ON INVERTIBLE *m*-ISOMETRICAL EXTENSION OF AN *m*-ISOMETRY.

T. BERMÚDEZ, A. MARTINÓN, V. MÜLLER, H. ZAWAY

ABSTRACT. We give necessary and sufficient conditions on an *m*-isometry to have an invertible *m*-isometrical extension. As particular cases, we give a useful characterization for a general *m*-isometrical unilateral weighted shift and for ℓ -Jordan isometries. In particular, every ℓ -Jordan isometry operator has an invertible $(2\ell - 1)$ -isometrical extension.

August 31, 2022

1. INTRODUCTION¹

In the last twenty years there has been an intense research activity on *m*-isometries. In this paper, we focus our attention on characterizing *m*-isometries that have an invertible extension that is also *m*-isometry.

The notion of *m*-isometric operator on a Hilbert space was introduced by J. Agler [2] and studied in detail shortly after by J. Agler and M. Stankus in three papers [4, 5, 6]. These publications can be considered the first ones to initiate this topic of study.

An operator $T \in L(H)$, the algebra of all bounded linear operators acting on a Hilbert space *H*, is called an *m*-isometry, for some positive integer *m*, if

$$\sum_{k=0}^{m} \binom{m}{k} (-1)^{k} T^{*k} T^{k} = 0$$
 ,

where T^* denotes the adjoint operator of T. When m = 1, we obtain an isometry. It is said that T is a *strict m-isometry* if either m = 1 or T is an *m*-isometry with m > 1 but it is not (m - 1)-isometry.

As one should expect, *m*-isometries share many important properties with isometries. For example, the following dichotomy property: the spectrum of an *m*-isometry is the closed unit disc if it is not invertible or a closed subset of the unit circle if it

¹Corresponding author: T. Bermúdez (tbermude@ull.edu.es)

is invertible [4]. Also, if *T* is an *m*-isometry, then *T* is bounded below; that is, there exists M > 0 such that $||Tx|| \ge M ||x||$ for every $x \in H$.

Given an *m*-isometry $T \in L(H)$, we are interested in research conditions which guarantee the existence of a Hilbert space *K* and an operator $S \in L(K)$, which is an extension of *T*, such that *S* is an invertible *m*-isometry. To say that $S \in L(K)$ is an *extension* of $T \in L(H)$ means that *K* contains an isometric subspace to *H*, which we denote also by *H*, and the restriction $S_{|H}$ from *H* to *H* coincides with *T*.

Problem 1.1. *Characterize those m-isometric operators which have an invertible m-isometrical extension.*

In 1969 Douglas [13] obtained that any isometry in a Banach space has an invertible isometric extension, also valid in a Hilbert space context. So, the case m = 1 holds. For $m \ge 2$, first immediate consideration is that m must be odd, since every invertible m-isometry with even m is an (m - 1)-isometry by [4, Proposition 1.23].

Our problem is similar to others that arise naturally in Operator Theory and can be formulated in very general terms as follows. Given a class C of operators, for example defined on Hilbert spaces, and given a property P relative to those operators, we wish to characterize the operators that have an extension in the class C with property P.

Let $T \in L(H)$ and $S \in L(K)$ with H a closed subspace of K. Denote by P_H the orthogonal projection of K onto H and by J the inclusion of H into K. It is said that

- *S* is a *lifting* of *T* if $P_H S = TP_H$.
- *S* is a *dilation* of *T* if $T^n = P_H S^n J$, for every $n \in \mathbb{N}$.

Many authors have studied, for a given bounded linear operator $T \in L(H)$, some additional properties of extension, lifting, or dilation of the operator *T*. The following results are known and respond to these problems :

- Every contraction has an extension which is an unitary dilation and a lifting which is an isometry. See [16].
- Every isometry has a unitary extension. See [13].
- Every operator *T* such that the norms of its powers grow polynomially has an extension which is an *m*-isometric lifting for some integer $m \ge 1$. See [9].

Notice that the norms of the powers of an *m*-isometry have a polynomial behaviour (see part (1) of Proposition 2.1). However, there are operators such that those norms have a polynomial behaviour that are not *m*-isometries. In [9], the authors study lifting and dilations which are *m*-isometries. In particular, they obtain that if *T* is an *m*-isometry, then *T* has an (m + 3)-isometric lifting with other additional properties.

A special class of *m*-isometric operators is the ℓ -Jordan isometries; that is, operators which are the sum of an isometry and an ℓ -nilpotent operator which commute. It is known that every ℓ -Jordan isometry is a strict $(2\ell - 1)$ -isometry, but the converse is not valid. However, every strict *m*-isometry on a finite dimensional Hilbert space is an $\frac{(m+1)}{2}$ -Jordan isometry operator. See [12, 17, 3] for more details.

Another natural and important examples of *m*-isometries are certain weighted shift operators. In [1, 11], the authors obtained a characterization of weighted shift which are *m*-isometric.

We summarize the contents of the paper. In Section 2, we define a bilateral sequence of operators associated to an *m*-isometry that allow us to transfer important information of the *m*-isometry to the bilateral sequence, that it will be an important tool in the paper. In Section 3, we present some necessary conditions to obtain an invertible *m*-isometrical extension. The main results are given in Section 4 where we obtain characterizations for an *m*-isometry to have an invertible *m*-isometrical extension. Finally, in Section 5, we present particular classes of *m*-isometries for which one can obtain nice results. In particular, we give a useful characterization for a general *m*isometrical unilateral weighted shift and for ℓ -Jordan isometries. In particular, every ℓ -Jordan isometry operator has an invertible $(2\ell - 1)$ -isometrical extension.

2. Some previous results

In this section, we define a bilateral sequence of operators associated to an *m*-isometry, that allow us to transfer important information of the *m*-isometry to the bilateral sequence that it will be relevant for obtaining necessary conditions for having an invertible *m*-isometrical extension.

Any polynomial of degree less or equal to m - 1 is uniquely determined by its values at *m* distinct points. If $a_0, a_1, \ldots, a_{m-1}$ are given real (or complex) numbers,

then the unique polynomial p of degree less or equal to m - 1 satisfying $p(k) = a_k$ for all $k \in \{0, 1, ..., m - 1\}$ is giving by Lagrange interpolating polynomial

$$p(z) = \sum_{k=0}^{m-1} a_k \prod_{\substack{0 \le j \le m-1 \\ j \ne k}} \frac{z-j}{k-j}$$

Note that

$$p(n) = \sum_{k=0}^{m-1} a_k b_k(n)$$

with

$$b_k(n) := \prod_{\substack{0 \le j \le m-1 \\ j \ne k}} \frac{n-j}{k-j} = (-1)^{m-k-1} \frac{n(n-1)\dots(n-k)\cdots(n-m+1)}{k!(m-k-1)!}$$
(2.1)

where (n-k) means that the factor (n-k) is omitted.

Given $T \in L(H)$, define the bilateral sequence by

$$D_n := \sum_{k=0}^{m-1} b_k(n) T^{*k} T^k , \qquad (2.2)$$

for every $n \in \mathbb{Z}$. Clearly $D_n \in L(H)$ and it is self adjoint operator for every $n \in \mathbb{Z}$.

Denote $p_x(k) := \langle D_k x, x \rangle$ for every $x \in H$ and $k \in \mathbb{Z}$.

Given $T \in L(H)$, denote T > 0 if $\langle Tx, x \rangle > 0$ for every $x \in H \setminus \{0\}$ and we call it *strictly positive operator*.

We concentrate now on the family $(D_n)_{n \in \mathbb{Z}}$ of operators which arise from a fixed *m*-isometry. Indeed, the bilateral sequence $(D_n)_{n \in \mathbb{Z}}$ has some interesting properties that will be important tools to solve Problem 1.1.

Proposition 2.1. Let $T \in L(H)$ be an *m*-isometry and $(D_n)_{n \in \mathbb{Z}}$ be operators defined by (2.2). *Then*

- (1) [11, Theorem 2.1] & [4] $D_n = T^{*n}T^n$ and $p_x(n) = \langle D_n x, x \rangle = ||T^n x||^2 > 0$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{N} \cup \{0\}$. Henceforth, there exists the square root $D_n^{1/2}$ of D_n , for every $n \in \mathbb{N} \cup \{0\}$.
- (2) D_n is invertible for every $n \in \mathbb{N} \cup \{0\}$.
- (3) $T^{*k}D_nT^k = D_{n+k}$ for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$.

- (4) Let $y \in R(T^k)$ for some $k \in \mathbb{N}$. Then $p_y(-k) = ||x||^2$, where $y = T^k x$.
- (5) If $D_{-n} > 0$ and invertible, then $D_{-k} > 0$ and invertible for every $k \in \{1, 2, \dots, n-1\}$.

Proof. (2) Let $n \in \mathbb{N}$. By [14, Theorem 2.3] & [10, Theorem 3.1], any power of T, T^n is an *m*-isometry, so, T^n is bounded below. Hence

$$||D_n x|| ||x|| \ge |\langle D_n x, x \rangle| = \langle D_n x, x \rangle = ||T^n x||^2 \ge M(n)^2 ||x||^2$$

where M(n) > 0. That is, D_n is bounded below. Then trivially D_n is invertible since D_n is self adjoint operator.

(3) It is enough to prove the required equality for k = 1. Observe that

$$p_{Tx}(n) = ||T^n Tx||^2 = ||T^{n+1}x||^2 = p_x(n+1)$$
,

for every $n \in \mathbb{N}$ and

$$\langle D_{n+1}x,x\rangle = p_x(n+1) = p_{Tx}(n) = \langle D_nTx,Tx\rangle = \langle T^*D_nTx,x\rangle$$

for every $n \in \mathbb{Z}$.

(4) Let $y = T^k x$ for some $k \in \mathbb{N}$ and $x \in H$. Then

$$p_y(n) = p_{T^k x}(n) = p_x(k+n)$$
,

for every $n \in \mathbb{N}$. Therefore $p_y(n) = p_x(k+n)$ for every $n \in \mathbb{Z}$.

(5) Let $k \in \{1, 2, \dots, n-1\}$ and $x \in H \setminus \{0\}$. If $D_{-n} > 0$, then by part (3),

$$\langle D_{-k}x,x\rangle = \langle T^{*n-k}D_{-n}T^{n-k}x,x\rangle = \langle D_{-n}T^{n-k}x,T^{n-k}x\rangle > 0.$$
(2.3)

Since T^{n-k} is bounded below and by (2.3), we have that

$$\|D_{-k}^{1/2}x\|^2 = \|D_{-n}^{1/2}T^{n-k}x\|^2 \ge M\|x\|^2$$
.

So, the result is obtained since D_{-k} is a self adjoint operator.

We close this section by studying the bilateral sequence $(D_n)_{n \in \mathbb{Z}}$ associated to unilateral weighted shift which are *m*-isometries.

Let *H* be a Hilbert space with an orthonormal basis $(e_n)_{n \in \mathbb{N}}$. Recall that the unilateral weighted shift given by $S_w e_n = w_n e_{n+1}$ on *H*, where $w_n = \sqrt{\frac{p(n+1)}{p(n)}}$ with *p* a polynomial of degree m - 1, is a non invertible strict *m*-isometry, [1]. Also

$$p_{e_j}(n) = \|S_w^n e_j\|^2 = |w_j w_{j+1} \cdots w_{n+j-1}|^2 = \frac{p(j+n)}{p(j)}.$$
(2.4)

The following proposition gives an explicit expression of the operator D_n , when T is an *m*-isometrical unilateral weighted shift operator.

Proposition 2.2. Let *H* be a Hilbert space with orthonormal basis $(e_n)_{n \in \mathbb{N}}$ and let $S_w \in L(H)$ be an *m*-isometrical unilateral weighted shift with weight sequence $w = (w_n)_{n \in \mathbb{N}}$. Then

(1) D_n is a diagonal operator for every $n \in \mathbb{Z}$, with diagonal

$$\lambda_n(j) := \sum_{k=0}^{m-1} b_k(n) \prod_{\ell=j}^{j+k-1} |w_\ell|^2$$
 ,

where $b_k(n)$ is giving by (2.1).

- (2) Let $n \in \mathbb{Z}$. The following conditions are equivalent
 - (a) D_n is invertible.
 - (b) $D_n > 0$.
 - (c) $\lambda_n(j) > 0$ for every $j \in \mathbb{N}$.

Proof. (1) By [1], there exists a polynomial p of degree m - 1, such that the weights are given by $w_n = \sqrt{\frac{p(n+1)}{p(n)}}$. So,

$$D_{n}e_{j} = \sum_{k=0}^{m-1} b_{k}(n) S_{w}^{*k} S_{w}^{k} e_{j} = \sum_{k=0}^{m-1} b_{k}(n) \prod_{\ell=j}^{j+k-1} |w_{\ell}|^{2} e_{j}$$

$$= \sum_{k=0}^{m-1} b_{k}(n) \frac{p(j+k)}{p(j)} e_{j} = \lambda_{n}(j) e_{j},$$
(2.5)

where

$$\lambda_n(j) = \sum_{k=0}^{m-1} b_k(n) \frac{p(j+k)}{p(j)} .$$
(2.6)

(2) It is immediate by (1).

In general, the converse of part (5) of Proposition 2.1 is not valid. A suitable choose of the weight sequence gives an example such that $D_{-q} > 0$ and $D_{-(q+1)}$ is not positive for some $q \in \mathbb{N}$.

Example 2.3. Let $q \in \mathbb{N}$ and define $p_q(n) := (n+q)(n+q+1)$. Then S_w with weight $w_n = \sqrt{\frac{p_q(n+1)}{p_q(n)}}$ is a 3-isometry and it satisfies that $D_{-n} > 0$ and invertible for $n \in \{1, \dots, q\}$ and $D_{-(q+1)}$ is not. In fact,

$$\lambda_{-n}(j) := \frac{p_q(j-n)}{p_q(j)} = \frac{(j+q-n)(j+q-n+1)}{(j+q)(j+q+1)},$$

for $n \in \mathbb{N}$. If $n \in \{1, \dots, q\}$, then we have that -q - 1 + n < -q + n < 0. Hence, $\lambda_{-n}(j) > 0$, for every $j \in \mathbb{N}$. If n = q + 1,

$$\lambda_{-(q+1)}(j) = \frac{j(j-1)}{(j+q)(j+q+1)} .$$

Hence $\lambda_{-(q+1)}(1) = 0$ and consequently $\langle D_{-(q+1)}e_1, e_1 \rangle = 0$.

3. Necessary conditions of having an invertible *m*-isometrical extension

In an attempt towards solution of finding necessary conditions to obtain an invertible *m*-isometrical extension, we draw upon an interesting connection between $D_{-1} > 0$ and the invertibility of D_{-1} with the existence of a particular *m*-isometrical extension. Notice that in the following theorem we do not obtain an invertible *m*-isometrical extension.

Theorem 3.1. Let $T \in L(H)$ be an *m*-isometry. The following statements are equivalent:

- (*i*) There exist a Hilbert space $K \supset H$ and an m-isometry $S \in L(K)$ such that $S_{|H} = T$ and R(S) = H.
- (ii) $D_{-1} > 0$ and D_{-1} is invertible.

Proof. (*i*) \Rightarrow (*ii*): Let $x \in H$ and $y = S^{-1}x \in K$. For $n \in \mathbb{Z}$, denote

$$\widetilde{D}_n := \sum_{k=0}^{m-1} b_k(n) S^{*k} S^k, \quad D_n := \sum_{k=0}^{m-1} b_k(n) T^{*k} T^k$$

and for $n \in \mathbb{N}$

$$\widetilde{p}_x(n) := \|S^n x\|^2, \quad p_x(n) := \|T^n x\|^2,$$

where $b_k(n)$ is given by (2.1). Then

$$\begin{split} \langle \widetilde{D}_{-1}x, x \rangle &= \langle \widetilde{D}_{-1}Sy, Sy \rangle = \langle S^* \widetilde{D}_{-1}Sy, y \rangle = \langle \widetilde{D}_0 y, y \rangle = \|y\|^2 \\ &= \sum_{k=0}^{m-1} b_k(-1) \langle S^{*k} S^k x, x \rangle = \sum_{k=0}^{m-1} b_k(-1) \langle T^k x, T^k x \rangle \\ &= \langle D_{-1}x, x \rangle \;. \end{split}$$

Then $\langle \widetilde{D}_{-1}x, x \rangle = ||y||^2 = \langle D_{-1}x, x \rangle \ge 0$ for all $x \in H$. Also

$$||D_{-1}x|| ||x|| \ge \langle D_{-1}x, x \rangle = ||y||^2 \ge \frac{||Sy||^2}{||S||^2} = \frac{||x||^2}{||S||^2}$$

So, $D_{-1} > 0$ and bounded below. Hence D_{-1} is invertible since D_{-1} is self adjoint operator.

 $(ii) \Rightarrow (i)$: Consider the vector space $H \times H$ with a new seminorm

$$|||(h,h')||| := ||D_{-1}^{1/2}(Th+h')||$$

and the subspace

$$N := \{(h, h') \in H \times H : |||(h, h')||| = 0\}$$

Let $K := (H \times H) / N$ with the quotient norm

$$|||(h,h') + N||| := ||D_{-1}^{1/2}(Th + h')||$$

Then *K* is a normed space. Let us prove that $||| \cdot |||$ satisfies the parallelogram law. For u = (h, h') + N and v = (g, g') + N in *K* we have

$$\begin{split} |||u+v|||^2 + |||u-v|||^2 &= \langle D_{-1}(Th+h'+Tg+g'), Th+h'+Tg+g' \rangle \\ &+ \langle D_{-1}(Th+h'-Tg-g'), Th+h'-Tg-g' \rangle \\ &= 2\langle D_{-1}(Th+h'), Th+h' \rangle + 2\langle D_{-1}(Tg+g'), Tg+g' \rangle \\ &= 2|||u|||^2 + 2|||v|||^2. \end{split}$$

Henceforth, *K* is a pre-Hilbert space. The linear mapping $\phi : K \longrightarrow H$ defined by $\phi((h, h') + N) = Th + h'$ is an isomorphism. Indeed, ϕ is bounded since D_{-1} is an invertible operator. It is clear that ϕ is onto and bounded below since the square

root of D_{-1} is a bounded operator. Hence *K* is complete and so it is a Hilbert space. Moreover,

$$|||(h,0) + N|||^{2} = ||D_{-1}^{1/2}(Th)||^{2} = \langle D_{-1}Th, Th \rangle = \langle T^{*}D_{-1}Th, h \rangle = ||D_{0}h||^{2} = ||h||^{2}.$$

So *K* contains *H* as a subspace and we identify $h \in H$ with $(h, 0) + N \in K$.

Define *S* on *K* by ((h, h') + N) := (Th + h', 0) + N. The operator *S* is well defined and bounded:

$$\begin{split} |||S\Big((h,h')+N\Big)|||^2 &= |||(Th+h',0)+N|||^2 = \|D_{-1}^{1/2}(T(Th+h'))\|^2 \\ &= \langle D_{-1}(T(Th+h')), T(Th+h') \rangle = \langle D_0(Th+h'), Th+h' \rangle \\ &= \|Th+h'\|^2 \le \|D_{-1}^{-1/2}\|^2 \|D_{-1}^{1/2}(Th+h')\|^2 \\ &= \|D_{-1}^{-1/2}\|^2 |||(h,h')+N|||^2 \,. \end{split}$$

Clearly *S* is an extension of *T*. Let $h \in H$. We have identified *h* with $(h, 0) + N \in K$ and S((h, 0) + N) = (Th, 0) + N. Also SK = H.

Let us prove that *S* is an *m*-isometry. Let $u = (h, h') + N \in K$ and write $y := Th + h' \in H$. We have that Su = (y, 0) + N, $S^k u = (T^{k-1}y, 0) + N$ and $|||S^k u|||^2 = ||D_{-1}^{1/2}(T^k y)||^2 = ||T^{k-1}y||^2$ for $k \in \mathbb{N}$. So

$$\begin{split} \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} |||S^{k}u|||^{2} &= |||u|||^{2} + \sum_{k=1}^{m} (-1)^{k} \binom{m}{k} |||S^{k}u|||^{2} \\ &= \langle D_{-1}y, y \rangle + \sum_{k=1}^{m} (-1)^{k} \binom{m}{k} ||T^{k-1}y||^{2} \\ &= \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} p_{y}(k-1) = 0, \end{split}$$

since p_y has degree less or equal to m - 1. Hence *S* is an *m*-isometry.

The following result gives necessary conditions of having an invertible *m*-isometrical extension.

Proposition 3.2. Let $T \in L(H)$ be a strict *m*-isometry.

(1) If T is invertible, then $p_x(n) = ||T^n x||^2 > 0$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{Z}$.

- (2) If T has an invertible m-isometrical extension S, then $p_x(-k) := ||S^{-k}x||^2 > 0$ for every $x \in H \setminus \{0\}$ and $k \in \mathbb{N}$, where $p_x(n) := ||T^nx||^2$ for $n \in \mathbb{N}$. In particular, the degree of p_x is even for every $x \in H \setminus \{0\}$.
- (3) If there exists an invertible m-isometrical extension of T, then $D_n > 0$ and invertible operator for every $n \in \mathbb{Z}$.

Proof. (1) Part (3) of Proposition 2.1 yields that $T^{*n}D_{-n}T^n = D_0 = I$ for $n \in \mathbb{N}$. So, for every $x \in H \setminus \{0\}$ and $n \in \mathbb{N}$,

$$p_x(-n) = \langle D_{-n}x, x \rangle = \langle T^{*-n}T^{-n}x, x \rangle = \|T^{-n}x\|^2 > 0$$
,

since T^{-1} is an *m*-isometry.

(2) Let $x \in H$ and $n \in \mathbb{N}$. Denote by

$$p_x(n) := \langle D_n x, x \rangle := \sum_{k=0}^{m-1} b_k(n) \| T^k x \|^2$$
$$\widetilde{p}_x(n) := \langle \widetilde{D}_n x, x \rangle := \sum_{k=0}^{m-1} b_k(n) \| S^k x \|^2,$$

where *S* is an invertible *m*-isometrical extension of *T*. Clearly, $p_x(n) = \tilde{p}_x(n)$ is a polynomial of degree less or equal to m - 1. Observe that $p_x(-n) = \tilde{p}_x(-n) = ||S^{-n}x||^2$ for every $n \in \mathbb{N}$.

- **Remark 3.3.** (1) Observe that part (2) of the above Proposition implies that the degree of p_x is even if $p_x(n) > 0$ for every $n \in \mathbb{Z}$. Indeed, this is a different way to prove that there are no invertible strict *m*-isometries for even *m*. See also [4, Proposition 1.23].
 - (2) The conditions $D_n > 0$ and invertible operator for every $n \in \mathbb{Z}$ are not sufficient to define an invertible *m*-isometrical extension of *T*. Indeed, invertibility of D_n would suffice to construct an unbounded *m*-isometrical extension of *T* with dense range.

Proposition 3.2 allow us to obtain that some *m*-isometries have not an invertible *m*-isometrical extension.

Remark 3.4. Let $T \in L(H)$ be a strict *m*-isometry. Denote $p_x(n) := ||T^n x||^2$, for $n \in \mathbb{N}$ and $x \in H \setminus \{0\}$. Then

- (1) If m = 1, then $p_x(n) > 0$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{Z}$.
- (2) If *m* is even, then there exist $x_0 \in H$ and $n_0 \in \mathbb{Z}$ with $n_0 < 0$ such that $p_{x_0}(n_0) \leq 0$.
- (3) If *m* is odd, then it is possible that $p_x(n) > 0$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{Z}$ or there exist $x_0 \in H$ and $n_0 \in \mathbb{Z}$ with $n_0 < 0$ such that $p_{x_0}(n_0) \leq 0$.

In the following examples we present different behaviours of $p_x(n)$ with negative integer *n* for unilateral weighted shift.

Example 3.5. Let $p(n) = n^{m-1}$ with odd m. It is clear that $p_{e_j}(n) := ||S_w^n e_j||^2 = \left(\frac{j+n}{j}\right)^{m-1}$ and $p_{e_j}(-j) = 0$. So, S_w can not have an invertible m-isometrical extension.

Example 3.6. Let $p(n) := \prod_{i=1}^{m-1} (mn+i)$ with odd m. It is clear that

$$p_{e_j}(n) := \|S_w^n e_j\|^2 = \frac{\prod_{i=1}^{m-1} (m(j+n)+i)}{\prod_{i=1}^{m-1} (mj+i)}$$

If $j \ge n$, then $p_{e_j}(-n) > 0$. In other case, $p_{e_j}(-n) > 0$ since m - 1 is even. As we will see later, S_w has an invertible *m*-isometrical extension by Theorem 5.1.

4. CHARACTERIZATION OF HAVING AN INVERTIBLE *m*-isometrical extension

The main result of this paper is to obtain, for a fixed *m*-isometry, characterizations of having an invertible *m*-isometrical extension. In Proposition 3.2, we proved that a necessary condition is that the bilateral sequence of operators $(D_n)_{n \in \mathbb{Z}}$ must be strictly positive and invertible.

Now, we are in position to prove the main result.

Theorem 4.1. Let $T \in L(H)$ be an *m*-isometry and let $(D_n)_{n \in \mathbb{Z}}$ be the bilateral sequence defined by (2.2). Denote $p_x(n) := \langle D_n x, x \rangle$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{Z}$. The following statements are equivalent:

(*i*) There exist a Hilbert space $K \supset H$ and an invertible *m*-isometrical operator $S \in L(K)$ such that $S_{|H} = T$.

(ii) $p_x(j) > 0$ for every $x \in H \setminus \{0\}$, and $j \in \mathbb{Z}$ and

$$\sup\left\{\frac{p_x(j+1)}{p_x(j)}: x \in H \setminus \{0\}, \ j \in \mathbb{Z}\right\} < \infty.$$
(4.7)

(iii) $D_n > 0$ and invertible for every $n \in \mathbb{Z}$, and

$$\sup\left\{\frac{\langle D_{-n+1}x,x\rangle}{\langle D_{-n}x,x\rangle}:x\in H, \ \|x\|=1, \ n\in\mathbb{N}\right\}<\infty.$$
(4.8)

Proof. (*i*) \Rightarrow (*ii*): Let $x \in H \setminus \{0\}$. Then

$$||S^{j+1}x||^2 = ||T^{j+1}x||^2 = p_x(j+1) > 0$$

for $j \in \mathbb{Z}$ and

$$\frac{p_x(j+1)}{p_x(j)} = \frac{\|S^{j+1}x\|^2}{\|S^jx\|^2} \le \|S\|^2 \ .$$

So, we get (4.7).

 $(ii) \Rightarrow (iii)$: By parts (1) and (2) of Proposition 2.1 we have that $D_n > 0$ and invertible for $n \in \mathbb{N}$. By hypothesis, $D_j > 0$ for $j \in \mathbb{Z}$ since $p_x(j) = \langle D_j x, x \rangle$. Let us prove that D_{-n} are bounded below for every $n \in \mathbb{N}$. The condition (4.7) yields that there exists M > 0 such that

$$p_x(-n) \ge \frac{p_x(-n+1)}{M} \ge \frac{p_x(0)}{M^n} = \frac{\|x\|^2}{M^n}$$

hence

$$\|D_{-n}^{1/2}x\|^2 \geq rac{\|x\|^2}{M^n}$$
 ,

for every $x \in H \setminus \{0\}$ and $n \in \mathbb{N}$. Therefore D_{-n} is bounded below for $n \in \mathbb{N}$ and hence invertible.

It is remained to prove (4.8). Indeed, (4.8) is an immediate consequence of (4.7) using the identification $p_x(j) = \langle D_j x, x \rangle$ for every $x \in H \setminus \{0\}$ and $j \in \mathbb{Z}$.

 $(iii) \Rightarrow (i)$: Let *V* be the vector space of all sequences $(h_1, h_2, ...)$ of elements of *H* with finite support, that is, there exists $n \in \mathbb{N}$ such that $h_j = 0$ for j > n. Define a new seminorm on *V* by

$$|||(h_1,h_2,\ldots)|||^2 := \langle D_{-n}y,y\rangle,$$

where $n \in \mathbb{N}$ is any integer satisfying $h_j = 0$ for j > n and $y := \sum_{j=1}^n T^{n-j}h_j$.

The seminorm $||| \cdot |||$ does not depend on the choice of n. Indeed, if $h_j = 0$ for j > n, $r = n + n_0$ with $n_0 \in \mathbb{N}$, and $y = \sum_{j=0}^n T^{n-j}h_j$, then

$$\left\langle D_{-r} \sum_{j=1}^{r} T^{r-j} h_{j}, \sum_{i=1}^{r} T^{r-i} h_{i} \right\rangle = \left\langle D_{-(n+n_{0})} T^{n_{0}} \left(\sum_{j=1}^{n+n_{0}} T^{n-j} h_{j} \right), T^{n_{0}} \left(\sum_{i=1}^{n+n_{0}} T^{n-i} h_{i} \right) \right\rangle$$
$$= \left\langle T^{*n_{0}} D_{-(n+n_{0})} T^{n_{0}} \left(\sum_{j=1}^{n} T^{n-j} h_{j} \right), \sum_{i=1}^{n} T^{n-i} h_{i} \right\rangle = \left\langle D_{-n} y, y \right\rangle$$

where the last equality is by part (3) of Proposition 2.1.

Let $N := \{(h_1, h_2, ...) \in V : |||(h_1, h_2, ...)||| = 0\}$ and let *K* be the completion of *V*/*N*.

Let us prove that *K* is a pre-Hilbert space. For that, it is enough to prove that $||| \cdot |||$ satisfies the parallelogram law. Let $u := (h_1, h_2, \dots) + N$, $v := (g_1, g_2, \dots) + N \in V/N$, $n \in \mathbb{N}$ such that $h_j = 0 = g_j$ for j > n and $x := \sum_{j=1}^n T^{n-j}h_j$, $y := \sum_{j=1}^n T^{n-j}g_j$. Then

$$|||u + v|||^{2} + |||u - v|||^{2} = \langle D_{-n}(x + y), x + y \rangle + \langle D_{-n}(x - y), x - y \rangle$$
$$= 2(|||u|||^{2} + |||v|||^{2}).$$

For each $h \in H$ we have $|||(h, 0, 0, ...) + N|||^2 = \langle D_{-1}Th, Th \rangle = \langle D_0h, h \rangle = ||h||^2$.

Let *L* be the closed subspace generated by $(h, 0, \dots) + N$ with $h \in H$ and define ϕ on *H* taking values on *L* by $\phi(h) := (h, 0, \dots) + N$. Then $||h||^2 = |||\phi(h)|||^2$ and $R(\phi) = L$. For each $h \in H$ we can identify *h* with $(h, 0, \dots) + N \in K$. So, *K* contains *H* as a subspace.

Define *S* on *V*/*N* by $S((h_1, h_2, \dots) + N) := (Th_1 + h_2, h_3, \dots) + N \in V/N$. Then the definition of *S* is correct and *S* is bounded. Indeed, let $u := (h_1, h_2, \dots) + N \in$ $V/N, n \in \mathbb{N}$ such that $h_j = 0$ for j > n and $y := \sum_{j=1}^n T^{n-j}h_j$. Denote $(\tilde{h}_1, \tilde{h}_2, \dots) :=$ $(Th_1 + h_2, h_3, \dots)$. Then

$$|||Su|||^{2} = |||(Th_{1} + h_{2}, h_{3}, \cdots) + N|||^{2} = \langle D_{-(n-1)}\widetilde{y}, \widetilde{y} \rangle$$

where

$$\widetilde{y} := \sum_{j=1}^{n-1} T^{n-1-j} \widetilde{h}_j = T^{n-1} (Th_1 + h_2) + \sum_{j=2}^{n-1} T^{n-1-j} \widetilde{h}_j = y.$$

Then $|||Su|||^2 = \langle D_{-(n-1)}y, y \rangle = p_y(-n+1)$. Repeating the process we have that

$$|||S^{k}u|||^{2} = p_{y}(-n+k)$$
,

for $k = 0, \dots m$. Therefore

$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} |||S^k u|||^2 = \sum_{k=0}^{m} (-1)^k \binom{m}{k} p_y(-n+k) = 0 ,$$

since p_y has degree less or equal to m - 1. By continuity, S is an *m*-isometry.

It is easy to see that $R(S) \supset V + N$. So the range of *S* is dense, and consequently *S* is an invertible *m*-isometry.

Moreover, the invertible extension $S \in L(K)$ is defined uniquely (up to the unitary equivalence) if we assume that *S* is minimal, i.e., $K = \bigvee_{k \ge 0} S^{-k} H$.

We will prove that the converse of part (3) of Proposition 3.2 is not true in general, that is, if $D_n > 0$ and invertible for $n \in \mathbb{Z}$ are not sufficient to have an invertible *m*-isometrical extension of an *m*-isometry. Firstly, we need a previous result on *m*-isometries.

Proposition 4.2. Let $(T_n)_{n \in \mathbb{N}} \subset L(H)$ be a uniformly bounded sequence of *m*-isometries. Then $T = T_1 \oplus T_2 \oplus \cdots$ is an *m*-isometry on $\ell^2(H)$.

Proof. Since $(T_n)_{n \in \mathbb{N}}$ is a uniformly bounded, then $T = T_1 \oplus T_2 \oplus \cdots$ is well-defined on $\ell^2(H)$.

Let $x = (x_1, x_2, \dots) \in \ell^2(H)$. Denote $p_{x_n}(k) := ||T_n^k x_n||^2$. Since $(T_n)_{n \in \mathbb{N}}$ is a sequence of *m*-isometries, then $(p_{x_n}(k))_{n \in \mathbb{N}}$ is a sequence of polynomials of degree less or equal to m - 1. Fixed $k \in \mathbb{N}$,

$$p_x(k) := ||T^k x||^2 = \sum_{n=1}^{\infty} ||T_n^k x_n||^2 = \sum_{n=1}^{\infty} p_{x_n}(k)$$

is a polynomial of degree less or equal to m - 1. Hence T is an *m*-isometry.

It is possible to exhibit an example of *m*-isometry with odd *m* such that $D_n > 0$ and invertible for every $n \in \mathbb{Z}$ but not fulfilling the hypothesis of Theorem 4.1. In order to simplify the presentation we include an example with a 3-isometry.

Example 4.3. Let $q_n(j) := j^2 + j(2 - \frac{1}{n}) + 1$. Let *H* be a Hilbert space with an orthonormal basis $(e_{n,j})_{n,j \in \mathbb{N}}$ and $K := \ell^2(H)$. Define $T \in L(K)$ by

$$Te_{n,j} := \sqrt{\frac{q_n(j+1)}{q_n(j)}}e_{n,j+1}$$

for any $n, j \in \mathbb{N}$. Then

- (1) T is a 3-isometry on K.
- (2) $p_x(k) > 0$ for every $x \in K \setminus \{0\}$ and $k \in \mathbb{Z}$, where $p_x(n) := ||T^n x||^2$ for $n \in \mathbb{N}$.
- (3) $D_n > 0$ and invertible for $n \in \mathbb{Z}$.
- (4) There is no invertible 3-isometrical extension of *T*.

Proof: It is clear that $q_n(j) > 0$ for $n \in \mathbb{N}$ and $j \in \mathbb{Z}$. Let $x = (x_1, x_2, \cdots) = (\sum_{n=1}^{\infty} \alpha_{n,1} e_{n,1}, \sum_{n=1}^{\infty} \alpha_{n,2} e_{n,2}, \cdots) \in K$. Then

$$T(x_1, x_2, \cdots) := (0, T_1 x_1, T_2, x_2, \cdots)$$
,

where

$$T_i x_i := T_i \left(\sum_{n=1}^{\infty} \alpha_{n,i} e_{n,i} \right) = \sum_{n=1}^{\infty} \alpha_{n,i} w_{n,i} e_{n,i+1}$$

and

$$w_{n,i}:=\sqrt{\frac{q_n(i+1)}{q_n(i)}}\,.$$

By Proposition 4.2, the operator *T* is a 3-isometry, since T_n is a 3-isometry for every $n \in \mathbb{N}$ and also $(T_n)_{n \in \mathbb{N}}$ is uniformly bounded, that is

$$\sup_{n \in \mathbb{N}} \|T_n\| \le \sup_{n, i \in \mathbb{N}} \sqrt{\frac{q_n(i+1)}{q_n(i)}} < M$$

for some positive constant *M*.

Let us prove that $p_x(k) > 0$ for every $x \in K \setminus \{0\}$ and $k \in \mathbb{Z}$. Let $x = (x_1, x_2, \cdots) = (\sum_{n=1}^{\infty} \alpha_{n,1} e_{n,1}, \sum_{n=1}^{\infty} \alpha_{n,2} e_{n,2}, \cdots) \in K \setminus \{0\}$ and $k \in \mathbb{N}$. Then

$$p_{x}(k) := \|T^{k}x\|^{2} = \|(0, \dots, 0, T_{k}T_{k-1} \dots T_{1}x_{1}, T_{k+1}T_{k} \dots T_{2}x_{2}, \dots\|^{2}$$
$$= \left\|(0, \dots, 0, \sum_{n=1}^{\infty} \alpha_{n,1}\sqrt{\frac{q_{n}(k+1)}{q_{n}(1)}}e_{n,k+1}, \dots)\right\|^{2}$$
$$= \sum_{j=1}^{\infty} \left\|\sum_{n=1}^{\infty} \alpha_{n,j}\sqrt{\frac{q_{n}(k+j)}{q_{n}(j)}}e_{n,k+j}\right\|^{2} = \sum_{n,j=1}^{\infty} |\alpha_{n,j}|^{2} \frac{q_{n}(k+j)}{q_{n}(j)} > 0$$

for $k \in \mathbb{N}$. Notice that

$$D_{-n} := \frac{(n+1)(n+2)}{2}I - n(n+2)T^*T + \frac{n(n+1)}{2}T^{*2}T^2,$$

is a diagonal operator given by $D_{-n}e_{m,j} = \lambda_{-n}(k, j)e_{k,j}$ where

$$\begin{split} \lambda_{-n}(k,j) &:= \frac{1}{2q_k(j)} \left((n+1)(n+2)q_k(j) - n(n+2)q_k(j+1) + n(n+1)q_k(j+2) \right) \\ &= \frac{1}{2q_k(j)} \left(j^2(n^2+2n+2) + j \left(-\frac{n^2}{k} + 4n^2 - 2\frac{n}{k} + 4n - \frac{2}{k} + 4 \right) \right) \\ &- \frac{n^2}{k} + 6n^2 + 4n + 2 \right) > 0 , \end{split}$$

for $n, k, j \in \mathbb{N}$. So, it is immediate that D_{-n} is invertible for $n \in \mathbb{N}$.

In order to finish the proof, let us prove that there is no invertible 3-isometrical extension of *T*. Taking into account that

$$\frac{p_{e_{n,1}}(-1)}{p_{e_{n,1}}(-2)} = \frac{q_n(0)}{q_n(-1)} = n$$
 ,

we have that

$$\sup\left\{\frac{p_x(j+1)}{p_x(j)} : x \in K \setminus \{0\}, j \in \mathbb{Z}\right\} = \infty.$$

5. Some particular cases

In this section, the goal is to study two different examples of *m*-isometries, the ℓ -Jordan isometry and unilateral weighted shift that are *m*-isometries for some *m*.

In the case of unilateral weighted shift we can obtain a nice characterization of invertible *m*-isometrical extensions of an *m*-isometry, as a consequence of Theorem 4.1.

Theorem 5.1. Let H be a Hilbert space with orthonormal basis $(e_n)_{n \in \mathbb{N}}$ and let $S_w \in L(H)$ be an m-isometrical unilateral weighted shift associated to the weight $w := (w_n)_{n \in \mathbb{N}}$. Then S_w has an invertible m-isometrical extension if and only if $p_{e_1}(n) > 0$ for every $n \in \mathbb{Z}$, where $p_{e_1}(n) := \|S_w^n e_1\|^2$ for $n \in \mathbb{N}$.

Proof. If S_w has an invertible *m*-isometrical extension *S*, then $p_x(n) := ||S^n x||^2 > 0$ for every $x \in H \setminus \{0\}$ and $n \in \mathbb{Z}$, by Proposition 3.2. Hence $p_{e_1}(n) > 0$ for $n \in \mathbb{Z}$.

Let us prove the sufficient condition. Suppose that $p_{e_1}(n) > 0$ for $n \in \mathbb{Z}$. A first consequence is that *m* is odd. By equality (2.4), $p_{e_1}(n)$ is a polynomial of degree m - 1. Hence

$$\lim_{n o \infty} rac{p_{e_1}(-n+1)}{p_{e_1}(-n)} = 1$$
 ,

and

$$\inf \left\{ \frac{p_{e_1}(-n+1)}{p_{e_1}(-n)} : n \in \mathbb{N} \right\} > 0.$$

Let *K* be a Hilbert space with $(e_n)_{n \in \mathbb{Z}}$ an orthonormal basis. Define $T_{\beta} \in L(K)$ by $T_{\beta}e_n = \beta_n e_{n+1}$ where $\beta_n = \sqrt{\frac{p_{e_1}(n)}{p_{e_1}(n-1)}}$ for $n \in \mathbb{Z}$. By [1, Theorem 19] we have that T_{β} is an *m*-isometry, since $p_{e_1}(n)$ is a polynomial of degree m-1 by (2.4). Moreover, T_{β} is an invertible extension of S_w and the desired result is proved.

Remark 5.2. In the above theorem, it is possible to obtain the same information with different elements of the orthogonal basis, as a consequence of equality (2.4). Indeed, in the conditions of Theorem 5.1 the following statements are equivalent:

- (1) S_w has an invertible *m*-isometrical extension.
- (2) $p_{e_1}(n) > 0$ for $n \in \mathbb{Z}$.

- (3) $p_{e_i}(n) > 0$ for $n \in \mathbb{Z}$ and some $j \in \mathbb{N}$.
- (4) $p_{e_i}(n) > 0$ for $n \in \mathbb{Z}$ and $j \in \mathbb{N}$.

Let us obtain a first approach to ℓ -Jordan isommetries. In the next result we obtain that any 2-Jordan isometry operator admits an invertible 3-isometric extension, as a particular case of Theorem 4.1.

Corollary 5.3. Let $T \in L(H)$ be a 2-Jordan isometry operator. Then T has an invertible 2-Jordan isometry extension.

Proof. Let *T* be a 2-Jordan isometry operator, that is T = A + Q, where *A* is an isometry and *Q* is a 2-nilpotent operator such that AQ = QA. By (2.2) we obtain that

$$D_{-n} = \frac{(n+1)(n+2)}{2}I - n(n+2)T^*T + \frac{n(n+1)}{2}T^{*2}T^2$$

= $I - n(A^*Q + Q^*A) + n^2Q^*Q$.

Then

$$\langle D_{-n}x,x\rangle = \|x\|^2 - n(\langle Qx,Ax\rangle + \langle Ax,Qx\rangle) + n^2 \|Qx\|^2$$

Let us prove that $\langle D_{-n}x, x \rangle > 0$ for every $x \in H$ such that ||x|| = 1 and $n \in \mathbb{N}$. It is enough to prove that

$$n^{2} \|Qx\|^{2} + 1 > 2nRe(\langle Ax, Qx \rangle), \qquad (5.9)$$

where Re(z) denotes the real part of *z*. If $Re(\langle Ax, Qx \rangle) \leq 0$, then (5.9) is clear. Assume that $Re(\langle Ax, Qx \rangle) > 0$. Then

$$Re(\langle Ax, Qx \rangle) = |Re(\langle Ax, Qx \rangle)| \le |\langle Ax, Qx \rangle| \le ||Ax|| ||Qx|| \le ||Q||.$$

If $|\langle Ax, Qx \rangle| = ||Ax|| ||Qx||$, then the vectors Ax and Qx are linearly dependent, so there exists λ such that $Qx = \lambda Ax$. Then $\lambda = 0$, since $0 = ||Q^2x|| = |\lambda|^2 ||A^2x|| = |\lambda|^2$ and therefore ||Qx|| = 0, which is an absurd with $Re(\langle Ax, Qx \rangle > 0)$. If $|\langle Ax, Qx \rangle| < ||Ax|| ||Qx||$, then

$$2nRe(\langle Ax, Qx \rangle) < 2n \|Qx\| \le n^2 \|Qx\|^2 + 1.$$

So, $\langle D_{-n}x, x \rangle > 0$ for every $x \in H$ such that ||x|| = 1 and all $n \in \mathbb{N}$.

In order to get the result, it is enough to prove that (4.8) is bounded. Let $x \in H$ such that ||x|| = 1 and $n \in \mathbb{N}$. Then

$$\begin{split} \frac{\langle D_{-n+1}x, x \rangle}{\langle D_{-n}x, x \rangle} &= 1 + \frac{2Re(\langle Ax, Qx \rangle) + (-2n+1) \|Qx\|^2}{1 - 2nRe(\langle Ax, Qx \rangle) + n^2 \|Qx\|^2} \\ &\leq 1 + \left| \frac{2Re(\langle Ax, Qx \rangle) + (-2n+1) \|Qx\|^2}{1 - 2nRe(\langle Ax, Qx \rangle) + n^2 \|Qx\|^2} \right| \\ &\leq 1 + \frac{2\|Q\| + (2n-1) \|Q\|^2}{1 - 2n\|Q\| - n^2 \|Q\|^2} \end{split}$$

converges to zero as n tends to infinity. Hence

$$\sup\left\{\frac{\langle D_{-n+1}x,x\rangle}{\langle D_{-n}x,x\rangle} : x \in H, \|x\| = 1, n \in \mathbb{N}\right\} < \infty.$$

Corollary 5.4. Let $T, C \in L(H)$ such that TC = CT.

- (1) If T is an isometry, then $\widetilde{T} := \begin{pmatrix} T & C \\ 0 & T \end{pmatrix}$ has an invertible 3-isometric extension on $K \supset H \oplus H$.
- (2) If λT is an isometry for some $\lambda \in \mathbb{C}$, then $\lambda \widetilde{T} = \lambda \begin{pmatrix} T & C \\ 0 & T \end{pmatrix}$ has an invertible 3-isometric extension on $K \supset H \oplus H$.

Proof. (1) It is clear that $\tilde{T} = \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} + \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}$ is a 2-Jordan isometry operator. Therefore the result is consequence of Corollary 5.3.

Applying (1) to the operator λT we obtain (2).

A similar result of part (1) of Corollary 5.4 was obtained in [8, Corollary 4.4]. That is, if $T \in L(H)$ is a contraction and $C \in L(H)$ such that TC = CT, then \tilde{T} has a 3-isometric lifting on $K \supset H \oplus H$.

In the next theorem we can improve Corollary 5.3. Indeed, we prove that every ℓ -Jordan isometry has an invertible ℓ -Jordan isometry extension. The first part of our proof is based in the construction by Douglas [13], as it is presented by Laursen and Neumann in the monograph [15, Proposition 1.6,6].

Theorem 5.5. Let $T \in L(H)$ be an ℓ -Jordan isometry. Then there exist a Hilbert space K and $S \in L(K)$, such that H is isometrically embedded in K and S is an invertible ℓ -Jordan isometry extension of T.

Proof. As *T* is an ℓ -Jordan isometry, there are an isometry $A \in L(H)$ and an ℓ -nilpotent operator $Q \in L(H)$ such that AQ = QA and T = A + Q.

Let K_0 be the linear space of all the sequences $u = (u_n)_{n \in \mathbb{N}}$ in H such that there is $m \in \mathbb{N}$ satisfying $u_{m+k} = A^k u_m$, for $k \in \mathbb{N}$. Define, for $u, v \in K_0$,

$$\langle u,v
angle_0:=\lim_{n o\infty}\langle u_n,v_n
angle$$
 ,

being $\langle \cdot, \cdot \rangle$ the inner product on H. Note that there exists $m \in \mathbb{N}$ such that $\langle u_m, v_m \rangle = \langle A^k u_m, A^k v_m \rangle = \langle u_{m+k}, v_{m+k} \rangle$, so the sequence $(\langle u_n, v_n \rangle)_{n \in \mathbb{N}}$ is eventually constant, that is, there exists $k_0 \in \mathbb{N}$ such that $\langle u_n, v_n \rangle$ is constant for $n > k_0$. It is routine to verify what $\langle \cdot, \cdot \rangle_0$ is a semi-inner product on K_0 . Therefore K_0 is a semi pre-Hilbert space. Moreover,

$$\|u\|_0^2 := \langle u, u \rangle_0 = \lim_{n \to \infty} \langle u_n, u_n \rangle = \lim_{n \to \infty} \|u_n\|^2$$

defines a seminorm $\|\cdot\|_0$ on K_0 .

Let $M := \{u \in K_0 : \langle u, u \rangle_0 = ||u||_0^2 = 0\}$. Then *M* is a closed subspace of K_0 and we consider the quotient space K_0/M . In this space are defined, for $u, v \in K_0$,

 $\langle u+M, v+M \rangle := \langle u, v \rangle_0$ and $||u+M||^2 := \langle u+M, u+M \rangle = \langle u, u \rangle_0 = ||u||_0^2$,

and we obtain that K_0/M is a pre-Hilbert space.

Denote by *K* the Hilbert space what it is the completion of K_0/M . The operator $J \in L(H, K)$, defined by $Jx := (A^n x)_{n \in \mathbb{N}} + M$ for $x \in H$, satisfies that

$$||Jx|| = ||(A^n x)_{n \in \mathbb{N}} + M|| = ||(A^n x)_{n \in \mathbb{N}}||_0 = \lim_{n \to \infty} ||A^n x|| = ||Ax|| = ||x||,$$

hence *J* is an isometry. So *K* contains an isometric copy of *H*. It is clear that J(H) is a closed subspace of *K*.

In order to define $B \in L(K)$, we define an isometry on K_0/M by

$$B((u_n)_{n\in\mathbb{N}}+M):=(Au_n)_{n\in\mathbb{N}}+M$$
,

for every $(u_n)_{n \in \mathbb{N}} + M \in K_0/M$. Note that *B* is a linear isometry whose range contains K_0/M ; in fact, given $(v_n)_{n \in \mathbb{N}} + M = (v_1, ..., v_m, Av_m, A^2v_m, ...) + M$, we have that

$$B((\underbrace{0,...,0}_{m}, v_{m}, Av_{m}, A^{2}v_{m}, ...) + M) = (\underbrace{0,...,0}_{m}, Av_{m}, A^{2}v_{m}, A^{3}v_{m}, ...) + M$$
$$= (v_{1}, \cdots, v_{m}, Av_{m}, A^{2}v_{m}, \cdots) + M.$$

As K_0/M is dense in K, we have that B can be extended to an invertible isometry defined on K. Moreover, B can be considered as an extension of A since, for $x \in H$,

$$BJx = B((A^n x)_{n \in \mathbb{N}} + M) = (A^{n+1}x)_{n \in \mathbb{N}} + M = JAx$$
.

That is, BJ = JA.

Define $P \in L(K)$ in the following way

$$P((u_n)_{n\in\mathbb{N}}+M)=(Qu_n)_{n\in\mathbb{N}}+M$$
,

for every $(u_n)_{n \in \mathbb{N}} + M \in K_0/M$. It is clear that *P* is an ℓ -nilpotent. Let us prove that *B* and *P* commute. Taking into account that AQ = QA, we have that

$$BP((u_n)_{n\in\mathbb{N}}+M) = B((Qu_n)_{n\in\mathbb{N}}+M) = (AQu_n)_{n\in\mathbb{N}}+M$$
$$= (QAu_n)_{n\in\mathbb{N}}+M = P((Au_n)_{n\in\mathbb{N}}+M) = PB((u_n)_{n\in\mathbb{N}}+M) .$$

for every $(u_n)_{n \in \mathbb{N}} + M \in K_0/M$. Therefore, $S := B + P \in L(K)$ is an ℓ -Jordan isometry that extends *T*. Moreover, *S* is an invertible since $\sigma(S) = \sigma(B)$ and *B* is an invertible isometry. So the proof is finished.

An operator $T \in L(H)$ is a *doubly* ℓ -*Jordan isometry* if T = A + Q is an ℓ -Jordan isometry operator such that the ℓ -nilpotent $Q \in L(H)$ which commutes with A also commutes with A^* . For all scalar λ with $|\lambda| = 1$ and an ℓ -nilpotent operator Q, we have that $\lambda I + Q$ is a doubly ℓ -Jordan isometry.

Corollary 5.6. Let $T \in L(H)$ be a doubly ℓ -Jordan isometry. Then there exist a Hilbert space K, such that H is isometrically embedded in K and an invertible doubly ℓ -Jordan isometry extension $S \in L(K)$ of T.

Remark 5.7. We use the notation of the proof of Theorem 5.5.

(1) It is easy to prove that the orthogonal subspace of J(H), $J(H)^{\perp}$ is the closure of the subspace of all classes

$$(u_n)_{n \in \mathbb{N}} + M = (u_1, ..., u_m, Au_m, A^2u_m, ...) + M \in K_0 / M$$

such that $u_m \in R(A^m)^{\perp}$.

(2) The decomposition $K = J(H) \oplus J(H)^{\perp}$ gives rise to the representation of *B* as a operator matrix:

$$B = \left(\begin{array}{cc} B_1 & B_2 \\ 0 & B_3 \end{array}\right) \tag{5.10}$$

being $B_1 \in L(J(H))$, $B_2 \in L(J(H)^{\perp}, J(H))$ and $B_3 \in L(J(H)^{\perp})$. Notice that J(H) is a closed invariant subspace of B.

(3) The operator *P* is defined by the following operator matrix, associated to the decomposition $K = J(H) \oplus J(H)^{\perp}$,

$$P = \left(\begin{array}{cc} P_1 & P_2 \\ 0 & P_3 \end{array}\right) \tag{5.11}$$

being $P_1 \in L(J(H))$, $P_2 \in L(J(H)^{\perp}, J(H))$ and $P_3 \in L(J(H)^{\perp})$. Notice that J(H) is a closed invariant subspace of P.

(4) If *T* is a doubly ℓ -Jordan isometry, then $P_2 = 0$ in (5.11). For this purpose only it is necessary to prove that if $(u_n)_{n \in \mathbb{N}} + M \in J(H)^{\perp}$, then $P((u_n)_{n \in \mathbb{N}} + M) \in J(H)^{\perp}$, and that $BP^* = P^*B$. In fact, given $u = (u_1, ..., u_m, Au_m, A^2u_m, ...)$ such that $u_m \in R(A^m)^{\perp}$, we have that $Qu_m \in R(A^m)^{\perp}$ since, for all $x \in H$,

$$\langle Qu_m, A^m x \rangle = \langle u_m, Q^* A^m x \rangle = \langle u_m, A^m Q^* x \rangle = 0$$
,

because $Q^*A = AQ^*$. Therefore $P((u_n)_{n \in \mathbb{N}} + M) = (Qu_1, ..., Qu_m, AQu_m, A^2Qu_m, ...) + M \in J(H)^{\perp}$. Hence $P(J(H)^{\perp}) \subset J(H)^{\perp}$.

Acknowledgements

The first author is supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-Ioo. The third author was supported by grant No.20-22230L of GA CR.

Declarations

The authors declare that there is no conflict of interest and the manuscript has no associated data.

References

- Abdullah, B., Le, T.: The structure of *m*-isometric weighted shift operators. Oper. Matrices, 10(2) (2016), 319–334.
- [2] Agler J.: A disconjugacy theorem for Toeplitz operators. Amer. J. Math., 112 (1990), 1-14.
- [3] Agler, J., Helton, J. W., Stankus, M.: Classification of hereditary matrices. Linear Algebra Appl., 274 (1998), 125-160.
- [4] Agler, J., Stankus, M.: *m*-isometric transformations of Hilbert space. I. Integral Equations Operator Theory, 21 (1995), no. 4, 383-429.
- [5] Agler, J., Stankus, M.: *m*-isometric transformations of Hilbert space. II. Integral Equations Operator Theory, 23 (1995), no. 1, 1–48.
- [6] Agler, J., Stankus, M.: *m*-isometric transformations of Hilbert space. III. Integral Equations Operator Theory, 24 (1996), no. 4, 379–421.
- [7] Arens, R.: Inverse-producing extensions of normed algebras. Trans. Amer. Math. Soc., 88 (1958), 536-548.
- [8] Badea, C., Müller, V.: Subscalar operators and growth of resolvent. J. Operator Theory, 56 (2006), no. 2, 249-258.
- [9] Badea, C., Müller, V., Suciu, L.: High order isometric liftings and dilations. Studia Math., 258 (2021), no. 1, 87-101.
- [10] Bermúdez T., Díaz, C. Martinón A.: Powers of *m*-isometries, Studia Math., 208 (3) (2012), pp. 249-255.
- [11] Bermúdez, T., Martinón, A., Negrín, E.: Weighted shift operators which are *m*-isometries. Integral Equations Operator Theory, 68 (2010), no. 3, 301-312.
- [12] Bermúdez, T., Martinón, A., Noda, J. A.: An isometry plus a nilpotent operator is an *m*-isometry. Applications. J. Math. Anal. Appl., 407 (2013) 505-512.
- [13] Douglas, R. G.: On extending commutative semigroups of isometries. Bull. London Math. Soc., 1 (1969), 157-159.

- [14] Jabłonski, J.: Complete hyperexpansivity, subnormality and inverted boundedness conditions. Integral Equations Operator Theory, 44 (3) (2002), pp. 316-336.
- [15] Laursen, K. B., Neumann, M. M.: An introduction to local spectral theory. London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
- [16] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic analysis of operators on Hilbert space. Second edition. Revised and enlarged edition. Universitext. Springer, New York, 2010.
- [17] Yarmahmoodi, S., Hedayatian, K.: Isometric *N*-Jordan weighted shift operators. Turkish J. Math., 40 (2016), no. 5, 1114-1117.

Corresponding author T. Bermúdez

Departamento de Análisis Matemático, Universidad de La Laguna and Instituto de Matemáticas y Aplicaciones (IMAULL),

Apartado 456, 38200, San Cristóbal de La Laguna

(Tenerife), Spain.

e-mail: tbermude@ull.edu.es

A. Martinón

Departamento de Análisis Matemático, Universidad de La Laguna, Apartado 456, 38200, San Cristóbal de La Laguna (Tenerife), Spain. *e-mail:* anmarce@ull.edu.es

V. Müller

Mathematical Institute, Czech Academy of Sciences, Zitná 25, 115 67 Prague 1,

Czech Republic.

e-mail: muller@math.cas.cz

H. Zaway

Department of Mathematics, Faculty of Sciences,

University of Gabes, Gabes, Tunissia.

Department of Mathematics and Statistics,

University of King Faisal, Al Ahsa, Saudi Arabia.

email: hajer_zaway@live.fr