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Abstract. We obtain the admissible sets on the unit circle to be the spectrum of a strict

m-isometry on an n-finite dimensional Hilbert space. This property gives a better picture of

the correct spectrum of an m-isometry. We determine that the only m-isometries on R2 are

3-isometries and isometries giving by ±I + Q, where Q is a nilpotent operator. Moreover,

on real Hilbert space, we obtain that m-isometries preserve volumes. Also we present a way

to construct a strict (m+ 1)-isometry with an m-isometry given, using ideas of Aleman and

Suciu [7, Proposition 5.2] on infinite dimensional Hilbert space.

1. Introduction

Let H be a Hilbert space. Denote by L(H) the algebra of bounded linear operators on H.

For T ∈ L(H) we consider the adjoint operator T ∗ ∈ L(H), which is the unique map that

satisfies

〈Tx, Ty〉 = 〈T ∗Tx, y〉 ,

for every x, y ∈ H. Given T ∈ L(H), denote by Ker(T ) and R(T ), the kernel and range

of T , respectively. For a positive integer m, an m-isometry is an operator T ∈ L(H) which

satisfies the condition

(yx− 1)m(T ) :=
m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0 ; (1.1)

equivalently
m∑
k=0

(−1)m−k
(
m

k

)
‖T kx‖2 = 0 , (1.2)
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for every x ∈ H. A strict m-isometry is an m-isometry which is not an (m − 1)-isometry.

This class of operators was introduced by Agler in [2] and was studied by Agler and Stankus

in [4, 5, 6].

Let n be a positive integer. Recall that Q ∈ L(H) is n-nilpotent if Qn = 0 and Qn−1 6= 0.

A notion related with m-isometries is the following. An operator T ∈ L(H) is isometric

n-Jordan if there exist an isometry A ∈ L(H) and an n-nilpotent Q ∈ L(H) such that

T = A+Q with AQ = QA.

Theorem 1.1. [13, Theorem 2.2] Any isometric n-Jordan operator is a strict (2n − 1)-

isometry.

Actually, a much stronger result is true. Indeed in [15, Theorem 3], it is obtained a

generalization of Theorem 1.1 for m-isometries: if T is an m-isometry, Q is an n-nilpotent

operator and they commute, then T+Q is a (2n+m−2)-isometry. See also [25, 28]. Moreover,

the study of isometric n-Jordan operators concerning with m-isometries on Banach spaces

context has been studied in [15].

Another way of generalization was obtained in [13, Proposition 2.6] for sub-isometry n-

Jordan operator. Recall that T is a sub-isometry n-Jordan operator if T is the restriction of

an isometry n-Jordan operator J to an invariant subspace of J .

Notice that Theorem 1.1 gives an easy way to construct examples of m-isometries, for an

odd m. It is sufficient to choose the identity operator as the isometry and any n-nilpotent

operator with n = m+1
2

.

At a first glance, we could think that all the m-isometries come from isometric n-Jordan.

However, this is not true, since there are strict m-isometries for even m, see [8, Proposition 9].

What can we say about m-isometries with odd m? Recently, Yarmahmoodi and Hedayatian

have proven that the only isometric n-Jordan weighted shift operators are isometries [30,

Theorem 1]. So, there are m-isometries that are not isometric n-Jordan, since Athavale in

[8] gave examples of strict m-isometries with the weighted shift operator for all integers m.

Whenever, if H is finite dimensional is possible to say more.

Some authors have given examples of m-isometries. For example with the unilateral

or bilateral weighted shift [1, 12, 14, 18] and with the composition operator [14, 16, 23].
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Another way to construct examples of m-isometries is developing different tools like tensor

product [19], functional calculus [24], on Hilbert-Schmidt class [17] and with C0-semigroups

[10, 21, 29].

The purpose of this paper is to make a clear picture of m-isometries on finite dimensional

Hilbert space. In Section 2, we begin with the study of m-isometries on R2 and on Rn, with

n ≥ 3. We give all the 3-isometries on R2. Also, we obtain the expression of m-isometries

and study how this class of operators change volumes on Rn. Moreover, we study the case

of complex Hilbert space, where we prove the admissible sets on the unit circle to be the

spectrum of an m-isometry. In Section 3, we reproduce similar ideas of Aleman and Suciu

[7, Proposition 5.2] to define a 3-isometry using a given 2-isometry. In fact, we obtain a way

to construct a strict (m+ 1)-isometry using a weaker condition than a strict m-isometry.

In particular, we will answer the following problems.

Problem 1.2. Let T ∈ L(H) with H an n-finite dimensional Hilbert space and m an odd

integer. Are all strict m-isometries of the form λI +Q, where Q is a nilpotent operator and

λ is a complex number with modulus 1?

Problem 1.3. Let T ∈ L(Rn). How does an m-isometry T change volumes?

Problem 1.4. Let H be any n-finite dimensional Hilbert space and let T be an m-isometry

with odd m. What can we say about the spectrum?

2. m-isometries on finite dimensional Hilbert space

Recall some important properties of the spectrum of an m-isometry.

Denote D and ∂D the closed unit disk and the unit circle, respectively.

Lemma 2.1. Let m be a positive integer, H be a Hilbert space and T ∈ L(H) be an m-

isometry. Then

(1) [4, Lemma 1.21] σ(T ) = D or σ(T ) ⊆ ∂D.

(2) [3, Lemma 19] The eigenvectors of T corresponding to distinct eigenvalues are or-

thogonal.
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Remark 2.2. (1) Notice that any m-isometry on a finite dimensional space is bijective.

(2) It is well known that if Q is k-nilpotent on an n-dimensional vector space, then k ≤ n.

Denote

Im(H) := {T ∈ L(H) : T is an m-isometry} .

The following theorem gives a nice picture of m-isometries on finite dimensional spaces.

Theorem 2.3. ([13, Theorem 2.7], [3, page 134]) Let H be an n-finite dimensional Hilbert

space and T ∈ L(H). Then

(1) T is a strict m-isometry if and only if T is an isometric k-Jordan operator, where

m = 2k − 1 with k ≤ n.

(2) I1(H) = I2(H) ( I3(H) = I4(H) ( . . . ( I2n−1(H) = Ij(H) for all j ≥ 2n− 1.

Proof. We include the proofs for completeness.

(1) Assume that T is a strict m-isometry on H. Then the spectrum of T , σ(T ) =

{λ1, λ2, . . . , λs}, where λi are eigenvalues of modulus 1, since the spectrum of T must be

in the unit circle and m is odd [4, Lemma 1.21 & Proposition 1.23]. By part (2) of Lemma

2.1, the spectral subspaces of T , Hi := Ker(T − λi)ni are mutually orthogonal and

T ∼= T|H1 ⊕ · · · ⊕ T|Hs ,

where n1, . . . , ns are positive integers such that Ker(T−λi)ni = Ker(T−λi)N for all N ≥ ni.

Moreover, for all j ∈ {1, . . . , s}, we have that σ(T|Hj
) = {λj} and T|Hj

is of the form λj +Qj

for some nilpotent operator Qj. So, T = A + Q for some isometry, in fact unitary diagonal

operator A and some nilpotent operator Q such that AQ = QA.

The converse is consequence of Theorem 1.1.

(2) Let us prove that I2`−1(H) = I2`(H) for all ` ∈ N. Recall that if T is (2`)-isometry,

then T is bijective and so T is (2`− 1)-isometry [4, Proposstion 1.23]. Moreover, the highest

degree of nilpotent operator on n-dimensional Hilbert space is n. The result is a consequence

of Theorem 1.1. �
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2.1. m-isometries on real Hilbert spaces. Next, we study the m-isometries on Rn.

Based on the above results, we obtain all m-isometries on R2.

Theorem 2.4. If T ∈ L(R2) is a strict m-isometry, then m = 1 or m = 3 and T = A+Q,

where A is an isometry and Q is a nilpotent operator of order 2 that commutes.

Recall that isometries on R2 are given by

Rθ :=

 cos θ − sin θ

sin θ cos θ

 and Sθ :=

 cos θ sin θ

sin θ − cos θ

 ,

where

(1) Rθ is a rotation (about 0) and its determinant, det(Rθ) is 1 and

(2) Sθ is a symmetry respect to the straight line of equation x2 = tan(θ/2)x1 and

det(Sθ) = −1.

And the non-zero nilpotent operators on R2 are λM, λN and λQk where

M :=

 0 1

0 0

 , N :=

 0 0

1 0

 Qk :=

 1 k

− 1
k
−1

 , (2.3)

with k 6= 0 and λ ∈ C \ {0}.

We are interested in studying isometries that commute with nilpotent operators on R2.

Lemma 2.5. The unique isometries on L(R2) that commute with a non-zero nilpotent op-

erator are the trivial cases, that is, ±I.

Proof. Simple calculations prove that

RθM = MRθ ⇐⇒ RθN = NRθ ⇐⇒ RθQk = QkRθ ⇐⇒ sin θ = 0⇐⇒ θ = 0 or θ = π .

That is, the unique isometries of type Rθ which commute with some non-zero nilpotent

(hence with all the nilpotent) are R0 = I and Rπ = −I.

Analogously, we have that

SθM = MSθ ⇐⇒ SθN = NSθ ⇐⇒ SθQk = QkSθ ⇐⇒ sin θ = cos θ = 0 ,

which it is impossible. Hence there are not isometries Sθ which commute with some non-zero

nilpotent operator. �
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Taking into account Theorem 2.3 we give the unique strict 3-isometries on R2. Indeed, we

answer Problem 1.2 for n = 2 in the following result.

Theorem 2.6. The strict 3-isometries on R2 are of the form ±I+Q, where Q is a non-zero

nilpotent operator given in (2.3).

Proof. It is immediate by Theorem 2.4 and Lemma 2.5.

�

Let T ∈ L(Rn) with n ≥ 3 and let us consider the following n conditions:

(Mk) Sk(Tx1, Tx2, . . . , Txk) = Sk(x1, x2, . . . , xk)

for all x1, x2, . . . , xk ∈ Rn and k = 1, 2, . . . , n, where Sk(x1, x2, . . . , xk) denotes the k-

dimensional measure of the set

{λ1x1 + λ2x2 + . . .+ λkxk : 0 ≤ λi ≤ 1, for i = 1, 2, . . . , k} .

Lemma 2.7. Let T ∈ L(Rn). Then

(1) [26, Teorema II] T satisfies the conditions (M1), (M2), · · · , (Mn−1) if and only if T

is an isometry.

(2) [20] The condition (Mn) is equivalent to det(T ) = ±1.

An easy application of Theorem 1.1 gives that, for example in R3, we have strict 3-

isometries giving by ±I+Q, where Q is a 2-nilpotent operator and strict 5-isometries giving

by ±I +Q, where Q is a 3-nilpotent operator.

The next result gives answer to Problems 1.2 and 1.3 for n ≥ 3, where n is the dimension

of the Hilbert space.

Theorem 2.8. Let n ≥ 3. Then the following properties follow:

(1) There are non-trivial strict m-isometries on L(Rn) for any odd m less than 2n − 1,

that is, there exists an isometry different from ±I such that commutes with a non-zero

k-nilpotent operator with k ∈ {1, 2, · · · , n− 1}.

(2) The m-isometries preserve volumes.
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Proof. (1) Define

A(x1, x2, . . . , xn) : = (−x1, x2, . . . , xn)

Qj(x1, x2, . . . , xn) : = (0, x3, x4, · · · , xj+1, 0, · · · , 0) .

Then A is an isometry and Qj is a j-nilpotent operator such that

AQj(x1, x2, . . . , xn) = QjA(x1, x2, . . . , xn) = (0, x3, x4, . . . , xj+1, 0, . . . , 0) ,

for all (x1, x2, . . . , xn) ∈ Rn. By Theorem 1.1, we get that A + Qj is a non trivial strict

(2j − 1)-isometry for j = 1, . . . , n− 1.

(2) By Lemma 2.7, it will be enough to prove that det(A + Q) = ±1 for all isometries

A that commute with a nilpotent operator Q. Since AQ = QA, then σ(A + Q) = σ(A)

by [31, Proposition 1.1]. According to the spectrum of an isometry on a finite dimensional

space, we have that the spectrum of A is a closed subset of the unit circle. By [9, page 150],

the determinant of T is the product of the eigenvalues of T , counting multiplicity. Hence

det(T ) = ±1.

�

The converse of part (2) of Theorem 2.8 is not true, as prove the following example.

Example 2.9. Let T :=


1 0 0

0 2 1

0 1 1

. Then det(T ) = 1 and T is not a 3-isometry, since

‖T 3x‖2 − 3‖T 2x‖2 + 3‖Tx‖2 − ‖x‖2 6= 0 ,

for x := (1, 1, 0).

2.2. On complex Hilbert space. We recall the following results about the spectrum of

m-isometries.

Lemma 2.10. [13, Theorem 4.4] Let H be an infinite dimensional Hilbert space.

(1) If K is any compact subset of ∂D, then there exists a strict m-isometry for any odd

number m such that σ(T ) = K.
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(2) If K is the closed unit disk, then there exits a strict m-isometry for any integer

number m.

The main aim of this section is to solve Problem 1.4.

Let T ∈ L(Cn) be an m-isometry. It is clear that σ(T ) ⊆ ∂D by part (1) of Lemma 2.1

and σ(T ) has at most n different eigenvalues. Indeed if K := {λ1, · · · , λn} with λi different

complex numbers on the unit circle, then it is possible to define an isometry T such that

σ(T ) = K. In particular, the following operator

T (x1, · · · , xn) := (λ1x1, · · · , λnxn)

is an isometry on Cn with σ(T ) = {λ1, · · · , λn}.

In the following theorem we prove that any m-isometry with m ≥ 3 on Cn can not have

n different eigenvalues.

Theorem 2.11. Any strict (2k − 1)-isometry on Cn with 2 ≤ k ≤ n has at most n − 1

distinct eigenvalues.

Proof. Assume that T ∈ L(Cn) is a strict (2k − 1)-isometry with σ(T ) = {λ1, ..., λn} where

λ1, ..., λn are different eigenvalues of T . Then T could be written as T = PSP−1, for some

P ∈ L(Cn) where

S :=


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0

0 . . . 0 λn


and |λi| = 1 for i ∈ {1, · · · , n}, by part (1) of Lemma 2.1. Since T is a strict (2k − 1)-

isometry, by part (2) of Lemma 2.1, the operator P is a unitary operator. This means that

T is unitarily equivalent to S, therefore T is a unitary, which is a contradiction. �

Theorem 2.12. The strict (2k − 1)-isometries on Cn, with 2 ≤ k ≤ n are of the form

(λ1In1 ⊕ ... ⊕ λ`In`
) + Q, with ` ∈ {1, ..., n − k + 1}, where Q is a k-nilpotent, |λj| = 1 for

all j ∈ {1, ..., `} and n1 + ...+ n` = n.
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Proof. Suppose that T is a strict (2k−1)-isometry. By Theorem 2.3, we have that T = U+Q,

where U is a unitary operator and Q is a k-nilpotent operator such that UQ = QU .

Assume, by contradiction, that T has at least n− k + 2 distinct eigenvalues. That means

σ(T ) = {λ1, ..., λr}, with r ≥ n− k + 2.

Then Cn = Hλ1 ⊕ ...⊕Hλr , where Hλi := Ker(T −λiI)ni and ni is the order of multiplicity

of the eigenvalue λi. Denote T|Hi
the restriction operator of T to Hi, for 1 ≤ i ≤ r. Then

T|Hi
= λiIni

+ Qi, where Qi is a hi-nilpotent with 1 ≤ hi ≤ ni. By part (2) of Lemma 2.1,

we conclude that T could be written as

T = (λ1In1 ⊕ ...⊕ λrInr) + (Q1 ⊕ ...⊕Qr) ,

where Q1 ⊕ ...⊕Qr is a k0-nilpotent, with k0 := maxi=1,...,r{hi} and k0 < k. Then we get a

contradiction. �

Corollary 2.13. If T ∈ L(Cn) is a strict (2k − 1)-isometry, with 2 ≤ k ≤ n, then σ(T ) ⊆

{λ1, ..., λn−k+1} ⊆ ∂D.

Corollary 2.14. Any (2n − 1)-isometry on Cn is of the form λI + Q, where Q is an n-

nilpotent operator and λ ∈ ∂D. In particular the spectrum is a single point on the unit

circle.

3. Construction of an (m+ 1)-isometry from an m-isometry

In this section we present a method to construct a Hilbert space Hk and an (m + 1)-

isometry on Hk from an m-isometry T k on a Hilbert space for some integer k. Our result is

based on the construction given by Aleman and Suciu in [7, Proposition 5.2] for m = 2 and

k = 1.

Henceforth H will denote an infinite dimensional Hilbert space.

Given S ∈ L(H), x ∈ H and an integer ` ≥ 1, it is defined

β`(S, x) :=
1

`!

∑̀
j=0

(−1)`−j
(
`

j

)
‖Sjx‖2 .

Note that S is an m-isometry if and only if βm(S, x) = 0 for all vector x ∈ H.
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Consider C[z] the space of all complex polynomials. Given p ∈ C[z], we write

p(z) =
∑
n≥0

pnz
n

and define Lp ∈ C[z] in the following way:

Lp(z) :=
∑
n≥1

pnz
n−1 =

p(z)− p0
z

.

We have that C[z] is an inner product space with the norm ‖.‖2 given by

‖p‖22 :=
∑
n≥0

|pn|2 .

Also if we consider a new norm on C[z] defined by

‖|p‖|2k := ‖p‖22 +
∑
n≥0

‖(Lnkp)(T )x0‖2 ,

it is obtained that C[z] is an inner product space with ‖|.‖|k. Denote Hk its completion with

the new norm.

The following combinatorial result will be useful.

Lemma 3.1. [22, Eq. 0.151 (4)] If m is any positive integer, then

m∑
k=0

(−1)k
(
n

k

)
= (−1)m

(
n− 1

m

)
,

for any integer n ≥ m+ 1.

Recall that the class of m-isometries is stable under powers. However, the converse is not

true. See [11, 27].

Theorem 3.2. Let T ∈ L(H) such that T k is a strict m-isometry on R(T k), for some k,

and x0 ∈ H \ {0} such that βm−1(T
k, T kx0) 6= 0.

(1) For every p ∈ C[z] and j ∈ N,

‖|Mkj
z p‖|2k = ‖|p‖|2k +

j∑
i=1

‖T kip(T )x0‖2 ,

where Mz denotes the multiplication operator defined by Mzp := zp.
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(2) For every p ∈ C[z] and ` ≥ 1,

β`+1(M
k
z , p) =

`!

(`+ 1)!
β`(T

k, T kp(T )x0) . (3.4)

(3) The extension of Mk
z to Hk is an (m+ 1)-isometry.

Proof. (1) Let p be any polynomial and j ∈ N. Then will prove that

‖|Mkj
z p‖|2k = ‖|p‖|2k +

j∑
i=1

‖T kip(T )x0‖2 , (3.5)

by induction. For j = 1 we need to prove that

‖|Mk
z p‖|2k = ‖|p‖|2k + ‖T kp(T )x0‖2 , (3.6)

for any polynomial p.

Let p(z) :=
∑

n≥0 pnz
n. Then

‖|Mk
z p‖|2k = ‖|zkp‖|2k = ‖zkp‖22 +

∑
n≥0

‖(Lnkzkp)(T )x0‖2

= ‖p‖22 + ‖(zkp)(T )x0‖2 +
∑
n≥1

‖(Lnkzkp)(T )x0‖2

= ‖p‖22 + ‖T kp(T )x0‖2 +
∑
n≥0

‖(Lnkp)(T )x0‖2 = ‖|p‖|2k + ‖T kp(T )x0‖2 .

Then (3.6) holds.
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Suppose that (3.5) is true for j. Let us prove it for j + 1. Then

‖|Mk(j+1)
z p‖|2k = ‖|Mkj

z (Mk
z p)‖|2k = ‖|Mk

z p‖|2k +

j∑
i=1

‖T ki(Mk
z p)(T )x0‖2

= ‖|zkp‖|2k +

j∑
i=1

‖T kiT kp(T )x0‖2

= ‖p‖22 +
∑
n≥0

‖(Lnkzkp)(T )x0‖2 +

j∑
i=1

‖T k(i+1)p(T )x0‖2

= ‖p‖22 + ‖T kp(T )x0‖2 +
∑
n≥0

‖(Lnkp)(T )x0‖2 +

j+1∑
i=2

‖T kip(T )x0‖2

= ‖|p‖|2k +

j+1∑
i=1

‖T kip(T )x0‖2 .

So we prove (3.5).

(2) For ` ∈ N, we have

β`+1(M
k
z , p) =

1

(`+ 1)!

`+1∑
j=0

(−1)`+1−j
(
`+ 1

j

)
‖|Mkj

z p‖|2k

=
1

(`+ 1)!

(
(−1)`+1‖|p‖|2k +

`+1∑
j=1

(−1)`+1−j
(
`+ 1

j

)
‖|Mkj

z p‖|2k

)

=
1

(`+ 1)!

(
(−1)`+1‖|p‖|2k +

`+1∑
j=1

(−1)`+1−j
(
`+ 1

j

)(
‖|p‖|2k +

j∑
i=1

‖T kip(T )x0‖2
))

=
1

(`+ 1)!

`+1∑
j=1

(−1)`+1−j
(
`+ 1

j

) j∑
i=1

‖T kip(T )x0‖2

=
1

(`+ 1)!

`+1∑
j=1

‖T kjp(T )x0‖2
`+1∑
i=j

(−1)`+1−i
(
`+ 1

i

)
,

where p is any polynomial.

Using Lemma 3.1, in the last sum, we have that

`+1∑
i=j

(−1)`+1−i
(
`+ 1

i

)
= −

j−1∑
i=0

(−1)`+1−j
(
l + 1

j

)
= (−1)`+j−1

(
`

j − 1

)
.
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So,

β`+1(M
k
z , p) =

1

(`+ 1)!

`+1∑
j=1

‖T kjp(T )x0‖2(−1)`+j−1
(

`

j − 1

)

=
1

(`+ 1)!

∑̀
j=0

(−1)`−j
(
`

j

)
‖T kjp(T )T kx0‖2

=
`!

(`+ 1)!
β`(T

k, T kp(T )x0) .

So, (3.4) is proved.

(3) It is enough to prove that βm+1(M
k
z , p) = 0 for any p ∈ C[z]. This is a consequence of

(3.4), since T k is an m-isometry on R(T k). �

Corollary 3.3. [7, Proposition 5.2] Let T be a 2-isometry on a Hilbert space H. Fix x0 ∈

H \ {0} and let H1 be the completion of the space of analytic polynomials with respect to the

norm

‖p‖21 := ‖p‖22 +
∑
n≥0

‖(Lnp)(T )x0‖2 .

Then the multiplication operator by the independent variable Mzp := zp extends to a 3-

isometry on H1.
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[10] T. Bermúdez, A. Bonilla, H. Zaway, C0-semigroups of m-isometries on Hilbert spaces, J. Math. Anal.

Appl., 472 (2019), no. 2, 879-893.
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