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Abstract
In this paper, an inventory problem where the inventory cycle must be an integer multiple of
a known basic period is considered. Furthermore, the demand rate in each basic period is a
power time-dependent function. Shortages are allowed but, taking necessities or interests of
the customers into account, only a fixed proportion of the demand during the stock-out period
is satisfied with the arrival of the next replenishment. The costs related to the management
of the inventory system are the ordering cost, the purchasing cost, the holding cost, the
backordering cost and the lost sale cost. The problem is to determine the best inventory
policy that maximizes the profit per unit time, which is the difference between the income
obtained from the sales of the product and the sum of the previous costs. The modeling of
the inventory problem leads to an integer nonlinear mathematical programming problem. To
solve this problem, a new and efficient algorithm to calculate the optimal inventory cycle
and the economic order quantity is proposed. Numerical examples are presented to illustrate
how the algorithm works to determine the best inventory policies. A sensitivity analysis of
the optimal policy with respect to some parameters of the inventory system is developed.
Finally, conclusions and suggestions for future research lines are given.
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1 Introduction

The Inventory Theory is one of the most interesting fields of Operational Research. This area
of knowledge has attracted significant attention from academics with the aim of improving
managerial decision-making related to logistics and the commercial distribution of goods.
The main purpose of inventory models is to determine appropriate stock levels to meet
customer demand while minimizing inventory costs, providing effectiveness, efficiency and
improved allocation of available resources. The first mathematical model developed for the
control of the inventories, which is known as the economic order quantity model (EOQ), was
proposed by FordWhitman Harris at the beginning of the 20th century. Despite its simplicity,
this model continues to be applied today in commerce and industry. Since the publication of
that paper, a lot of additional research to analyze some variants of that model has been done
by modifying some of its unrealistic hypotheses. For example, in the classical EOQ model,
the demand rate is considered as constant. However, in some practical situations, customer
demandmay vary over time. Therefore, inventory models that consider time-varying demand
can better represent the evolution of the inventory level. For this reason, it is not surprising
that many researchers have studied different inventory models in which the demand rate
varies over time. Banerjee and Sharma (2010) analyzed a deterministic inventory model for
a product with seasonal demand which is a general function of time and price, considering
that the shortage time cannot exceed the length of a seasonal interval. Sett et al. (2012)
developed a two-warehouse inventory model with quadratically increasing time-dependent
demand rate, whose solution is obtained by using an algorithmic procedure. Hsieh and Dye
(2013) presented a production–inventory model with time-varying demand and finite replen-
ishment rate, allowing a preservation technology cost as a decision variable in conjunction
with production policy. Khanra et al. (2013) proposed an economic order quantity model
over a finite time horizon for an item with a quadratic time-dependent demand by consid-
ering shortages in inventory under permissible delay in payments. Mishra (2013) developed
the optimal inventory policy for a system whose demand rate is a quadratic-time function.
Massonnet et al. (2014) adapted a cost balancing technique and applied it to continuous-
review inventory models when demands and cost parameters are time-varying. Pervin et al.
(2016) proposed an EPQ inventory model under trade credit financing by assuming that the
demand rate is a linearly decreasing function of time and shortages are not allowed. Prasad
and Mukherjee (2016) studied an inventory model for deteriorating items with stock and
time-dependent demand. Benkherouf et al. (2017) proposed a finite horizon inventory con-
trol problem for two substitutable products with continuous time–varying demand, which are
ordered jointly in each replenishment epoch. Pervin et al. (2018) developed a deterministic
inventory control model where the demand rate and holding costs are totally time dependent
and shortages are completely backlogged. Saha and Sen (2019) presented an inventorymodel
with selling price and time dependent demand, constant holding cost and partial backlogging
under the effect of inflation. Pervin et al. (2020) formulated an integrated vendor-buyermodel
with quadratic demand under inspection policy and preservation technology. Other works
that consider time-dependent demand are, for example, Ghoreishi et al. (2015), Roy et al.
(2020), Shah et al. (2020).
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Demand properties are critical in determining optimal inventory management policies. In
the conventional analysis of deterministic systems, it is assumed that the demand of prod-
ucts is uniform along the inventory cycle. This means that the products are demanded by
consumers and removed from inventory at a constant rate per unit time. An approach to
model the way in which items are extracted from inventory to satisfy customer demand is to
consider demand patterns. One of the most versatile demand patterns is the power demand
pattern, which allows the demand of the items to be adjusted to a wide variety of practical
situations. This demand pattern allows us to model different ways of removing items from
the inventory along the cycle. Thus, there may be a high percentage of requests to purchase
items at the beginning of the period, or to keep the demand of the items constant throughout
the inventory cycle, or also to have a more concentrated demand at the end of the period.
In real markets, it is possible to identify a lot of products such that the customers’ demand
behavior is similar to the power pattern. In the literature on inventorymodels, there are several
papers in which this type of demand is considered. Thus, Rajeswari and Vanjikkodi (2011)
developed a deterministic inventory model with power pattern demand, constant deteriora-
tion rate and shortages completely backlogged. Mishra et al. (2012) presented an economic
order quantity model for perishable items with power demand pattern under the influence of
inflation and time-value of money.Mishra and Singh (2013) formulated a partial backlogging
inventorymodel with time-dependent power demand pattern and quadratic deterioration rate.
Rajeswari and Indrani (2015) analyzed an economic order quantity model under total cost
minimization for linear time dependent deteriorating items with power demand pattern and
partial backlogging. San-José et al. (2019a) developed an inventory model for items whose
demand was the sum of a linear function with respect to the selling price and of a power-time
function, assuming non-linear holding cost. San-José et al. (2020) developed an inventory
model for products whose demandmultiplicatively combines a potential function of time and
a tri-exponential function of the selling-price where shortages are fully backordered. Other
research papers that consider a power demand pattern are, for example, Adaraniwon and
Omar (2019), Keshavarzfard et al. (2019a, b), San-José et al. (2019b); San-Jose et al. (2021).

When shortages occur in the inventory cycle, it is habitual that some customers are not
willing to wait and go to buy items from other sellers, while other customers are willing to
wait for the arrival of the next order. For this reason, several papers on inventory models have
considered that only a part of the demand during the stock-out period is backordered. For
example, Mishra and Singh (2010), Sicilia et al. (2012a), Taleizadeh (2018), Taleizadeh et al.
(2020), Mallick et al. (2020), Gupta et al. (2020), Khan et al. (2020), Adak and Mahapatra
(2020) studied several inventory models with partial backordering. San-José et al. (2017)
obtained the optimal policy for an inventory system with power demand pattern, assuming
partial lost sales. These hypotheses of power demand pattern and partial lost sales are also
considered in other articles, such as San-José et al. (2018a, b).

In this paper, an inventory model for a single item is studied. It is assumed that there is a
prescribed basic period of time in which the total demand is known. The distribution of this
demand along this basic period follows a power demand pattern. The inventory cycle must
be an integer multiple of that basic time-period. It is assumed that shortages are allowed and
only a fixed fraction of demand is backordered. In the management of this inventory system,
there are four significant costs: the holding cost, the shortage cost (includes the lost sale cost
and the backordering cost), the purchasing cost and the setup cost for placing an order to
replenish the inventory. A profit function is defined as the difference between income and the
costs related to inventories. The objective is to determine the optimal inventory cycle and the
economic order quantity that maximize the profit per unit time. Thus, the inventory problem
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is formulated as an integer nonlinear mathematical program. To solve this problem, a new
algorithm that determines the optimal inventory policy is developed.

This new inventory model can be useful for items whose inventory replenishment must be
ordered over a period of time that is a multiple of a basic prescribed period, and demand is
sensitive to the effect of the time elapsed since the beginning of the basic period. For example,
in a small supermarket, the replenishment of an item is done on the morning of each day (or
every two days, or every three days, etc.) and, depending on the item, the manager decides
how the demand required by customers is satisfied. For example, for cooked products, such
as sweets, breads, cakes, etc., a larger quantity of items is demanded at the beginning than
at the end of the basic period, because the customers prefer to buy these products when they
believe that they have recently been put up for sale. Other items have a uniform demand rate
along the inventory cycle. For instance, electrical goods, supplies, furniture, kitchen utensils
and appliances, etc., have a more or less constant demand during the replenishment cycle.
Lastly, there exist other products, such as cinema tickets, hamburgers, hot dogs, pizzas, which
may have a lower demand at the beginning of the basic period and this increases during the
day (basic period). Moreover, when shortages of the item occur, some customers are willing
to wait for the arrival of the next replenishment, while other customers are not willing to wait
and go to buy items from other sellers.

Themain contribution of this paper is to obtain the optimal inventory policy thatmaximizes
the total profit per unit time, assuming three interesting topics not dealt with jointly in the
literature: (i) the inventory cyclemust be amultiple of a knownbasic time period, (ii) customer
demand follows a power demand pattern in each basic period, and (iii) only a fixed fraction of
the demand during the stock-out period is satisfied with the arrival of the next replenishment.
The consideration of all the previous assumptions makes the model more realistic, because
they allow us to model a variety of real life situations.

The remainder of this paper is organized as follows. In Sect. 2, the basic assumptions
and notation used throughout the work are introduced. In Sect. 3, the mathematical model
is formulated. In Sect. 4, the necessary conditions to determine the optimal inventory policy
are developed and an algorithmic procedure to obtain the optimal solution of the inventory
problem is proposed. In Sect. 5, some numerical examples and a sensitivity analysis are given
to illustrate the main results of the paper. Finally, Sect. 6 presents the conclusions and some
suggestions for future research lines.

2 Hypothesis and notation

The mathematical model is developed under the following assumptions:

1. The inventory refers to a single item.
2. Shortages are allowed, but only a fixed fraction ρ (with 0 < ρ ≤ 1) of the demand during

the stock-out period is satisfied with the arrival of the next replenishment.
3. The inventory replenishment is instantaneous.
4. The lead-time is insignificant.
5. During a basic time-period of length τ , λτ units are demanded following a power demand

pattern. That is, the demand rate along this basic period is λδ
( t

τ

)δ−1, with δ > 0 and
0 < t < τ . This demand pattern has been used by several authors in recent years (see,
for example, Adaraniwon and Omar (2019), Keshavarzfard et al. (2019a, b), Mishra et al.
(2012), San-José et al. (2017, 2018a, 2019a, 2020), Sicilia et al. (2012)).
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6. The inventory is replenished when the number of backorders is equal to −s units and the
order quantity Q is always the same for every inventory cycle.

The notation used throughout the paper is presented in Table 1.

3 Mathematical formulation of the problem

Taking into account the assumptions admitted in the previous section, it follows that the net
inventory level at time t , I (t), is a periodic function of period T = nτ , where τ is the length
of the basic period and n is any positive integer. Moreover, I (t) is a continuous function in
the interval (0, T ). The inventory cycle is divided into n basic periods of length τ , so that in
each basic period the demand has a power time-dependent pattern. In addition, on the first
(n−m) basic periods of each cycle, the net inventory level is positive and on the remainingm
basic periods, the net inventory level is negative. Therefore, at the beginning of the inventory
cycle, the maximum inventory level is S = (n −m)λτ . Next, the inventory decreases due to
demand and, at time t = t1, the inventory level is zero. In the period (t1, T ), the inventory
level is negative and, at the end of this period, there are b shortages in the system. Since we
have assumed that when shortage occurs only a fraction ρ of the demand is satisfied with
the next replenishment, the number of units demanded in each cycle that are served late are
−s = ρb = mλρτ and the amount of lost sales in each cycle is mλ(1 − ρ)τ.

Taking into account the previous hypotheses, the inventory level I (t) along the stock-in
period is governed by the differential equation

d I (t)

dt
= −λδ

(
t

τ
− (i − 1)

)δ−1

, t ∈ ((i − 1) τ, iτ) , 1 ≤ i ≤ n − m

with I (iτ) = (n−m− i)λτ , for 0 ≤ i ≤ n−m. Therefore, the inventory level at any instant
of time t during [0, t1] is given by

I (t) = (n − m − i + 1)λτ − λτ

(
t

τ
− i + 1

)δ

, t ∈ [(i − 1) τ, iτ) , 1 ≤ i ≤ n − m (1)

In the shortage period, the net stock level follows the differential equation

d I (t)

dt
= −λδρ

(
t

τ
− (i − 1)

)δ−1

, t ∈ ((i − 1) τ, iτ) , n − m < i ≤ n

with I (iτ) = (n − m − i)λρτ , for n − m ≤ i < n. Consequently, the net inventory level in
the interval [t1, T ) is given by

I (t) = (n −m − i + 1)λρτ − λρτ

(
t

τ
− i + 1

)δ

, t ∈ [(i − 1) τ, iτ) , n −m < i ≤ n (2)

Figures 1 and 2 illustrate the behavior of the net inventory level for different demand
pattern indexes.

The order quantity at the beginning of every inventory cycle is

Q = S − s = (n − (1 − ρ)m)λτ . (3)

The aim is to maximize the profit function per unit time P(m, n) = B(m, n)/nτ , where
B(m, n) is the profit
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Table 1 Notation

Parameters

τ Basic time-period (> 0)

λ Average demand per basic period (> 0)

δ Index of the power demand pattern (> 0)

K Cost of placing an order (> 0)

c Unit purchasing cost (> 0)

p Unit selling price (p ≥ c)

h Holding cost per unit and per unit time (> 0)

ρ Fraction of demand in the stock-out period that is served with the next order
(0 < ρ ≤ 1)

ω Shortage cost per backordered unit and per unit time (> 0)

π Goodwill cost of a lost sale (≥ 0)

a0 Auxiliary parameter, a0 = K/τ

a1 Auxiliary parameter, a1 = (h + ρω) (1/(δ + 1) − 1/2) λτ + (π + p − c)(1− ρ)λ

a2 Auxiliary parameter, a2 = (h + ρω)λτ/2

Decision variables

n Number of basic periods included in the inventory cycle (> 0)

m Number of basic periods included in the stock-out period (0 ≤ m ≤ n)

Other variables

T Inventory cycle, which is an integer multiple of the basic period, that is, T = nτ

t1 Length of the stock-in period, that is, t1 = (n − m)τ

t2 Length of the stock-out period, that is, t2 = mτ

Q Lot size per cycle (≥ 0)

S Inventory level at the beginning of the inventory cycle, that is, S = (n − m)λτ

b Maximum shortage per cycle, that is, b = mλτ

s Minimum inventory level, that is, s = −ρb

Functions

I (t) Inventory level at time t , with 0 ≤ t < T

B(m, n) Total profit obtained during each inventory cycle

P(m, n) Profit per unit time

C(m, n) Total inventory cost per unit time

during each inventory cycle. It is calculated as the difference between the revenue per cycle
and the sum of the ordering, the purchasing, the holding, the backordering and the lost sale
costs.

In the following paragraphs, the income and the costs are firstly calculated, and then the
profit is determined as a function of the integer variables m and n.

• Revenue per cycle: pQ = pλτ (n − (1 − ρ)m)

• Ordering cost per cycle: K
• Purchasing cost per cycle: cQ = cλτ (n − (1 − ρ)m)
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Fig. 1 Net inventory level when δ < 1

Fig. 2 Net inventory level when δ > 1

• Holding cost per cycle:

∫ t1

0
hI (t)dt = h

n−m∑

i=1

∫ iτ

(i−1)τ

(

(n − m − i + 1)λτ − λτ

(
t

τ
− i + 1

)δ
)

dt

= hλτ 2
n−m∑

i=1

(
n − m − i + 1 − 1

δ+1

)

= h(n − m)

(
n − m + 1

2
− 1

δ + 1

)
λτ 2. (4)
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• Backordering cost per cycle:

∫ T

t1
ω (−I (t)) dt = ω

n∑

i=n−m+1

∫ iτ

(i−1)τ

(

λρτ

(
t

τ
− i + 1

)δ

− (n − m − i + 1)λρτ

)

dt

= ωλρτ 2
n∑

i=n−m+1

(
1

δ+1 + i − n + m − 1
)

= ωm

(
1

δ + 1
+ m − 1

2

)
λρτ 2. (5)

• Goodwill cost of lost sales per cycle:

πmλ(1 − ρ)τ . (6)

Therefore, the total profit during each inventory cycle is given by

B(m, n) = (p − c)λτ (n − (1 − ρ)m) − K − h(n − m)

(
n − m + 1

2
− 1

δ + 1

)
λτ 2

−ωm

(
1

δ + 1
+ m − 1

2

)
λρτ 2 − πλ(1 − ρ)τm

= (p − c)nλτ − K − h(n − m)

(
n − m + 1

2
− 1

δ + 1

)
λτ 2

−ωm

(
1

δ + 1
+ m − 1

2

)
λρτ 2

−(π + p − c)mλ(1 − ρ)τ (7)

Thus, the total profit per unit time is determined by

P(m, n) = B(m, n)

T
= (p − c)λ − C(m, n) (8)

where

C(m, n) = K

nτ
+ h

(
1 − m

n

)(n − m + 1

2
− 1

δ + 1

)
λτ + ω

m

n

(
1

δ + 1
+ m − 1

2

)
λρτ

+(π + p − c)
m

n
λ(1 − ρ) (9)

So, taking into account (8), minimizing the function C(m, n) is equivalent to maximizing
P(m, n). Therefore, the optimization problem addressed in this paper can be formulated as

min
(m,n)∈�

C(m, n), (10)

where � = {(m, n) : n > 0, 0 ≤ m ≤ n and m, n ∈ Z}.

4 Solution to the inventory problem

As we have just indicated, our objective is to determine the optimal solution of the integer
nonlinear program given by (10). Taking into account the structure of the feasible region
� of the problem (10), we begin by dividing this region � into two subregions: �0 =
{(0, n) : n > 0, n ∈ Z} and �1 = {(m, n) : 1 ≤ m ≤ n y m, n ∈ Z}.
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We will analyze the behavior of the function C(m, n) on each subregion. Firstly, in the
next subsection let us study the function C(m, n) on the sub-region �0.

4.1 Analysis of the objective function on the subregion50

In this case, as m = 0, the problem (10) is reduced to

min
n>0,n∈ZC0(n), (11)

where

C0(n) = K

nτ
+ h

(
n + 1

2
− 1

δ + 1

)
λτ. (12)

This problem represents the situation in which the system has no shortages.
The following result gives us the optimal number of basic periods that the inventory cycle

must have.

Theorem 1 An optimal solution of the problem (11) is given by

n∗(0) =
⎡

⎢⎢⎢

1

2

⎛

⎝

√
8K + hλτ 2

hλτ 2
− 1

⎞

⎠

⎤

⎥⎥⎥
, (13)

where �x� is the least integer greater than or equal to x. The minimum cost is given by

Ci
0 = C0(n

∗(0)) = K

n∗(0)τ
+ hλτ

2
n∗(0) + δ − 1

2(δ + 1)
hλτ (14)

Proof See “Appendix”. �	

Remark 1 Note that the continuous optimal inventory policy on the region �c
0 ={

(0, n) : n ∈ R
+} is given by

nc0 =
√

2K

hλτ 2
(15)

with optimal value

Cc
0 = √

2Khλ + δ − 1

2(δ + 1)
hλτ. (16)

4.2 Analysis of the objective function on the subregion51

To study the function C(m, n) on the subregion �1, we relax the conditions of integrality on
the variables m and n, and then we analyze the behavior of this function on the continuous
region �c

1 = {(m, n) : m ≥ 1, n > 0}.
Firstly, we assume that the variable m is fixed, with m ≥ 1. Thus, we are considering the

function of a continuous variable Cm(n) = C(m, n). Note that Cm(n) can be rewritten as

Cm(n) = A1(m)

n
+ h

2
λτn + A2(m), (17)

where
A1(m) = a0 + a1m + a2m

2 (18)
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is a parabola that has the following parameters:

a0 = K

τ
, a1 = (h+ρω)

(
1

δ + 1
− 1

2

)
λτ+(π+p−c)(1−ρ)λ and a2 = h + ρω

2
λτ , (19)

and A2(m) is the linear and strictly negative function given by

A2(m) =
(

δ − 1

2 (δ + 1)
− m

)
hλτ. (20)

Thus, A1(m) is a strictly positive function, because it can also be expressed as

A1(m) = 2 (δ + 1) K + {2(π + p − c)(1 − ρ)(1 + δ) + [δ(m − 1) + m + 1] (h + ρω)τ } λτm

2 (δ + 1) τ
.

Therefore, the equation a0 + a1m + a2m2 = 0 has no real solutions. Hence, its discriminant
	 = a21 − 4a0a2 is always negative.

A first result about the behavior of the function Cm(n) is as follows:

Lemma 1 The function Cm(n) on the region �c
1 is strictly convex and attains its minimum

value at the point

nc(m) =
√
2
(
a0 + a1m + a2m2

)

hλτ
(21)

with optimal value Cm(nc(m)) = C1(m), where

C1(m) =
√
2hλτ

(
a0 + a1m + a2m2

)+ [(δ − 1) / (2 (δ + 1)) − m] hλτ. (22)

Proof See “Appendix”. �	
Next, we shall study some characteristics of the function C1(m) given by (22).

Lemma 2 The function C1(m) is continuous and differentiable on the interval [1,∞). Fur-
thermore, the sign of its derivative satisfies

sign
(
C ′
1(m)

) = sign
{
a21 + 2λτ

[
ρω

(
a2m

2 + a1m
)− ha0

]}
, (23)

where a0, a1 and a2 are given by (19).

Proof See “Appendix”. �	
This last result allows us to determine the minimum of the function C1(m) on the interval

[1,∞).

Theorem 2 Let 
 be a numerical value defined as 
 = a21 + 2λτ [ρω (a2 + a1) − ha0]
and let C1(m) be the function defined by (22) for m ≥ 1, with a0 = K/τ , a1 = (h +
ρω) (1/(δ + 1) − 1/2) λτ + (π + p − c)(1 − ρ)λ and a2 = (h + ρω) λτ/2.

1. If 
 ≥ 0, then the function C1(m) attains its minimum at the point m = 1.
2. Otherwise, the function C1(m) attains its minimum at the point

m1 = 1

2a2

⎛

⎝

√(
4a0a2 − a21

)
h

ρω
− a1

⎞

⎠ . (24)

Proof See “Appendix”. �	
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Note that, according to Lemma 1 and Theorem 2, the minimum of the function C(m, n)

on the set �c
1 = {(m, n) : m ≥ 1, n > 0} is attained at the point (mc, nc) given by

(mc, nc) =
{

(1, n1) if 
 ≥ 0
(m1, n1) if 
 < 0

where n1 = nc(1), n1 = nc(m1), the function nc(m) is given by (21) and the point m1 is
presented in (24). Hence

n1 =
√
2 (a0 + a1 + a2)

hλτ
(25)

and

n1 = 1

λτ

√
4a0a2 − a21

hρω
(26)

Therefore, the minimum of the function C(m, n) in �c
1 is

Cc
1 = C(mc, nc) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(1, n1) = √
2hλτ (a0 + a1 + a2) − δ + 3

2 (δ + 1)
hλτ if 
 ≥ 0

C(m1, n1) =
√
hρω

(
4a0a2 − a21

)+ ha1

h + ρω
+ δ − 1

2 (δ + 1)
hλτ if 
 < 0

(27)

Corollary 1 Assume that m ≥ 1 is fixed. An optimal solution of the problem

min
n≥m,n∈ZC

m(n), (28)

where

Cm(n) = A1(m)

n
+ h

2
λτn + A2(m) (29)

is given by

n∗(m) =
⌈
1

2

(√
8A1(m) + hλτ

hλτ
− 1

)⌉

(30)

Proof See “Appendix”. �	
Then, taking into account all the previous results, we propose an algorithmic procedure

to determine the optimal solution for the inventory problem formulated in (10).
Note that the minimum inventory cost on the region �c

0 ∪ �c
1 is given by Cc =

min
{
Cc
0,C

c
1

}
, where Cc

0 and C
c
1 are given by (16) and (27), respectively.

5 Numerical examples

In this section, we present some numerical examples, along with a sensitivity analysis to
illustrate the applicability of the main results of the paper.

Example 1 Consider an inventory systemwith the hypotheses assumed in this paper, in which
the values of the parameters are as follows: the known basic period is τ = 1 week and the
average demand is λ = 40 units per week. During that basic time-period, we assume that
demands toward the beginning of the week are larger that the demands at the end of the week.
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Algorithm 1

Step 1 From (13), determine n∗(0) and, from (14), compute Ci
0.

From (19), calculate a0, a1 and a2.
Take (m∗, n∗) = (0, n∗(0)) as an initial solution, with minimum cost
C(m∗, n∗) = Ci

0.
Step 2 Calculate 
 = a21 + 2λτ [ρω (a2 + a1) − ha0].

Determine the value Cc
1 by using (27).

Step 3 If C(m∗, n∗) > Cc
1, then:

If 
 ≥ 0, then go to step 4.
Else, put m = 1 and go to step 5.

End_If.
Else, go to step 6.

End_If.
Step 4 From (30), calculate the point n∗(1).

If C(1, n∗(1)) < C(m∗, n∗), then:
Take (m∗, n∗) = (1, n∗(1)), with cost C(m∗, n∗) = C(1, n∗(1)).

End_If.
Go to step 6.

Step 5 Repeat
Calculate the point n∗(m) by using the formula (30).
If C(m, n∗(m)) < C(m∗, n∗), then:

Take (m∗, n∗) = (m, n∗(m)), with cost C(m∗, n∗) = C(m, n∗(m)).
End If.
m = m + 1.
Compute C1(m) by using (22).

Until C1(m) ≥ C(m∗, n∗).
Step 6 The optimal inventory policy is (m∗, n∗), the minimum inventory cost is

C∗ = C(m∗, n∗) and the maximum profit per unit time is P∗ = (p − c)λ − C∗.
Stop.

Thus, we consider that the demand follows a power pattern with index δ = 0.5. The ordering
cost is K = $600 per replenishment. The unit purchasing cost is c = $8 and the selling
price is p = $18 per unit. The holding cost is h = $1 per unit and per week. The fraction of
demand in the stock-out period that is served with the next replenishment is ρ = 0.9. The
shortage cost per backordered unit and per week is ω = $10, while the goodwill cost of a
lost sale is π = $2 . With these input parameters, we apply Algorithm 1 to obtain the optimal
policy. Firstly, from (13), we compute n∗(0) = 5. Thus, we take (m∗, n∗) = (0, 5) as the
initial solution, with cost C(m∗, n∗) = Ci

0 = 213.333. Since 
 = 191708, from (27), it
follows that Cc

1 = 223.839. Therefore, from step 3, we see that the optimal inventory policy
is (m∗, n∗) = (0, 5) , with minimum cost C∗ = C(0, 5) = $213.333. Consequently, the
optimal inventory cycle is T ∗ = 5 weeks, there is no shortage (that is, b∗ = 0), the economic
lot size is Q∗ = 200 units and the maximum inventory profit per week is P∗ = $186.667.

Example 2 Now, Let us consider a product in which a larger portion of demand occurs at the
end of the week. Thus, we assume the following parameters of the model: τ = 1, λ = 10,
δ = 10, K = $5, c = $10, p = $15, h = $2, ρ = 1, ω = $2.5 and π = $2. Firstly, we have
n∗(0) = 1. Then, the initial solution is (m∗, n∗) = (0, 1), with cost C(m∗, n∗) = 23.1818.
Taking into account that 
 = 343.440, from (27) we obtain Cc

1 = 7.25107. From step 4,
we get n∗(1) = 1 and C(1, 1) = 7.27273 . Since C(m∗, n∗) > C(1, 1), we update the
solution at (m∗, n∗) = (1, 1), with cost C(m∗, n∗) = 7.27273. From step 6 of the algorithm,
it follows that the optimal inventory policy is (m∗, n∗) = (1, 1), with cost C∗ = $7.27273.
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Table 2 Application of Algorithm 1 to Example 3. The optimal inventory policy is shown in bold

m C1(m) n∗(m) C(m, n∗(m)) m∗ n∗ C(m∗, n∗) 
 Cc
1

0 0 5 226.667 −39139.6 184.215

1 6 196.889 1 6 196.889

2 185.072 6 185.778 2 6 185.778

3 185.999

Table 3 Application of Algorithm 1 to Example 4. The optimal inventory policy is shown in bold

m C1(m) n∗(m) C(m, n∗(m)) m∗ n∗ C(m∗, n∗) 
 Cc
1

0 0 2 336.667 −59136 221.490

1 2 234.667 1 2 234.667

2 226.359 3 228.000 2 3 228.000

3 258.622

Consequently, the optimal inventory cycle is T ∗ = 1 week, no units are stored (i.e., S∗ = 0),
the economic lot size is Q∗ = 10 units and the maximum profit per week is P∗ = $42.7273.

Example 3 Consider the same parameters as in Example 1 , but modifying the values of δ,
c, ω and π to δ = 2, c = $12.25, ω = $2 and π = $0.25. Applying Algorithm 1, the
result of the solution procedure is shown in Table 2. Thus, the optimal inventory policy
is (m∗, n∗) = (2, 6), with cost C∗ = $185.778. Therefore, the optimal inventory cycle is
T ∗ = 6 weeks, the stock-out period is 2 weeks, the inventory level at the beginning of the
inventory cycle is S∗ = 160 units, the minimum inventory level is −72, the lost sales per
cycle are 8 units, the economic lot size is Q∗ = 232 units and the maximum profit per week
is P∗ = $44.2222.

Example 4 Assume the same parameters as in Example 3, but modifying the values of τ , h
and ρ to τ = 2, h = $4 and ρ = 0.95. Table 3 shows the results obtained by applying the
algorithm developed in the previous section. Consequently, the optimal inventory policy is
(m∗, n∗) = (2, 3), with cost C∗ = C(2, 3) = $228. Therefore, the optimal inventory cycle
is T ∗ = 6 weeks, the stock-out period is 4 weeks, the maximum inventory level is S∗ = 80,
the minimum inventory level is −152, the lost sales per cycle are 8 units, the economic lot
size is Q∗ = 232 units and the maximum profit per week is P∗ = $2.

Example 5 Now, let us consider the following parameters of the model: τ = 1, λ = 10,
δ = 20, K = $20, c = $50, p = $75, h = $10, ρ = 1, ω = $1 and π = $5. Executing
Algorithm 1, the result of the solution procedure is shown in Table 4. Thus, we conclude that
(m∗, n∗) = (2, 2). The optimal inventory policy consists of ordering each T ∗ = 2 weeks for
a batch of lot size Q∗ = 20 units, with profit P∗ = $234.524. Note that, in this case, both
n∗(1) and n∗(2) take their smallest value, that is, 1 and 2, respectively.

5.1 Sensitivity analysis

In this subsection, we study how the optimal policy of the inventory system varies when
some values of the input parameters of the system are modified. To do this, initially consider
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Table 4 Application of Algorithm 1 to Example 5. The optimal inventory policy is shown in bold

m C1(m) n∗(m) C(m, n∗(m)) m∗ n∗ C(m∗, n∗) 
 Cc
1

0 0 1 115.238 −1418.99 12.6090

1 1 20.4762 1 1 20.4762

2 12.8544 2 15.4762 2 2 15.4762

3 15.6875

an inventory system with the assumptions described in Sect. 2 and the following input data:
λ = 48, K = $600, c = $13, p = $18, h = $1, ω = $2 and π = $0.

In order to analyze the effect of the fraction ρ of demand that is servedwith the next replen-
ishment, the basic time period τ and the index δ of the power demand on the optimal policy,
we provide a table showing the behavior of m∗, n∗, Q∗, s∗ and C∗ as functions of ρ, τ and
δ. More specifically, Table 5 presents the results when ρ ∈ {0.05, 0.10, 0.75, 0.90, 0.95, 1},
τ ∈ {0.25, 0.5, 1, 2, 3} and δ ∈ {0.0625, 0.5, 1, 2}. These computational results present cer-
tain insights about the behavior of the inventory system studied here. Thus, we can make the
following observations:

1. With fixed ρ and τ , the minimum inventory level s∗ decreases, while the optimal num-
ber m∗ of basic periods contained in the stock-out period and the optimal ratio m∗/n∗
increase as the power demand pattern index δ increases. The optimal number n∗ − m∗
of basic periods contained in the stock-in period is practically insensitive to changes in
the parameter δ. The minimum cost increases weakly as the parameter δ increases.

2. With fixed δ and τ , the minimum inventory level s∗ and the minimum inventory cost C∗
decrease, while the optimal profit per unit time P∗ increases as the parameter ρ increases.
Moreover, if the value of ρ is increasing, then the optimal number m∗ of basic periods
contained in the stock-out period increases when δ < 1, whilem∗ decreases when δ > 1.

3. With fixed δ and ρ, the optimal number m∗ of basic periods contained in the stock-
out period and the optimal number n∗ of basic periods contained in the inventory cycle
decrease as the basic time period τ increases.

4. In general, the minimum inventory cost is more sensitive to changes in the fraction ρ of
demand that is served with the next replenishment than to changes in the parameters δ

and τ .
5. In general, the optimal policy (m∗, n∗) is more sensitive to changes in the basic time

period τ than to changes in the parameters δ and ρ.

5.2 Management insights

In this subsection, some comments or suggestions are proposed for inventory systems man-
agers that could help to improve the effectiveness and efficiency of the inventory control
practices. The sensitivity analysis reveals that the length τ of the basic time period has the
greatest impact on the total profit per unit time among the parameters τ , ρ and δ. That impact
is more representative when the percentage ρ of backlogged demand is small. Hence, deci-
sion makers should consider a basic period that is as large as possible in order to obtain a
greater benefit.

When τ and ρ are small values, the profit per unit time drops when the demand pattern
index δ increases. This is due to the amount held in stock rising when δ increases. In this case,
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the manager should apply some marketing policies to incentivize demand at the beginning
of the inventory cycle and thus reduce the amount stored in inventory.

Notice that when the parameters τ and δ are fixed, the profit per unit time increases as the
proportion ρ of backlogged shortages increases. Thus, the manager should boost the number
of customers who are willing to wait to the next replenishment to receive the product. This
may be done by implementing policies that augment this backlogging (e.g., by offering a
small discount in the selling price of this or other products to those customers who decide to
wait for the arrival of the new batch of items ordered).

6 Conclusions

Inventory management models aim to improve the effectiveness and efficiency of business
operations related to inventory control. It allows an appropriate design schedule to be made
for the sale and distribution of products. The main contribution of this paper is the detailed
description of the optimal inventory policies obtained for an inventory system in which
customers’ demand follows a power pattern during a known basic time-period. That power
pattern represents the temporal distribution of customer demand throughout the basic period.
In the model, we have assumed the existence of an inventory of products that must be
periodically replenished. Shortages are allowed, but only afixed fraction of the demandduring
the stock-out period is satisfiedwith the arrival of the next replenishment. The inventory cycle
must be an integer multiple of the basic time-period. Moreover, the stock-out period must
also be an integer multiple of the basic period. In the analysis of the problem, five significant
costs have been considered in the management of the inventory system: the ordering cost,
the purchasing cost, the holding cost, the backordering cost and the lost sale cost. The aim is
to determine the optimal inventory policy that maximizes the total profit per unit time. This
inventory problem is formulated as an integer nonlinear mathematical program.

Some theoretical results that help to characterize the optimal solutions havebeenpresented.
To solve the inventory problem, a new algorithm that determines the optimal inventory policy
(the optimal inventory cycle and the optimal stock-out period) is developed. The minimum
total cost and the maximum profit per unit time are also obtained.

To illustrate the application of the algorithmic procedure, several numerical examples are
provided. Furthermore, we have presented computational results to analyze the sensitivity of
the optimal inventory policy when some parameters of the model are modified. As expected,
the optimal number of basic periods contained in the stock-in period and the optimal number
of basic periods contained in the stock-out interval decrease as the basic time period increases.
Moreover, the minimum inventory level decreases as the fraction of the backordered demand
increases.

From the point of view of corporate decision making, incorporating a power demand
pattern may have interesting implications for management and inventory control within orga-
nizations. The results obtained have a direct impact on the optimal policy that organizations
should adopt to reduce their operating costs and to maximize the profit related to inventory
management. The consideration of time-varying demand, partial backordering and discrete
inventory cycle is a more realistic assumption and contributes to the existing literature on
inventory models.

Future research lines in this subject could be the following: (i) to assume in the inventory
system that the replenishment is non-instantaneous, which implies that a finite production rate
must be considered in the model; (ii) to incorporate in the model the possibility that products
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may suffer some deterioration over time; (iii) to consider discounts in purchasing costs; (iv)
to develop the inventory system with price-dependent demand rate; (v) to analyze the case
of non-linear holding cost; (vi) to study the inventory system under stochastic demand and
(vii) to consider multiple products and a limited storage capacity.
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Appendix

Proof of Theorem 1 The problem (11) is similar to the problem studied by García-Laguna
et al. (2010). Thus, applying analogous arguments to those used there, it is easy to check that
n∗(0) is an optimal solution to the problem (11). �	

Proof of Lemma 1 The result is immediate. Since A1(m) > 0, the function Cm(n) has the
same structure as the objective function of Wilson’s basic EOQ model. Therefore, it attains
its minimum value at

n∗(m) =
√
2A1(m)

hλτ
=
√
2
(
a0 + a1m + a2m2

)

hλτ

with the optimal value

Cm(n∗(m)) = √
2hλτ A1(m) + A2(m)

=
√
2hλτ

(
a0 + a1m + a2m2

)+ [(δ − 1) / (2 (δ + 1)) − m] hλτ .

�	

Proof of Lemma 2 From (22), it is clear that the function C1(m) is continuous and differen-
tiable on the interval [1,∞). The first derivative of this function is

C ′
1(m) =

⎛

⎝ a1 + 2a2m√
2hλτ

(
a0 + a1m + a2m2

) − 1

⎞

⎠ hλτ (31)

Taking into account that, if m ≥ 1, then

a1 + 2a2m = (h + ρω)

(
1

δ + 1
+ 2m − 1

2

)
λτ + (π + p − c)(1 − ρ)λ > 0, (32)
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it follows that

⎛

⎝ a1 + 2a2m√
2hλτ

(
a0 + a1m + a2m2

) − 1

⎞

⎠

=
⎛

⎝
a1 + 2a2m −

√
2hλτ

(
a0 + a1m + a2m2

)

√
2hλτ

(
a0 + a1m + a2m2

)

⎞

⎠

=
⎛

⎜
⎝

(a1 + 2a2m)2 − 2hλτ
(
a0 + a1m + a2m

2
)

√
2hλτ

(
a0 + a1m + a2m2

) (
a1 + 2a2m +

√
2hλτ

(
a0 + a1m + a2m2

))

⎞

⎟
⎠

=
⎛

⎜
⎝

a21 + 2a2m2(2a2 − hλτ) + 2a1m(2a2 − hλτ) − 2hλτa0√
2hλτ

(
a0 + a1m + a2m2

) (
a1 + 2a2m +

√
2hλτ

(
a0 + a1m + a2m2

))

⎞

⎟
⎠

=
⎛

⎜
⎝

a21 + 2λτ
[
ρω(a2m

2 + a1m) − ha0
]

√
2hλτ

(
a0 + a1m + a2m2

) (
a1 + 2a2m +

√
2hλτ

(
a0 + a1m + a2m2

))

⎞

⎟
⎠

and, therefore, sign
(
C ′
1(m)

) =sign
{
a21 + 2λτ

[
ρω

(
a2m2 + a1m

)− ha0
]}
. �	

Proof of Theorem 2 From (23), it follows that the behavior of the function C1(m) can be
determined by studying the parabola p(m) = a21 + 2λτ

[
ρω

(
a2m2 + a1m

)− ha0
]
. For

this, we begin by calculating the first derivative of the function p(m), that is, p′(m) =
2ρωλτ (2a2m + a1). From (32), we deduce that p(m) is a strictly increasing function for
m ≥ 1. Therefore, to obtain the minimum of C1(m), we must evaluate the function p(m) at
the pointm = 1. Since p(1) = a21 + 2λτ [ρω (a2 + a1) − ha0] = 
, we can distinguish two
situations:

1. If 
 ≥ 0, then p(m) > 0 for all m > 1 and, therefore, the function C1(m) attains its
minimum at the point m = 1.

2. If 
 < 0, then the parabola p(m) intersects the abscissa axis at the point m1 > 1 given
in (24). Moreover, p(m) < 0 for all m ∈ (1,m1) and p(m) > 0 for all m ∈ (m1,∞).
Consequently, the function C1(m) attains its minimum at m1. �	

Proof of Corollary 1 We proceed analogously to García-Laguna et al. (2010). Thus, it is easy
to deduce that n∗(m) is an optimal solution of the problem minn∈Z {Cm(n)}. Therefore, we
only need to show that n∗(m) ≥ m. This is equivalent to proving that

√
1

4
+ 2A1(m)

hλτ
− 1

2
> m − 1.

After some simple algebraic manipulations, we see that this inequality is equivalent to the
condition 2A1(m) − hλτm(m − 1) > 0. This is true because f (m) satisfies the following
properties: (i) f (m) = 2A1(m) − hλτm(m − 1) is a quadratic function strictly increasing,
since

f ′(m) = λ

(
2 (h + ρω) τ

δ + 1
+ 2 (π + p − c) (1 − ρ) + (2m − 1)ρωτ

)

is positive for all m ≥ 1, and (ii) f (1) = 2A1(1) > 0. �	
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