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Letters to the Editor 
Longitudinal study of a SARS-CoV-2 infection in an 
immunocompromised patient with X-linked 
agammaglobulinemia 
Dear Editor , 

In this journal, Walsh and colleagues 1 recently reviewed the 
evidence supporting that immunocompromised patients may re- 
main positive for Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2) infection for long periods of time, up to 20 days. 
Here, we report the case of an immunocompromised patient with 
clinically diagnosed X-linked agammaglobulinemia (XLA) ( Supple- 
mentary Material ) who was persistently infected with SARS-CoV- 
2 for almost five months. He was admitted to the hospital on 
the 14th April 2020 with left bilobar pneumonia, reporting cough, 
chronic diarrhoea, and fever over the previous four days, and a na- 
sopharyngeal (NP) sample tested positive for SARS-CoV-2 by RT- 
qPCR ( Fig. 1 A). In the hospital, he was treated with hydroxychloro- 
quine, two courses of remdesivir, lopinavir/ritonavir, antibiotics, 
antifungal treatments, and glucocorticoids. Infectious SARS-CoV- 
2 was successfully cultured from a bronchoalveolar lavage (BAL) 
sample on day 50, showing that the virus was actively replicating 
in the lower respiratory airways ( Supplementary Material ). On day 
133, he was treated with hyperimmune serum from a convales- 
cent patient. Despite treatments and two coronavirus disease 2019 
test negativizations, the patient stayed in the hospital most of the 
time and died in the intensive care unit from multiorgan failure 
and shock on day 149 (10th September 2020) ( Fig. 1 A). See the 
Supplementary Material for further details. 

Throughout the period described, 26 respiratory samples were 
collected from the patient (22 NP swabs and 4 BAL samples) 
( Fig. 1 A). A urine, faeces, and peripheral blood sample (on day 44), 
and another peripheral blood sample (on day 87) were collected, 
but viral genome was not detected in any of their RNA extrac- 
tions. SARS-CoV-2 viral genomes of a subset of 13 NP and 3 BAL 
samples were sequenced using alternative methodologies (Sup- 
plementary Material). All genomes were assigned to the PANGO 
lineage A.2 (Clade 19B), which was predominant in Spain dur- 
ing the early months of the pandemic. 2 Assignation of the se- 
quences to the same lineage suggests that the patient had a sin- 
gle viral infection event. Synonymous and non-synonymous mu- 
tations accumulated throughout the course of the infection in NP 
and BAL samples (Spearman correlation, r = 0.77, p = 0.0 0 072) 
( Fig. 1 B). Different constellations of mutations were observed in 
the sequences isolated from NP and BAL samples, suggesting 
compartmentalization of viral subpopulations evolving indepen- 
dently. The median mutation rate -accumulated mutations per day 
since diagnosis- was 0.09 mutations/day, higher than the origi- 
nally estimated for SARS-CoV-2 (0.06 mutations/day 3 ) (One-sample 
Wilcoxon test, p = 0.005), indicating accelerated mutation rate 

during infection. There was no significant difference in the muta- 
tion rate calculated for NP and BAL samples (Mann-Whitney U test, 
p = 0.18). 

On day 0, viral genome sequences harboured the characteris- 
tic mutational pattern of lineage A.2 (ORF1a:F3701Y, ORF3a:G196V, 
ORF8:L84S, N:S197L) in addition to two other substitutions and 
four synonymous mutations ( Fig. 1 B). In particular, the spike (S) 
gene sequence was characterized by the I197V substitution and 
one synonymous mutation. These were the only two mutations 
observed in the S gene throughout the course of this five-month 
infection period in NP samples. However, we observed a different 
evolutionary pattern in BALs. On day 50, the A653V substitution 
was observed. This was found as part of the mutational pattern 
of two variants spreading in France 4 and Germany 5 at the begin- 
ning of 2021. On day 87, the P384L in the receptor-binding domain 
emerged but disappeared together with the A653V at day 136, five 
days after treatment with hyperimmune serum, when R158S and 
N501T emerged. Strikingly, the N501T is associated with an in- 
creased binding affinity of the S protein to the human angiotensin- 
converting enzyme 2 (ACE2) receptor and has been identified as 
an escape mutation against anti-SARS-CoV-2 neutralizing antibod- 
ies (NAbs). 6 Interestingly, the position R158 of the S protein is part 
of the N-terminal domain (NTD) antigenic supersite, a region being 
recognized by all known NAbs directed to the NTD, 7 and the R158S 
has been included among the escape mutations of anti-SARS-CoV- 
2 monoclonal NAbs targeting the NTD of the S protein. 8 Besides, 
we highlight the emergence, on day 50, of the G204R in the nucle- 
ocapsid (N) gene, a mutation characteristic of the P.2 lineage, and, 
on day 136, of the K1795Q in the ORF1a and the P67S in the N 
gene, which are distinctive signatures of P.1 and B.1.617.3 lineages, 
respectively. 

This study describes an XLA-immunocompromised patient with 
prolonged SARS-CoV-2 infection, supporting evidence that these 
patients undergo viral shedding for long periods of time. 9 , 10 The 
patient presented RT-qPCR negative NP samples in different time 
intervals throughout the course of infection that either matched to 
a positive BAL sample or were followed by a positive RT-qPCR sam- 
ple. This indicates that a negative RT-qPCR result in NP samples 
may not imply remission from infection. 9 Viral genome sequenc- 
ing revealed an accelerated intra-host viral evolution. Different 
mutations were accumulated in samples collected from NPs and 
BALs throughout the course of infection, which may point to vi- 
ral adaptation to the upper and lower respiratory airways. Several 
host factors may account for this phenomenon, such as temper- 
ature and immune response disparities and/or differences in the 
ACE2 expression. Furthermore, it is worth noting that the muta- 
tions emerging in the lower respiratory tract were not detected by 
sequencing NP samples. Thus, the emergence of potentially worry- 
ing viral variants may be underestimated by sequencing standards 
focusing on NP samples. The emergence of substitutions linked to 
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Fig. 1. Five-month longitudinal study of SARS-CoV-2 positive samples collected from a XLA-immunocompromised patient. (A) Chronological visualization of samples collected 
throughout the course of infection until patient death (day 149). RT-qPCR cycle threshold (Ct) are shown for collected nasopharyngeal swab (NP, circle) and bronchoalveolar 
(BAL, triangle) samples, with sequenced samples highlighted in blue. Vertical bars represent the accumulated number of mutations in the sequenced genome compared 
to the consensus viral sequence obtained from the first NP sample (day 9). † At day 50, a BAL sample was shown to have actively replicating SARS-CoV-2 viruses. ( B) 
Graphical representation of SARS-CoV-2 whole-genome consensus sequences with synonymous (blue asterisks) and nonsynonymous mutations (orange asterisks) identified 
as compared to the Wuhan-Hu-1 reference sequence (NC_045512.2). Only non-synonymous mutations are identified with the amino acid changes in the figure. On day 50, 
in the N gene, the amino acid substitution S197L is replaced by S197T. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article) 
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immune evasion in the BAL sample collected three days after treat- 
ment with hyperimmune serum is remarkable. Of note, the pres- 
ence of the same or other mutations of interest in the NP samples 
days after hyperimmune serum treatment could not be ruled out. 
In fact, we were able to sequence only one NP sample 24 h after 
treatment, which may not be enough time to observe a possible vi- 
ral population shifting in these samples. One limitation is that we 
have no data on the Abs composition and SARS-CoV-2 neutralizing 
activity of the hyperimmune serum used. Lastly, the emergence of 
mutations distinctive of currently circulating SARS-CoV-2 variants 
of concern (VOCs) support the hypothesis for long-term viral shed- 
ding in immunocompromised patients as one possible mechanism 
for the emergence of VOCs. 
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Avian influenza H10 subtype viruses continuously pose 
threat to public health in China 
Dear editor , 

Wang and colleges recently reported in this journal the first 
case of human infection with H10N3 virus in China. 1 In China, H10 
subtype (H10N2, H10N3, H10N6, H10N7, H10N8, and et. al.) avian 
influenza virus (AIV) had distributed in poultry and wild bird pop- 
ulations in China. 2 Because poultry showed no clinical symptoms 
when infected with H10 subtype viruses, their eradication had not 
been a priority for the control of zoonosis diseases in China. How- 
ever, H10 subtype viruses had continuously contributed to some 
zoonotic spillover events. In 2010, a number of cases of human in- 
fected with H10N7 were reported in Australia 2 , and subsequently, 
China reported that the first human case of H10N8 infection that 
resulted in a human death in 2013 and the recently emerged 
human-infecting H10N3 virus in 2021. 1 , 3 Therefore, the H10 sub- 
type AIV poses continuous public health concerns. To that purpose, 
we systematically analyzes the evolutionary dynamics and dissem- 
ination pathways of H10 subtype AIV in China. 

In the present study, to elucidate the evolutionary process of 
H10 subtype influenza viruses, we firstly examined HA genes of 
global H10 subtype virus by performing multiple sequence align- 
ment and phylogenetic analysis. 3 , 4 H10 subtype viruses had di- 
vided into two lineages—North American-lineage and Eurasian- 
lineage ( Fig. 1 A). We observed that the H10 subtype viruses in 
Eurasian-lineage were more complex embodying different neu- 
raminidases, while the H10N7 virus was concentrated on North 
American-lineage ( Fig. 1 A). All of the H10 subtype viruses iso- 
lated from China were derived from Eurasian-lineage. It is inter- 
esting to note that 78.5% of the H10 subtype viruses (N2-N9) 
were isolated from Jiangxi province ( Fig. 1 B–D), indicating that 
Jiangxi province of China is the epicenter of the H10 subtype 
viruses. In addition, we also found that the number of H10 subtype 
viruses increased during 20 0 0–2015, and subsequently decreased 
after 2016 ( Fig. 1 B). The H10N3 and H10N8 influenza viruses ex- 
hibited the highest number of H10 subtype virus in China. H10N8 
virus had become the dominant subtype in poultry during 2011–
2015; however, the number of H10N3 virus had increased during 
2016–2021 ( Fig. 1 B), indicative of dominant H10 subtype switch 
in China. Previous study showed that genetic diversity of H10N8 
viruses were much higher prior to human spillover event. 2 In this 
study, we found that the genetic diversity of human-origin H10N3 
viruses were lower than that of H10N8 viruses (Supplementary 
Fig. 1), and we also found that the genotype of human-infecting 
H10N3 virus was same as the A/chicken/Jiangsu/0110/2019(H10N3) 
and A/chicken/Jiangsu/0104/2019(H10N3). These findings sup- 
ported the finding that the avian-to-human transmission of 
H10N3 virus might have occurred recently without further 
reassortment. 

To estimate the population dynamics of H10 subtype influenza 
virus in China, we inferred the HA genes of H10 subtype virus 
demographic history using Bayesian Skyride plots (Supplementary 
Fig. 2). Our finding suggested that from 2012 to 2014, the decreas- 
ing effective population size indicated that the diversity of H10 
subtype viruses declined, while genetic diversity increased dramat- 
ically during 2014 to 2015 and then stably maintained ( Fig. 2 A 
and B). Subsequently, we analyzed the dissemination pathways of 
H10 subtype viruses in China in different sam pling locations based 
on the HA phylogenetic tree. Among the result, we found that 
Jiangxi province was regarded as epicenter for the viral spread 
( Fig. 2 C). Specifically, Jiangxi was linked with three locations—
Hunan, Hubei, and Hebei. In addition, we found that Zhejiang was 
linked with closer province including Jiangsu( Fig. 2 C). However, 
there are some limitations that sampling bias might have affected 
the results. Among our findings, the transmission routes of H10 
subtype viruses were primarily concentrated in Jiangxi province of 
China. Previous study showed that the role of wild birds in the 
dispersal of AIVs during the seasonal migration. 5 , 6,7 In the case of 
Jiangxi province, the Poyang Lake, with its excellent ecology and 
vast wetlands, has become a world-famous migratory bird winter- 
ing hub, which increase the close contact between wild birds car- 
rying H10 subtype viruses and poultry, accelerating the reassort- 
ment and mammalian adaptive mutations. 

The emerged H10N3 and H10N8 influenza viruses had caused 
human infection in China, posing public health threat. In previ- 
ous study, we found that the key substitutions in PB2 protein of 
H10N8 viruses including I292V, A588V, and T598M were associ- 
ated with mammalian adaption. 8,9 . Thus, a key concern is whether 
the H10 subtype viruses in poultry had acquired the mammalian 
adaption in recent years. In the present study, we found that the 
proportion of I292V, A588V, and T598M substitutions in the PB2 
protein of H10 subtype viruses in poultry increased sharply during 
2013 to 2021 ( Fig. 2 D), and the human-infecting H10N3 and H10N8 
viruses all harbored these amino acids substitutions, indicating 
that H10 subtype viruses in China pose an increasing threat to hu- 
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