ON INVERTIBLE m-ISOMETRICAL EXTENSION OF AN m-ISOMETRY.

T. BERMÚDEZ, A. MARTINÓN, V. MÜLLER, H. ZAWAY

Abstract

We give necessary and sufficient conditions on an m-isometry to have an invertible m-isometrical extension. As particular cases, we give a useful characterization for a general m-isometrical unilateral weighted shift and for ℓ-Jordan isometries. In particular, every ℓ-Jordan isometry operator has an invertible $(2 \ell-1)$-isometrical extension.

August 31, 2022

1. Introduction ${ }^{1}$

In the last twenty years there has been an intense research activity on m-isometries. In this paper, we focus our attention on characterizing m-isometries that have an invertible extension that is also m-isometry.

The notion of m-isometric operator on a Hilbert space was introduced by J. Agler [2] and studied in detail shortly after by J. Agler and M. Stankus in three papers [4, 5, 6]. These publications can be considered the first ones to initiate this topic of study.

An operator $T \in L(H)$, the algebra of all bounded linear operators acting on a Hilbert space H, is called an m-isometry, for some positive integer m, if

$$
\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} T^{* k} T^{k}=0
$$

where T^{*} denotes the adjoint operator of T. When $m=1$, we obtain an isometry. It is said that T is a strict m-isometry if either $m=1$ or T is an m-isometry with $m>1$ but it is not $(m-1)$-isometry.

As one should expect, m-isometries share many important properties with isometries. For example, the following dichotomy property: the spectrum of an m-isometry is the closed unit disc if it is not invertible or a closed subset of the unit circle if it

[^0]is invertible [4]. Also, if T is an m-isometry, then T is bounded below; that is, there exists $M>0$ such that $\|T x\| \geq M\|x\|$ for every $x \in H$.

Given an m-isometry $T \in L(H)$, we are interested in research conditions which guarantee the existence of a Hilbert space K and an operator $S \in L(K)$, which is an extension of T, such that S is an invertible m-isometry. To say that $S \in L(K)$ is an extension of $T \in L(H)$ means that K contains an isometric subspace to H, which we denote also by H, and the restriction $S_{\mid H}$ from H to H coincides with T.

Problem 1.1. Characterize those m-isometric operators which have an invertible m-isometrical extension.

In 1969 Douglas [13] obtained that any isometry in a Banach space has an invertible isometric extension, also valid in a Hilbert space context. So, the case $m=1$ holds. For $m \geq 2$, first immediate consideration is that m must be odd, since every invertible m-isometry with even m is an $(m-1)$-isometry by [4, Proposition 1.23].

Our problem is similar to others that arise naturally in Operator Theory and can be formulated in very general terms as follows. Given a class \mathcal{C} of operators, for example defined on Hilbert spaces, and given a property P relative to those operators, we wish to characterize the operators that have an extension in the class \mathcal{C} with property P.

Let $T \in L(H)$ and $S \in L(K)$ with H a closed subspace of K. Denote by P_{H} the orthogonal projection of K onto H and by J the inclusion of H into K. It is said that

- S is a lifting of T if $P_{H} S=T P_{H}$.
- S is a dilation of T if $T^{n}=P_{H} S^{n} J$, for every $n \in \mathbb{N}$.

Many authors have studied, for a given bounded linear operator $T \in L(H)$, some additional properties of extension, lifting, or dilation of the operator T. The following results are known and respond to these problems:

- Every contraction has an extension which is an unitary dilation and a lifting which is an isometry. See [16].
- Every isometry has a unitary extension. See [13].
- Every operator T such that the norms of its powers grow polynomially has an extension which is an m-isometric lifting for some integer $m \geq 1$. See [9].

Notice that the norms of the powers of an m-isometry have a polynomial behaviour (see part (1) of Proposition 2.1). However, there are operators such that those norms have a polynomial behaviour that are not m-isometries. In [9], the authors study lifting and dilations which are m-isometries. In particular, they obtain that if T is an m-isometry, then T has an $(m+3)$-isometric lifting with other additional properties.

A special class of m-isometric operators is the ℓ-Jordan isometries; that is, operators which are the sum of an isometry and an ℓ-nilpotent operator which commute. It is known that every ℓ-Jordan isometry is a strict $(2 \ell-1)$-isometry, but the converse is not valid. However, every strict m-isometry on a finite dimensional Hilbert space is an $\frac{(m+1)}{2}$-Jordan isometry operator. See $[12,17,3]$ for more details.

Another natural and important examples of m-isometries are certain weighted shift operators. In [1, 11], the authors obtained a characterization of weighted shift which are m-isometric.

We summarize the contents of the paper. In Section 2, we define a bilateral sequence of operators associated to an m-isometry that allow us to transfer important information of the m-isometry to the bilateral sequence, that it will be an important tool in the paper. In Section 3, we present some necessary conditions to obtain an invertible m-isometrical extension. The main results are given in Section 4 where we obtain characterizations for an m-isometry to have an invertible m-isometrical extension. Finally, in Section 5, we present particular classes of m-isometries for which one can obtain nice results. In particular, we give a useful characterization for a general m isometrical unilateral weighted shift and for ℓ-Jordan isometries. In particular, every ℓ-Jordan isometry operator has an invertible $(2 \ell-1)$-isometrical extension.

2. Some previous results

In this section, we define a bilateral sequence of operators associated to an m isometry, that allow us to transfer important information of the m-isometry to the bilateral sequence that it will be relevant for obtaining necessary conditions for having an invertible m-isometrical extension.

Any polynomial of degree less or equal to $m-1$ is uniquely determined by its values at m distinct points. If $a_{0}, a_{1}, \ldots, a_{m-1}$ are given real (or complex) numbers,
then the unique polynomial p of degree less or equal to $m-1$ satisfying $p(k)=a_{k}$ for all $k \in\{0,1, \ldots, m-1\}$ is giving by Lagrange interpolating polynomial

$$
p(z)=\sum_{k=0}^{m-1} a_{k} \prod_{\substack{0 \leq j \leq m-1 \\ j \neq k}} \frac{z-j}{k-j} .
$$

Note that

$$
p(n)=\sum_{k=0}^{m-1} a_{k} b_{k}(n)
$$

with

$$
\begin{equation*}
b_{k}(n):=\prod_{\substack{0 \leq j \leq m-1 \\ j \neq k}} \frac{n-j}{k-j}=(-1)^{m-k-1} \frac{n(n-1) \ldots(\widehat{n-k}) \cdots(n-m+1)}{k!(m-k-1)!} \tag{2.1}
\end{equation*}
$$

where $\widehat{(n-k)}$ means that the factor $(n-k)$ is omitted.
Given $T \in L(H)$, define the bilateral sequence by

$$
\begin{equation*}
D_{n}:=\sum_{k=0}^{m-1} b_{k}(n) T^{* k} T^{k} \tag{2.2}
\end{equation*}
$$

for every $n \in \mathbb{Z}$. Clearly $D_{n} \in L(H)$ and it is self adjoint operator for every $n \in \mathbb{Z}$.
Denote $p_{x}(k):=\left\langle D_{k} x, x\right\rangle$ for every $x \in H$ and $k \in \mathbb{Z}$.
Given $T \in L(H)$, denote $T>0$ if $\langle T x, x\rangle>0$ for every $x \in H \backslash\{0\}$ and we call it strictly positive operator.

We concentrate now on the family $\left(D_{n}\right)_{n \in \mathbb{Z}}$ of operators which arise from a fixed m-isometry. Indeed, the bilateral sequence $\left(D_{n}\right)_{n \in \mathbb{Z}}$ has some interesting properties that will be important tools to solve Problem 1.1.

Proposition 2.1. Let $T \in L(H)$ be an m-isometry and $\left(D_{n}\right)_{n \in \mathbb{Z}}$ be operators defined by (2.2). Then
(1) [11, Theorem 2.1] \mathcal{E} [4] $D_{n}=T^{* n} T^{n}$ and $p_{x}(n)=\left\langle D_{n} x, x\right\rangle=\left\|T^{n} x\right\|^{2}>0$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{N} \cup\{0\}$. Henceforth, there exists the square root $D_{n}^{1 / 2}$ of D_{n}, for every $n \in \mathbb{N} \cup\{0\}$.
(2) D_{n} is invertible for every $n \in \mathbb{N} \cup\{0\}$.
(3) $T^{* k} D_{n} T^{k}=D_{n+k}$ for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$.
(4) Let $y \in R\left(T^{k}\right)$ for some $k \in \mathbb{N}$. Then $p_{y}(-k)=\|x\|^{2}$, where $y=T^{k} x$.
(5) If $D_{-n}>0$ and invertible, then $D_{-k}>0$ and invertible for every $k \in\{1,2, \cdots, n-$ $1\}$.

Proof. (2) Let $n \in \mathbb{N}$. By [14, Theorem 2.3] \& [10, Theorem 3.1], any power of T, T^{n} is an m-isometry, so, T^{n} is bounded below. Hence

$$
\left\|D_{n} x\right\|\|x\| \geq\left|\left\langle D_{n} x, x\right\rangle\right|=\left\langle D_{n} x, x\right\rangle=\left\|T^{n} x\right\|^{2} \geq M(n)^{2}\|x\|^{2},
$$

where $M(n)>0$. That is, D_{n} is bounded below. Then trivially D_{n} is invertible since D_{n} is self adjoint operator.
(3) It is enough to prove the required equality for $k=1$. Observe that

$$
p_{T x}(n)=\left\|T^{n} T x\right\|^{2}=\left\|T^{n+1} x\right\|^{2}=p_{x}(n+1)
$$

for every $n \in \mathbb{N}$ and

$$
\left\langle D_{n+1} x, x\right\rangle=p_{x}(n+1)=p_{T x}(n)=\left\langle D_{n} T x, T x\right\rangle=\left\langle T^{*} D_{n} T x, x\right\rangle
$$

for every $n \in \mathbb{Z}$.
(4) Let $y=T^{k} x$ for some $k \in \mathbb{N}$ and $x \in H$. Then

$$
p_{y}(n)=p_{T^{k} x}(n)=p_{x}(k+n)
$$

for every $n \in \mathbb{N}$. Therefore $p_{y}(n)=p_{x}(k+n)$ for every $n \in \mathbb{Z}$.
(5) Let $k \in\{1,2, \cdots, n-1\}$ and $x \in H \backslash\{0\}$. If $D_{-n}>0$, then by part (3),

$$
\begin{equation*}
\left\langle D_{-k} x, x\right\rangle=\left\langle T^{* n-k} D_{-n} T^{n-k} x, x\right\rangle=\left\langle D_{-n} T^{n-k} x, T^{n-k} x\right\rangle>0 \tag{2.3}
\end{equation*}
$$

Since T^{n-k} is bounded below and by (2.3), we have that

$$
\left\|D_{-k}^{1 / 2} x\right\|^{2}=\left\|D_{-n}^{1 / 2} T^{n-k} x\right\|^{2} \geq M\|x\|^{2}
$$

So, the result is obtained since D_{-k} is a self adjoint operator.

We close this section by studying the bilateral sequence $\left(D_{n}\right)_{n \in \mathbb{Z}}$ associated to unilateral weighted shift which are m-isometries.

Let H be a Hilbert space with an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$. Recall that the unilateral weighted shift given by $S_{w} e_{n}=w_{n} e_{n+1}$ on H, where $w_{n}=\sqrt{\frac{p(n+1)}{p(n)}}$ with p a polynomial of degree $m-1$, is a non invertible strict m-isometry, [1]. Also

$$
\begin{equation*}
p_{e_{j}}(n)=\left\|S_{w}^{n} e_{j}\right\|^{2}=\left|w_{j} w_{j+1} \cdots w_{n+j-1}\right|^{2}=\frac{p(j+n)}{p(j)} \tag{2.4}
\end{equation*}
$$

The following proposition gives an explicit expression of the operator D_{n}, when T is an m-isometrical unilateral weighted shift operator.

Proposition 2.2. Let H be a Hilbert space with orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ and let $S_{w} \in$ $L(H)$ be an m-isometrical unilateral weighted shift with weight sequence $w=\left(w_{n}\right)_{n \in \mathbb{N}}$. Then
(1) D_{n} is a diagonal operator for every $n \in \mathbb{Z}$, with diagonal

$$
\lambda_{n}(j):=\sum_{k=0}^{m-1} b_{k}(n) \prod_{\ell=j}^{j+k-1}\left|w_{\ell}\right|^{2},
$$

where $b_{k}(n)$ is giving by (2.1).
(2) Let $n \in \mathbb{Z}$. The following conditions are equivalent
(a) D_{n} is invertible.
(b) $D_{n}>0$.
(c) $\lambda_{n}(j)>0$ for every $j \in \mathbb{N}$.

Proof. (1) By [1], there exists a polynomial p of degree $m-1$, such that the weights are given by $w_{n}=\sqrt{\frac{p(n+1)}{p(n)}}$. So,

$$
\begin{align*}
D_{n} e_{j} & =\sum_{k=0}^{m-1} b_{k}(n) S_{w}^{* k} S_{w}^{k} e_{j}=\sum_{k=0}^{m-1} b_{k}(n) \prod_{\ell=j}^{j+k-1}\left|w_{\ell}\right|^{2} e_{j} \tag{2.5}\\
& =\sum_{k=0}^{m-1} b_{k}(n) \frac{p(j+k)}{p(j)} e_{j}=\lambda_{n}(j) e_{j}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{n}(j)=\sum_{k=0}^{m-1} b_{k}(n) \frac{p(j+k)}{p(j)} \tag{2.6}
\end{equation*}
$$

(2) It is immediate by (1).

In general, the converse of part (5) of Proposition 2.1 is not valid. A suitable choose of the weight sequence gives an example such that $D_{-q}>0$ and $D_{-(q+1)}$ is not positive for some $q \in \mathbb{N}$.

Example 2.3. Let $q \in \mathbb{N}$ and define $p_{q}(n):=(n+q)(n+q+1)$. Then S_{w} with weight $w_{n}=\sqrt{\frac{p_{q}(n+1)}{p_{q}(n)}}$ is a 3 -isometry and it satisfies that $D_{-n}>0$ and invertible for $n \in\{1, \cdots, q\}$ and $D_{-(q+1)}$ is not. In fact,

$$
\lambda_{-n}(j):=\frac{p_{q}(j-n)}{p_{q}(j)}=\frac{(j+q-n)(j+q-n+1)}{(j+q)(j+q+1)}
$$

for $n \in \mathbb{N}$. If $n \in\{1, \cdots, q\}$, then we have that $-q-1+n<-q+n<0$. Hence, $\lambda_{-n}(j)>0$, for every $j \in \mathbb{N}$. If $n=q+1$,

$$
\lambda_{-(q+1)}(j)=\frac{j(j-1)}{(j+q)(j+q+1)}
$$

Hence $\lambda_{-(q+1)}(1)=0$ and consequently $\left\langle D_{-(q+1)} e_{1}, e_{1}\right\rangle=0$.

3. Necessary conditions of having an invertible m-Isometrical extension

In an attempt towards solution of finding necessary conditions to obtain an invertible m-isometrical extension, we draw upon an interesting connection between $D_{-1}>0$ and the invertibility of D_{-1} with the existence of a particular m-isometrical extension. Notice that in the following theorem we do not obtain an invertible m isometrical extension.

Theorem 3.1. Let $T \in L(H)$ be an m-isometry. The following statements are equivalent:
(i) There exist a Hilbert space $K \supset H$ and an m-isometry $S \in L(K)$ such that $S_{\mid H}=T$ and $R(S)=H$.
(ii) $D_{-1}>0$ and D_{-1} is invertible.

Proof. (i) \Rightarrow (ii): Let $x \in H$ and $y=S^{-1} x \in K$. For $n \in \mathbb{Z}$, denote

$$
\widetilde{D}_{n}:=\sum_{k=0}^{m-1} b_{k}(n) S^{* k} S^{k}, \quad D_{n}:=\sum_{k=0}^{m-1} b_{k}(n) T^{* k} T^{k}
$$

and for $n \in \mathbb{N}$

$$
\tilde{p}_{x}(n):=\left\|S^{n} x\right\|^{2}, \quad p_{x}(n):=\left\|T^{n} x\right\|^{2}
$$

where $b_{k}(n)$ is given by (2.1). Then

$$
\begin{aligned}
\left\langle\widetilde{D}_{-1} x, x\right\rangle & =\left\langle\widetilde{D}_{-1} S y, S y\right\rangle=\left\langle S^{*} \widetilde{D}_{-1} S y, y\right\rangle=\left\langle\widetilde{D}_{0} y, y\right\rangle=\|y\|^{2} \\
& =\sum_{k=0}^{m-1} b_{k}(-1)\left\langle S^{* k} S^{k} x, x\right\rangle=\sum_{k=0}^{m-1} b_{k}(-1)\left\langle T^{k} x, T^{k} x\right\rangle \\
& =\left\langle D_{-1} x, x\right\rangle .
\end{aligned}
$$

Then $\left\langle\widetilde{D}_{-1} x, x\right\rangle=\|y\|^{2}=\left\langle D_{-1} x, x\right\rangle \geq 0$ for all $x \in H$. Also

$$
\left\|D_{-1} x\right\|\|x\| \geq\left\langle D_{-1} x, x\right\rangle=\|y\|^{2} \geq \frac{\|S y\|^{2}}{\|S\|^{2}}=\frac{\|x\|^{2}}{\|S\|^{2}} .
$$

So, $D_{-1}>0$ and bounded below. Hence D_{-1} is invertible since D_{-1} is self adjoint operator.
(ii) $\Rightarrow(i)$: Consider the vector space $H \times H$ with a new seminorm

$$
\left\|\left|\left(h, h^{\prime}\right)\right|\right\|:=\left\|D_{-1}^{1 / 2}\left(T h+h^{\prime}\right)\right\|
$$

and the subspace

$$
N:=\left\{\left(h, h^{\prime}\right) \in H \times H:\left\|\left(h, h^{\prime}\right)\right\| \|=0\right\} .
$$

Let $K:=(H \times H) / N$ with the quotient norm

$$
\left\|\left(h, h^{\prime}\right)+N\right\|\|:=\| D_{-1}^{1 / 2}\left(T h+h^{\prime}\right) \| .
$$

Then K is a normed space. Let us prove that $\|\|\cdot\|\|$ satisfies the parallelogram law. For $u=\left(h, h^{\prime}\right)+N$ and $v=\left(g, g^{\prime}\right)+N$ in K we have

$$
\begin{aligned}
\|u+v\|\left\|^{2}+\right\|\|u-v\| \|^{2} & =\left\langle D_{-1}\left(T h+h^{\prime}+T g+g^{\prime}\right), T h+h^{\prime}+T g+g^{\prime}\right\rangle \\
& +\left\langle D_{-1}\left(T h+h^{\prime}-T g-g^{\prime}\right), T h+h^{\prime}-T g-g^{\prime}\right\rangle \\
& =2\left\langle D_{-1}\left(T h+h^{\prime}\right), T h+h^{\prime}\right\rangle+2\left\langle D_{-1}\left(T g+g^{\prime}\right), T g+g^{\prime}\right\rangle \\
& =2\|u\|\left\|^{2}+2\right\| v\| \|^{2} .
\end{aligned}
$$

Henceforth, K is a pre-Hilbert space. The linear mapping $\phi: K \longrightarrow H$ defined by $\phi\left(\left(h, h^{\prime}\right)+N\right)=T h+h^{\prime}$ is an isomorphism. Indeed, ϕ is bounded since D_{-1} is an invertible operator. It is clear that ϕ is onto and bounded below since the square
root of D_{-1} is a bounded operator. Hence K is complete and so it is a Hilbert space. Moreover,

$$
\|\|(h, 0)+N\|\|^{2}=\left\|D_{-1}^{1 / 2}(T h)\right\|^{2}=\left\langle D_{-1} T h, T h\right\rangle=\left\langle T^{*} D_{-1} T h, h\right\rangle=\left\|D_{0} h\right\|^{2}=\|h\|^{2} .
$$

So K contains H as a subspace and we identify $h \in H$ with $(h, 0)+N \in K$.
Define S on K by $\left(\left(h, h^{\prime}\right)+N\right):=\left(T h+h^{\prime}, 0\right)+N$. The operator S is well defined and bounded:

$$
\begin{aligned}
\|\mid\| S\left(\left(h, h^{\prime}\right)+N\right)\left\|\|^{2}\right. & =\| \|\left(T h+h^{\prime}, 0\right)+N\| \|^{2}=\left\|D_{-1}^{1 / 2}\left(T\left(T h+h^{\prime}\right)\right)\right\|^{2} \\
& =\left\langle D_{-1}\left(T\left(T h+h^{\prime}\right)\right), T\left(T h+h^{\prime}\right)\right\rangle=\left\langle D_{0}\left(T h+h^{\prime}\right), T h+h^{\prime}\right\rangle \\
& =\left\|T h+h^{\prime}\right\|^{2} \leq\left\|D_{-1}^{-1 / 2}\right\|^{2}\left\|D_{-1}^{1 / 2}\left(T h+h^{\prime}\right)\right\|^{2} \\
& =\left\|D_{-1}^{-1 / 2}\right\|^{2}\| \|\left(h, h^{\prime}\right)+N\| \|^{2} .
\end{aligned}
$$

Clearly S is an extension of T. Let $h \in H$. We have identified h with $(h, 0)+N \in K$ and $S((h, 0)+N)=(T h, 0)+N$. Also $S K=H$.

Let us prove that S is an m-isometry. Let $u=\left(h, h^{\prime}\right)+N \in K$ and write $y:=$ $T h+h^{\prime} \in H$. We have that $S u=(y, 0)+N, S^{k} u=\left(T^{k-1} y, 0\right)+N$ and $\left\|S^{k} u\right\| \|^{2}=$ $\left\|D_{-1}^{1 / 2}\left(T^{k} y\right)\right\|^{2}=\left\|T^{k-1} y\right\|^{2}$ for $k \in \mathbb{N}$. So

$$
\begin{aligned}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|S^{k} u\right\| \|^{2} & =\|u\|\left\|^{2}+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k}\right\| S^{k} u\| \|^{2} \\
& =\left\langle D_{-1} y, y\right\rangle+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k-1} y\right\|^{2} \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} p_{y}(k-1)=0,
\end{aligned}
$$

since p_{y} has degree less or equal to $m-1$. Hence S is an m-isometry.
The following result gives necessary conditions of having an invertible m-isometrical extension.

Proposition 3.2. Let $T \in L(H)$ be a strict m-isometry.
(1) If T is invertible, then $p_{x}(n)=\left\|T^{n} x\right\|^{2}>0$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{Z}$.
(2) If T has an invertible m-isometrical extension S, then $p_{x}(-k):=\left\|S^{-k} x\right\|^{2}>0$ for every $x \in H \backslash\{0\}$ and $k \in \mathbb{N}$, where $p_{x}(n):=\left\|T^{n} x\right\|^{2}$ for $n \in \mathbb{N}$. In particular, the degree of p_{x} is even for every $x \in H \backslash\{0\}$.
(3) If there exists an invertible m-isometrical extension of T, then $D_{n}>0$ and invertible operator for every $n \in \mathbb{Z}$.

Proof. (1) Part (3) of Proposition 2.1 yields that $T^{* n} D_{-n} T^{n}=D_{0}=I$ for $n \in \mathbb{N}$. So, for every $x \in H \backslash\{0\}$ and $n \in \mathbb{N}$,

$$
p_{x}(-n)=\left\langle D_{-n} x, x\right\rangle=\left\langle T^{*-n} T^{-n} x, x\right\rangle=\left\|T^{-n} x\right\|^{2}>0,
$$

since T^{-1} is an m-isometry.
(2) Let $x \in H$ and $n \in \mathbb{N}$. Denote by

$$
\begin{aligned}
& p_{x}(n):=\left\langle D_{n} x, x\right\rangle:=\sum_{k=0}^{m-1} b_{k}(n)\left\|T^{k} x\right\|^{2} \\
& \widetilde{p}_{x}(n):=\left\langle\widetilde{D}_{n} x, x\right\rangle:=\sum_{k=0}^{m-1} b_{k}(n)\left\|S^{k} x\right\|^{2},
\end{aligned}
$$

where S is an invertible m-isometrical extension of T. Clearly, $p_{x}(n)=\tilde{p}_{x}(n)$ is a polynomial of degree less or equal to $m-1$. Observe that $p_{x}(-n)=\widetilde{p}_{x}(-n)=$ $\left\|S^{-n} x\right\|^{2}$ for every $n \in \mathbb{N}$.

Remark 3.3. (1) Observe that part (2) of the above Proposition implies that the degree of p_{x} is even if $p_{x}(n)>0$ for every $n \in \mathbb{Z}$. Indeed, this is a different way to prove that there are no invertible strict m-isometries for even m. See also [4, Proposition 1.23].
(2) The conditions $D_{n}>0$ and invertible operator for every $n \in \mathbb{Z}$ are not sufficient to define an invertible m-isometrical extension of T. Indeed, invertibility of D_{n} would suffice to construct an unbounded m-isometrical extension of T with dense range.

Proposition 3.2 allow us to obtain that some m-isometries have not an invertible m-isometrical extension.

Remark 3.4. Let $T \in L(H)$ be a strict m-isometry. Denote $p_{x}(n):=\left\|T^{n} x\right\|^{2}$, for $n \in \mathbb{N}$ and $x \in H \backslash\{0\}$. Then
(1) If $m=1$, then $p_{x}(n)>0$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{Z}$.
(2) If m is even, then there exist $x_{0} \in H$ and $n_{0} \in \mathbb{Z}$ with $n_{0}<0$ such that $p_{x_{0}}\left(n_{0}\right) \leq 0$.
(3) If m is odd, then it is possible that $p_{x}(n)>0$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{Z}$ or there exist $x_{0} \in H$ and $n_{0} \in \mathbb{Z}$ with $n_{0}<0$ such that $p_{x_{0}}\left(n_{0}\right) \leq 0$.

In the following examples we present different behaviours of $p_{x}(n)$ with negative integer n for unilateral weighted shift.

Example 3.5. Let $p(n)=n^{m-1}$ with odd m. It is clear that $p_{e_{j}}(n):=\left\|S_{w}^{n} e_{j}\right\|^{2}=$ $\left(\frac{j+n}{j}\right)^{m-1}$ and $p_{e_{j}}(-j)=0$. So, S_{w} can not have an invertible m-isometrical extension.

Example 3.6. Let $p(n):=\prod_{i=1}^{m-1}(m n+i)$ with odd m. It is clear that

$$
p_{e_{j}}(n):=\left\|S_{w}^{n} e_{j}\right\|^{2}=\frac{\prod_{i=1}^{m-1}(m(j+n)+i)}{\prod_{i=1}^{m-1}(m j+i)} .
$$

If $j \geq n$, then $p_{e_{j}}(-n)>0$. In other case, $p_{e_{j}}(-n)>0$ since $m-1$ is even. As we will see later, S_{w} has an invertible m-isometrical extension by Theorem 5.1.

4. Characterization of having an invertible m-ISometrical extension

The main result of this paper is to obtain, for a fixed m-isometry, characterizations of having an invertible m-isometrical extension. In Proposition 3.2, we proved that a necessary condition is that the bilateral sequence of operators $\left(D_{n}\right)_{n \in \mathbb{Z}}$ must be strictly positive and invertible.

Now, we are in position to prove the main result.
Theorem 4.1. Let $T \in L(H)$ be an m-isometry and let $\left(D_{n}\right)_{n \in \mathbb{Z}}$ be the bilateral sequence defined by (2.2). Denote $p_{x}(n):=\left\langle D_{n} x, x\right\rangle$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{Z}$. The following statements are equivalent:
(i) There exist a Hilbert space $K \supset H$ and an invertible m-isometrical operator $S \in L(K)$ such that $S_{\mid H}=T$.
(ii) $p_{x}(j)>0$ for every $x \in H \backslash\{0\}$, and $j \in \mathbb{Z}$ and

$$
\begin{equation*}
\sup \left\{\frac{p_{x}(j+1)}{p_{x}(j)}: x \in H \backslash\{0\}, j \in \mathbb{Z}\right\}<\infty \tag{4.7}
\end{equation*}
$$

(iii) $D_{n}>0$ and invertible for every $n \in \mathbb{Z}$, and

$$
\begin{equation*}
\sup \left\{\frac{\left\langle D_{-n+1} x, x\right\rangle}{\left\langle D_{-n} x, x\right\rangle}: x \in H, \quad\|x\|=1, \quad n \in \mathbb{N}\right\}<\infty . \tag{4.8}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii): Let $x \in H \backslash\{0\}$. Then

$$
\left\|S^{j+1} x\right\|^{2}=\left\|T^{j+1} x\right\|^{2}=p_{x}(j+1)>0
$$

for $j \in \mathbb{Z}$ and

$$
\frac{p_{x}(j+1)}{p_{x}(j)}=\frac{\left\|S^{j+1} x\right\|^{2}}{\left\|S^{j} x\right\|^{2}} \leq\|S\|^{2}
$$

So, we get (4.7).
(ii) \Rightarrow (iii): By parts (1) and (2) of Proposition 2.1 we have that $D_{n}>0$ and invertible for $n \in \mathbb{N}$. By hypothesis, $D_{j}>0$ for $j \in \mathbb{Z}$ since $p_{x}(j)=\left\langle D_{j} x, x\right\rangle$. Let us prove that D_{-n} are bounded below for every $n \in \mathbb{N}$. The condition (4.7) yields that there exists $M>0$ such that

$$
p_{x}(-n) \geq \frac{p_{x}(-n+1)}{M} \geq \frac{p_{x}(0)}{M^{n}}=\frac{\|x\|^{2}}{M^{n}}
$$

hence

$$
\left\|D_{-n}^{1 / 2} x\right\|^{2} \geq \frac{\|x\|^{2}}{M^{n}}
$$

for every $x \in H \backslash\{0\}$ and $n \in \mathbb{N}$. Therefore D_{-n} is bounded below for $n \in \mathbb{N}$ and hence invertible.

It is remained to prove (4.8). Indeed, (4.8) is an immediate consequence of (4.7) using the identification $p_{x}(j)=\left\langle D_{j} x, x\right\rangle$ for every $x \in H \backslash\{0\}$ and $j \in \mathbb{Z}$.
$(i i i) \Rightarrow(i)$: Let V be the vector space of all sequences $\left(h_{1}, h_{2}, \ldots\right)$ of elements of H with finite support, that is, there exists $n \in \mathbb{N}$ such that $h_{j}=0$ for $j>n$. Define a new seminorm on V by

$$
\left\|\left\|\left(h_{1}, h_{2}, \ldots\right)\right\|\right\|^{2}:=\left\langle D_{-n} y, y\right\rangle
$$

where $n \in \mathbb{N}$ is any integer satisfying $h_{j}=0$ for $j>n$ and $y:=\sum_{j=1}^{n} T^{n-j} h_{j}$.

The seminorm $\|\|\cdot\|\|$ does not depend on the choice of n. Indeed, if $h_{j}=0$ for $j>n$, $r=n+n_{0}$ with $n_{0} \in \mathbb{N}$, and $y=\sum_{j=0}^{n} T^{n-j} h_{j}$, then

$$
\begin{aligned}
& \left\langle D_{-r} \sum_{j=1}^{r} T^{r-j} h_{j}, \sum_{i=1}^{r} T^{r-i} h_{i}\right\rangle=\left\langle D_{-\left(n+n_{0}\right)} T^{n_{0}}\left(\sum_{j=1}^{n+n_{0}} T^{n-j} h_{j}\right), T^{n_{0}}\left(\sum_{i=1}^{n+n_{0}} T^{n-i} h_{i}\right)\right\rangle \\
& =\left\langle T^{* n_{0}} D_{-\left(n+n_{0}\right)} T^{n_{0}}\left(\sum_{j=1}^{n} T^{n-j} h_{j}\right), \sum_{i=1}^{n} T^{n-i} h_{i}\right\rangle=\left\langle D_{-n} y, y\right\rangle
\end{aligned}
$$

where the last equality is by part (3) of Proposition 2.1.
Let $N:=\left\{\left(h_{1}, h_{2}, \ldots\right) \in V: \quad\left\|\mid\left(h_{1}, h_{2}, \ldots\right)\right\| \|=0\right\}$ and let K be the completion of V / N.

Let us prove that K is a pre-Hilbert space. For that, it is enough to prove that $\|\|\cdot\|\|$ satisfies the parallelogram law. Let $u:=\left(h_{1}, h_{2}, \cdots\right)+N, \quad v:=\left(g_{1}, g_{2}, \cdots\right)+N \in$ $V / N, n \in \mathbb{N}$ such that $h_{j}=0=g_{j}$ for $j>n$ and $x:=\sum_{j=1}^{n} T^{n-j} h_{j}, y:=\sum_{j=1}^{n} T^{n-j} g_{j}$. Then

$$
\begin{aligned}
\|u+v \mid\|^{2}+\| \| u-v\| \|^{2} & =\left\langle D_{-n}(x+y), x+y\right\rangle+\left\langle D_{-n}(x-y), x-y\right\rangle \\
& =2\left(\| \| u\| \|^{2}+\| \| v\| \|^{2}\right) .
\end{aligned}
$$

For each $h \in H$ we have $\|\|(h, 0,0, \ldots)+N\|\|^{2}=\left\langle D_{-1} T h, T h\right\rangle=\left\langle D_{0} h, h\right\rangle=\|h\|^{2}$.
Let L be the closed subspace generated by $(h, 0, \cdots)+N$ with $h \in H$ and define ϕ on H taking values on L by $\phi(h):=(h, 0, \cdots)+N$. Then $\|h\|^{2}=\|\phi(h)\| \|^{2}$ and $R(\phi)=L$. For each $h \in H$ we can identify h with $(h, 0, \ldots)+N \in K$. So, K contains H as a subspace.

Define S on V / N by $S\left(\left(h_{1}, h_{2}, \cdots\right)+N\right):=\left(T h_{1}+h_{2}, h_{3}, \cdots\right)+N \in V / N$. Then the definition of S is correct and S is bounded. Indeed, let $u:=\left(h_{1}, h_{2}, \cdots\right)+N \in$ $V / N, n \in \mathbb{N}$ such that $h_{j}=0$ for $j>n$ and $y:=\sum_{j=1}^{n} T^{n-j} h_{j}$. Denote $\left(\widetilde{h}_{1}, \widetilde{h}_{2}, \cdots\right):=$ $\left(T h_{1}+h_{2}, h_{3}, \cdots\right)$. Then

$$
\|\|S u\|\|^{2}=\| \|\left(T h_{1}+h_{2}, h_{3}, \cdots\right)+N\| \|^{2}=\left\langle D_{-(n-1)} \widetilde{y}, \widetilde{y}\right\rangle
$$

where

$$
\widetilde{y}:=\sum_{j=1}^{n-1} T^{n-1-j} \widetilde{h}_{j}=T^{n-1}\left(T h_{1}+h_{2}\right)+\sum_{j=2}^{n-1} T^{n-1-j} \widetilde{h}_{j}=y
$$

Then $\|\mid S u\| \|^{2}=\left\langle D_{-(n-1)} y, y\right\rangle=p_{y}(-n+1)$. Repeating the process we have that

$$
\left\|\left\|S^{k} u\right\|\right\|^{2}=p_{y}(-n+k),
$$

for $k=0, \ldots m$. Therefore

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|\mid S^{k} u\right\| \|^{2}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} p_{y}(-n+k)=0,
$$

since p_{y} has degree less or equal to $m-1$. By continuity, S is an m-isometry.
It is easy to see that $R(S) \supset V+N$. So the range of S is dense, and consequently S is an invertible m-isometry.

Moreover, the invertible extension $S \in L(K)$ is defined uniquely (up to the unitary equivalence) if we assume that S is minimal, i.e., $K=\bigvee_{k \geq 0} S^{-k} H$.

We will prove that the converse of part (3) of Proposition 3.2 is not true in general, that is, if $D_{n}>0$ and invertible for $n \in \mathbb{Z}$ are not sufficient to have an invertible m-isometrical extension of an m-isometry. Firstly, we need a previous result on m isometries.

Proposition 4.2. Let $\left(T_{n}\right)_{n \in \mathbb{N}} \subset L(H)$ be a uniformly bounded sequence of m-isometries. Then $T=T_{1} \oplus T_{2} \oplus \cdots$ is an m-isometry on $\ell^{2}(H)$.

Proof. Since $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded, then $T=T_{1} \oplus T_{2} \oplus \cdots$ is well-defined on $\ell^{2}(H)$.

Let $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(H)$. Denote $p_{x_{n}}(k):=\left\|T_{n}^{k} x_{n}\right\|^{2}$. Since $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a sequence of m-isometries, then $\left(p_{x_{n}}(k)\right)_{n \in \mathbb{N}}$ is a sequence of polynomials of degree less or equal to $m-1$. Fixed $k \in \mathbb{N}$,

$$
p_{x}(k):=\left\|T^{k} x\right\|^{2}=\sum_{n=1}^{\infty}\left\|T_{n}^{k} x_{n}\right\|^{2}=\sum_{n=1}^{\infty} p_{x_{n}}(k)
$$

is a polynomial of degree less or equal to $m-1$. Hence T is an m-isometry.

It is possible to exhibit an example of m-isometry with odd m such that $D_{n}>0$ and invertible for every $n \in \mathbb{Z}$ but not fulfilling the hypothesis of Theorem 4.1. In order to simplify the presentation we include an example with a 3 -isometry.

Example 4.3. Let $q_{n}(j):=j^{2}+j\left(2-\frac{1}{n}\right)+1$. Let H be a Hilbert space with an orthonormal basis $\left(e_{n, j}\right)_{n, j \in \mathbb{N}}$ and $K:=\ell^{2}(H)$. Define $T \in L(K)$ by

$$
T e_{n, j}:=\sqrt{\frac{q_{n}(j+1)}{q_{n}(j)}} e_{n, j+1}
$$

for any $n, j \in \mathbb{N}$. Then
(1) T is a 3-isometry on K.
(2) $p_{x}(k)>0$ for every $x \in K \backslash\{0\}$ and $k \in \mathbb{Z}$, where $p_{x}(n):=\left\|T^{n} x\right\|^{2}$ for $n \in \mathbb{N}$.
(3) $D_{n}>0$ and invertible for $n \in \mathbb{Z}$.
(4) There is no invertible 3-isometrical extension of T.

Proof: It is clear that $q_{n}(j)>0$ for $n \in \mathbb{N}$ and $j \in \mathbb{Z}$.
Let $x=\left(x_{1}, x_{2}, \cdots\right)=\left(\sum_{n=1}^{\infty} \alpha_{n, 1} e_{n, 1}, \sum_{n=1}^{\infty} \alpha_{n, 2} e_{n, 2}, \cdots\right) \in K$. Then

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, T_{1} x_{1}, T_{2}, x_{2}, \cdots\right)
$$

where

$$
T_{i} x_{i}:=T_{i}\left(\sum_{n=1}^{\infty} \alpha_{n, i} e_{n, i}\right)=\sum_{n=1}^{\infty} \alpha_{n, i} w_{n, i} e_{n, i+1}
$$

and

$$
w_{n, i}:=\sqrt{\frac{q_{n}(i+1)}{q_{n}(i)}}
$$

By Proposition 4.2, the operator T is a 3-isometry, since T_{n} is a 3-isometry for every $n \in \mathbb{N}$ and also $\left(T_{n}\right)_{n \in \mathbb{N}}$ is uniformly bounded, that is

$$
\sup _{n \in \mathbb{N}}\left\|T_{n}\right\| \leq \sup _{n, i \in \mathbb{N}} \sqrt{\frac{q_{n}(i+1)}{q_{n}(i)}}<M
$$

for some positive constant M.

Let us prove that $p_{x}(k)>0$ for every $x \in K \backslash\{0\}$ and $k \in \mathbb{Z}$. Let $x=\left(x_{1}, x_{2}, \cdots\right)=$ $\left(\sum_{n=1}^{\infty} \alpha_{n, 1} e_{n, 1}, \sum_{n=1}^{\infty} \alpha_{n, 2} e_{n, 2}, \cdots\right) \in K \backslash\{0\}$ and $k \in \mathbb{N}$. Then

$$
\begin{aligned}
p_{x}(k):=\left\|T^{k} x\right\|^{2} & =\|\left(0, \cdots, 0, T_{k} T_{k-1} \cdots T_{1} x_{1}, T_{k+1} T_{k} \cdots T_{2} x_{2}, \cdots \|^{2}\right. \\
& =\left\|\left(0, \cdots, 0, \sum_{n=1}^{\infty} \alpha_{n, 1} \sqrt{\frac{q_{n}(k+1)}{q_{n}(1)}} e_{n, k+1}, \cdots\right)\right\|^{2} \\
& =\sum_{j=1}^{\infty}\left\|\sum_{n=1}^{\infty} \alpha_{n, j} \sqrt{\frac{q_{n}(k+j)}{q_{n}(j)}} e_{n, k+j}\right\|^{2}=\sum_{n, j=1}^{\infty}\left|\alpha_{n, j}\right|^{2} \frac{q_{n}(k+j)}{q_{n}(j)}>0
\end{aligned}
$$

for $k \in \mathbb{N}$. Notice that

$$
D_{-n}:=\frac{(n+1)(n+2)}{2} I-n(n+2) T^{*} T+\frac{n(n+1)}{2} T^{* 2} T^{2}
$$

is a diagonal operator given by $D_{-n} e_{m, j}=\lambda_{-n}(k, j) e_{k, j}$ where

$$
\begin{aligned}
\lambda_{-n}(k, j): & =\frac{1}{2 q_{k}(j)}\left((n+1)(n+2) q_{k}(j)-n(n+2) q_{k}(j+1)+n(n+1) q_{k}(j+2)\right) \\
& =\frac{1}{2 q_{k}(j)}\left(j^{2}\left(n^{2}+2 n+2\right)+j\left(-\frac{n^{2}}{k}+4 n^{2}-2 \frac{n}{k}+4 n-\frac{2}{k}+4\right)\right. \\
& \left.-\frac{n^{2}}{k}+6 n^{2}+4 n+2\right)>0
\end{aligned}
$$

for $n, k, j \in \mathbb{N}$. So, it is immediate that D_{-n} is invertible for $n \in \mathbb{N}$.
In order to finish the proof, let us prove that there is no invertible 3-isometrical extension of T. Taking into account that

$$
\frac{p_{e_{n, 1}}(-1)}{p_{e_{n, 1}}(-2)}=\frac{q_{n}(0)}{q_{n}(-1)}=n
$$

we have that

$$
\sup \left\{\frac{p_{x}(j+1)}{p_{x}(j)}: x \in K \backslash\{0\}, \quad j \in \mathbb{Z}\right\}=\infty
$$

5. Some particular cases

In this section, the goal is to study two different examples of m-isometries, the ℓ-Jordan isometry and unilateral weighted shift that are m-isometries for some m.

In the case of unilateral weighted shift we can obtain a nice characterization of invertible m-isometrical extensions of an m-isometry, as a consequence of Theorem 4.1.

Theorem 5.1. Let H be a Hilbert space with orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ and let $S_{w} \in L(H)$ be an m-isometrical unilateral weighted shift associated to the weight $w:=\left(w_{n}\right)_{n \in \mathbb{N}}$. Then S_{w} has an invertible m-isometrical extension if and only if $p_{e_{1}}(n)>0$ for every $n \in \mathbb{Z}$, where $p_{e_{1}}(n):=\left\|S_{w}^{n} e_{1}\right\|^{2}$ for $n \in \mathbb{N}$.

Proof. If S_{w} has an invertible m-isometrical extension S, then $p_{x}(n):=\left\|S^{n} x\right\|^{2}>0$ for every $x \in H \backslash\{0\}$ and $n \in \mathbb{Z}$, by Proposition 3.2. Hence $p_{e_{1}}(n)>0$ for $n \in \mathbb{Z}$.

Let us prove the sufficient condition. Suppose that $p_{e_{1}}(n)>0$ for $n \in \mathbb{Z}$. A first consequence is that m is odd. By equality (2.4), $p_{e_{1}}(n)$ is a polynomial of degree $m-1$. Hence

$$
\lim _{n \rightarrow \infty} \frac{p_{e_{1}}(-n+1)}{p_{e_{1}}(-n)}=1,
$$

and

$$
\inf \left\{\frac{p_{e_{1}}(-n+1)}{p_{e_{1}}(-n)}: n \in \mathbb{N}\right\}>0 .
$$

Let K be a Hilbert space with $\left(e_{n}\right)_{n \in \mathbb{Z}}$ an orthonormal basis. Define $T_{\beta} \in L(K)$ by $T_{\beta} e_{n}=\beta_{n} e_{n+1}$ where $\beta_{n}=\sqrt{\frac{p_{e_{1}}(n)}{p_{e_{1}}(n-1)}}$ for $n \in \mathbb{Z}$. By [1, Theorem 19] we have that T_{β} is an m-isometry, since $p_{e_{1}}(n)$ is a polynomial of degree $m-1$ by (2.4). Moreover, T_{β} is an invertible extension of S_{w} and the desired result is proved.

Remark 5.2. In the above theorem, it is possible to obtain the same information with different elements of the orthogonal basis, as a consequence of equality (2.4). Indeed, in the conditions of Theorem 5.1 the following statements are equivalent:
(1) S_{w} has an invertible m-isometrical extension.
(2) $p_{e_{1}}(n)>0$ for $n \in \mathbb{Z}$.
(3) $p_{e_{j}}(n)>0$ for $n \in \mathbb{Z}$ and some $j \in \mathbb{N}$.
(4) $p_{e_{j}}(n)>0$ for $n \in \mathbb{Z}$ and $j \in \mathbb{N}$.

Let us obtain a first approach to ℓ-Jordan isommetries. In the next result we obtain that any 2-Jordan isometry operator admits an invertible 3-isometric extension, as a particular case of Theorem 4.1.

Corollary 5.3. Let $T \in L(H)$ be a 2-Jordan isometry operator. Then T has an invertible 2-Jordan isometry extension.

Proof. Let T be a 2-Jordan isometry operator, that is $T=A+Q$, where A is an isometry and Q is a 2-nilpotent operator such that $A Q=Q A$. By (2.2) we obtain that

$$
\begin{aligned}
D_{-n} & =\frac{(n+1)(n+2)}{2} I-n(n+2) T^{*} T+\frac{n(n+1)}{2} T^{* 2} T^{2} \\
& =I-n\left(A^{*} Q+Q^{*} A\right)+n^{2} Q^{*} Q .
\end{aligned}
$$

Then

$$
\left\langle D_{-n} x, x\right\rangle=\|x\|^{2}-n(\langle Q x, A x\rangle+\langle A x, Q x\rangle)+n^{2}\|Q x\|^{2} .
$$

Let us prove that $\left\langle D_{-n} x, x\right\rangle>0$ for every $x \in H$ such that $\|x\|=1$ and $n \in \mathbb{N}$. It is enough to prove that

$$
\begin{equation*}
n^{2}\|Q x\|^{2}+1>2 n \operatorname{Re}(\langle A x, Q x\rangle) \tag{5.9}
\end{equation*}
$$

where $\operatorname{Re}(z)$ denotes the real part of z. If $\operatorname{Re}(\langle A x, Q x\rangle) \leq 0$, then (5.9) is clear. Assume that $\operatorname{Re}(\langle A x, Q x\rangle)>0$. Then

$$
\operatorname{Re}(\langle A x, Q x\rangle)=|\operatorname{Re}(\langle A x, Q x\rangle)| \leq|\langle A x, Q x\rangle| \leq\|A x\|\|Q x\| \leq\|Q\|
$$

If $|\langle A x, Q x\rangle|=\|A x\|\|Q x\|$, then the vectors $A x$ and $Q x$ are linearly dependent, so there exists λ such that $Q x=\lambda A x$. Then $\lambda=0$, since $0=\left\|Q^{2} x\right\|=|\lambda|^{2}\left\|A^{2} x\right\|=|\lambda|^{2}$ and therefore $\|Q x\|=0$, which is an absurd with $\operatorname{Re}(\langle A x, Q x\rangle>0$. If $|\langle A x, Q x\rangle|<$ $\|A x\|\|Q x\|$, then

$$
2 n \operatorname{Re}(\langle A x, Q x\rangle)<2 n\|Q x\| \leq n^{2}\|Q x\|^{2}+1
$$

So, $\left\langle D_{-n} x, x\right\rangle>0$ for every $x \in H$ such that $\|x\|=1$ and all $n \in \mathbb{N}$.

In order to get the result, it is enough to prove that (4.8) is bounded. Let $x \in H$ such that $\|x\|=1$ and $n \in \mathbb{N}$. Then

$$
\begin{aligned}
\frac{\left\langle D_{-n+1} x, x\right\rangle}{\left\langle D_{-n} x, x\right\rangle} & =1+\frac{2 \operatorname{Re}(\langle A x, Q x\rangle)+(-2 n+1)\|Q x\|^{2}}{1-2 n \operatorname{Re}(\langle A x, Q x\rangle)+n^{2}\|Q x\|^{2}} \\
& \leq 1+\left|\frac{2 \operatorname{Re}(\langle A x, Q x\rangle)+(-2 n+1)\|Q x\|^{2}}{1-2 n \operatorname{Re}(\langle A x, Q x\rangle)+n^{2}\|Q x\|^{2}}\right| \\
& \leq 1+\frac{2\|Q\|+(2 n-1)\|Q\|^{2}}{1-2 n\|Q\|-n^{2}\|Q\|^{2}}
\end{aligned}
$$

converges to zero as n tends to infinity. Hence

$$
\sup \left\{\frac{\left\langle D_{-n+1} x, x\right\rangle}{\left\langle D_{-n} x, x\right\rangle}: x \in H,\|x\|=1, n \in \mathbb{N}\right\}<\infty
$$

Corollary 5.4. Let $T, C \in L(H)$ such that $T C=C T$.
(1) If T is an isometry, then $\widetilde{T}:=\left(\begin{array}{cc}T & C \\ 0 & T\end{array}\right)$ has an invertible 3 -isometric extension on $K \supset H \oplus H$.
(2) If λT is an isometry for some $\lambda \in \mathbb{C}$, then $\lambda \widetilde{T}=\lambda\left(\begin{array}{ll}T & C \\ 0 & T\end{array}\right)$ has an invertible 3-isometric extension on $K \supset H \oplus H$.

Proof. (1) It is clear that $\widetilde{T}=\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)+\left(\begin{array}{cc}0 & C \\ 0 & 0\end{array}\right)$ is a 2-Jordan isometry operator. Therefore the result is consequence of Corollary 5.3.

Applying (1) to the operator λT we obtain (2).
A similar result of part (1) of Corollary 5.4 was obtained in [8, Corollary 4.4]. That is, if $T \in L(H)$ is a contraction and $C \in L(H)$ such that $T C=C T$, then \widetilde{T} has a 3-isometric lifting on $K \supset H \oplus H$.

In the next theorem we can improve Corollary 5.3. Indeed, we prove that every ℓ-Jordan isometry has an invertible ℓ-Jordan isometry extension. The first part of our proof is based in the construction by Douglas [13], as it is presented by Laursen and Neumann in the monograph [15, Proposition 1.6,6].

Theorem 5.5. Let $T \in L(H)$ be an ℓ-Jordan isometry. Then there exist a Hilbert space K and $S \in L(K)$, such that H is isometrically embedded in K and S is an invertible ℓ-Jordan isometry extension of T.

Proof. As T is an ℓ-Jordan isometry, there are an isometry $A \in L(H)$ and an ℓ-nilpotent operator $Q \in L(H)$ such that $A Q=Q A$ and $T=A+Q$.

Let K_{0} be the linear space of all the sequences $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ in H such that there is $m \in \mathbb{N}$ satisfying $u_{m+k}=A^{k} u_{m}$, for $k \in \mathbb{N}$. Define, for $u, v \in K_{0}$,

$$
\langle u, v\rangle_{0}:=\lim _{n \rightarrow \infty}\left\langle u_{n}, v_{n}\right\rangle,
$$

being $\langle\cdot, \cdot\rangle$ the inner product on H. Note that there exists $m \in \mathbb{N}$ such that $\left\langle u_{m}, v_{m}\right\rangle=$ $\left\langle A^{k} u_{m}, A^{k} v_{m}\right\rangle=\left\langle u_{m+k}, v_{m+k}\right\rangle$, so the sequence $\left(\left\langle u_{n}, v_{n}\right\rangle\right)_{n \in \mathbb{N}}$ is eventually constant, that is, there exists $k_{0} \in \mathbb{N}$ such that $\left\langle u_{n}, v_{n}\right\rangle$ is constant for $n>k_{0}$. It is routine to verify what $\langle\cdot, \cdot\rangle_{0}$ is a semi-inner product on K_{0}. Therefore K_{0} is a semi pre-Hilbert space. Moreover,

$$
\|u\|_{0}^{2}:=\langle u, u\rangle_{0}=\lim _{n \rightarrow \infty}\left\langle u_{n}, u_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}
$$

defines a seminorm $\|\cdot\|_{0}$ on K_{0}.
Let $M:=\left\{u \in K_{0}:\langle u, u\rangle_{0}=\|u\|_{0}^{2}=0\right\}$. Then M is a closed subspace of K_{0} and we consider the quotient space K_{0} / M. In this space are defined, for $u, v \in K_{0}$,

$$
\langle u+M, v+M\rangle:=\langle u, v\rangle_{0} \quad \text { and } \quad\|u+M\|^{2}:=\langle u+M, u+M\rangle=\langle u, u\rangle_{0}=\|u\|_{0}^{2},
$$

and we obtain that K_{0} / M is a pre-Hilbert space.
Denote by K the Hilbert space what it is the completion of K_{0} / M. The operator $J \in L(H, K)$, defined by $J x:=\left(A^{n} x\right)_{n \in \mathbb{N}}+M$ for $x \in H$, satisfies that

$$
\|J x\|=\left\|\left(A^{n} x\right)_{n \in \mathbb{N}}+M\right\|=\left\|\left(A^{n} x\right)_{n \in \mathbb{N}}\right\|_{0}=\lim _{n \rightarrow \infty}\left\|A^{n} x\right\|=\|A x\|=\|x\|
$$

hence J is an isometry. So K contains an isometric copy of H. It is clear that $J(H)$ is a closed subspace of K.

In order to define $B \in L(K)$, we define an isometry on K_{0} / M by

$$
B\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right):=\left(A u_{n}\right)_{n \in \mathbb{N}}+M
$$

for every $\left(u_{n}\right)_{n \in \mathbb{N}}+M \in K_{0} / M$. Note that B is a linear isometry whose range contains K_{0} / M; in fact, given $\left(v_{n}\right)_{n \in \mathbb{N}}+M=\left(v_{1}, \ldots, v_{m}, A v_{m}, A^{2} v_{m}, \ldots\right)+M$, we have that

$$
\begin{aligned}
B((\underbrace{0, \ldots, 0}_{m}, v_{m}, A v_{m}, A^{2} v_{m}, \ldots)+M) & =(\underbrace{0, \ldots, 0}_{m}, A v_{m}, A^{2} v_{m}, A^{3} v_{m}, \ldots)+M \\
& =\left(v_{1}, \cdots, v_{m}, A v_{m}, A^{2} v_{m}, \cdots\right)+M .
\end{aligned}
$$

As K_{0} / M is dense in K, we have that B can be extended to an invertible isometry defined on K. Moreover, B can be considered as an extension of A since, for $x \in H$,

$$
B J x=B\left(\left(A^{n} x\right)_{n \in \mathbb{N}}+M\right)=\left(A^{n+1} x\right)_{n \in \mathbb{N}}+M=J A x
$$

That is, $B J=J A$.
Define $P \in L(K)$ in the following way

$$
P\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right)=\left(Q u_{n}\right)_{n \in \mathbb{N}}+M
$$

for every $\left(u_{n}\right)_{n \in \mathbb{N}}+M \in K_{0} / M$. It is clear that P is an ℓ-nilpotent. Let us prove that B and P commute. Taking into account that $A Q=Q A$, we have that

$$
\begin{aligned}
B P\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right) & =B\left(\left(Q u_{n}\right)_{n \in \mathbb{N}}+M\right)=\left(A Q u_{n}\right)_{n \in \mathbb{N}}+M \\
& =\left(Q A u_{n}\right)_{n \in \mathbb{N}}+M=P\left(\left(A u_{n}\right)_{n \in \mathbb{N}}+M\right)=P B\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right) .
\end{aligned}
$$

for every $\left(u_{n}\right)_{n \in \mathbb{N}}+M \in K_{0} / M$. Therefore, $S:=B+P \in L(K)$ is an ℓ-Jordan isometry that extends T. Moreover, S is an invertible since $\sigma(S)=\sigma(B)$ and B is an invertible isometry. So the proof is finished.

An operator $T \in L(H)$ is a doubly ℓ-Jordan isometry if $T=A+Q$ is an ℓ-Jordan isometry operator such that the ℓ-nilpotent $Q \in L(H)$ which commutes with A also commutes with A^{*}. For all scalar λ with $|\lambda|=1$ and an ℓ-nilpotent operator Q, we have that $\lambda I+Q$ is a doubly ℓ-Jordan isometry.

Corollary 5.6. Let $T \in L(H)$ be a doubly ℓ-Jordan isometry. Then there exist a Hilbert space K, such that H is isometrically embedded in K and an invertible doubly ℓ-Jordan isometry extension $S \in L(K)$ of T.

Remark 5.7. We use the notation of the proof of Theorem 5.5.
(1) It is easy to prove that the orthogonal subspace of $J(H), J(H)^{\perp}$ is the closure of the subspace of all classes

$$
\left(u_{n}\right)_{n \in \mathbb{N}}+M=\left(u_{1}, \ldots, u_{m}, A u_{m}, A^{2} u_{m}, \ldots\right)+M \in K_{0} / M
$$

such that $u_{m} \in R\left(A^{m}\right)^{\perp}$.
(2) The decomposition $K=J(H) \oplus J(H)^{\perp}$ gives rise to the representation of B as a operator matrix:

$$
B=\left(\begin{array}{cc}
B_{1} & B_{2} \tag{5.10}\\
0 & B_{3}
\end{array}\right)
$$

being $B_{1} \in L(J(H)), B_{2} \in L\left(J(H)^{\perp}, J(H)\right)$ and $B_{3} \in L\left(J(H)^{\perp}\right)$. Notice that $J(H)$ is a closed invariant subspace of B.
(3) The operator P is defined by the following operator matrix, associated to the decomposition $K=J(H) \oplus J(H)^{\perp}$,

$$
P=\left(\begin{array}{cc}
P_{1} & P_{2} \tag{5.11}\\
0 & P_{3}
\end{array}\right)
$$

being $P_{1} \in L(J(H)), P_{2} \in L\left(J(H)^{\perp}, J(H)\right)$ and $P_{3} \in L\left(J(H)^{\perp}\right)$. Notice that $J(H)$ is a closed invariant subspace of P.
(4) If T is a doubly ℓ-Jordan isometry, then $P_{2}=0$ in (5.11). For this purpose only it is necessary to prove that if $\left(u_{n}\right)_{n \in \mathbb{N}}+M \in J(H)^{\perp}$, then $P\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right) \in J(H)^{\perp}$, and that $B P^{*}=P^{*} B$. In fact, given $u=\left(u_{1}, \ldots, u_{m}, A u_{m}, A^{2} u_{m}, \ldots\right)$ such that $u_{m} \in$ $R\left(A^{m}\right)^{\perp}$, we have that $Q u_{m} \in R\left(A^{m}\right)^{\perp}$ since, for all $x \in H$,

$$
\left\langle Q u_{m}, A^{m} x\right\rangle=\left\langle u_{m}, Q^{*} A^{m} x\right\rangle=\left\langle u_{m}, A^{m} Q^{*} x\right\rangle=0
$$

because $Q^{*} A=A Q^{*}$. Therefore $P\left(\left(u_{n}\right)_{n \in \mathbb{N}}+M\right)=\left(Q u_{1}, \ldots, Q u_{m}, A Q u_{m}, A^{2} Q u_{m}, \ldots\right)+$ $M \in J(H)^{\perp}$. Hence $P\left(J(H)^{\perp}\right) \subset J(H)^{\perp}$.

Acknowledgements

The first author is supported by MCIN/AEI/10.13039/501100011033, Project PID2019105011 GB-Ioo. The third author was supported by grant No.20-22230L of GA CR.

Declarations

The authors declare that there is no conflict of interest and the manuscript has no associated data.

References

[1] Abdullah, B., Le, T.: The structure of m-isometric weighted shift operators. Oper. Matrices, 10(2) (2016), 319-334.
[2] Agler J.: A disconjugacy theorem for Toeplitz operators. Amer. J. Math., 112 (1990), 1-14.
[3] Agler, J., Helton, J. W., Stankus, M.: Classification of hereditary matrices. Linear Algebra Appl., 274 (1998), 125-160.
[4] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. I. Integral Equations Operator Theory, 21 (1995), no. 4, 383-429.
[5] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. II. Integral Equations Operator Theory, 23 (1995), no. 1, 1-48.
[6] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. III. Integral Equations Operator Theory, 24 (1996), no. 4, 379-421.
[7] Arens, R.: Inverse-producing extensions of normed algebras. Trans. Amer. Math. Soc., 88 (1958), 536-548.
[8] Badea, C., Müller, V.: Subscalar operators and growth of resolvent. J. Operator Theory, 56 (2006), no. 2, 249-258.
[9] Badea, C., Müller, V., Suciu, L.: High order isometric liftings and dilations. Studia Math., 258 (2021), no. 1, 87-101.
[10] Bermúdez T., Díaz, C. Martinón A.: Powers of m-isometries, Studia Math., 208 (3) (2012), pp. 249-255.
[11] Bermúdez, T., Martinón, A., Negrín, E.: Weighted shift operators which are m-isometries. Integral Equations Operator Theory, 68 (2010), no. 3, 301-312.
[12] Bermúdez, T., Martinón, A., Noda, J. A.: An isometry plus a nilpotent operator is an m-isometry. Applications. J. Math. Anal. Appl., 407 (2013) 505-512.
[13] Douglas, R. G.: On extending commutative semigroups of isometries. Bull. London Math. Soc., 1 (1969), 157-159.
[14] Jabłonski, J.: Complete hyperexpansivity, subnormality and inverted boundedness conditions. Integral Equations Operator Theory, 44 (3) (2002), pp. 316-336.
[15] Laursen, K. B., Neumann, M. M.: An introduction to local spectral theory. London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
[16] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic analysis of operators on Hilbert space. Second edition. Revised and enlarged edition. Universitext. Springer, New York, 2010.
[17] Yarmahmoodi, S., Hedayatian, K.: Isometric N-Jordan weighted shift operators. Turkish J. Math., 40 (2016), no. 5, 1114-1117.

Corresponding author T. Bermúdez
Departamento de Análisis Matemático, Universidad de La Laguna and Instituto de Matemáticas y Aplicaciones (IMAULL),
Apartado 456, 38200, San Cristóbal de La Laguna
(Tenerife), Spain.
e-mail: tbermude@ull.edu.es
A. Martinón

Departamento de Análisis Matemático,
Universidad de La Laguna,
Apartado 456, 38200, San Cristóbal de La Laguna
(Tenerife), Spain.
e-mail: anmarce@ull.edu.es
V. Müller

Mathematical Institute, Czech Academy of Sciences, Zitná 25, 11567 Prague 1,
Czech Republic.
e-mail: muller@math.cas.cz
H. Zaway

Department of Mathematics, Faculty of Sciences, University of Gabes, Gabes, Tunissia.
Department of Mathematics and Statistics,
University of King Faisal, Al Ahsa, Saudi Arabia.
email: hajer_zaway@live.fr

[^0]: ${ }^{1}$ Corresponding author: T. Bermúdez (tbermude@ull.edu.es)

