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Abstract

Let {T (t)}t≥0 be a C0-semigroup on a separable Hilbert space H. We show
that T (t) is an m-isometry for any t if and only if the mapping t ∈ R+ →
‖T (t)x‖2 for each x ∈ H is a polynomial of degree at most m. This property is
used to study m-isometric right translation semigroup on weighted Lp-spaces.
We also provide alternative characterizations of the above property by impos-
ing conditions on the infinitesimal generator operator and on the cogenerator
operator of {T (t)}t≥0. Moreover, we prove that a non-unitary 2-isometry T on
a Hilbert space satisfying the kernel condition, that is,

T ∗T (KerT ∗) ⊂ KerT ∗ ,

can be embedded into a C0-semigroup if and only if dim(KerT ∗) =∞.

1 Introduction

Let H be a complex Hilbert space and B(H) denote the C∗-algebra of all bounded
linear operators on H.

A one-parameter family {T (t)}t≥0 of bounded linear operators from H into H is
a C0-semigroup if:

1. T (0) = I.

2. T (s+ t) = T (t)T (s) for every t, s ≥ 0.

3. lim
t→0+

T (t)x = x for every x ∈ H, in the strong operator topology.

The linear operator A defined as

Ax := lim
t→0+

T (t)x− x
t

,
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for every

x ∈ D(A) :=

{
x ∈ H : lim

t→0+

T (t)x− x
t

exists

}
is called the infinitesimal generator of the semigroup {T (t)}t≥0. It is well-known that
A is a closed and densely defined linear operator.

If 1 is in the resolvent set of A, ρ(A), then Cayley transform of A defined as
V := (A+ I)(A− I)−1 is a bounded linear operator, since V = I + 2(A− I)−1. The
operator V is called the cogenerator of the C0-semigroup {T (t)}t≥0.

For a positive integer m, an operator T ∈ B(H) is called an m-isometry if
m∑
k=0

(
m

k

)
(−1)m−k‖T kx‖2 = 0 ,

for any x ∈ H.
It is said that T is a strict m-isometry if T is an m-isometry but it is not an

(m− 1)-isometry.

Remark 1.1. 1. For m ≥ 2, the strict m-isometries are not power bounded. If
T is an m-isometry, then ‖T nx‖2 is a polynomial of degree at most m − 1, for
every x, [6, Theorem 2.1]. In particular, ‖T n‖ = O(n) for 3-isometries and

‖T n‖ = O(n
1
2 ) for 2-isometries.

2. The m-isometries on finite dimensional spaces for even m are never strict. See
[2, Proposition 1.23].

3. If T is an m-isometry, then σ(T ) = D or σ(T ) ⊆ ∂D, [2, Lemma 1.2].

The remainder of the paper is organized as follows. In Section 2, we show that
T (t) is an m-isometry for every t if and only if the mapping t ∈ R+ → ‖T (t)x‖2 is a
polynomial of degree at most m for all x ∈ H. This property is used in Section 4 to
study m-isometric right translation semigroup on weighted Lp-spaces. Furthermore,
we present a characterization of the above property in terms of conditions on the
generator operator and on the cogenerator operator of the C0-semigroup. Moreover,
if {T (t)}t≥0 is a C0-semigroup, then we show that T (t) is an m-isometry for all t > 0
if and only if T (t) is an m-isometry, for all t ∈ [0, t1] with t1 > 0 or on [t1, t2] with
0 < t1 < t2.

Section 3 is devoted to embedding m-isometries into C0-semigroups. Namely, given
an m-isometry T finds a C0-semigroup {T (t)}t≥0 such that T (1) = T . By using the
model for 2-isometries we conclude that a non-unitary 2-isometry on a Hilbert space
which satisfies the kernel condition, that is

T ∗T (Ker(T ∗)) ⊂ Ker(T ∗) ,

can be embedded into a C0-semigroup if and only if dim(KerT ∗) =∞.
Finally, in Section 4, we obtain a characterization so that the right translation

C0-semigroup on some weighted space is a semigroup of m-isometries for all t > 0.
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2 C0-semigroups of m-isometries

Recall that any C0-semigroup {T (t)}t≥0 have associated some real quantities such as:

1. The spectral bound, s(A), that is, the supremum of real part of λ such that
λ ∈ σ(A).

2. The growth bound, w0, that is, the infimum of all real numbers w such that there
exists a constant Mw ≥ 1 with ‖T (t)‖ ≤Mwe

wt for all t ≥ 0.

The above quantities are related in the following way, s(A) ≤ w0 and

w0 =
1

t
log r(T (t)) , (1)

for all t > 0, where r(T (t)) denotes the spectral radius of the operator T (t).
The following lemma shows that the cogenerator of a C0-semigroup of m-isometries

exists.

Lemma 2.1. Let {T (t)}t≥0 be a C0-semigroup on a separable Hilbert space H consist-
ing of m-isometries and A its generator. Then 1 ∈ ρ(A) and therefore the cogenerator
V of {T (t)}t≥0 is well-defined.

Proof. If T (t) is an m-isometry for any t, then the spectral radius of T (t), r(T (t)) is
1 for all t. By considering equality (1), then s(A) ≤ w0 = 0. Hence 1 ∈ ρ(A).

The following combinatorial lemma will be useful for the proof of Theorem 2.1.
Let us consider

(
m
k

)
= 0 if m < k or k < 0.

Lemma 2.2. Let m be a positive integer and p, q be integers such that 0 ≤ p, q ≤ m.

1. If p+ q 6= m, then

m∑
k=0

(
m

k

)
(−1)m−k

{
p∑
i=0

(
m− k
i

)(
k

p− i

)
(−1)i

}
{

q∑
j=0

(
m− k
j

)(
k

q − j

)
(−1)j

}
= 0

2. If p+ q = m, then

m∑
k=0

(
m

k

){ q∑
i=0

(
m− k
i

)(
k

q − i

)
(−1)i

}2

= 2m
(
m

q

)
= 2m

(
m

p

)
.

Proof. We define the polynomials r and s by r(x, y) := 2m(x+ y)m and

s(x, y) := ((x+ 1)(y + 1)− (x− 1)(y − 1))m .
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Then

r(x, y) = 2m
m∑
k=0

(
m

k

)
xkym−k

and

s(x, y) =
m∑
k=0

(
m

k

)
(−1)m−k(x+ 1)k(x− 1)m−k(y + 1)k(y − 1)m−k

=
m∑
k=0

(
m

k

)
(−1)m−k

k∑
h, `=0

(
k

`

)(
k

h

) m−k∑
i, j=0

(
m− k
i

)(
m− k
j

)
(−1)i+jxj+hyi+`

=
m∑
k=0

(
m

k

)
(−1)m−k

{
p∑
i=0

(
m− k

m− k − i

)(
k

k + i− p

)
(−1)i

}
{

q∑
j=0

(
m− k

m− k − j

)(
k

k + j − q

)
(−1)j

}
xj+hyi+`

=
m∑
k=0

(
m

k

)
(−1)m−k

{
p∑
i=0

(
m− k
i

)(
k

p− i

)
(−1)i

}
{

q∑
j=0

(
m− k
j

)(
k

q − j

)
(−1)j

}
xj+hyi+` .

We denote the coefficient of the power xpyq in polynomial f by x̂pyq
f
. Since s(x, y) =

r(x, y), then x̂pyq
s

= x̂pyq
r

for every p and q. So, if p+q 6= m, then x̂pyq
s

= x̂pyq
r

= 0.
If p+ q = m, then

x̂pyq
s

= x̂pyq
r

= x̂pym−p
r

= 2m
(
m

p

)
= 2m

(
m

m− p

)
= 2m

(
m

q

)
.

On the other hand, it is not difficult to satisfy that, if p+ q = m, then

x̂pyq
s

=
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k

m− k − i

)(
k

k + i− q

)
(−1)i

}2

=
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k
i

)(
k

q − i

)
(−1)i

}2

.

This completes the proof.

Given a C0-semigroup {T (t)}t≥0, we have two different operators associated to
{T (t))}t≥0: The infinitesimal generator A and the cogenerator V , if 1 ∈ ρ(A). This
two operators will be useful in the following result, where we obtain a generalization
of [12, Proposition 2.2] to C0-semigroup of m-isometries. See also [13, Proposition 2.6]
and [21, Theorem 2].
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Theorem 2.1. Let {T (t)}t≥0 be a C0-semigroup on a separable Hilbert space H. Then
the following assertions are equivalent:

(i) T (t) is an m-isometry for every t.

(ii) The mapping t ∈ R+ → ‖T (t)x‖2 is a polynomial of degree at most m for each
x ∈ H.

(iii) Equality
m∑
k=0

(
m

k

)
〈Am−kx,Akx〉 = 0 ,

holds for any x ∈ D(Am), where A is the generator of the semigroup.

(iv) The cogenerator V of {T (t)}t≥0 exists and is an m-isometry.

Proof. (i)⇔ (ii) If T (t) is an m-isometry for every t, then

m∑
k=0

(
m

k

)
(−1)m−k‖T (t+ kτ)x‖2 = 0 , (2)

for every t, τ > 0 and x ∈ H. From the assumption on the semigroup, it is clear
that function t ∈ R+ → f(t) := ‖T (t)x‖2 is continuous. By [15, Theorem 13.7], the
function f(t) is a polynomial of degree at most m for each x ∈ H.

Conversely, if the mapping t ∈ R+ → ‖T (t)x‖2 is a polynomial of degree at most
m for each x ∈ H, then T (t) is an m-isometry for every t, [15, page 271].

(ii)⇔ (iii) Let y ∈ D(Am). The function t ∈ R+ → ‖T (t)y‖2 has mth-derivative
and it is given by

m∑
k=0

(
m

k

)
〈Am−kT (t)y, AkT (t)y〉 . (3)

By (ii) and (3) at t = 0 we have that

m∑
k=0

(
m

k

)
〈Am−ky, Aky〉 = 0 ,

for any y ∈ D(Am).
Conversely, if (3) holds on D(Am), then the mth-derivative of the function t ∈

R+ −→ ‖T (t)x‖2 is
m∑
k=0

(
m

k

)
〈Am−kT (t)x,AkT (t)x〉 ,

for every t > 0 and x ∈ D(Am). D(Am) is dense by [17, Theorem 2.7], so that we
obtain the desired result.

(iii)⇔ (iv). It is enough to prove that

2m
m∑
k=0

(
m

k

)
〈Am−kx,Akx〉 =

m∑
k=0

(
m

k

)
(−1)m−k〈(A+I)k(A−I)m−kx, (A+I)k(A−I)m−kx〉

(4)
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for all x ∈ D(Am), since (4) is equivalent to

2m
m∑
k=0

(
m

k

)
〈Am−k(A− I)−my, Ak(A− I)−my〉

=
m∑
k=0

(
m

k

)
(−1)m−k〈(A+ I)k(A− I)−ky, (A+ I)k(A− I)−ky〉

=
m∑
k=0

(
m

k

)
(−1)m−k‖V ky‖2 ,

for all y ∈ R(A− I)m.
Note that the second part of equality (4) is given by

m∑
k=0

(
m

k

)
(−1)m−k

k∑
`, h=0

(
k

`

)(
k

h

) m−k∑
i, j=0

(
m− k
i

)(
m− k
j

)
(−1)i+j〈A`+ix,Ah+jx〉 .

(5)

We denote the numerical coefficient of 〈Apx,Aqx〉 by Âp,q. It is not difficult to prove

that if p+ q = m, then Âp,q = Âq,m−q = Âm−q,q and

Âq,m−q =
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k

m− k − i

)(
k

k + i− q

)
(−1)i

}
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k
i

)(
k

q − i

)
(−1)i

}

=
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k

m− k − i

)(
k

k + i− q

)
(−1)i

}2

=
m∑
k=0

(
m

k

){ q∑
i=0

(
m− k
i

)(
k

q − i

)
(−1)i

}2

= 2m
(
m

q

)
,

where the last equality is obtained by applying part (2) of Lemma 2.2.
If p+ q 6= m, then

Âp,q = Âm−p,m−q

=
m∑
k=0

(
m

k

)
(−1)m−k

{
p∑
i=0

(
m− k

m− k − i

)(
k

k + i− p

)
(−1)i

}
{

q∑
j=0

(
m− k

m− k − j

)(
k

k + j − q

)
(−1)j

}

=
m∑
k=0

(
m

k

)
(−1)m−k

{
p∑
i=0

(
m− k
i

)(
k

p− i

)
(−1)i

}{
q∑
j=0

(
m− k
j

)(
k

q − j

)
(−1)j

}
= 0 ,
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where the last equality is obtained by applying part (1) of Lemma 2.2. So we get the
desired result.

Corollary 2.1. Let {T (t)}t≥0 be a C0-semigroup on a separable Hilbert space H.
Then T (t) is a strict m-isometry for every t > 0 if and only if the cogenerator V of
{T (t)}t≥0 is a strict m-isometry.

In the following corollary, we give an example of m-isometric semigroup.

Corollary 2.2. Let Q ∈ B(H) be a nilpotent operator of order n on a separable
Hilbert space H. Then the C0-semigroup generated by Q is a strict (2n− 1)-isometric
semigroup.

Proof. Since Q is the generator of {T (t)}t≥0 and 1 ∈ ρ(Q), then the cogenerator is
well-defined and given by

V := (Q+ I)(Q− I)−1 .

Thus V = −(Q + I)(I + Q + · · · + Qn−1) = −I − 2Q(I + Q + · · · + Qn−2), that is,
the sum of an isometry and a nilpotent operator of order n. By [7, Theorem 2.2], the
cogenerator is a strict (2n− 1)-isometry. Then {T (t)}t≥0 is a strict (2n− 1)-isometric
semigroup by Corollary 2.1.

For a positive integer m, a closed linear operator A defined on a dense set D(A) ⊂
H is called an m-symmetry if

m∑
k=0

(
m

k

)
(−1)m−k〈Am−kx,Akx〉 = 0 ,

for all x ∈ D(Am). We say that A is a strict m-symmetry if A is an m-symmetry
but it is not an (m − 1)-symmetry. There exists no strict m-symmetry bounded for
even m. See [1, Page 7].

In the following result, we present a connection between condition (iii) of Theorem
2.1 and m-symmetric operators.

Corollary 2.3. Let A ∈ B(H) be an m-symmetry on a separable Hilbert space H.
Then the C0-semigroup generated by iA is an m-isometric semigroup.

Proof. If A is an m-symmetry, then

m∑
k=0

(
m

k

)
〈(iA)m−kx, (iA)kx〉 = (−i)m

m∑
k=0

(−1)m−k
(
m

k

)
〈Am−kx,Akx〉 = 0 ,

for all x ∈ D(Am). The proof is completed by Theorem 2.1.

Let w be a weighted function on T. It is defined

L2
w(T) :=

{
f : T→ C :

∫
T
|f(z)|2w(z)dz <∞

}
.

Let {T (t)}t≥0 be a C0-group defined on L2
w(T) with non-constant weighted function

w by T (t)f(z) := f(eitz). Then T (t) is an isometry if and only if t is a multiple of
2π. See [8, page 8].
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Proposition 2.1. Let {T (t)}t∈R be a C0-group on a Hilbert space H. Then the fol-
lowing statements are equivalent:

(i) T (t) is an m-isometry for every t.

(ii) T (t) is an m-isometry for t1 and t2 where t1
t2

is irrational.

Proof. For every t, we have that

m∑
k=0

(−1)m−k
(
m

k

)
‖T (t+ kti)x‖2 = 0 for i = 1, 2 .

Montel’s Theorem ([15, Theorem 13.5] & [19, Theorem 1.1]) implies that ‖T (t)x‖2
is a polynomial of degree at most m for each x ∈ H, since t1

t2
is irrational. Thus by

Theorem 2.1 we have that T (t) is an m-isometry for every t.

If T is an m-isometry, then any power T r is also an m-isometry, [14, Theorem 2.3].
In general, the converse is not true. However, if T r and T r+1 are m-isometries for a
positive integer r, then T is an m-isometry (see, [5, Corollary 3.7]). The stability of
powers of m-isometries is fundamental to give necessary and sufficient conditions for
a C0-semigroup {T (t)}t≥0 to be T (t) an m-isometry for each t ≥ 0.

Theorem 2.2. Let {T (t)}t≥0 be a C0-semigroup on a Hilbert space H. Then the
following assertions are equivalent:

(i) T (t) is an m-isometry for every t ≥ 0.

(ii) T (t) is an m-isometry for every t ∈ [0, t1] for some t1 > 0.

(iii) T (t) is an m-isometry on an interval of the form [t1, t2] with t1 < t2.

Proof. The implications (i)⇒ (ii) and (ii)⇒ (iii) are clear.
(ii) ⇒ (i). Fixed t > 0, there exist n ∈ N and t′ ∈ [0, t1] such that t = nt′. Since

T (t′) is an m-isometry, then any power of T (t′) is an m-isometry by [5, Theorem 3.1].
So, T (t) is an m-isometry.

(iii)⇒ (i). Let us prove that T (t) is an m-isometry for every t ∈ (0, t2−t1
4

].
Choose k := [ t1

t
] + 1, where [s] denotes the greatest integer less than or equal to

s. Then kt and (k + 1)t belong to (t1, t2). Thus T (t)k and T (t)k+1 are m-isometries.
Hence T (t) is an m-isometry by [5, Corollary 3.7].

3 Embedding m-isometries into C0-semigroups

We are interested on the following question, when can an m-isometry be embedded
into a continuous C0-semigroup? In other words, for a given an m-isometry T , is there
a C0-semigroup {T (t)}t≥0 such that T (1) = T?

Recall that an isometry T on a Hilbert space can be embedded into a C0-semigroup
if and only if T is unitary or codim(R(T )) = ∞, where R(T ) denotes the range of
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T . In this case, it is also possible to embed T into an isometric C0-semigroup [10,
Theorem V.1.19].

Note that, if T can be embedded into C0-semigroup, then dim(KerT ) and
dim(KerT ∗) are zero or infinite [10, Theorem V.1.7].

Proposition 3.1. (i) An m-isometry on a finite dimensional space is embeddable
into a C0-group.

(ii) A normal m-isometry is embeddable.

(iii) A weighted forward shift m-isometry is not embeddable.

Proof. (i) On a finite-dimensional space an operator can be embeddable if and only if
its spectrum does not contain 0 (see, [10, page 166]). Moreover, on finite-dimensional
spaces the spectrum of m-isometries is contained in the unit circle. Hence any m-
isometry on finite dimensional space is embeddable into a C0-group.

(ii) If T is a normal m-isometry, then T ∗ is an m-isometry. By [2, Corollary 1.2.2]
T is invertible and by [10, Theorem V.1.14] T is embeddable.

(iii) Assume that T is a weighted forward shift m-isometry. Then dimKer(T ∗) =
1, ([3] & [6]).

Let Mz be the multiplication operator on the Dirichlet space D(µ) for some finite
non-negative Borel measure on T defined by

D(µ) :=

{
f : D→ C analytic :

∫
D
|f ′(z)|2ϕµ(z)dA(z) <∞

}
,

where A denotes the normalized Lebesgue area measure in D and ϕµ is defined by

ϕµ(z) :=
1

2π

∫
[0,2π)

1− |z|2

|eit − z|2
dµ(t) ,

for z ∈ D.

Proposition 3.2. Mz on D(µ) cannot be embedded into C0-semigroup.

Proof. By Richter’s Theorem [20], Mz is an analytic 2-isometry with dim(KerT ∗) = 1,
then Mz can not be embedded into C0-semigroup.

Let Y be an infinite dimensional Hilbert space. The Hilbert space of all vector
sequences (hn)∞n=1 such that

∑
n≥1 ‖hn‖2 < ∞ with the standard inner product is

denoted `2Y . If (Wn)∞n=1 ⊂ B(Y ) is an uniformly bounded sequence of operators, then
the operator SW ∈ B(`2Y ) defined by

SW (h1, h2, · · · ) := (0,W1h1,W2h2, · · · ) ,

for any (h1, h2, · · · ) ∈ `2Y , is called the operator valued unilateral forward weighted
shifts with weights W := (Wn)n≥1.

Following some ideas of [10, Proposition V.1.18], we obtain the next result.
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Lemma 3.1. Let SW be the operator valued unilateral forward weighted shift on `2Y
with weights W = (Wn)n≥1 for an infinite dimensional Hilbert space Y . Then SW can
be embedded into a C0-semigroup.

Proof. The operator SW is unitarily equivalent to the operator valued unilateral
forward weighted shift on `2L2([0,1),Y ). Moreover, `2L2([0,1),Y ) can be identified with

L2(R+, Y ) by
(f1, f2 · · · )→ (s→ fn(s− n), s ∈ [n, n+ 1)) .

The following family of operators is defined on L2(R+, Y ) for 0 < t ≤ 1 by

(T (t)f)(s) :=


0 s < t

f(s− t) n− 1 + t ≤ s < n

Wnf(s− t) n ≤ s < n+ t ,

namely,

(T (t)f)(s) =


0 s < t∑
n≥1

(
f(s− t)χ[n−1+t,n)(s) +Wnf(s− t)χ[n,n+t)(s)

)
s ≥ t .

In particular, for t = 1, we have that

(T (1)f)(s) =


0 s < 1∑
n≥1

Wnf(s− 1)χ[n,n+1)(s) s ≥ 1 .

Hence T (1) is unitarily equivalent to SW .
We define T (t) := T [t](1)T (t− [t]), where [t] denotes the greatest integer less than

or equal to t, for t > 1.
Let us prove that {T (t)}t≥0 is a C0-semigroup. Given any f ∈ L2(R+, Y ), we have

that
lim
t→0+

T (t)f(s) =
∑
n≥1

χ[n−1,n)f(s) = f(s) ,

in the strong topology of L2(R+, Y ).
Let t, t′ ∈ [0, 1). Then T (t)T (t′)f(s) = T (t)f̃(s), where

f̃(s) := T (t′)f(s) =


0 s < t′∑
n≥1

(χ[n−1+t′,n)(s) +Wnχ[n,n+t′)(s))f(s− t′) s ≥ t′ .

Then
T (t)T (t′)f(s)
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=



0 s < t+ t′∑
m≥1

(∑
n≥1

(
χ[n−1+t′,n)(s− t) +Wnχ[n,n+t′)(s− t)

)
χ[m−1+t,m)(s)+

Wm

∑
n≥1

(
χ[n−1+t′,n)(s− t) +Wnχ[n,n+t′)(s− t)

)
χ[m,m+t)(s)

)
f(s− t′ − t) s ≥ t+ t′

=



0 s < t+ t′∑
m≥1

{∑
n≥1

(
χ[n−1+t′+t,n+t)(s) +Wnχ[n+t,n+t′+t)(s)

)
χ[m−1+t,m)(s)+

Wm

∑
n≥1

(
χ[n−1+t′+t,n+t)(s) +Wnχ[n+t,n+t′+t)(s)

)
χ[m,m+t)(s)

}
f(s− t′ − t) s ≥ t+ t′

(6)

If t′ + t < 1, then (6) is given by

T (t)T (t′)f(s) =


0 s < t′ + t∑
n≥1

(
χ[n−1+t′+t,n)(s) +Wnχ[n,n+t′+t)(s)

)
f(s− t′ − t) s ≥ t′ + t

= T (t+ t′)f(s) .

Denote t′′ := t′ + t− [t′ + t]. If t′ + t > 1, then t′′ = t′ + t− 1 and

T (t+ t′)f(s) = T [t+t′](1)(T (t+ t′ − [t+ t′]))f(s)

= T (1)T (t+ t′ − 1)f(s) = T (1)T (t′′)f(s)

=


0 s < t′′

T (1)
∑
n≥1

(χ[n−1+t′′,n)(s) +Wnχ[n,n+t′′)(s))f(s− t′′) s ≥ t′′

=


0 s− t′′ < 1∑
m≥1

Wm

∑
n≥1

(
χ[n−1+t′′,n)(s− 1) +Wnχ[n,n+t′′)(s− 1)

)
χ[m,m+1)(s)f(s− t′′ − 1) s− t′′ ≥ 1

=


0 s− t′′ < 1∑
m≥1

Wm

∑
n≥1

(
χ[n+t′′,n+1)(s) +Wnχ[n+1,n+t′′+1)(s)

)
χ[m,m+1)(s)f(s− t′′ − 1) s ≥ 1 + t′′

11



=


0 s < t+ t′∑
n≥1

(
Wnχ[n+t′′,n+1)(s) +Wn+1Wnχ[n+1,n+t′′+1)(s)

)
f(s− t′ − t) s ≥ t+ t′ .

On the other hand, by (6) we have that

T (t)T (t′)f(s) =


0 s < t+ t′∑
n≥1

(
Wnχ[n+t′+t−1,n+1)(s) +Wn+1Wnχ[n+1,n+t′+t)(s)

)
f(s− t′ − t) s ≥ t+ t′

This completes the proof.

We say that an operator T ∈ B(H) satisfies the kernel condition if

T ∗T (KerT ∗) ⊂ KerT ∗ .

Corollary 3.1. A non-unitary 2-isometry T on a Hilbert space satisfying the kernel
condition can be embedded into C0-semigroup if and only if dim(KerT ∗) =∞.

Proof. If T is a non-unitary 2-isometry on a Hilbert space satisfying the kernel con-
dition. Then, as a consequence of [4, Theorem 3.8], we obtain that T ∼= U ⊕W with
U unitary and W a operator valued unilateral forward weighted shifts operator in `2M
with dimM = dim(KerT ∗). Thus by [10, Theorem V.1.19] and Lemma 3.1, T can be
embedded into C0-semigroup.

The Wold-type Decomposition Theorem for 2-isometries, (see [16, 22]), states that
any 2-isometry can be decomposed as a direct sum of an unitary operator and an
analytic 2-isometry.

Some natural questions arise.

Question 3.1. Let T be an analytic 2-isometry on a Hilbert space. Can be embedded
T into C0-semigroup if and only if dim(KerT ∗) =∞?

Question 3.2. Is it possible to characterize all m-isometries on Hilbert spaces having
the embedding property?

4 Translation semigroups of m-isometries

In this section, we discuss examples of semigroups of m-isometries.

Definition 4.1. By a right admissible weighted function in (0,∞), we mean a mea-
surable function ρ : (0,∞)→ R satisfying the following conditions:

1. ρ(τ) > 0 for all τ ∈ (0,∞),

12



2. there exist constants M ≥ 1 and ω ∈ R such that ρ(t + τ) ≤ Meωtρ(τ) holds
for all τ ∈ (0,∞) and t > 0.

For a right admissible weighted function, we define the weighted space, L2(R+, ρ),
of measurable functions f : R+ → C such that

‖f‖L2(R+, ρ) =

∫ ∞
0

|f(s)|2ρ(s)ds <∞ .

Then the right translation semigroup {S(t)}t≥0 given for t ≥ 0 and f ∈ L2(R+, ρ) by

(S(t)f)(s) :=

{
0 if s ≤ t

f(s− t) if s > t ,

is a strongly continuous semigroup and straightforward computation shows that for
s, t ≥ 0 and f ∈ L2(R+, ρ)

(S∗(t)f)(s) =
ρ(s+ t)

ρ(s)
f(s+ t) .

Theorem 4.1. Let {S(t)}t≥0 be the right translation C0-semigroup on L2(R+, ρ) with
ρ a continuous function. The operator S(t) is an m-isometry for every t > 0 if and
only if ρ(s) is a polynomial of degree at most m.

Proof. By definition, S(t) is an m-isometry for every t > 0 if

m∑
k=0

(
m

k

)
(−1)m−k‖Sk(t)f‖2 = 0 ,

for all t ≥ 0 and f ∈ L2(R+, ρ). That is,∫ ∞
0

(
m∑
k=0

(
m

k

)
(−1)m−k

ρ(s+ kt)

ρ(s)

)
|f(s)|2ρ(s)ds = 0 , (7)

for all t ≥ 0 and f ∈ L2(R+, ρ). Fixed t ≥ 0 , we define

g(s) :=
m∑
k=0

(
m

k

)
(−1)m−k

ρ(s+ kt)

ρ(s)
.

If g(s) 6= 0, we can suppose without lost of generality that, g(s) > 0, for some s ≥ 0.
Then by continuity of ρ and ρ(τ) > 0 for all τ ≥ 0, we obtain that there exists an
interval I ⊂ R+, with finite measure, such that there exists M > 0 with g(s) > M for
all s ∈ I.

Let f1(s) := 1√
ρ(s)

χI(s) ∈ L2(R+, ρ). Then by (7) we have that

0 =

∫ ∞
0

g(s)|f1(s)|2ρ(s)ds =

∫
I

g(s)ds > Mµ(I) ,

13



which it is an absurd. So,

m∑
k=0

(
m

k

)
(−1)m−k

ρ(s+ kt)

ρ(s)
= 0 ,

for all s ≥ 0 and t ≥ 0. Then by [15, Theorem 13.5], the function ρ is a polynomial
of degree at most m.

Corollary 4.1. Let {S(t)}t≥0 be the right translation C0-semigroup on L2(R+, ρ) with
ρ a continuous function. Then S(t) is a strict m-isometry for every t > 0 if and only
if ρ(s) is a polynomial of degree m− 1.

Consider the right weighted translation C0-semigroup, Sρ, defined on L2(R+) as

(Sρ(t)f)(s) :=


0 if s ≤ t

ρ(s)

ρ(s− t)
f(s− t) if s > t .

Then {Sρ(t)}t≥0 is a strongly continuous semigroup if and only if ρ is a right admissible
weighted function. For s, t ≥ 0 and f ∈ L2(R+)

(S∗ρ(t)f)(s) =
ρ(s+ t)

ρ(s)
f(s+ t) .

See [9] for further details.
We now improve part (2) of [18, Corollary 3.3].

Theorem 4.2. Let {Sρ(t)}t≥0 be the right weighted translation C0-semigroup on
L2(R+) with ρ a continuous function. Then Sρ(t) is an m-isometry for every t > 0 if
and only if ρ(s)2 is a polynomial of degree at most m.

Proof. Consider Mρ : L2(R+, ρ2) → L2(R+) defined by Mρf = ρf . Then Sρ(t) =
MρS(t)M−1

ρ . Thus Sρ(t) is an m-isometry for every t > 0 on L2(R+) if and only if
S(t) is an m-isometry for every t > 0 on L2(R+, ρ2) if and only if ρ(s)2 is a polynomial
of degree at most m.

Corollary 4.2. Let {Sρ(t)}t≥0 be the right weighted translation C0-semigroup on
L2(R+) with ρ a continuous function. Then Sρ(t) is a 2-isometry for every t > 0
if and only if ρ(s)2 = as+ b for some constants a and b.

We characterize below the weighted spaces where the adjoint of translation oper-
ator is an m-isometry.

Definition 4.2. By a left admissible weighted function in (0,∞), we mean a measur-
able function w : (0,∞)→ R satisfying the following conditions:

1. w(τ) > 0 for all τ ∈ (0,∞),
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2. there exist constants M ≥ 1 and α ∈ R such that w(τ) ≤ Meαtw(t + τ) holds
for all τ ∈ (0,∞) and all t > 0.

Let {T (t)}t≥0 be the left shift semigroup given for t ≥ 0 and f ∈ L2(R+, w) by

(T (t)f)(s) := f(s+ t) .

Then {T (t)}t≥0 is a strongly continuous semigroup [11]. For f ∈ L2(R+, w),

(T ∗(t)f)(s) =


0 if s ≤ t

w(s− t)
w(s)

f(s− t) if s > t .

Theorem 4.3. Let {T ∗(t)}t≥0 be the adjoint of left weighted translation C0-semigroup
on L2(R+, w), such that w is a continuous function. Then T ∗(t) is an m-isometry for
every t > 0 if and only if w(s) = 1

p(s)
for some polynomial p of degree at most m.

Proof. T ∗(t) is an m-isometry for every t > 0 if and only if

m∑
k=0

(
m

k

)
(−1)m−k‖T ∗k(t)f‖2 = 0 ,

for all t > 0 and f ∈ L2(R+, w). Then

0 =
m∑
k=0

(−1)m−k
(
m

k

)
(−1)m−k

∫ ∞
kt

∣∣∣∣w(s− kt)
w(s)

f(s− kt)
∣∣∣∣2w(s)ds

=

∫ ∞
0

(
m∑
k=0

(
m

k

)
(−1)m−k

w(u)

w(u+ kt)

)
|f(u)|2w(u)du ,

for all f ∈ L2(R+, w). As in the proof of Theorem 4.1 we get that 1
w(s)

is a polynomial
of degree at most m.

Corollary 4.3. Let {T ∗(t)}t≥0 be the adjoint of left weighted translation C0-semigroup
on L2(R+, w) such that w is a continuous function. Then T ∗(t) is a strict m-isometry
for every t > 0 if and only if w(s) = 1

p(s)
for some polynomial p of degree m− 1.
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