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Abstract

We study several notions of boundedness for operators. It is known that
any power bounded operator is absolutely Cesàro bounded and strongly Kreiss
bounded (in particular, uniformly Kreiss bounded). The converses do not hold
in general. In this note, we give examples of topologically mixing (hence, not
power bounded) absolutely Cesàro bounded operators on `p(N), 1 ≤ p < ∞,
and provide examples of uniformly Kreiss bounded operators which are not
absolutely Cesàro bounded. These results complement a few known examples
(see [27] and [2]). We also obtain a characterization of power bounded op-
erators which generalizes a result of Van Casteren [32]. In [2] Aleman and
Suciu asked if every uniformly Kreiss bounded operator T on a Banach space
satisfies that limn→∞ ‖T

n

n ‖ = 0. We solve this question for Hilbert space op-
erators and, moreover, we prove that, if T is absolutely Cesàro bounded on a
Banach (Hilbert) space, then ‖Tn‖ = o(n) (‖Tn‖ = o(n

1
2 ), respectively). As a

consequence, every absolutely Cesàro bounded operator on a reflexive Banach
space is mean ergodic.

1 Introduction

Throughout this article X stands for a Banach space, the symbol B(X) denotes the
space of bounded linear operators defined on X, and X∗ is the space of continuous
linear functionals on X.

Given T ∈ B(X), we denote the Cesàro mean by

Mn(T )x :=
1

n+ 1

n∑
k=0

T kx

for all x ∈ X.
We need to recall some definitions concerning the behaviour of the sequence of

Cesàro means (Mn(T ))n∈N.
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67985840. The fourth author was also supported by Generalitat Valenciana, Project PROME-
TEO/2017/102.
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Definition 1.1. A linear operator T on a Banach space X is called

1. Uniformly ergodic if Mn(T ) converges uniformly.

2. Mean ergodic if Mn(T ) converges in the strong operator topology of X.

3. Weakly ergodic if Mn(T ) converges in the weak operator topology of X.

4. Absolutely Cesàro bounded if there exists a constant C > 0 such that

sup
N∈N

1

N

N∑
j=1

‖T jx‖ ≤ C‖x‖ ,

for all x ∈ X.

5. Cesàro bounded if the sequence (Mn(T ))n∈N is bounded.

An operator T is said to be power bounded if there is a C > 0 such that ‖T n‖ < C
for all n.

The class of absolutely Cesàro bounded operators was introduced by Hou and
Luo in [16]. For power-bounded operators, weak ergodicity is equivalent to mean
ergodicity (see [20, Theorem II.1.1]). There exist weakly ergodic operators on Hilbert
spaces which are not mean ergodic (hence not power-bounded), see [10, page 454]
and [31, Example 3.1].

The first example of a mean ergodic operator which is not power-bounded was
given by Hille ([17], where ‖T n‖ ∼ n1/4). An example of a mean ergodic operator T
on L1(Z) with lim supn ‖T n‖/n > 0 was obtained in [19] (Certainly, ‖T nx‖/n → 0
for every x ∈ L1(Z)).

Van Casteren [32, page 61] defined T on a Banach space X to be mean square
bounded if for some constant M

sup
N∈N

1

N

N∑
j=1

‖T jx‖2 ≤M2‖x‖2 ,

for all x ∈ X. Van Casteren proved that if T and T ∗ on a Hilbert space are mean
square bounded, then T is power-bounded. Mean square boundedness lies between
power-boundedness and absolute Cesàro boundedness, by Cauchy- Schwarz inequal-
ity, which leads to the question whether absolute Cesàro boundedness implies mean
square boundedness. We give the negative answer to this question.

Additional results about mean ergodicity of operators on spaces of analytic func-
tions can be found in [5, 6].

Definition 1.2. For an operator T we have three notions of Kreiss boundedness,
ordered by strength, if there exists C > 0 such that

2



1. Strongly Kreiss bounded :

‖(λI − T )−k‖ ≤ C

(|λ| − 1)k
for all |λ| > 1 and k = 1, 2, · · ·

2. Uniformly Kreiss bounded :∥∥∥∥∥
n∑
k=0

λ−k−1T k

∥∥∥∥∥ ≤ C

|λ| − 1
for all |λ| > 1 and n = 0, 1, 2, · · ·

3. Kreiss bounded :

‖(λI − T )−1‖ ≤ C

|λ| − 1
for all |λ| > 1.

Remark 1.1. 1. In [23, Corollary 3.2], it is proved that an operator T is uni-
formly Kreiss bounded if and only if there is a C such that

‖Mn(λT )‖ ≤ C for |λ| = 1 and n = 0, 1, 2, · · · . (1)

2. We recall [13] that T is strongly Kreiss bounded if and only if

‖ezT‖ ≤Me|z|, for all z ∈ C.

3. In [13], it is shown that every strong Kreiss bounded operator is uniformly
Kreiss bounded. It was shown in [23, Section 5] that uniform Kreiss bound-
edness does not imply strong Kreiss boundedness. McCarthy (see [22], [27])

proved that if T is strong Kreiss bounded then ‖T n‖ ≤ Cn
1
2 (see also [21, The-

orem 2.1]). McCarthy also produced an example of a strong Kreiss bounded
operator which is not power bounded.

4. If T is Kreiss bounded, then ‖T n‖ ≤ Cn [21, formula (2.4)]. By Nevanlinna
[25, Theorem 6], there are Kreiss bounded operators T on Banach spaces with
‖T n‖ ≥ Cn for some C > 0. There exist Kreiss bounded operators which are
not Cesàro bounded, and conversely [30].

5. On finite-dimensional Hilbert spaces, the classes of uniformly Kreiss bounded,
strong Kreiss bounded, Kreiss bounded and power bounded operators are equal.

6. By (1) any absolutely Cesàro bounded operator is uniformly Kreiss bounded.

Let X be the space of all bounded analytic functions f on the unit disk of the
complex plane such that their derivatives f ′ belong to the Hardy space H1, endowed
with the norm

‖f‖ = ‖f‖∞ + ‖f‖H1 .
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Then the multiplication operator, Mz, acting on X is Kreiss bounded but it fails to
be power bounded. Moreover, this operator is not uniformly Kreiss bounded (see
[28]).

Furthermore, for the Volterra operator V acting on Lp[0, 1], 1 ≤ p ≤ ∞, we have
that I−V is uniformly Kreiss bounded, for p = 2 it is power bounded (see [23]), and
it is asked if every uniformly Kreiss bounded operator on a Hilbert space is power
bounded. This is related to the following question in [2, page 279] (see also, [29]):

Question 1.1. If T is a uniformly Kreiss bounded operator on a Banach space, does
it follow that limn→∞

‖Tn‖
n

= 0?

Graphically, we show the implications between the above definitions.

Power bounded

Strong Kreiss bounded Absolutely Cesàro bounded

Uniformly Kreiss bounded

Kreiss bounded Cesàro bounded

‖T n‖ = O(n)

Figure 1: Implications among different definitions related with Kreiss bounded and
Cesàro bounded operators in Banach spaces.

We recall the following definition that allow us to study some properties of orbits
related to the behavior of the sequence (Mn(T ))n∈N.

Definition 1.3. Let T ∈ B(X). T is topologically mixing if for any pair U, V of
non-empty open subsets of X, there exists some n0 ∈ N such that T n(U) ∩ V 6= ∅
for all n ≥ n0.

Examples of absolutely Cesàro bounded mixing operators on `1(N) can be found
in [16], and in [7] (see also [8]).

The paper is organized as follows: We prove the optimal asymptotic behavior
of ‖T n‖ for absolutely Cesàro bounded operators and for uniformly Kreiss bounded
operators. In particular, we show that, for any 0 < ε < 1, there exists an absolutely

Cesàro bounded mixing operator T on `p(N), 1 ≤ p < ∞, with ‖T n‖ = (n + 1)
1−ε
p .

We also prove that power boundedness of T is equivalent to the fact that T and T ∗
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are mean square bounded operators, and to the fact that T and T ∗ are absolutely
Cesàro bounded. Moreover, we show that any absolutely Cesàro bounded operator
on a Banach space, and any uniformly Kreiss bounded operator on a Hilbert space,
satisfies ‖T n‖ = o(n). For absolutely Cesàro bounded operators T on Hilbert spaces

we get ‖T n‖ = o(n
1
2 ).

2 Absolutely Cesàro bounded operators

It is immediate that any power bounded operator is absolutely Cesàro bounded. In
general, the converse is not true.

By en, n ∈ N, we denote the standard canonical basis, en = (δn k)k∈N :=
(0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 0, . . . ), in `p(N) for 1 ≤ p <∞.

The following theorem yields a variety of absolutely Cesàro bounded operators
with different behavior on `p(N).

Theorem 2.1. Let T be the unilateral weighted backward shift on `p(N) with 1 ≤

p < ∞ defined by Te1 := 0 and Tek := wkek−1 for k > 1. If wk :=

(
k

k − 1

)α
with 0 < α < 1

p
, then T is absolutely Cesàro bounded on `p(N) and it is not power

bounded.

Proof. By definition, ‖T nek‖ = ( k
k−n)α for k > n, so

‖T n‖ ≥ ‖T nen+1‖ = (n+ 1)α; (2)

hence T is not power bounded.
Denote ε := 1− αp. Then ε > 0 and α = 1−ε

p
. Fix x ∈ `p(N) with ||x|| = 1 given

by x :=
∞∑
j=1

αjej and N ∈ N. Then

N∑
n=1

‖T nx‖pp =
N∑
n=1

∞∑
j=n+1

|αj|p
( j

j − n

)1−ε
=

∞∑
j=2

|αj|p j1−ε
min{N, j−1}∑

n=1

(j − n)ε−1

=
2N∑
j=2

|αj|p j1−ε
min{N, j−1}∑

n=1

(j − n)ε−1 +
∞∑

j=2N+1

|αj|p
N∑
n=1

( j

j − n

)1−ε
≤

2N∑
j=2

|αj|p j1−ε
j−1∑
n=1

(j − 1)ε−1 +
∞∑

j=2N+1

|αj|p
N∑
n=1

( j

j − n

)1−ε
. (3)

Notice that for j > 2N and n ≤ N , we have that(
j

j − n

)1−ε

≤ 21−ε < 2 .
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Hence
∞∑

j=2N+1

|αj|p
N∑
n=1

( j

j − n

)1−ε
< 2N

∞∑
j=2N+1

|αj|p ≤ 2N .

We can estimate the first term of (3) in the following way:

j−1∑
n=1

(j − n)ε−1 =

j−1∑
n=1

nε−1 < 1 +

∫ j−1

1

tε−1dt

≤ (j − 1)ε

ε
<
jε

ε
.

Thus

N∑
n=1

‖T nx‖pp ≤
2N∑
j=2

|αj|pj1−ε
jε

ε
+

∞∑
j=2N+1

|αj|p2N

=
2N∑
j=2

|αj|p
j

ε
+ 2N

∞∑
j=2N+1

|αj|p

≤ 2N

ε

2N∑
j=2

|αj|p + 2N
∞∑

j=2N+1

|αj|p

≤ 2N

(
1

ε
+ 1

)
.

By Jensen’s inequality(
1

N

N∑
n=1

‖T nx‖p

)p

≤ 1

N

N∑
n=1

‖T nx‖pp ≤ 2

(
1

ε
+ 1

)
,

which yields the result.

Remark 2.1. (A) In [11] Derriennic and Lin gave an example of positive Cesàro
bounded operator T which is not power bounded on L1 (of a countable space).
By positivity |T nf | ≤ T n|f |, so

1

N

N∑
j=1

‖T jf‖1 ≤
1

N

N∑
j=1

‖T j|f |‖1 = ‖ 1

N

N∑
j=1

T j|f |‖1

by the additivity of the L1-norm on positive functions, which shows that T is
absolutely Cesàro bounded and it is not power-bounded.

(B) Bonet observed in [9] that any mixing operator T on a Banach space X satisfies
‖(T ∗)nx‖ → ∞ for every x 6= 0. In particular, if T is mixing then T ∗ cannot
be absolutely Cesàro bounded.
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Corollary 2.1. There exist mean square bounded operators on `p(N), 2 ≤ p < ∞,
which are not power bounded.

Proof. It is an immediate consequence of the proof of Theorem 2.1 when 2 ≤ p <∞,
since we can use the monotonicity of Lp norms in probability spaces [26] to obtain:

( 1

N

N∑
j=1

‖T jf‖2p
)1/2 ≤ ( 1

N

N∑
j=1

‖T jf‖pp
)1/p ≤ (2(ε+ 1)/ε

)1/p
so for p ≥ 2, the operator T of Theorem 2.1 on `p(N) is mean square bounded.

In [18] Kornfeld and Kosek constructed for every δ ∈ (0, 1) a positive mean
ergodic operator T on L1 with ‖T n‖ ∼ n1−δ. By positivity, T is absolutely Cesàro
bounded, so T is not strongly Kreiss bounded when δ < 1/2, by [27, Remark 3]. The
following corollary gives examples in reflexive spaces.

Corollary 2.2. For 1 < p < 2, there exist absolutely Cesàro bounded operators on
`p(N) which are not strongly Kreiss bounded.

Proof. In view of [27, Remark 3], if T is a strong Kreiss bounded operator then

‖T n‖ ≤ Cn
1
2 . The conclusion follows by taking 1

2
< α < 1

p
in Theorem 2.1, by

(2).

Corollary 2.3. Let 1 ≤ p < ∞ and 0 < ε < 1. Then there exists an absolutely

Cesàro bounded operator T on `p(N) which is mixing and ‖T n‖ = (n + 1)
1−ε
p for all

n ∈ N.

Proof. By the begining of the proof of Theorem 2.1 we have that T is absolutely
Cesàro bounded and

‖T n‖ = (n+ 1)
1−ε
p . (4)

Moreover by [14, Theorem 4.8] we have that T is mixing if (
∏n

k=1wk)
−1 → 0 as

n→∞. Indeed (
n∏
k=1

wk

)−1
=

1

nα
→ 0 ,

hence T is mixing. See proof of Corollary 2.1.

When 2 ≤ p <∞, the operator T of Theorem 2.1 is even mean square bounded.
It is natural to ask if it is it possible to find examples of absolutely Cesàro bounded
operators T which are not mean square bounded. We provide an answer to this
question.

Example 2.1. There exist absolutely Cesàro bounded operators which are not mean
square bounded.
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Proof. Let 1 < p < 2 and 1
2
< α < 1

p
. Let T be the operator constructed in

Theorem 2.1. By Theorem 2.1, T is absolutely Cesàro bounded.
Set nk = 2k (k = 1, 2, . . . ). Let x =

∑∞
k=1 k

−2enk+1. We have

‖x‖pp =
∞∑
k=1

k−2p <∞.

So x ∈ `p(N).
For each k we have

1

nk

nk∑
n=1

‖T nx‖2p ≥
1

nk
‖T nk(k−2enk+1)‖2p ≥

1

nk
k−4n2α

k = 2k(2α−1) · k−4 →∞

as k →∞. So T is not mean square bounded.

The following alternative proof was provided by the referee: Notice that by def-
inition we have that if T is mean square bounded there is a constant M such that
‖T n‖ ≤M

√
n. This fact together with Corollary 2.2 give a different proof of Exam-

ple 2.1.

Further consequences of Theorem 2.1 can be obtained for operators on Hilbert
spaces.

Corollary 2.4. There exists a uniformly Kreiss bounded Hilbert space operator that
is not absolutely Cesàro bounded.

Proof. Let H be a separable infinite-dimensional Hilbert space with an orthonormal
basis (uk)k∈N. Let 0 < α < 1/2. Let T ∈ B(H) be defined by Tuk :=

(
k+1
k

)α
uk+1.

A straightforward computation gives that T is not absolutely Cesàro bounded since
‖T nu1‖ = (n + 1)α → ∞. Note that its adjoint T ∗ is given by T ∗uk =

(
k+1
k

)α
uk−1

for k > 1 and T ∗u1 = 0. By Theorem 2.1, T ∗ is absolutely Cesàro bounded, and
hence uniformly Kreiss bounded. Since the uniform Kreiss boundedness is preserved
by taking the adjoints, we deduce that T is uniformly Kreiss bounded.

The following proposition complements Theorem 2.1, by showing that with α =
1/p the theorem fails.

Proposition 2.1. Let T be the weighted backward shift in `p(N) with 1 ≤ p < ∞

defined by Te1 := 0, Tej :=
(

j
j−1

)1/p
ej−1 (j > 1). Then T is not Cesàro bounded.

Proof. Let xn := 1
n1/p

∑n
s=1 es with even n. It is clear that ‖xn‖p = 1. We have∥∥∥ 1

n

n−1∑
j=0

T jxn

∥∥∥p
p

=
1

np+1

∥∥∥n−1∑
j=0

n∑
s=1

T jes

∥∥∥p
p

=
1

np+1

∥∥∥ n∑
s=1

es

n∑
j=s

(j
s

)1/p∥∥∥p
p

=
1

np+1

n∑
s=1

( n∑
j=s

(j
s

)1/p)p
≥ 1

np+1

n/2+1∑
s=1

1

s

( n∑
j=n/2+1

j1/p
)p
,
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where

n∑
j=n/2+1

j1/p ≥
∫ n

n/2

t1/pdt ≥ 1

p−1 + 1

(
n1+p−1 −

(n
2

)1+p−1)
= cn1+1/p

with c = p
p+1

(1− 1

21+p−1 ) > 0. So

∥∥∥n−1 n−1∑
j=0

T jxn

∥∥∥p
p
≥ 1

np+1

n/2∑
s=1

cpnp+1

s
≥ cp ln

n

2
→∞

as n→∞. Hence T is not Cesàro bounded.

Van Casteren proved that if T and T ∗ on a Hilbert space are mean square
bounded, then T is power-bounded [32, Proposition 2.1]. In the following theorem
we obtain a complete characterization of power boundedness in terms of the mean
square bounded property, and in terms of the absolutely Cesàro bounded property,
for operators on general Banach spaces. The equivalence of (i) and (ii) of Theorem
2.2 (in Banach spaces) was proved by Guo and Zwart [15, Theorem 8.3].

Theorem 2.2. Let T be an operator on a Banach space X. The following statements
are equivalent:

(i) T is power bounded.

(ii) T and T ∗ are mean square bounded on B(X) and B(X∗), respectively.

(iii) T and T ∗ are absolutely Cesàro bounded on B(X) and B(X∗), respectively.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial.
Let us prove that (iii) ⇒ (i). There exists C > 0 such that for each x ∈ X and

x∗ ∈ X∗ with ‖x‖ = ‖x∗‖ = 1, and for all N ∈ N, we have

1

N

N∑
n=1

‖T nx‖ ≤ C and
1

N

N∑
n=1

‖T ∗nx∗‖ ≤ C.

Suppose that T is not power bounded, and fix any K > 4C2. There exists N
such that ‖TN+1‖ > K. Thus we find unit vectors x ∈ X and x∗ ∈ X∗ satisfying
|〈TN+1x, x∗〉| > K. For each n = 1, . . . , N we have

K < |〈TN+1x, x∗〉| = |〈TN+1−nx, T ∗nx∗〉| ≤ ‖TN+1−nx‖‖T ∗nx∗‖ .

So either ‖TN+1−nx‖ ≥
√
K or ‖T ∗nx∗‖ ≥

√
K. Therefore,

1

N

(
N∑
n=1

‖TN+1−nx‖+
N∑
n=1

‖T ∗nx∗‖

)
≥
√
K.
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We then conclude

√
K ≤ 1

N

N∑
n=1

‖T nx‖+
1

N

N∑
n=1

‖T ∗nx∗‖ ≤ 2C <
√
K ,

which is a contradiction.

Since we obviously have

1

n+ 1
T n+1 = I + (T − I)Mn(T ) , (5)

any Cesàro bounded operator satisfies ‖T n‖ = O(n). Moreover, Theorem 2.1 gives an
example of a uniformly Kreiss bounded operator on `1(N) such that ‖T n‖ = (n+1)1−ε

with 0 < ε < 1.
We concentrate now on Question 1.1 for operators on Hilbert spaces.

Theorem 2.3. Let T be a uniformly Kreiss bounded operator on a Hilbert space H.
Then limn→∞ n

−1‖T n‖ = 0.

Proof. By [23, Corollary 3.2] there exists C > 0 such that
∥∥N−1∑
j=0

(λT )j
∥∥ ≤ CN for all

λ, |λ| = 1 and all N . We need several claims.

Claim 1. Let x ∈ H, ‖x‖ = 1 and N ∈ N. Then

N−1∑
j=0

‖T jx‖2 ≤ C2N2.

Proof. Consider the normalized Lebesgue measure on the unit circle. We have

C2N2 ≥
∫
|λ|=1

∥∥(I + λT + · · ·+ (λT )N−1)x
∥∥2dλ

=
N−1∑
j,k=0

∫
|λ|=1

〈
(λT )jx, (λT )kx

〉
dλ =

N−1∑
j=0

∫
|λ|=1

〈
(λT )jx, (λT )jx

〉
dλ =

N−1∑
j=0

‖T jx‖2.

Claim 2. Let 0 < M < N and x ∈ H, ‖x‖ = 1. Then

M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
≤ C2M2.
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Proof. Set y = TNx. Since T ∗ is also uniformly Kreiss bounded, we have by Claim 1

C2M2‖y‖2 ≥
M−1∑
j=0

‖T ∗jy‖2

≥
M−1∑
j=0

∣∣∣〈T ∗jy, TN−jx

‖TN−jx‖

〉∣∣∣2 =
M−1∑
j=0

∣∣∣〈y, TNx

‖TN−jx‖

〉∣∣∣2 = ‖y‖2
M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
.

Hence
M−1∑
j=0

‖TNx‖2

‖TN−jx‖2
≤ C2M2.

Claim 3. Let x ∈ H, ‖x‖ = 1 and N ∈ N. Then

N−1∑
j=0

1

‖T jx‖
≥
√
N

C
.

Proof. Let aj = ‖T jx‖. By Claim 1,
∑N−1

j=0 a
2
j ≤ C2N2. So

N−1∑
j=1

aj ≤
(N−1∑
j=0

a2j

)1/2
·
√
N ≤ CN3/2.

Let B = N
(∑N−1

j=0
1
aj

)−1
and A = N−1

∑N−1
j=0 aj be the harmonic and arithmetic

means of aj’s for j ∈ {0, . . . , N − 1}, respectively. By the well-known inequality
between these two means, we have

N−1∑
j=0

1

‖T jx‖
=
N

B
≥ N

A
= N2

(N−1∑
j=0

aj

)−1
≥ N2

CN3/2
=

√
N

C
.

Claim 4. Let 0 < M1 < M2 < N and ‖x‖ = 1. Then

M2−1∑
j=M1

‖TN−jx‖2

‖TNx‖2
≥ (M2 −M1)

2

C2M2
2

.

Proof. Let aj = ‖TN−jx‖2
‖TNx‖2 . By Claim 2,

M2−1∑
j=M1

1

aj
≤

M2−1∑
j=0

1

aj
≤ C2M2

2 .
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Let A and B be the arithmetic and harmonic mean of aj’s for j ∈ {M1, . . . ,M2− 1},
respectively. We have

M2−1∑
j=M1

aj = (M2 −M1)A ≥ (M2 −M1)B = (M2 −M1)
2
(M2−1∑
j=M1

1

aj

)−1
≥ (M2 −M1)

2

C2M2
2

.

Proof of Theorem 2.3. Suppose on the contrary that lim supn→∞ n
−1‖T n‖ > c > 0.

Choose K > 8C6c−2. Find N > 2K+1 with ‖TN‖ > cN and x ∈ H, ‖x‖ = 1 with

‖TNx‖ > cN.

For |λ| = 1 let yλ =
∑N−1

j=0
(λT )jx
‖T jx‖ . Then∫

|λ|=1

‖yλ‖2dλ = N

and ∫
|λ|=1

∥∥(I + λT + · · ·+ (λT )N−1)yλ
∥∥2dλ ≤ C2N2

∫
|λ|=1

‖yλ‖2dλ = C2N3.

On the other hand,∫
|λ|=1

∥∥(I + λT + · · ·+ (λT )N−1)yλ
∥∥2dλ

=

∫
|λ|=1

∥∥∥2N−2∑
j=0

(λT )jx

min{N−1,j}∑
r=0

1

‖T rx‖

∥∥∥2dλ
=

2N−2∑
j=0

‖T jx‖2
(min{N−1,j}∑

r=0

1

‖T rx‖

)2
≥

N∑
j=N−2K

‖T jx‖2
(N−2K∑

r=0

1

‖T rx‖

)2
,

where
N−2K∑
r=0

1

‖T rx‖
≥
√
N − 2K

C
≥
√
N

C
√

2

and

N∑
j=N−2K

‖T jx‖2 ≥ ‖TNx‖2
K−1∑
k=0

N−2k−1∑
j=N−2k+1

‖T jx‖2

‖TNx‖2
≥ c2N2

K−1∑
k=0

22k

C222k+2
=
c2N2K

4C2
.

Hence∫
|λ|=1

∥∥(I + λT + · · ·+ (λT )N−1)yλ
∥∥2dλ ≥ c2N2K

4C2
· N

2C2
=
c2KN3

8C4
> C2N3,

a contradiction. This finishes the proof.
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Corollary 2.5. Any uniformly Kreiss bounded operator on a Hilbert space is mean
ergodic.

Remark 2.2. By [10, Proposition 4] there exists a mean ergodic operator T in a
Hilbert space such that ‖T n‖/n does not converges to 0 and thus it is not uniformly
Kreiss bounded, by Theorem 2.3. This improves Corollary 2.4.

We are interested on the behavior of ‖T
n‖
n

when T is an absolutely Cesàro bounded
operator. The following result provides an answer.

Theorem 2.4. Let X be a Banach space, C > 0 and let T ∈ B(X) satisfy ‖T n‖ ≤
Cn for all n ∈ N. Then either lim

n→∞
n−1‖T n‖ = 0 or the set

{
x ∈ X : sup

N
N−1

N∑
n=1

‖T nx‖ =∞
}

is residual in X.

Proof. Suppose that ‖T
n‖
n
6→ 0. So there exists c > 0 such that

lim sup
n→∞

n−1‖T n‖ > c.

For s ∈ N let

Ms =
{
x ∈ X : sup

N
N−1

N∑
n=1

‖T nx‖ > s
}
.

Clearly Ms is open.
We show first that each Ms contains a unit vector. Let s ∈ N. Find N >

exp
(
Cs
c

)
+ 1 with ‖TN‖ > cN . Find a unit vector x ∈ X such that ‖TNx‖ > cN .

For k = 1, . . . , N − 1 we have ‖TNx‖ ≤ ‖T k‖ · ‖TN−kx‖, and so

‖TN−kx‖ ≥ ‖T
Nx‖
‖T k‖

≥ cN

Ck
.

Thus

N−1
N∑
j=1

‖T jx‖ ≥
N−1∑
k=1

c

Ck
≥ c

C
ln(N − 1) > s,

and so x ∈Ms.
We show that in fact each Ms is dense. Fix s ∈ N, y ∈ X and ε > 0. Let s′ > s

ε
.

Fix x ∈Ms′ with ‖x‖ = 1. For each j ∈ N we have

‖T j(y + εx)‖+ ‖T j(y − εx)‖ ≥ 2ε‖T jx‖.

So

sup
N
N−1

N∑
j=1

‖T j(y+εx)‖+sup
N
N−1

N∑
j=1

‖T j(y−εx)‖ ≥ sup
N

2ε

N

N∑
j=1

‖T jx‖ > 2εs′ > 2s.

13



Hence either y + εx ∈Ms or y − εx ∈Ms. Since ε > 0 was arbitrary, Ms is dense.
By the Baire category theorem,

∞⋂
s+1

Ms =
{
x ∈ X : sup

N
N−1

N∑
j=1

‖T jx‖ =∞
}

is a residual set.

The following example is due to Assani. See [3, page 938], [12, page 10] and [2,
Theorem 5.4] for more details.

Example 2.2. Let H be R2 or C2 and T =

(
−1 2
0 −1

)
. It is clear that

T n =

(
(−1)n (−1)n−12n

0 (−1)n

)
and supn∈N ‖Mn(T )‖ <∞. Then T is Cesàro bounded and ‖Tnx‖

n
does not converge

to 0 for some x ∈ H. Hence T is not mean ergodic.

Since Cesàro bounded operators T satisfy ‖T n‖ = O(n), by Theorem 2.4 we
immediately obtain the following result.

Corollary 2.6. Let T ∈ B(X) be an absolutely Cesàro bounded operator. Then

lim
n→∞

‖T n‖
n

= 0.

As consequence, we obtain a result that, for operators on Banach spaces, slightly
improves Lorch theorem [1].

Corollary 2.7. Any absolutely Cesàro bounded operator on a reflexive Banach space
is mean ergodic.

Hence by Corollary 2.3, we can also provide more examples of mean ergodic and
mixing operators on `p(N) for 1 < p <∞.

It is worth to mention that results of this type already appear in the PhD Thesis
of Beltrán Meneu [4], provided by the fourth author (see Section 3.7 in [4]), and in
[2].

For 0 < ε < 1, by Theorem 2.1 we have examples of absolutely Cesàro bounded
operators on `2(N) such that ‖T n‖ = (n + 1)

1
2
−ε. On the other hand, if there exists

ε > 0 such that ‖T n‖ ≥ Cn
1
2
+ε for all n in a Hilbert space, then by [24, Theorem 3],

there exists x ∈ X such that ‖T nx‖ → ∞, thus T is not absolutely Cesàro bounded.
Hence it is natural to ask: does every absolutely Cesàro bounded operator on a
Hilbert space satisfy limn→∞ n

−1/2‖T n‖ = 0?

Theorem 2.5. Let H be a Hilbert space and let T ∈ B(H) be an absolutely Cesàro

bounded operator. Then lim
n→∞

‖T n‖
n1/2

= 0.

14



Proof. By [23, corollary 3.2] there exists C > 0 such that N−1
∑N−1

n=0 ‖T nx‖ < C‖x‖
for all N ∈ N and x ∈ H.

Suppose on the contrary that lim supn→∞N
−1/2‖T n‖ > 0. We distinguish two

cases:

Case I. Suppose that lim supn→∞ n
−1/2‖T n‖ =∞.

Then there exist positive integers N1 < N2 < · · · and positive constants K1 <
K2 < · · · with limm→∞Km =∞ such that ‖TNm‖ > KmN

1/2
m and

‖T j‖ ≤ 2Kmj
1/2 (j ≤ Nm).

Let xm ∈ H be a unit vector satisfying ‖TNmxm‖ > KmN
1/2
m .

Let N ′m =
[
Nm

6

]
(the integer part). Consider the set

{‖T jxm‖ : 2N ′m ≤ j < 4N ′m}.

Let Am be the median of this set. More precisely, we have

card{j : 2N ′m ≤ j < 4N ′m, ‖T jxm‖ ≥ Am} ≥ N ′m and

card{j : 2N ′m ≤ j < 4N ′m, ‖T jxm‖ ≤ Am} ≥ N ′m.

We have

4N ′mC ≥
4N ′m−1∑
j=0

‖T jxm‖ ≥
4N ′m−1∑
j=2N ′m

‖T jxm‖ ≥ N ′mAm.

So Am ≤ 4C (note that this estimate does not depend on m).
For λ ∈ C, |λ| = 1 let

ym,λ =
Nm∑
j=1

(λT )jxm
‖T jxm‖

.

Then ∫
‖ym,λ‖2dλ =

∫ Nm∑
j,j′=1

〈λjT jxm, λj
′
T j
′
xm〉

‖T jxm‖ · ‖T j′xm‖
dλ

=

∫ Nm∑
j=1

〈T jxm, T jxm〉
‖T jxm‖2

dλ = Nm.

Let
um,λ = (I + λT + · · ·+ (λT )Nm−1)ym,λ.

Then ‖um,λ‖ ≤ CNm‖ym,λ‖ and∫
‖um,λ‖2dλ ≤ C2N2

m

∫
‖ym,λ‖2dλ = C2N3

m.

On the other hand,

um,λ =
Nm∑
j=1

(λT )jxm

j∑
k=1

1

‖T kxm‖
+

2Nm−1∑
j=Nm+1

(λT )jxm

Nm∑
k=j−Nm+1

1

‖T kxm‖
.
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As above,∫
‖um,λ‖2dλ ≥

Nm∑
j=1

‖T jxm‖2
( j∑
k=1

1

‖T kxm‖

)2
≥ ‖TNmxm‖2

(4N ′m−1∑
k=2N ′m

1

‖T kxm‖

)2

≥ K2
mNm ·

(N ′m
Am

)2
≥ K2

m · const ·N3
m.

Since Km →∞, this is a contradiction.

Case II. Let K satisfy 0 < K < lim supn→∞ n
−1/2‖T n‖ < 2K.

Let N0 satisfy n−1/2‖T n‖ ≤ 2K (n ≥ N0). Find an increasing sequence (Nm)

of positive integers such that ‖TNm‖ > KN
1/2
m . Find xm, ‖xm‖ = 1 such that

‖TNmxm‖ > KN
1/2
m .

As in case I, let N ′m =
[
Nm

6

]
and let Am be the median of the set

{‖T jxm‖ : 2N ′m ≤ j < 4N ′m}.

Again one has Am ≤ 4C.
As in case I, for |λ| = 1 let

ym,λ =
Nm∑
j=1

(λT )jxm
‖T jxm‖

and
um,λ = (I + λT + · · ·+ (λT )Nm−1)ym,λ.

Again we have

∫
‖ym,λ‖2dλ = Nm and

∫
‖um,λ‖2dλ ≤ C2N3

m.

On the other hand,

um,λ =
Nm∑
j=1

(λT )jxm

j∑
k=1

1

‖T kxm‖
+

2Nm−1∑
j=Nm+1

(λT )jxm

Nm∑
k=j−Nm+1

1

‖T kxm‖

and∫
‖um,λ‖2dλ ≥

Nm∑
j=1

‖T jxm‖2
( j∑
k=1

1

‖T kxm‖

)2
≥

Nm−1∑
j=4N ′m

‖T jxm‖2
(4N ′m−1∑
k=2N ′m

1

‖T kxm‖

)2

≥
Nm−1∑
j=4N ′m

‖T jxm‖2
(N ′m
Am

)2
.
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Moreover, for 4N ′m ≤ j < Nm we have

KN1/2
m < ‖TNmxm‖ ≤ ‖TNm−j‖ · ‖T jxm‖ ≤ 2K(Nm − j)1/2‖T jxm‖.

So
Nm∑

j=4N ′m

‖T jxm‖2 ≥
Nm−1∑
j=4N ′m

Nm

4(Nm − j)
≥ Nm

4

2N ′m∑
j=1

1

j
≥ Nm ln (2N ′m)

4
.

Hence ∫
‖um,λ‖2dλ ≥ const ·N3

m ln (2N ′m),

a contradiction.

Figure 2 summarizes the implications between the properties studied here and
the behaviour of ‖T n‖.

absolutely Cesàro boundedUniformly Kreiss bounded

‖T n‖ = o(n) ‖T n‖ = o(n) ‖T n‖ = o(n1/2)

Hilbert space Banach space Hilbert space

Figure 2: Behaviour of ‖T n‖ for uniformly Kreiss and Cesàro bounded operators.

We finish the paper with some questions.

Question 2.1. Are there absolutely Cesàro bounded operators on Hilbert spaces
which are not strongly Kreiss bounded? (Corollary 2.2 gives examples only in `p(N)
with 1 < p < 2).

Question 2.2. Can we find strongly Kreiss bounded operators which are not abso-
lutely Cesàro bounded?

Question 2.3. Is there any absolutely Cesàro bounded operator T on a Hilbert
space which is not mean square bounded?
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