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Abstract

Let {T'(t) }+>0 be a Cp-semigroup on a separable Hilbert space H. We show
that T'(t) is an m-isometry for any ¢ if and only if the mapping ¢t € RT —
|T(t)x||? for each z € H is a polynomial of degree at most m. This property is
used to study m-isometric right translation semigroup on weighted LP-spaces.
We also provide alternative characterizations of the above property by impos-
ing conditions on the infinitesimal generator operator and on the cogenerator
operator of {T'(t)};>0. Moreover, we prove that a non-unitary 2-isometry 7" on
a Hilbert space satisfying the kernel condition, that is,

T*T(KerT*) C KerT™" ,

can be embedded into a Cp-semigroup if and only if dim(KerT™) = oc.

1 Introduction

Let H be a complex Hilbert space and B(H) denote the C*-algebra of all bounded
linear operators on H.

A one-parameter family {7'(¢)}:+>o of bounded linear operators from H into H is
a Cy-semigroup if:

1. T(0) = 1.
2. T(s+1t)=T()T(s) for every t,s > 0.

3. lirn+ T(t)x = x for every x € H, in the strong operator topology.
t—0

The linear operator A defined as

T _
Az ;= lim (t)o — =

t—0+ t ’
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for every

x € D(A) = {:c €eH : lim TMr=w exists }
t—0t t
is called the infinitesimal generator of the semigroup {7'(t) }+>o. It is well-known that
A is a closed and densely defined linear operator.
If 1 is in the resolvent set of A, p(A), then Cayley transform of A defined as
V :=(A+1I)(A—1I)"!is a bounded linear operator, since V. =TI + 2(A — I)~'. The
operator V' is called the cogenerator of the Cy-semigroup {7(t)}s>o.

For a positive integer m, an operator T' € B(H) is called an m-isometry if

- m m—Fk
2 (k)<—1> |7l =0,
k=0
for any x € H.
It is said that T is a strict m-isometry if T is an m-isometry but it is not an
(m — 1)-isometry.

Remark 1.1. 1. For m > 2, the strict m-isometries are not power bounded. If
T is an m-isometry, then |7"z|* is a polynomial of degree at most m — 1, for
every x, [6, Theorem 2.1]. In particular, ||7"|] = O(n) for 3-isometries and
|7 = O(nz) for 2-isometries.

2. The m-isometries on finite dimensional spaces for even m are never strict. See
2, Proposition 1.23].

3. If T is an m-isometry, then o(T) = D or o(T) C D, [2, Lemma 1.2].

The remainder of the paper is organized as follows. In Section 2, we show that
T(t) is an m-isometry for every t if and only if the mapping t € RT — ||T(¢)x||? is a
polynomial of degree at most m for all x € H. This property is used in Section 4 to
study m-isometric right translation semigroup on weighted LP-spaces. Furthermore,
we present a characterization of the above property in terms of conditions on the
generator operator and on the cogenerator operator of the Cy-semigroup. Moreover,
if {T'(t)}+>0 is a Cy-semigroup, then we show that 7'(¢) is an m-isometry for all ¢ > 0
if and only if 7'(¢) is an m-isometry, for all ¢t € [0,¢;] with ¢; > 0 or on [t,t5] with
0 <t <ty

Section 3 is devoted to embedding m-isometries into Cy-semigroups. Namely, given
an m-isometry T finds a Cy-semigroup {7'(t)}+>0 such that T'(1) = 7. By using the
model for 2-isometries we conclude that a non-unitary 2-isometry on a Hilbert space
which satisfies the kernel condition, that is

T*T(Ker(T)) C Ker(T"),
can be embedded into a Cy-semigroup if and only if dim(KerT™) = co.

Finally, in Section 4, we obtain a characterization so that the right translation
Cp-semigroup on some weighted space is a semigroup of m-isometries for all ¢ > 0.



2 (jy-semigroups of m-isometries

Recall that any Cy-semigroup {T(t)}:>o have associated some real quantities such as:

1. The spectral bound, s(A), that is, the supremum of real part of A such that
Aea(A).

2. The growth bound, wy, that is, the infimum of all real numbers w such that there
exists a constant M, > 1 with ||T(t)|| < M,e* for all ¢t > 0.

The above quantities are related in the following way, s(A) < wy and

wo = 7 logr(T(1)) (1)

for all ¢ > 0, where (7'(t)) denotes the spectral radius of the operator T'(¢).
The following lemma shows that the cogenerator of a Cy-semigroup of m-isometries
exists.

Lemma 2.1. Let {T'(t) }+>0 be a Cy-semigroup on a separable Hilbert space H consist-
ing of m-isometries and A its generator. Then 1 € p(A) and therefore the cogenerator
Voof {T(t)}i>0 is well-defined.

Proof. 1f T'(t) is an m-isometry for any ¢, then the spectral radius of T'(t), r(T'(t)) is
1 for all t. By considering equality (1), then s(A) < wy = 0. Hence 1 € p(A). O

The following combinatorial lemma will be useful for the proof of Theorem 2.1.

Let us consider (T,?) =0ifm<kork<DO.

Lemma 2.2. Let m be a positive integer and p, q be integers such that 0 < p,q < m.

1. If p+q # m, then

S (e {57 ) )

2. If p+q =m, then

SIS e = (0)-=(0).

Proof. We define the polynomials r and s by r(z,y) := 2"(x + y)™ and

s(z,y) = (e + Dy +1) — (@ -1y —-1)".



Then

and

s(ay) = ki:j (1) (04 0 = )7 H 4 DR -
Qe ODECT o
- ki () {2 ) +]§—p)<_”l}

’ k
() (s e e

We denote the cc coefﬁment of the power zPy? in polynomial f by xpyq Smce s(x y) =
r(x,y), then zPyt” = apyd for every p and ¢. So, if p+q # m, then zPys” = zpyd’ = 0.
pr+q-m, then

@s:@r:x,,/yn:,,TZQm(m):zm( m ):2m<m).
p m-—=p q

On the other hand, it is not difficult to satisfy that, if p + ¢ = m, then

= SOEC))o)
- SO
This completes the proof. 0

Given a Cy-semigroup {7'(t)}+>0, we have two different operators associated to
{T'(t))}+>0: The infinitesimal generator A and the cogenerator V', if 1 € p(A). This
two operators will be useful in the following result, where we obtain a generalization
of [12, Proposition 2.2] to Cy-semigroup of m-isometries. See also [13, Proposition 2.6]
and [21, Theorem 2].



Theorem 2.1. Let {T'(t) }1>0 be a Cy-semigroup on a separable Hilbert space H. Then
the following assertions are equivalent:

(i) T(t) is an m-isometry for every t.

(ii) The mapping t € RT — ||T(t)z|* is a polynomial of degree at most m for each
e H.

(#i) Equality
Z (TIZ) (A" kg AFz) =0,
k=0
holds for any x € D(A™), where A is the generator of the semigroup.

(iv) The cogenerator V' of {T(t)}1>o exists and is an m-isometry.

Proof. (i) < (ii) If T'(¢) is an m-isometry for every ¢, then
> (3) 0t + kel <o, )
k=0

for every t, 7 > 0 and x € H. From the assumption on the semigroup, it is clear
that function t € RT™ — f(t) := ||T(¢)z||* is continuous. By [15, Theorem 13.7], the
function f(t) is a polynomial of degree at most m for each x € H.

Conversely, if the mapping t € R™ — || T(¢)x||? is a polynomial of degree at most
m for each x € H, then T'(t) is an m-isometry for every ¢, [15, page 271].

(i1) < (44i) Let y € D(A™). The function t € R™ — ||T'(t)y||* has mth-derivative
and it is given by

> (7 )an o ) )
k=0
By (ii) and (3) at t = 0 we have that

i (Z) (A" Fy, Aby) =0,

k=0

for any y € D(A™).
Conversely, if (3) holds on D(A™), then the mth-derivative of the function ¢ €
Rt — [|T(t)x]]? is

3 (72) (AR ()2, AFT()2) |
k=0
for every t > 0 and x € D(A™). D(A™) is dense by [17, Theorem 2.7], so that we
obtain the desired result.

(7ii) < (iv). It is enough to prove that

gm ki (Z‘) (Am=Fkg Akz) = i (”;) (= 1)k (ALY (A—I)™*a, (A+TF(A—T)™* )
@)



for all z € D(A™), since (4) is equivalent to

2’m2( ) (AR (A — 1)y, AR(A = T)™™y)

k=0

> (7)ot

k=0

S (7)ot DA = Dt D= )

for all y € R(A —1)™.
Note that the second part of equality (4) is given by

2 (e 2 (6 Z (775 Jevaaa,

k=0 £, h=0 1, =0
(5)

We denote the numerical coefficient of (APz, A%x) by ﬁp,q. It is not difficult to prove
that if p+q=m, then Ay, = Ay g = Ay_qq and

e (1 ol Bt ><k+z_q> /|
"))
K ><m_q> 1}
e} e ()

where the last equality is obtained by applying part (2) of Lemma 2.2.
If p+ g # m, then

(o
> (
> ("
(")

)
)

Ap,q = —p,m—q



where the last equality is obtained by applying part (1) of Lemma 2.2. So we get the
desired result. O

Corollary 2.1. Let {T(t)}+>0 be a Cy-semigroup on a separable Hilbert space H.
Then T'(t) is a strict m-isometry for every t > 0 if and only if the cogenerator V' of
{T(t)}1>0 is a strict m-isometry.

In the following corollary, we give an example of m-isometric semigroup.

Corollary 2.2. Let Q € B(H) be a nilpotent operator of order n on a separable
Hilbert space H. Then the Cy-semigroup generated by Q) is a strict (2n — 1)-isometric
SEMIGroup.

Proof. Since @ is the generator of {T'(t)}+>0 and 1 € p(Q), then the cogenerator is
well-defined and given by

Vi=@Q+DQ-1)".
Thus V=—Q+ NI +Q+ - +Q" ") =—-T-2QI+Q+ -+ Q" ?), that is,

the sum of an isometry and a nilpotent operator of order n. By [7, Theorem 2.2], the
cogenerator is a strict (2n — 1)-isometry. Then {7(t) };>¢ is a strict (2n — 1)-isometric
semigroup by Corollary 2.1. O

For a positive integer m, a closed linear operator A defined on a dense set D(A) C
H is called an m-symmetry if

i <:’§) (=)™ k(A kg ARz =0,

k=0

for all x € D(A™). We say that A is a strict m-symmetry if A is an m-symmetry
but it is not an (m — 1)-symmetry. There exists no strict m-symmetry bounded for
even m. See [1, Page 7].

In the following result, we present a connection between condition (iii) of Theorem
2.1 and m-symmetric operators.

Corollary 2.3. Let A € B(H) be an m-symmetry on a separable Hilbert space H.
Then the Cy-semigroup generated by i A is an m-isometric semigroup.

Proof. If A is an m-symmetry, then

i <’Z> (1A)™*z, (1A a) = (—i)™ i(—nmk (”;) (A" e, Al = 0,

k=0 k=0
for all z € D(A™). The proof is completed by Theorem 2.1. O

Let w be a weighted function on T. It is defined
[2(T) = {f THC /yf(z)y2w(z)dz < oo} |
T
Let {T'(t) }+>0 be a Cy-group defined on L2 (T) with non-constant weighted function

w by T(t)f(2) := f(e"z). Then T(t) is an isometry if and only if ¢ is a multiple of
27. See [8, page 8].



Proposition 2.1. Let {T'(t)}ier be a Co-group on a Hilbert space H. Then the fol-
lowing statements are equivalent:

(i) T(t) is an m-isometry for every t.
(ii) T(t) is an m-isometry for t; and ty where ’;—; is irrational.

Proof. For every t, we have that

> (=ymt (Z‘) |T(t + kt)z||> =0 fori=1,2.

k=0

Montel’s Theorem ([15, Theorem 13.5] & [19, Theorem 1.1]) implies that ||T(¢)z||?
t1

is a polynomial of degree at most m for each x € H, since i is irrational. Thus by

Theorem 2.1 we have that T'(t) is an m-isometry for every t. O

If T is an m-isometry, then any power 7" is also an m-isometry, [14, Theorem 2.3].
In general, the converse is not true. However, if 7" and 77! are m-isometries for a
positive integer r, then T' is an m-isometry (see, [5, Corollary 3.7]). The stability of
powers of m-isometries is fundamental to give necessary and sufficient conditions for
a Co-semigroup {7'(t)}+>o to be T'(t) an m-isometry for each ¢ > 0.

Theorem 2.2. Let {T'(t)}+>0 be a Cy-semigroup on a Hilbert space H. Then the
following assertions are equivalent:

(i) T(t) is an m-isometry for every t > 0.
(ii) T(t) is an m-isometry for every t € [0,t1] for some t; > 0.
(111) T(t) is an m-isometry on an interval of the form [t1,ts] with t; < ts.

Proof. The implications (i) = (4i) and (ii) = (ii7) are clear.

(i1) = (7). Fixed t > 0, there exist n € N and ¢’ € [0,¢;] such that ¢ = nt’. Since
T(t') is an m-isometry, then any power of T'(') is an m-isometry by [5, Theorem 3.1].
So, T'(t) is an m-isometry.

(#4i) = (). Let us prove that T'(¢t) is an m-isometry for every ¢t € (0, 27%].

Choose k := [&] + 1, where [s] denotes the greatest integer less than or equal to
s. Then kt and (k + 1)t belong to (t1,t5). Thus T(t)* and T'(t)**! are m-isometries.
Hence T'(t) is an m-isometry by [5, Corollary 3.7]. O

3 Embedding m-isometries into Cj-semigroups

We are interested on the following question, when can an m-isometry be embedded
into a continuous Cy-semigroup? In other words, for a given an m-isometry 7', is there
a Co-semigroup {7'(t)}+>o such that T'(1) =17

Recall that an isometry T on a Hilbert space can be embedded into a Cy-semigroup
if and only if 7" is unitary or codim(R(T)) = oo, where R(T) denotes the range of



T. In this case, it is also possible to embed 7" into an isometric Cy-semigroup [10,
Theorem V.1.19].

Note that, if 7' can be embedded into Cp-semigroup, then dim(KerT) and
dim(KerT™*) are zero or infinite [10, Theorem V.1.7].

Proposition 3.1. (i) An m-isometry on a finite dimensional space is embeddable
into a Cy-group.

(i1) A normal m-isometry is embeddable.

(i1i) A weighted forward shift m-isometry is not embeddable.

Proof. (i) On a finite-dimensional space an operator can be embeddable if and only if
its spectrum does not contain 0 (see, [10, page 166]). Moreover, on finite-dimensional
spaces the spectrum of m-isometries is contained in the unit circle. Hence any m-
isometry on finite dimensional space is embeddable into a Cy-group.

(1) If T is a normal m-isometry, then 7™ is an m-isometry. By [2, Corollary 1.2.2]

T is invertible and by [10, Theorem V.1.14] T" is embeddable.
(111) Assume that T' is a weighted forward shift m-isometry. Then dimKer(T*) =
1, ([3] & [6])- O

Let M, be the multiplication operator on the Dirichlet space D(u) for some finite
non-negative Borel measure on T defined by

D)= {£:0 > € anaiytic : [ |/()Ppy(aA() <00 |

where A denotes the normalized Lebesgue area measure in D and ¢, is defined by
1 1— 2|2
= — ————du(t
QOH(Z) It /[0,270 |€Zt o Z|2 /’L( ) ’
for z € D.
Proposition 3.2. M, on D(u) cannot be embedded into Cy-semigroup.

Proof. By Richter’s Theorem [20], M, is an analytic 2-isometry with dim(KerT™*) = 1,
then M, can not be embedded into Cy-semigroup. ]

Let Y be an infinite dimensional Hilbert space. The Hilbert space of all vector
sequences (h,)2; such that > o, [|h.]|* < oo with the standard inner product is
denoted (2. If (W,)%, C B(Y) is an uniformly bounded sequence of operators, then
the operator Sy, € B(f3) defined by

SW<h17h27 t ) = (07W1h17W2h27' : ) )

for any (hy, ho,--+) € €%, is called the operator valued unilateral forward weighted
shifts with weights W := (W,,),>1.

Following some ideas of [10, Proposition V.1.18], we obtain the next result.

9



Lemma 3.1. Let Sy be the operator valued unilateral forward weighted shift on (3
with weights W = (W,,)n>1 for an infinite dimensional Hilbert space Y. Then Sy can
be embedded into a Cy-semigroup.

Proof. The operator Sy is unitarily equivalent to the operator valued unilateral
forward weighted shift on éig([o 1.y)- Moreover, Eig([o 1.y) can be identified with

L*(R*,Y) by
(fi,forr) = (5= fuls —n), s€n,n+1)).
The following family of operators is defined on L2(R*,Y") for 0 < ¢ < 1 by

0 s<t
(T(t)f)(s) =4 f(s—1) n—14+t<s<n
Wof(s—t) n<s<n-+t,

namely,
0 s<t
TODE =S (45— Dxpuretn(5) + Waf (s~ Dxpunsn(s)) s>t

In particular, for t = 1, we have that

0 s<1
TWAE = S W f(s = Dxuarn(s) s> 1.

Hence T'(1) is unitarily equivalent to Sy .

We define T'(t) := TW(1)T(t — [t]), where [t] denotes the greatest integer less than
or equal to ¢, for ¢t > 1.

Let us prove that {T'(t)}+>¢ is a Cy-semigroup. Given any f € L*(R*,Y’), we have
that

lim T(8)f(5) = D X1 f(5) = £(5) .
n>1
in the strong topology of L*(RT,Y).
Let t,t' € [0,1). Then T()T(t')f(s) = T(t)f(s), where

0 s<t
fls) =Tt f(s) = 3 Kne100m)(8) + WaXpnnsn () f(s =) s >t
Then
T@)T(")f(s)

10



(0 s<t+t
Z (Z (X[n—l—&-t’m) (3 - t) + WnX[n,n—i—t’)(S - t)) X[m—1+t,m)(8)+
. m>1 \n>1
Wi Z (X[n—l-‘,—t’,n) (S - t) + WTLX[n,n-‘rt’)(S - t))
n>1
X[m,m+t)(8)> f(S -t - t) s>t+ t
\
(0 s<t+t
Z{Z (X[n71+t’+t,n+t)(5) + WnX[n+t,n+t/+t)(5)) X[m—1+t,m)(5)+
o m>1 (n>1 (6>
Wm Z (X[n71+t’+t,n+t)(5) + WnX[n+t,n+t’+t)(5))
n>1
Xmmﬂﬂ$}ﬂ8—f—ﬂ s>t4t
\
If ' +t < 1, then (6) is given by
0 s<t +t

T@)T)f(s)

T(t+1t)f(s)

Z (Xpn—14t+tm) (8) + WoXnnav40)(s)) fls =t —t) s>t +1

n>1

Tt+t)f(s) .
Denote t" :=t' +t —[t' +t]. If '+t > 1, then t" =t +t — 1 and
TN+ — [t +1])f(s)

TT(E+1 =1)f(s) =TW)T(")f(s)

;

\

0 s <t
T(1) > (X100 (8) + Wak o () f (5 = 17) 5> 1"
n>1
0 s—t'<1
Z Wm Z (X[n—1+t”,n)<5 - 1) + WnX[n,n+t”)<5 - 1))
m>1 n>1
X[m,erl)(S)f(S - t,/ - 1) S — t” 2 1
0 s—t"<1
Z W Z (X[n+t“,n+1)(3) + WnX[n+1,n+t”+1)(5))
m>1 n>1
Xpmm1)(8) f(s =" = 1) s> 141"

11



0 s<t+t

Z (WnX[n+t//,n+1)(5) + Wn+1WnX[n+1,n+t"+1)(3)) f(s— t'— t) s>t+t.

n>1

On the other hand, by (6) we have that

T)T(t')f(s) =

0 s<t+t

Z (WnX[n+t'+t—1,n+1)(5) + Wn+1WnX[n+1,n+t’+t)(5)) fls=t'—t) s>t+1
n>1

This completes the proof. O

We say that an operator T' € B(H ) satisfies the kernel condition if
T*T(KerT*) C KerT™ .

Corollary 3.1. A non-unitary 2-isometry T on a Hilbert space satisfying the kernel
condition can be embedded into Cy-semigroup if and only if dim(KerT*) = co.

Proof. 1f T is a non-unitary 2-isometry on a Hilbert space satisfying the kernel con-
dition. Then, as a consequence of [4, Theorem 3.8], we obtain that 7= U & W with
U unitary and W a operator valued unilateral forward weighted shifts operator in £,
with dimM = dim(KerT*). Thus by [10, Theorem V.1.19] and Lemma 3.1, T" can be
embedded into Cy-semigroup. [

The Wold-type Decomposition Theorem for 2-isometries, (see [16, 22]), states that
any 2-isometry can be decomposed as a direct sum of an unitary operator and an
analytic 2-isometry.

Some natural questions arise.

Question 3.1. Let T be an analytic 2-isometry on a Hilbert space. Can be embedded
T into Cy-semigroup if and only if dim(KerT*) = co?

Question 3.2. Is it possible to characterize all m-isometries on Hilbert spaces having
the embedding property?

4 Translation semigroups of m-isometries

In this section, we discuss examples of semigroups of m-isometries.

Definition 4.1. By a right admissible weighted function in (0,00), we mean a mea-
surable function p : (0,00) — R satisfying the following conditions:

1. p(1) > 0 for all 7 € (0, 00),

12



2. there exist constants M > 1 and w € R such that p(t + 7) < Me¥ p(7) holds
for all 7 € (0,00) and ¢ > 0.

For a right admissible weighted function, we define the weighted space, L*(R™, p),
of measurable functions f : RT — C such that

1f 1Lz o =/0 £()2p(s)ds < oo .

Then the right translation semigroup {S(t)}i>o given for ¢t > 0 and f € L*(R™, p) by
y 0 if s <t
(S(8).f)(s) :=
fls—t) ifs>t,

is a strongly continuous semigroup and straightforward computation shows that for
s,t >0and f € L*(RT, p)

; g Ptt)
(S f)(s) ) fls+1).

Theorem 4.1. Let {S(t)}i>0 be the right translation Cy-semigroup on L*(R*, p) with
p a continuous function. The operator S(t) is an m-isometry for every t > 0 if and
only if p(s) is a polynomial of degree at most m.

Proof. By definition, S(t) is an m-isometry for every ¢ > 0 if

> () o st =o.

k=0

for all t > 0 and f € L*(R", p). That is,

| (Z (Z)(—l)%k%) £5)Ppls)ds =0, G

k=0

for all t > 0 and f € L*(R", p). Fixed t > 0 , we define

o) =3 () )t e

k=0

If g(s) # 0, we can suppose without lost of generality that, g(s) > 0, for some s > 0.
Then by continuity of p and p(7) > 0 for all 7 > 0, we obtain that there exists an
interval I C R™, with finite measure, such that there exists M > 0 with g(s) > M for
all s € 1.
Let fi(s) :== —2—x1(s) € L*(RT, p). Then by (7) we have that
Vo(s)

0= / " ()| Fu(s)Pols)ds = / g(s)ds > Mu(I)

1

13



which it is an absurd. So,

ij (Z)(—l)m"“M 0,

— p(s)

for all s > 0 and ¢t > 0. Then by [15, Theorem 13.5], the function p is a polynomial
of degree at most m. O

Corollary 4.1. Let {S(t)}+>0 be the right translation Cy-semigroup on L*(R™, p) with
p a continuous function. Then S(t) is a strict m-isometry for every t > 0 if and only
if p(s) is a polynomial of degree m — 1.

Consider the right weighted translation Cy-semigroup, S,, defined on L*(R™) as

0 ifs <t
(Sp(t)f)(s) = p(s)
p(s —t)

Then {S,(t) }+>o0 is a strongly continuous semigroup if and only if p is a right admissible
weighted function. For s,¢ > 0 and f € L*(R")

f(s—=t) ifs>t.

. _ p(s+t) .
S0 =Lt s+,

See [9] for further details.
We now improve part (2) of [18, Corollary 3.3].

Theorem 4.2. Let {S,(t)}i>0 be the right weighted translation Cy-semigroup on
LAR™) with p a continuous function. Then S,(t) is an m-isometry for every t > 0 if
and only if p(s)? is a polynomial of degree at most m.

Proof. Consider M, : L*(R*, p*) — L*(R") defined by M,f = pf. Then S,(t) =
M,S(t)M; . Thus S,(t) is an m-isometry for every ¢ > 0 on L*(R") if and only if

p
S(t) is an m-isometry for every t > 0 on L*(R™T, p?) if and only if p(s)? is a polynomial
of degree at most m. O]

Corollary 4.2. Let {S,(t)}i>0 be the right weighted translation Cy-semigroup on
LA(R") with p a continuous function. Then S,(t) is a 2-isometry for every t > 0
if and only if p(s)*> = as + b for some constants a and b.

We characterize below the weighted spaces where the adjoint of translation oper-
ator is an m-isometry.

Definition 4.2. By a left admissible weighted function in (0,00), we mean a measur-
able function w : (0, 00) — R satisfying the following conditions:

1. w(r) > 0 for all 7 € (0, 00),
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2. there exist constants M > 1 and « € R such that w(7) < Me*w(t 4+ 7) holds
for all 7 € (0,00) and all ¢ > 0.

Let {T(t)}+>0 be the left shift semigroup given for t > 0 and f € L*(R™, w) by

(T(0)f)(s) = (s +11) -
Then {T'(t)};>0 is a strongly continuous semigroup [11]. For f € L(R", w),

0 if s <t
(T )(s) = § wis—1)

0(5) f(s—=1t) ifs>t.

Theorem 4.3. Let {T*(t) }+>0 be the adjoint of left weighted translation Cy-semigroup
on L*(R*,w), such that w is a continuous function. Then T*(t) is an m-isometry for
every t > 0 if and only if w(s) = zﬁ for some polynomial p of degree at most m.

Proof. T*(t) is an m-isometry for every ¢ > 0 if and only if
m m - .
> (1) comHirrnse-o.,
k=0

for all t > 0 and f € L*(R*,w). Then

2

0 = ki(—wm’f@(—l)m’f [ k) wisgas
- [ (fj (’}j)<—1>m-k%> () Py,

for all f € L*(R*,w). As in the proof of Theorem 4.1 we get that — is a polynomial

(s)
of degree at most m. O]

Corollary 4.3. Let {T"(t) }+>o be the adjoint of left weighted translation Cy-semigroup
on L*(R*,w) such that w is a continuous function. Then T*(t) is a strict m-isometry
for every t > 0 if and only if w(s) = ﬁ for some polynomial p of degree m — 1.
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