarly, Nef-PPAA mut-Nef∗, which cannot

co-immunoprecipotate with and degrade HDAC6, is unable to restore efficient viral production. The antiviral HDAC6 functions are only neutralized by functional

full-length Nef and Nef mutants able to target HDAC6, such Nef-G2A and Nef-EA. This new Nef proviral function assures Pr55Gag and Vif stabilization, allowing

Pr55Gag localization and aggregation at plasma membrane, viral egress and efficient virus infection capacity. HDAC6 and HIV-1 Pr55Gag, Nef and Vif proteins are

represented in these illustrations by using their related molecular structures (http://www.rcsb.org/structure/3PHD and http://cdn.rcsb.org/pdb101/learn/resources/

structural-biology-of-hiv/index.html, respectively) hold by the Protein Data Bank archive (© RCSB PDB; Berman et al., 2000). Scheme illustrations created by David

Reyes (@SciArt3D FabLab-ULL).

derived from sorting endosomes (Gruenberg and Maxfield, 1995;
Maxfield and McGraw, 2004), as Nef does (Madrid et al.,
2005; Coleman et al., 2006; Pizzato et al., 2007; Lindwasser
et al., 2008; daSilva et al., 2009; Laguette et al., 2009; Xu
et al., 2009; Foster et al., 2011). It is conceivable that this
Nef-LLAA mutant could also be unable to target or to recruit
some cell factors, such as dynamin 2 (Pizzato et al., 2007),
which is key for controlling viral infectiveness after viral particle
formation. In fact, we observed that Nef-LLAA is unable to
target HDAC6 and to neutralize HDAC6-mediated Pr55Gag
degradation and inhibition of viral production and infection.
This anti-HIV-1 activity of HDAC6 against Pr55Gag could be
very important, and points to a similar action exerted by the cell-
membrane metalloprotease TRAB domain-containing protein
2A (TRABD2A), which acts on resting CD4+ T-cells (Liang
et al., 2019). Of note, HDAC6 also controls HIV-1 infectiveness
by targeting Vif, as we observed and reported here (Valera
et al., 2015). Therefore, only full-length functional Nef is able
to target HDAC6 to restore viral production rates and viral
infection capacities.

Altogether, these results prompted us to suggest that
HDAC6 acts as a restriction factor, limiting viral production
and infection by driving Pr55Gag and Vif viral proteins
to degradation through an aggresome/autophagy route.
Thus, for HIV-1, targeting HDAC6 appears to be critical for
assuring viral production and virus infectivity, and that this
could be a key proviral function of Nef. Hence, HDAC6 is
counteracted by functional Nef which drives its clearance
by an acidic, endocytic/lysosomal pathway. In this matter,
Nef assures viral production and infection by targeting
HDAC6, stabilizing Pr55Gag and Vif, thereby facilitating
Pr55Gag location and aggregation at plasma membrane,
and subsequent virus production and infection capacity
(events summarized by schematic illustrations in Figure 10).
Therefore, the interplay between Nef and HDAC6 may be
key to the course of HIV infection and pathogenesis in
infected individuals, and may contribute to develop new
strategies against HIV.
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