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A B S T R A C T

In this article, we study an inventory system for items that have a power demand pattern and where shortages
are allowed. We suppose that only a fixed proportion of demand during the stock-out period is backordered.
The decision variables are the inventory cycle and the ratio between the initial stock and the total quantity
demanded throughout the inventory cycle. The objective is to maximize the Return on Inventory Investment
(ROII) defined as the ratio of the profit per unit time over the average inventory cost. After analysing
the objective function, the optimal global solutions for all the possible cases of the inventory problem are
determined. These optimal policies that maximize the ROII are, in general, different from those that minimize
the total inventory cost per unit time. Finally, a numerical sensitivity analysis of the optimal inventory policy
with respect to the system input parameters and some useful managerial insights derived from the results are
presented.
1. Introduction

As it is well known, stock management models answer two im-
portant questions: when and how much to order so as to optimize a
certain objective function related to the inventory control. Generally,
the objective function represents the profit per unit of time or the
average cost of inventory. However, in some companies, it may be
more interesting to maximize the return on investment (ROI), instead
of maximizing the profit per unit of time or minimizing the cost of
inventory. This approach to maximizing return on investment in stock
management has already been used in the literature on the topic.
Thus, Otake and Min (2001) studied inventory and investment in qual-
ity improvement policies under return on investment maximization. Li
et al. (2008) developed a return on inventory investment maximization
model under an investment budget constraint for inventory and capital
investment in setup and quality operations. They obtained various
managerial insights into inventory reduction and the uniqueness of the
global optimal solution. Wee et al. (2009) developed a joint replen-
ishment inventory model with stock-dependent demand and shortage
cost constraint under profit and ROI maximization. Yaghin and Ghomi
(2012) studied a hybrid multi objective integrated pricing and lot
sizing model in a fuzzy environment, considering three decision cri-
teria: profit, return on inventory investment and a qualitative objective
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related to customer satisfaction. Yaghin et al. (2013) formulated a
fuzzy inventory model integrating the marketing-inventory and price
discrimination decisions, which maximized the total profit and the
return on inventory investment (ROII) concurrently. Chen and Liao
(2014) studied the return on inventory investment maximization prob-
lem for an intermediary firm of a deteriorating item. Yaghin et al.
(2017) considered the return on inventory investment maximization in
a joint pricing and lot-sizing problem in a fuzzy environment. Misook
(2017) analysed the difference of return on inventory investment by
the firm and industry characteristics and showed that the ROII of
high-growth, low-leverage, large firms was greater than that of all
other firms. Yaghin et al. (2018) developed an integrated model of
ordering, shipping and differential pricing in a two-echelon supply
chain under return on inventory investment maximization. More re-
cently, Pando et al. (2019, 2020) developed inventory models with
stock-dependent demand and non-linear holding cost under the return
on investment maximization. Pando et al. (2021) studied an inventory
system where the demand rate potentially depends on both selling
price and stock level, in which the goal was the maximization of the
profitability index. Baker et al. (2021) analysed how households can
derive substantial financial returns from strategic shopping behaviour
and optimal inventory management of consumer goods. Kouvelis and
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Qiu (2021) studied how capital efficiency metrics, such as return on
investment, affect orders at a stand-alone single stocking stage under
demand uncertainty or within bilateral supply chains of a supplier and
a buyer interacting with the use of a trade-credit-contract.

When shortages occur during the inventory cycle, there are some
customers who are willing to wait for the next replenishment, while
others decide not to wait and they buy the products from other sellers.
This realistic situation is modelled in inventory systems assuming par-
tial backordering. Some recent papers on inventory models allowing
partial backlogging are the articles of Mishra and Singh (2010), Roy
et al. (2011), Pentico and Drake (2011), Sicilia et al. (2012) , Hasanov
et al. (2012), San-José et al. (2017, 2018), Alfares and Ghaithan (2019)
and Shaikh et al. (2019). Usually, in the stock-out situation, the cus-
tomers make the decision to wait or not until the next replenishment,
depending on the time they would have to wait and the possible
compensation of the company if they wait. Thus, the future willingness
to do business with the company also depends on the time remaining
until the arrival of the next replenishment. This approach was partially
assumed in Chern et al. (2005). Later, San-José et al. (2009) developed
an inventory system where both backorder unit cost and lost unit sale
cost have an affine structure: a variable cost depending on the period
of time where shortages exist and a fixed cost. Among other works that
use this last approach to model the shortage cost, we can mention the
papers of Sicilia et al. (2012), and San-José et al. (2014, 2017).

In real-life inventory systems, the demand rate of an item usually
depends on time so, based on this assumption, several approaches have
been proposed in the literature to model this situation. One of these
approaches considers that demand follows a power pattern during the
scheduling period or inventory cycle. It leads to model different ways
of drawing units from the inventory. These ways are characterized
by the demand pattern indices, which describe the behaviour of de-
mand. Thus, this pattern allows us to model situations where either
a greater part of demand occurs at the beginning of the period, or
scenarios where a larger portion of demand occurs toward the end of
the inventory cycle. In this line, Dye (2004) studied a deteriorating
inventory model with power demand pattern, time-varying deterio-
ration and general time-proportional backlogging rate. Rajeswari and
Vanjikkodi (2012) presented an inventory model where the demand
rate potentially depends on time and a Weibull deterioration rate for
three different scenarios: complete, partial and no backlogging. Ke-
shavarzfard et al. (2019a) studied an economic production model for
multiple items with full backlogging, production rate proportional to
demand rate and demand rate depending linearly on price and time
with a power demand pattern. Adaraniwon and Omar (2019) developed
an EOQ model with a power demand pattern and partial backlogging
for a delayed deteriorating item. Keshavarzfard et al. (2019b) analysed
a production–inventory model with a power demand pattern, a produc-
tion rate proportional to the demand rate and defective items, where
either all the imperfect units are recovered or a certain fraction of these
defective units are reworked and others are removed. Keshavarzfard
et al. (2019c) developed a production system with power demand rate,
dependent production rate and defective items. They considered three
different situations for the inventory system regarding the date that
imperfect products are withdrawn from the stock. San-José et al. (2019)
developed an inventory system where customer demand has a power
pattern, shortages are allowed and the inventory cycle must be an
integer multiple of a fixed time period. San-José et al. (2021) studied
a new lot-size inventory problem for products whose demand pattern
is dependent on price, advertising frequency and time.

The main contribution of this paper is to provide the optimal in-
ventory policy that maximizes the return on inventory investment (that
is, the ratio of the profit per unit time to the average inventory cost),
when customer demand depends on time and shortages are partially
backlogged. To the best of our knowledge, this is the first paper that
simultaneously assumes the following issues, which have not been
2

considered together in the literature: t
(a) the demand rate of the item follows a power demand pattern,
(b) shortages are allowed, but only a proportion of the demand

during the shortage period is backlogged,
(c) both backorder unit cost and lost unit sale cost are composed of

a variable cost, which depends on the length of the waiting time until
the next replenishment and a fixed cost, and

(d) the objective is the maximization of the return on inventory
investment.

Simultaneous consideration of the above assumptions allows us to
model a wide variety of real-life situations and, therefore, makes the
inventory model more realistic.

The rest of the paper is organized as follows. Section 2 presents
the assumptions and notation used throughout the paper. Section 3
formulates mathematically the inventory problem. Optimal inventory
policies considering partial backlogging, complete backlogging and
full lost sales are developed in Section 4. In the same section, the
particular case with constant demand rate is also analysed. Several
numerical examples are solved in Section 5. A numerical sensitivity
analysis of the optimal inventory policy with respect to the system
input parameters and some useful managerial insights derived from the
results are presented in Section 6. Finally, some conclusions and future
research lines are set up in Section 7.

2. Hypothesis of the inventory system

The inventory system analysed in this paper has the following
properties. A single item is considered in the inventory system. The
replenishment is instantaneous. The inventory cycle 𝑇 is a decision
variable of the system. The fluctuations of the inventory level during
the period 𝑇 are continuously repeated in subsequent periods. The
lead-time is zero or negligible. The average demand of the item is
deterministic, with a rate of 𝑟 units per inventory cycle. The way in
which quantities are taken from the inventory depends on the time
when they are withdrawn. Let 𝜆(𝑡) denote the demand rate at time 𝑡
(0 < 𝑡 < 𝑇 ). This demand rate is supposed to be the function

(𝑡) = 𝑟
𝑛

( 𝑡
𝑇

)(1−𝑛)∕𝑛

where 𝑛 is the index of demand pattern, with 𝑛 > 0. Note that if 𝑛 > 1,
then a greater part of demand occurs at the beginning of the period. If
𝑛 = 1, the demand rate is constant throughout the inventory cycle and,
if 𝑛 < 1 then a larger portion of demand occurs toward the end of the
inventory cycle.

Thus, the total quantity demanded along the inventory cycle is
∫ 𝑇
0 𝜆(𝑡)𝑑𝑡 = 𝑟𝑇 . At the beginning of the inventory cycle, there are 𝑆

units in stock. This amount, which is unknown and must be determined,
is a fraction 𝜌 of the demand during the inventory cycle. That is,
𝑆 = 𝜌𝑟𝑇 , with 0 ≤ 𝜌 ≤ 1. Shortages are allowed and let 𝑏 denote the
otal number of shortages during the inventory cycle. Only a fraction 𝛽,

with 0 ≤ 𝛽 ≤ 1, of that unsatisfied demand will be backordered. When
he number of backorders is 𝛽𝑏, the inventory must be replenished. The
rdering cost 𝐴 is constant and independent of the ordered amount. The
rice 𝑐 of acquisition or purchasing and the selling price 𝑠 of a unit of
he item are known constants. The holding cost per unit and per unit
ime ℎ is also a known constant. The unit backorder cost considers a
onstant cost 𝜔0 plus a variable cost 𝜔𝜑, where 𝜑 is the amount of time
he customers wait before receiving the item. The goodwill cost of a lost
ale is also described by a linear function of time for which lost sales
xist with slope 𝜋 and intercept 𝜋0.

The notation used throughout the paper is summarized in Table 1.

. Formulation of the problem

In this section, an inventory model for a single item over an infinite
orizon under power demand pattern is developed. Let 𝐼(𝑡) denote the
et inventory level at time 𝑡, with 0 ≤ 𝑡 ≤ 𝑇 . At the beginning of
he inventory cycle, the replenishment of products raises the inventory
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Table 1
List of notation.
𝜏 Length of the inventory cycle where the net stock is positive (≥ 0).
𝛹 Length of the inventory cycle when net stock is less than or equal to zero (≥ 0).
𝑇 Scheduling period or inventory cycle, that is, 𝑇 = 𝜏 + 𝛹 (> 0, decision variable).
𝐼(𝑡) Inventory level at time 𝑡, with 0 ≤ 𝑡 ≤ 𝑇 .
𝜆(𝑡) Demand rate at time 𝑡.
𝑟 Average demand per cycle (> 0).
𝑛 Demand pattern index (> 0).
𝐴 Replenishment cost (> 0).
𝑐 Unit acquisition cost (> 0).
𝑠 Selling price per unit (𝑠 ≥ 𝑐).
ℎ Unit holding cost per unit time (> 0).
𝜔0 Constant cost per backordered unit (≥ 0).
𝜔 Shortage cost per backordered unit and per unit time (≥ 0).

We assume that 𝜔𝑜 + 𝜔𝜑 is the backorder cost per unit, when the shortage time is 𝜑 and the
demand is backordered.

𝜋0 Constant goodwill cost per lost unit (≥ 0).
𝜋 Unit goodwill cost per unit time (≥ 0).

We consider that 𝜋0 + 𝜋𝜑 is the lost sale cost per unit, when the shortage time is 𝜑 and the
demand is lost.

𝑆 Maximum level of the stock (≥ 0).
𝑏 Demanded quantity during the stock-out period (≥ 0).
𝛽 Fraction of demand which is backordered (0 ≤ 𝛽 ≤ 1).
𝑄 Lot size per cycle, that is, 𝑄 = 𝛽𝑏 + 𝑆 (≥ 0).
𝜌 Ratio between the initial inventory and the total quantity demanded during the inventory cycle,

that is, 𝜌 = 𝑆∕(𝑟𝑇 ) (≥ 0, decision variable).
𝛼0 Fixed unit shortage cost, that is, 𝛼0 = 𝜔0𝛽 + 𝜋0(1 − 𝛽).
𝛼1 Time-dependent average shortage cost, that is, 𝛼1 = 𝜔𝛽 + 𝜋(1 − 𝛽).
𝑔1(𝜌) Auxiliary function, defined as 𝑔1(𝜌) = (1 − 𝛽)𝜌 + 𝛽.
𝑔2(𝜌) Auxiliary function, defined as 𝑔2(𝜌) = (ℎ + 𝛼1)𝜌𝑛+1 − (𝑛 + 1)𝛼1𝜌 + 𝑛𝛼1.
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level up to the maximum level 𝑆. Next, in the stock-in period 𝜏, the
inventory decreases due to demand. Thus, the inventory level at time 𝑡
is given by

𝐼(𝑡) = 𝑆 − 𝑟𝑇
( 𝑡
𝑇

)1∕𝑛
= 𝑟𝑇

(

𝜌 −
( 𝑡
𝑇

)1∕𝑛
)

for 𝑡 ∈ [0, 𝜏].

aking into account that at 𝑡 = 𝜏 the inventory level is zero, it then
eads to 𝜏 = 𝜌𝑛𝑇 . Next, shortages occur during the time period (𝜏, 𝑇 ]
nd a fraction 𝛽 of shortages are backordered. Thus, the net inventory
evel during the stock-out period is given by

(𝑡) = 𝛽𝑟𝑇
(

𝜌 −
( 𝑡
𝑇

)1∕𝑛
)

for 𝑡 ∈ [𝜏, 𝑇 ).

Therefore, the minimum net stock level is 𝐼(𝑇 ) = −𝛽 (1 − 𝜌) 𝑟𝑇 . The
total quantity demanded during the stock-out period is 𝑏 = ∫ 𝑇

𝜏 𝜆(𝑡)𝑑𝑡 =
(1 − 𝜌) 𝑟𝑇 . The lot size is

𝑄 = 𝑆 + 𝛽𝑏 = ((1 − 𝛽) 𝜌 + 𝛽) 𝑟𝑇 . (1)

Taking into account the above assumptions, the total profit per cycle
𝑃 (𝜌, 𝑇 ) is the difference between the revenue per cycle 𝑠𝑄 and the sum
of the ordering cost 𝐴, the purchasing cost 𝑐𝑄, the holding cost, the
backordering cost and the lost sale cost per cycle. The holding cost per
cycle is given by

𝐻𝐶 (𝜌, 𝑇 ) = ℎ∫

𝜏

0
𝐼(𝑡)𝑑𝑡 = ℎ𝑟

𝑛 + 1
𝜌𝑛+1𝑇 2

he backordering cost is

𝐶 (𝜌, 𝑇 ) = ∫

𝑇

𝜏

(

𝜔0𝛽𝜆(𝑡) + 𝜔∫

𝑡

𝜏
𝛽𝜆(𝑢)𝑑𝑢

)

𝑑𝑡

= 𝜔0𝛽 (1 − 𝜌) 𝑟𝑇 + 𝜔𝛽𝑟𝑇 2
(

𝑛
𝑛 + 1

− 𝜌 +
𝜌𝑛+1

𝑛 + 1

)

nd the goodwill lost sale cost is given by

𝐶 (𝜌, 𝑇 ) = ∫

𝑇

𝜏

(

𝜋0 (1 − 𝛽) 𝜆(𝑡) + 𝜋 ∫

𝑡

𝜏
(1 − 𝛽) 𝜆(𝑢)𝑑𝑢

)

𝑑𝑡

= 𝜋0 (1 − 𝛽) (1 − 𝜌) 𝑟𝑇 + 𝜋 (1 − 𝛽) 𝑟𝑇 2
(

𝑛
𝑛 + 1

− 𝜌 +
𝜌𝑛+1

𝑛 + 1

)

Thus, the total profit along an inventory cycle is

𝑃𝐶(𝜌, 𝑇 ) = 𝑠 − 𝑐 𝑄 − 𝐴 +𝐻𝐶 𝜌, 𝑇 + 𝐵𝐶 𝜌, 𝑇 + 𝐿𝐶 𝜌, 𝑇
3

( ) ( ( ) ( ) ( )) 𝐴
and, consequently, the return on inventory investment (ROII) is defined
by

𝑅𝑂𝐼𝐼(𝜌, 𝑇 ) =
𝑃𝐶(𝜌, 𝑇 )
𝐶𝐶(𝜌, 𝑇 )

, (2)

where 𝐶𝐶(𝜌, 𝑇 ) is the total cost per cycle, which is given by 𝑐𝑄 + 𝐴 +
𝐻𝐶 (𝜌, 𝑇 ) + 𝐵𝐶 (𝜌, 𝑇 ) + 𝐿𝐶 (𝜌, 𝑇 ).

. Optimal solution

To find the optimal inventory policy, three scenarios can be consid-
red: (i) partial backordering (i.e., 0 < 𝛽 < 1); (ii) full backordering
i.e., 𝛽 = 1) and (iii) full lost sales (i.e., 𝛽 = 0). Next, we study the case
hen 𝛽 ∈ (0, 1).

4.1. Partial backordering scenario (0 < 𝛽 < 1)

Since 𝛽 > 0, after a few algebraic manipulations, and using (1), the
return on inventory investment given in Eq. (2) can be expressed as

𝑅𝑂𝐼𝐼(𝜌, 𝑇 ) = 𝑠
𝑐 + 𝐴𝐶 (𝜌, 𝑇 )

− 1, (3)

here 𝐴𝐶 (𝜌, 𝑇 ) represents the average inventory cost (without includ-
ng the purchasing cost) per ordered unit of item. That is,

𝐶 (𝜌, 𝑇 ) =
𝐶𝐶 (𝜌, 𝑇 ) − 𝑐𝑄

𝑄

= 1
((1 − 𝛽) 𝜌 + 𝛽) 𝑟𝑇

(𝐴 +𝐻𝐶 (𝜌, 𝑇 ) + 𝐵𝐶 (𝜌, 𝑇 ) + 𝐿𝐶 (𝜌, 𝑇 ))

= 𝐴
𝑟𝑔1(𝜌)𝑇

+
𝑔2(𝜌)

(𝑛 + 1)𝑔1(𝜌)
𝑇 +

𝛼0(1 − 𝜌)
𝑔1(𝜌)

,

where 𝛼0 = 𝛽𝜔0+(1−𝛽)𝜋0, 𝑔1(𝜌) = (1−𝛽)𝜌+𝛽 and 𝑔2(𝜌) = (ℎ+𝛼1)𝜌𝑛+1−(𝑛+
)𝛼1𝜌+𝑛𝛼1, with 𝛼1 = 𝛽𝜔+(1−𝛽)𝜋. Note that 𝑔1(𝜌) is a linear function on
0,∞) with positive slope. Also, 𝑔2(𝜌) is a positive and convex function
n [0,∞) and has a minimum at point

𝑎 =
(

𝛼1∕(𝛼1 + ℎ)
)1∕𝑛 ∈ [0, 1), (4)

ith 𝑔2(𝜌𝑎) = 𝛼1𝑛
(

1 −
(

𝛼1∕(𝛼1 + ℎ)
)1∕𝑛

)

> 0.
Evidently, in this case 𝛽 > 0, the optimal solution that minimizes
𝐶 (𝜌, 𝑇 ) is the same as the optimal solution that maximizes the ROII
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function given by (2), because this Eq. (2) can be expressed as (3). Thus,
our problem is to solve the following nonlinear program

min
𝑇>0
0≤𝜌≤1

𝐴𝐶 (𝜌, 𝑇 ) . (5)

To do so, we first consider fixed 𝜌 ∈ [0, 1] and the variable 𝑇 > 0.
Thus, we obtain the function 𝐴𝐶𝜌(𝑇 ) = 𝐴𝐶(𝜌, 𝑇 ), which is a strictly
convex function that attains its minimum at

𝑇 ∗
𝜌 =

√

(𝑛 + 1)𝐴
𝑟𝑔2(𝜌)

, (6)

ith value

(𝜌) = 𝐴𝐶𝜌(𝑇 ∗
𝜌 ) =

1
𝑔1(𝜌)

⎛

⎜

⎜

⎝

√

4𝐴𝑔2(𝜌)
(𝑛 + 1)𝑟

+ 𝛼0(1 − 𝜌)
⎞

⎟

⎟

⎠

(7)

= 1
(1 − 𝛽)𝜌 + 𝛽

⎛

⎜

⎜

⎝

√

4𝐴
(

(ℎ + 𝛼1)𝜌𝑛+1 − (𝑛 + 1)𝛼1𝜌 + 𝑛𝛼1
)

(𝑛 + 1)𝑟
+ 𝛼0(1 − 𝜌)

⎞

⎟

⎟

⎠

(8)

Next, taking into account the definition of the function 𝑔2(𝜌), we can
consider the following two cases: (i) 𝛼1 > 0 and (ii) 𝛼1 = 0. Remember
that 𝛼1 is the time-dependent average shortage cost.

4.1.1. Case 𝛼1 > 0
From (7), the first derivative of 𝑊 (𝜌) can be expressed as

𝑊 ′(𝜌) =
𝐿(𝜌)

√

(𝑛 + 1)𝑟𝑔2(𝜌)𝑔21 (𝜌)
, (9)

where

𝐿(𝜌) =
√

𝐴
(

𝑔1(𝜌)𝑔′2(𝜌) − 2(1 − 𝛽)𝑔2(𝜌)
)

− 𝛼0
√

(𝑛 + 1)𝑟𝑔2(𝜌) (10)

Substituting the functions 𝑔1(𝜌) and 𝑔2(𝜌) into (10), we have

𝐿(𝜌) = (ℎ + 𝛼1)
√

𝐴 (𝜌(𝑛 − 1)(1 − 𝛽) + 𝛽(𝑛 + 1)) 𝜌𝑛

− 𝛼0
√

(𝑛 + 1)𝑟
[

(ℎ + 𝛼1)𝜌𝑛+1 − 𝛼1 (𝜌(𝑛 + 1) − 𝑛)
]

− 𝛼1
√

𝐴 (2𝑛 + 𝛽(1 − 𝑛) − (𝑛 + 1)(1 − 𝛽)𝜌) . (11)

From (9), it is clear that 𝑠𝑖𝑔𝑛(𝑊 ′(𝜌)) = 𝑠𝑖𝑔𝑛(𝐿(𝜌)). Moreover, since
𝑔2(𝜌) is a positive and convex function, it follows that 𝑔′2(𝜌) < 0 for
𝜌 < 𝜌𝑎, where 𝜌𝑎 is the point at which 𝑔2(𝜌) attains its minimum. Thus,
from (10), we see that 𝐿(𝜌) < 0 for 𝜌 ≤ 𝜌𝑎. Therefore, we only need to
analyse the function 𝐿(𝜌) for 𝜌 ∈ (𝜌𝑎, 1].

Since the second derivative of 𝑊 (𝜌) is

𝑊 ′′(𝜌) =
2𝑔2(𝜌)𝑔1(𝜌)𝐿′(𝜌) − 𝐿(𝜌)

(

4𝑔2(𝜌)𝑔′1(𝜌) + 𝑔1(𝜌)𝑔′2(𝜌)
)

2
√

(𝑛 + 1)𝑟𝑔32 (𝜌)𝑔
3
1 (𝜌)

,

it follows that if 𝜌0 is a point with 𝐿(𝜌0) = 0 and 𝐿′(𝜌0) > 0, then
𝑊 ′′(𝜌0) > 0 and 𝜌0 is a local minimum of the function 𝑊 (𝜌). Derivating
Eq. (10) and taking into account that 𝑔′1(𝜌) = 1 − 𝛽, we have

𝐿′(𝜌) = −
√

𝐴(1 − 𝛽)𝑔′2(𝜌) +
√

𝐴𝑔1(𝜌)𝑔′′2 (𝜌) − 𝛼0
√

(𝑛 + 1)𝑟
𝑔′2(𝜌)

2
√

𝑔2(𝜌)

Therefore, if 𝜌0 is a root of the function 𝐿, then, from (10), we obtain

𝛼0
√

(𝑛 + 1)𝑟𝑔2(𝜌0) =
√

𝐴
(

𝑔1(𝜌0)𝑔′2(𝜌
0) − 2(1 − 𝛽)𝑔2(𝜌0)

)

and, consequently,

𝐿′(𝜌0) =
(𝑛 + 1)

√

𝐴𝑔1(𝜌0)
2𝜌0𝑔2(𝜌0)

𝑓1(𝜌0),

where

𝑓1(𝜌) =
𝜌

𝑛 + 1

[

2𝑔2(𝜌)𝑔′′2 (𝜌) −
(

𝑔′2(𝜌)
)2
]

= (ℎ + 𝛼1)2(𝑛 − 1)𝜌2𝑛+1 + 2𝛼1(ℎ + 𝛼1)(1 − 𝑛2)𝜌𝑛+1

+2𝛼 (ℎ + 𝛼 )𝑛2𝜌𝑛 − 𝛼2(𝑛 + 1)𝜌 (12)
4

1 1 1
This function 𝑓1(𝜌) is, as can be seen in the following theorem, very
useful for determining the optimal value 𝜌 of the ratio between the
initial inventory and the total quantity demanded during the inventory
cycle.

Theorem 1. Let 𝛼0 = 𝛽𝜔0 + (1 − 𝛽)𝜋0, 𝛼1 = 𝛽𝜔 + (1 − 𝛽)𝜋, 𝜌𝑎 =
𝛼1∕(𝛼1 + ℎ)

)1∕𝑛 and 𝑊 (𝜌), 𝐿(𝜌) and 𝑓1(𝜌) be functions given, respectively,
y (8), (11) and (12). Suppose 𝛼1 > 0. The function 𝑊 (𝜌) attains its
inimum value at the point 𝜌∗characterized as follows:

1. If 𝑛 < ℎ∕(2𝛼1 + ℎ), then let 𝜌𝑏 = arg𝜌∈(𝜌𝑎 ,1)
{

𝑓1(𝜌) = 0
}

be the only
root of the equation 𝑓1(𝜌) = 0 in the interval (𝜌𝑎, 1).

(a) If 𝐿(𝜌𝑏) < 0, then 𝜌∗ = 1.
(b) Otherwise, let 𝜌1 = arg𝜌∈(𝜌𝑎 ,𝜌𝑏] {𝐿(𝜌) = 0} be the unique root

of the equation 𝐿(𝜌) = 0 in the interval (𝜌𝑎, 𝜌𝑏]. Thus, we
have:

i. If 𝑊 (𝜌1) <
√

4𝐴ℎ
(𝑛+1)𝑟 , then 𝜌∗ = 𝜌1.

ii. If 𝑊 (𝜌1) ≥
√

4𝐴ℎ
(𝑛+1)𝑟 , then 𝜌∗ = 1.

2. If 𝑛 ≥ ℎ∕(2𝛼1 + ℎ), then the following cases can occur:

(a) If 𝛼0 < (2𝛽 + 𝑛− 1)
√

𝐴ℎ
(𝑛+1)𝑟 , then let 𝜌

∗ be the unique root of
the equation 𝐿(𝜌) = 0 in the interval (𝜌𝑎, 1].

(b) Otherwise, 𝜌∗ = 1.

Proof. See the Appendix. ■

Theorem 1 establishes the optimal ratio 𝜌∗ between the initial stock
and the total quantity demanded throughout the inventory cycle when
the time-dependent average shortage cost (𝛼1) is not zero. Next, from
Eq. (8), the minimum average inventory cost 𝑊 (𝜌∗) per unit time
(without including the purchasing cost) is calculated. In addition, from
Eq. (6), the optimal inventory cycle 𝑇 ∗ is determined.

Next, we study the case when the time-dependent average shortage
cost is zero.

4.1.2. Case 𝛼1 = 0
From (7) it is clear that, in this scenario, the derivative of the

function 𝑊 (𝜌), for 𝜌 ∈ (0, 1), is

𝑊 ′(𝜌) =
𝑀(𝜌)

√

(𝑛 + 1)𝑟𝑔21 (𝜌)
,

here 𝑀(𝜌) is defined on the interval (0, 1] by

𝑀(𝜌) =
√

𝐴ℎ𝜌𝑛−1
(

(𝑛 − 1) 𝑔1(𝜌) + 2𝛽
)

− 𝛼0
√

(𝑛 + 1)𝑟 (13)

=
√

𝐴ℎ𝜌𝑛−1 ((𝑛 − 1)(1 − 𝛽)𝜌 + (𝑛 + 1)𝛽) − 𝛼0
√

(𝑛 + 1)𝑟 (14)

The behaviour of the function 𝑀(𝜌) with respect to the value of the
demand pattern index 𝑛 can be seen in the Appendix.

The following theorem provides the optimal value of 𝜌 in this
situation.

Theorem 2. Let 𝛼0 = 𝛽𝜔0 + (1 − 𝛽)𝜋0, 𝛼1 = 𝛽𝜔+ (1 − 𝛽)𝜋 = 0, and 𝑊 (𝜌)
nd 𝑀(𝜌) be functions given, respectively, by (8) and (14). The function
(𝜌) attains its minimum value at the point 𝜌∗ characterized as follows:

1. Let 𝑛 < 1:

(a) If 𝛼0 ≥ 𝛽
√

4𝐴ℎ
(𝑛+1)𝑟 , then 𝜌∗ = 1.

(b) Otherwise, 𝜌∗ = 0.

2. Let 𝑛 = 1:

(a) If 𝛼0 > 𝛽
√

2𝐴ℎ
𝑟 , then 𝜌∗ = 1.

(b) If 𝛼0 = 𝛽
√

2𝐴ℎ
𝑟 , then the minimum is attained at any point

of the interval [0, 1].
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(c) Otherwise, 𝜌∗ = 0.

3. Let 𝑛 > 1:

(a) If 𝛼0 ≥ (2𝛽 + 𝑛 − 1)
√

𝐴ℎ
(𝑛+1)𝑟 , then 𝜌∗ = 1.

(b) Otherwise, let 𝜌∗ = arg𝜌∈(0,1) {𝑀(𝜌) = 0} be the unique root
the equation 𝑀(𝜌) = 0 in the interval (0, 1).

Proof. See the Appendix. ■

Theorem 2 determines the optimal ratio 𝜌∗ between the initial
stock and the total quantity demanded throughout the inventory cycle
when the time-dependent average shortage cost (𝛼1) is zero. Next, from
Eq. (8), the minimum average inventory cost 𝑊 (𝜌∗) per unit time
(without including the purchasing cost) is obtained. Then, from Eq. (6),
the optimal inventory cycle 𝑇 ∗ is established.

4.2. Full backordering scenario (𝛽 = 1)

In the same manner as in the previous section, we can see that the
problem of the maximum 𝑅𝑂𝐼𝐼(𝜌, 𝑇 ) given by (2) is equivalent to the
problem of the minimum cost per unit of item given by 𝐴𝐶 (𝜌, 𝑇 ). In
this case, we have 𝑔1(𝜌) = 1, 𝛼0 = 𝜔0 and 𝛼1 = 𝜔. Thus

𝐴𝐶 (𝜌, 𝑇 ) = 1
𝑇

(

𝐴
𝑟
+

𝑔2(𝜌)
𝑛 + 1

𝑇 2 + 𝜔0(1 − 𝜌)
)

,

and, therefore, the problem is also equivalent to minimizing the aver-
age cost per unit time. Note that Theorems 1 and 2 also provide the
optimal policies in this scenario.

4.3. Full lost sales scenario (𝛽 = 0)

In this case, we have 𝑔1(𝜌) = 𝜌, 𝛼0 = 𝜋0 and 𝛼1 = 𝜋. Thus, the return
on inventory investment (ROII) can be rewritten as

𝑅𝑂𝐼𝐼(𝜌, 𝑇 ) =

{

−1 if 𝜌 = 0
𝑠

𝑐 + 𝐴𝐶 (𝜌, 𝑇 )
− 1 if 𝜌 > 0 ,

where now 𝐴𝐶 (𝜌, 𝑇 ) = 𝐴
𝑟𝜌𝑇 + (ℎ+𝜋)𝜌𝑛+1−(𝑛+1)𝜋𝜌+𝑛𝜋

(𝑛+1)𝜌 𝑇 + 𝜋0(1−𝜌)
𝜌 .

If 𝛼1 = 𝜋 > 0, then it is easy to check that Theorem 1 remains valid
(since Lemma 1 of the Appendix is also true).

Next, we analyse the case 𝛼1 = 𝜋 = 0. Now, the function 𝑀(𝜌) is
erived to (𝑛 − 1)

√

𝐴ℎ𝜌𝑛+1 − 𝜋0
√

(𝑛 + 1)𝑟. Therefore, we can give the
following result.

Theorem 3. Let 𝛽 = 0 and 𝜋 = 0. The function 𝑊 (𝜌) given by (8) attains
its minimum value at the point 𝜌∗ characterized as follows:

1. If 𝑛 > 1 and 𝜋0 < (𝑛−1)
√

𝐴ℎ
(𝑛+1)𝑟 , then 𝜌∗ = 𝜌0 =

(

(𝑛+1)𝑟𝜋20
(𝑛−1)2𝐴ℎ

)1∕(𝑛+1)
.

2. If 𝑛 = 1 and 𝜋0 = 0, then 𝜌∗ is any point of the interval (0, 1].
3. Otherwise, 𝜌∗ = 1.

Proof. See the Appendix. ■

Theorem 3 establishes the optimal ratio 𝜌∗ between the initial stock
and the total quantity demanded throughout the inventory cycle when
the unit goodwill cost per unit time is zero, i.e. 𝜋 = 0, and the fraction
of backlogged demand (𝛽) is zero, that is, all the shortages are lost sales.
Next, from Eq. (8), the minimum average inventory cost 𝑊 (𝜌∗) per unit
time (without including the purchasing cost) is calculated. Also, from
Eq. (6), the optimal inventory cycle 𝑇 ∗ is determined.

4.4. Case 𝑛 = 1 (constant demand rate)

Next, we discuss an inventory model which is a particular case of the
model developed in this article. If we consider a demand pattern index 𝑛
equal to 1, we obtain a uniform demand rate along the inventory cycle.
5

d

Table 2
Optimal value of 𝜌 when 𝑛 = 1.

𝛽 = 0 𝛽 > 0

𝜋0 = 0 𝜋0 > 0

𝛼1 = 0
𝛼0 < 𝛽

√

2𝐴ℎ∕𝑟 – – 𝜌∗ = 0

𝛼0 = 𝛽
√

2𝐴ℎ∕𝑟 (0, 1] – (0, 1]

𝛼0 > 𝛽
√

2𝐴ℎ∕𝑟 – 𝜌∗ = 1 𝜌∗ = 1

𝛼1 > 0
𝛼0 < 𝛽

√

2𝐴ℎ∕𝑟 – – 𝜌∗ = 𝜌1
𝛼0 = 𝛽

√

2𝐴ℎ∕𝑟 [0, 1] – 𝜌∗ = 1

𝛼0 > 𝛽
√

2𝐴ℎ∕𝑟 – 𝜌∗ = 1 𝜌∗ = 1

Where 𝜌1 =
𝛼0
√

𝛼1𝑟ℎ
(

2𝐴
(

𝛼1 + 𝛽2ℎ
)

− 𝑟𝛼2
0

)

+ 𝛼1
(

2𝐴
(

𝛼1 + 𝛽ℎ
)

− 𝑟𝛼2
0

)

2𝐴
(

𝛼1 + 𝛽ℎ
)2 −

(

𝛼1 + ℎ
)

𝑟𝛼2
0

.

According to the results obtained in the previous subsections, we can
establish the following result for this particular situation.

Corollary 1. Let 𝑛 = 1, 𝛼0 = 𝛽𝜔0 + (1 − 𝛽)𝜋0 and 𝛼1 = 𝛽𝜔+ (1 − 𝛽)𝜋. The
alue of (𝜌, 𝑇 ) that maximizes the return on inventory investment (ROII)
efined by (2) is (𝜌∗, 𝑇 ∗) =

(

𝜌∗,
√

2𝐴∕
[

𝑟
(

𝛼1 (1 − 𝜌∗)2 + ℎ (𝜌∗)2
)]

)

, where
𝜌∗ is given in Table 2.

Proof. See the Appendix. ■

Corollary 1 presents the optimal inventory policy (𝜌∗, 𝑇 ∗) in closed-
orm that maximizes the return on inventory investment when the
emand rate is constant. Note that the optimal ratio 𝜌∗ between the
nitial stock and the total quantity demanded throughout the inventory
ycle can notably vary, depending on the scenario characterized by the
nput parameters of the inventory system.

. Numerical examples

In this section, we include some numerical examples to illustrate
he proposed model in different scenarios and their associated optimal
olicies.

xample 1. We consider the first numerical example proposed in San-
osé et al. (2017). That is, we suppose 𝑛 = 1, 𝑟 = 1000, 𝐴 = 500,
𝑐 = 8, 𝑠 = 10, ℎ = 2, 𝜔0 = 0.1, 𝜔 = 3.2, 𝜋0 = 2 and 𝜋 = 0.
f 𝛽 = 0, applying Theorem 3, we obtain 𝜌∗ = 1 and, from (6),
∗ = 0.707107. That is, the same policy that maximizes the total

nventory profit per unit time given in San-José et al. (2017). If 𝛽 > 0,
pplying now Theorem 1, we obtain 𝜌∗ = 1 for 𝛽 <

(

380 − 200
√

2
)

∕161
and 𝜌∗(𝛽) = arg𝜌∈(𝜌𝑎 ,1) {𝐿(𝜌) = 0}. The optimal policies are shown in

able 3. From these results, we can make the following comments:
he optimal inventory policy is constant when 𝛽 ≤ 0.603461. However,

when 𝛽 > 0.603461, if 𝛽 increases then: (i) The ratio 𝜌∗ between
the initial inventory and the total demand throughout the inventory
cycle, the stock-in period 𝜏∗ and the maximum stock level 𝑆∗ are
trictly decreasing; (ii) the stock-out period 𝛹∗, the economic lot size
∗ and the maximum profit/cost ratio are strictly increasing and (iii)

he inventory cycle 𝑇 ∗ starts increasing but then decreases.

xample 2. This example assumes the parameters of Example 1, but
odifying the value of 𝑛 to 𝑛 = 2.5. The optimal policies obtained

re given in Table 4. These results present certain insights into the
ehaviour of the inventory system studied here. Thus, we can make
he following observations: (i) the optimal inventory policy is constant
hen 𝛽 ≤ 0.403570; (ii) if 𝛽 > 0.403570 and the value of 𝛽 is increasing,

hen: (a) the ratio 𝜌∗ between the initial inventory and the total demand
hroughout the inventory cycle and the stock-in period 𝜏∗ are strictly
ecreasing, (b) the inventory cycle 𝑇 ∗ and the maximum stock level
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Table 3
Numerical results associated with Example 1.
𝛽 𝜌∗ 𝑇 ∗ 𝜏∗ 𝛹 ∗ 𝑄∗ 𝑆∗ 𝑏∗ 𝑅𝑂𝐼𝐼∗ (%)

0 1 0.707107 0.707107 0 707.107 707.107 0 6.22236
≤ 0.603461 1 0.707107 0.707107 0 707.107 707.107 0 6.22236
0.7 0.838052 0.826641 0.692768 0.133873 786.479 692.768 133.873 6.54693
0.8 0.745820 0.884613 0.659762 0.224851 839.643 659.762 224.851 7.30162
0.9 0.683918 0.904164 0.618374 0.285790 875.585 618.374 285.790 8.26320
1 0.636740 0.900521 0.573397 0.327123 900.521 573.397 327.123 9.32792
Table 4
Numerical results associated with Example 2.
𝛽 𝜌∗ 𝑇 ∗ 𝜏∗ 𝛹 ∗ 𝑄∗ 𝑆∗ 𝑏∗ 𝑅𝑂𝐼𝐼∗ (%)

0 1 0.935414 0.935414 0 935.414 935.414 0 10.2652
≤ 0.403570 1 0.935414 0.935414 0 935.414 935.414 0 10.2652
0.5 0.947559 1.02211 0.893336 0.128777 995.312 968.512 53.6005 10.3600
0.6 0.910924 1.07777 0.853557 0.22421 1039.37 981.768 96.0030 10.6004
0.7 0.88445 1.10829 0.815338 0.292950 1069.87 980.227 128.061 10.9276
0.8 0.863954 1.12115 0.777837 0.343309 1090.64 968.619 152.527 11.3087
0.9 0.847140 1.12146 0.740750 0.380710 1104.32 950.033 171.426 11.7249
1 0.832665 1.11268 0.703955 0.408722 1112.68 926.487 186.190 12.1646
Table 5
Numerical results associated with Example 3.
𝛽 𝜌∗ 𝑇 ∗ 𝜏∗ 𝛹 ∗ 𝑄∗ 𝑆∗ 𝑏∗ 𝑅𝑂𝐼𝐼∗ (%)

0 1 0.661438 0.661438 0 661.438 661.438 0 5.13193
≤ 0.360373 1 0.661438 0.661438 0 661.438 661.438 0 5.13193
0.4 0.867527 0.745461 0.670097 0.075365 686.209 646.708 98.7531 5.19438
0.5 0.720175 0.850255 0.664703 0.185552 731.293 612.33 237.923 5.65191
0.6 0.652434 0.89008 0.646150 0.243934 766.339 580.721 309.363 6.27145
0.7 0.612015 0.901582 0.623845 0.277736 796.642 551.782 349.800 6.93049
0.8 0.584545 0.898776 0.600848 0.297928 824.096 525.375 373.401 7.58461
0.9 0.564306 0.888313 0.57837 0.309948 849.610 501.280 387.033 8.21590
1 0.548545 0.873694 0.556888 0.316805 873.694 479.260 394.434 8.81734
s
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𝑆∗ start increasing but then decrease and (c) the stock-out period 𝛹∗,
he economic lot size 𝑄∗ and the maximum profit/cost ratio are strictly
ncreasing.

xample 3. This example considers the same parameters as in the first
xample, but modifying the values of 𝑛 and 𝜋0 to 𝑛 = 0.75 and 𝜋0 = 0.5,
espectively. The optimal policies are given in Table 5. We can discuss
he following issues: if 𝛽 > 0.360373 and 𝛽 increases, then: (a) the ratio
∗ between the initial inventory and the total demand throughout the
nventory cycle and the maximum stock level 𝑆∗ are decreasing, (b) the
nventory cycle 𝑇 ∗ and the stock-in period 𝜏∗ start increasing but then
ecrease and (c) the stock-out period 𝛹∗, the economic lot size 𝑄∗ and
he maximum profit/cost ratio are strictly increasing.

xample 4. This example considers the same parameters as in Exam-
le 3, but modifying the values of ℎ, 𝜔0 and 𝜋0 to ℎ = 6.5, 𝜔0 = 0 and
0 = 0, respectively. We have the optimal policies given in Table 6.
e can make the following comments: if 𝛽 ≥ 0.1 and the value of 𝛽

s increasing, then: (a) the ratio 𝜌∗ between the initial inventory and
he total demand throughout the inventory cycle starts decreasing but
hen increases, (b) the stock-in period 𝜏∗ and the maximum stock level
∗ are strictly decreasing, (c) the inventory cycle 𝑇 ∗ and the stock-out
eriod 𝛹∗ start increasing but then decrease and (d) the economic lot
ize 𝑄∗ and the maximum profit/cost ratio are strictly increasing.

. Sensitivity analysis and managerial insights

In this section, managerial implications based on the sensitivity
nalysis of the parameters are displayed. Some suggestions are provided
o inventory managers that could help them to improve the efficiency
f the inventory control.
6

𝛹

It follows from the theoretical results presented in the previous
ections that if the unit purchasing cost increases, then the total cost per
ycle goes up and the total profit throughout the inventory cycle goes
own. Consequently, the return on inventory investment decreases.
etailers can offset against this additional purchasing cost by buying

n bulk or by applying discounting strategies that provide a lower unit
ost of the product. Also, if the unit selling price increases, the total
rofit over the inventory cycle goes up and the return on investment in
nventory increases.

The first numerical example presented in Section 5 reveals that if
= 0, that is, shortages are lost sales, then the optimal policy that
aximizes the return on inventory investment coincides with the one

hat maximizes the profit per unit time. However, when there is a strict
raction of demand which is backordered, that is 0 < 𝛽 < 1, the optimal
olicy that maximizes the ROII is, in general, different from the one
hat maximizes the profit per unit time.

In addition, from the numerical examples we can deduce that there
s a value 𝛽0 such that the optimal inventory policy is constant when
≤ 𝛽0. However, when 𝛽 > 𝛽0 the inventory policy varies. In this

ast case, if the fraction of backordered demand 𝛽 increases, then the
conomic lot size 𝑄∗ and the return on inventory investment increase
n the four examples.

Next, in order to study the effect of some parameters on the optimal
nventory policy and the maximum ROII, two tables are included
howing the variations, in percentage terms, of the optimal values 𝜌∗,
∗, 𝜏∗, 𝛹∗, 𝑄∗, 𝑆∗, 𝑏∗ and the maximum ROII for different changes in

he parameters. First, we consider the parameters of Example 2, but
odifying the value of 𝜋 to 𝜋 = 0.5 and the fraction of backordered
emand 𝛽 to 𝛽 = 0.8. In this case, the optimal ratio between the initial
nventory and the total quantity demanded during the inventory cycle
s 𝜌∗ = 0.867611, the optimal inventory cycle is 𝑇 ∗ = 1.11511, the
ptimal stock-in cycle is 𝜏∗ = 0.781863, the optimal stock-out period is
∗ ∗
= 0.333248, the optimal lot size is 𝑄 = 1085.59, the inventory level
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Table 6
Numerical results associated with Example 4.
𝛽 𝜌∗ 𝑇 ∗ 𝜏∗ 𝛹 ∗ 𝑄∗ 𝑆∗ 𝑏∗ 𝑅𝑂𝐼𝐼∗ (%)

0 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461
0.05 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461
0.1 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461
0.2 0.254030 1.01790 0.364226 0.653679 410.443 258.578 759.326 −4.18143
0.3 0.238749 0.971428 0.331793 0.639635 453.778 231.928 739.500 −1.99654
0.4 0.232945 0.914667 0.306693 0.607974 493.707 213.067 701.599 −0.25428
0.5 0.230169 0.862925 0.286754 0.576172 530.772 198.619 664.306 1.17313
0.6 0.228747 0.817751 0.270481 0.547270 565.474 187.058 630.693 2.37062
0.7 0.228044 0.778487 0.256901 0.521586 598.200 177.530 600.958 3.39464
0.8 0.227769 0.744184 0.245359 0.498826 629.248 169.502 574.682 4.28400
0.9 0.227767 0.713986 0.235401 0.478585 658.849 162.622 551.363 5.06632
1 0.227949 0.687188 0.226701 0.460487 687.188 156.644 530.544 5.76184
Table 7
Effects of the parameters 𝑟, 𝑛, 𝐴 and ℎ on the optimal inventory policy and the maximum 𝑅𝑂𝐼𝐼 .

𝛥 𝛥𝜌∗(%) 𝛥𝑇 ∗(%) 𝛥𝜏∗(%) 𝛥𝛹 ∗(%) 𝛥𝑄∗(%) 𝛥𝑆∗(%) 𝛥𝑏∗(%) 𝛥𝑅𝑂𝐼𝐼∗ (%)

𝑟 +25% 0.672237 −10.9663 −9.46247 −14.4946 11.4255 12.0403 6.38912 10.8113
+10% 0.277824 −4.83007 −4.16768 −6.38417 4.73876 4.97776 2.78086 4.73223
+5% 0.140543 −2.50059 −2.15766 −3.30518 2.40003 2.51826 1.43146 2.44418
−5% −0.144060 2.69388 2.32443 3.56069 −2.46586 −2.58136 −1.51976 −2.61942

−10% −0.291925 5.60750 4.83845 7.41184 −5.00271 −5.23072 −3.13488 −5.43667
−25% −0.761912 16.0210 13.8237 21.1764 −13.1024 −13.6472 −8.63936 −15.3737

𝑛 +25% 2.28866 7.97862 6.04784 12.5086 8.41910 10.4499 −8.21679 9.03503
+10% 1.01392 3.25717 2.45895 5.12996 3.44378 4.30412 −3.60400 3.87028
+5% 0.525989 1.63993 1.23617 2.58725 1.73522 2.17455 −1.86367 1.98246
−5% −0.569066 −1.66314 −1.24950 −2.63362 −1.76288 −2.22274 2.00422 −2.08527

−10% −1.18722 −3.34988 −2.51212 −5.31543 −3.55441 −4.49733 4.16994 −4.28250
−25% −3.41768 −8.55280 −6.37317 −13.6666 −9.10987 −11.6782 11.9293 −11.6562

𝐴 +25% −0.600441 12.2280 10.5509 16.1627 12.1079 11.5541 16.6441 −11.7779
+10% −0.264743 5.06005 4.36608 6.68823 5.01048 4.78191 6.88284 −4.90858
+5% −0.137116 2.56085 2.20964 3.38485 2.53578 2.42022 3.48245 −2.49040
−5% 0.147848 −2.62728 −2.26698 −3.47263 −2.60162 −2.48332 −3.57075 2.56835

−10% 0.307912 −5.32645 −4.59599 −7.04025 −5.27449 −5.03494 −7.23686 5.22117
−25% 0.881369 −13.9226 −12.0134 −18.4019 −13.7873 −13.1639 −18.8945 13.7673

ℎ +25% −3.24630 −7.11800 −14.4735 10.1395 −7.65544 −10.1332 12.6423 −9.85981
+10% −1.34332 −3.16460 −6.38393 4.38857 −3.39646 −4.46541 5.36025 −4.18752
+5% −0.679466 −1.64389 −3.30613 2.25603 −1.76301 −2.31219 2.73579 −2.13855
−5% 0.695605 1.78375 3.56303 −2.3908 1.90995 2.49176 −2.85622 2.23563

−10% 1.40788 3.72729 7.41681 −4.92904 3.98759 5.18764 −5.84314 4.57680
−25% 3.64988 10.7854 21.1726 −13.5850 11.5061 14.8289 −15.7139 12.3376
t
t
i
t
d
t

d
a

i
s

is 𝑆∗ = 967.483, the quantity demanded during the stock-out period
is 𝑏∗ = 147.628 and the maximum return on inventory investment is
𝑂𝐼𝐼∗ = 11.2788%. Next, we calculate the variations, in percentage

erms, of the optimal inventory policy varying each of the parameters,
hile keeping all the others fixed. Thus, Table 7 shows the effects of the
arameters 𝑟, 𝑛, 𝐴 and ℎ when each of these parameters varies its value
y ±25%, ±10% and ±5%. Next, we present some findings obtained from
he sensitivity analysis.

The optimal inventory cycle, the economic lot size, the initial
nventory level and the optimal return on inventory investment are
oderately sensitive to the parameters 𝑟, 𝑛, 𝐴 and ℎ. Thus, a 10%

ncrease in the value of the average demand 𝑟 per cycle leads to
n increment of 4.74% in the economic lot size, a 4.98% increase in
he initial stock and a 4.73% increase in the ROII. However, that
ncrement in the average demand results in a reduction of the optimal
nventory cycle of 4.83%. Therefore, to increase the ROII the decision
aker should boost the demand by implementing marketing policies or

uantity discount.
Also, a 25% increase in the demand pattern index 𝑛 leads to an

ncrement of 8.42% in the economic lot size, a 10.45% increase in the
nitial stock, a 7.98% increase in the length of the optimal cycle, and a
.04% increase in the ROII.

An increment in the replenishment cost 𝐴 results in an increase
n the optimal inventory cycle, the economic lot size and the initial
tock, but the return on inventory investment decreases. The impact
f the replenishment cost 𝐴 is positive on the stock-in period and
7

is negative on the ratio between the initial inventory and the total
quantity demanded during the inventory cycle. Thus, a 25% increase in
the value of 𝐴 leads to a 10.55% increase in the length of the stock-in
period, and a 0.6% decrease of the ratio between the initial inventory
and the total quantity demanded.

With respect to the unit holding cost ℎ, if this cost increases then
he optimal inventory cycle, the economic lot size, the initial inven-
ory level, and the return on inventory investment decrease. A 10%
ncrement in the unit holding cost results in a reduction of 3.40% in
he economic lot size, a 4.47% decrease in the initial stock, a 3.16%
ecrease in the length of the optimal cycle, and a 4.19% decrease in
he ROII.

Therefore, from the above comments, it is recommended that the
ecision-maker should be alert to the fluctuations in the parameters 𝐴
nd ℎ.

Table 8 displays the variations, in percentage terms, of the optimal
nventory policies when each of the four parameters that determine the
hortage cost has changed by ±25%, ±10% and ±5%. From these results,

we can establish the following insights.
The variation of the parameters that appear in the backlogging costs

do not have great influence on the behaviour of the return on inventory
investment. The effect of 𝜔0, or 𝜔, on the ROII is almost negligible.
Thus, a 10% decrease in the value of the parameter 𝜔0 or 𝜔, leads to
an increase in the ROII less than 0.2%, and 0.8%, respectively.

Also, the maximum ROII is not very sensitive to movements of the
goodwill parameters 𝜋 and 𝜋. Thus, a 10% decrease in the value of the
0
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Table 8
Effects of the parameters 𝜔0, 𝜔, 𝜂0 and 𝜂 on the optimal inventory policy and the maximum 𝑅𝑂𝐼𝐼 .

𝛥 𝛥𝜌∗(%) 𝛥𝑇 ∗(%) 𝛥𝜏∗(%) 𝛥𝛹 ∗(%) 𝛥𝑄∗(%) 𝛥𝑆∗(%) 𝛥𝑏∗(%) 𝛥𝑅𝑂𝐼𝐼∗ (%)

𝜔0 +25% 0.237158 −0.157510 0.435506 −1.54884 −0.115305 0.079275 −1.70928 −0.296134
+10% 0.094847 −0.062488 0.174651 −0.618861 −0.045593 0.032300 −0.683682 −0.119047
+5% 0.047421 −0.031158 0.087400 −0.309318 −0.022708 0.016249 −0.341836 −0.059622
−5% −0.047416 0.030986 −0.087550 0.309093 0.022531 −0.01645 0.341826 0.059820

−10% −0.094828 0.061799 −0.175250 0.617961 0.044886 −0.033088 0.683641 0.119838
−25% −0.237040 0.153202 −0.439251 1.54321 0.110887 −0.084201 1.70902 0.301080

𝜔 +25% 2.23234 −2.76562 2.75208 −15.7112 −2.37873 −0.595015 −16.9907 −1.38968
+10% 0.980536 −1.23524 1.20365 −6.95735 −1.06263 −0.266817 −7.58181 −0.613623
+5% 0.506885 −0.642649 0.621211 −3.60791 −0.552881 −0.139021 −3.94317 −0.317841
−5% −0.543836 0.699441 −0.664079 3.89852 0.601829 0.151802 4.28840 0.342514

−10% −1.12893 1.46370 −1.37574 8.12556 1.25953 0.318241 8.97043 0.712752
−25% −3.18662 4.25246 −3.85543 23.2751 3.66032 0.930328 26.0241 2.02917

𝜋0 +25% 1.18760 −0.830253 2.14038 −7.79993 −0.620330 0.347490 −8.54859 −1.43139
+10% 0.474467 −0.319308 0.867282 −3.10328 −0.235008 0.153644 −3.41880 −0.587331
+5% 0.237158 −0.157510 0.435506 −1.54884 −0.115305 0.079275 −1.70928 −0.296134
−5% −0.237040 0.153202 −0.439251 1.54321 0.110887 −0.084201 1.70902 0.301080

−10% −0.473993 0.302078 −0.882262 3.08077 0.217337 −0.173347 3.41777 0.607118
−25% −1.18465 0.722542 −2.23403 7.65922 0.509863 −0.470666 8.54223 1.55510

𝜋 +25% 0.101781 −0.129753 0.124563 −0.726426 −0.111635 −0.028104 −0.795907 −0.063930
+10% 0.040880 −0.052158 0.050019 −0.291884 −0.044875 −0.011299 −0.319922 −0.025683
+5% 0.020468 −0.026122 0.025042 −0.146162 −0.022475 −0.005659 −0.160223 −0.012860
−5% −0.020524 0.026208 −0.025107 0.146605 0.022549 0.005679 0.160748 0.012898

−10% −0.041105 0.052504 −0.050281 0.293655 0.045173 0.011377 0.322025 0.025834
−25% −0.103188 0.131915 −0.126196 0.737495 0.113499 0.028591 0.809053 0.064870
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parameter 𝜋0, or 𝜋, leads to an increase in the ROII less than 0.7% and
0.03%, respectively. In particular, the effect of a modification of 𝜋 on
he ROII is also almost negligible. Note that a 25% decrease in the value
f the parameter 𝜋 leads to an increase in the ROII less than 0.07%.

An increment in any shortage cost 𝜔0, 𝜔, 𝜋0, or 𝜋, has a negative
ffect on the economic lot size, the length of the inventory cycle, the
ength of the stock-out period and the demanded quantity during the
tock-out period. Thus, a 25% increase in the value of 𝜔 or 𝜋0 leads
o a 2.38% or 0.62% decrease of the economic lot size, and a 2.77%
r 0.83% decrease of the length of the inventory cycle. However, the
mpact of any shortage cost 𝜔0, 𝜔, 𝜋0, or 𝜋, is positive on the length of
he stock-in period and on the ratio between the initial inventory and
he total quantity demanded during the inventory cycle. Thus, a 25%
ncrease in the value of 𝜔 or 𝜋0 leads to a 2.75% or 2.14% increase of
he length of the stock-in period, and a 2.23% or 1.19% increase of the
atio between the initial inventory and the total quantity demanded.

Also, an increase in the fixed shortage costs 𝜔0, or 𝜋0, results in an
ncrease in the initial inventory level. However, an increment in some
f the variable shortage costs 𝜔 or 𝜋, leads to a decrease in the initial
nventory level.

Therefore, the parameters 𝜔0 and 𝜋 have an insignificant influence
n the return on inventory investment. Thus, the inventory manager
hould not worry about those parameters. However, the parameters 𝜔
nd 𝜋0 have a major effect on the ROII. For this reason, the decision-
aker should try to reduce the shortage cost per backordered unit and

he constant goodwill cost per lost unit as much as possible.

. Conclusions

In the models of the inventory control, it is very common to consider
s the objective the inventory policy that maximizes the profit per unit
f time. However, from the point of view of investors or shareholders,
t may be more interesting for the company to maximize the return
n inventory investment than obtaining a larger profit. In this paper,
e consider this approach for an inventory system with power demand
attern in which shortages are allowed. It is assumed that only a fixed
raction of the demand during the stock-out period is satisfied with the
rrival of the next replenishment. We also consider that both the unit
ackorder cost and the unit lost sale cost are composed of a fixed cost
lus a variable cost which depends on the length of the waiting time
ntil the next replenishment.
8

E

We thoroughly analyse the inventory problem and obtain the op-
imal global solutions for all the possible scenarios of the inventory
ystem (including the full lost sale case). The optimal policies obtained
ere turn out to be different, in general, from those that maximize
he profit per unit time. As a particular case, we derive the opti-
al inventory policy in closed-form for the uniform demand case.
o illustrate the results obtained in the paper, several numerical ex-
mples are provided. Furthermore, we analyse the sensitivity of the
ecision variables and the maximum ROII with respect to the system
nput parameters. From those numerical results, we derive some useful
anagerial insights. In particular, it is recommended that the decision-
aker should be alert to the fluctuations in the replenishment cost and

he holding cost. Also, we advise to the decision-maker should boost
he demand by implementing marketing policies or quantity discount.

Some future research lines in this subject are the following: (i)
o assume in the inventory system that the replenishment is non-
nstantaneous; (ii) to suppose that the demand rate also depends on
he selling price; (iii) to develop the inventory system considering
tochastic demand; (iv) to incorporate in the model the possibility that
tems may suffer some deterioration over time and (v) to consider a
on-linear holding cost.
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Appendix

In this appendix, we give the proofs of the main results and also
provide some properties of the functions 𝑓1(𝜌) and 𝑀(𝜌), which are
given, respectively, by (12) and (13).

We begin by analysing the behaviour of the function 𝑓1(𝜌), function
required to prove Theorem 1.

Lemma 1. Let 𝜌𝑎 =
(

𝛼1∕(𝛼1 + ℎ)
)1∕𝑛 and 𝑓1(𝜌) be given by (12). Then:

1. 𝑓1(𝜌𝑎) > 0 and 𝑓 ′
1(𝜌𝑎) > 0.

2. 𝑓1 is a strictly increasing linear function when 𝑛 = 1.
3. 𝑓1 is a strictly convex function on the interval (𝜌𝑎, 1) when 𝑛 > 1.
4. 𝑓1 is a strictly concave function on the interval (𝜌𝑎, 1) when 𝑛 < 1.

Proof.

1. It is immediate because 𝜌𝑎 < 1, 𝑓1(𝜌𝑎) = 2𝛼21𝑛
2(1 − 𝜌𝑎), 𝑓 ′

1(𝜌) =
(ℎ + 𝛼1)2(2𝑛2 − 𝑛 − 1)𝜌2𝑛 + 2𝛼1(ℎ + 𝛼1)(1 − 𝑛2)(1 + 𝑛)𝜌𝑛 + 2𝛼1(ℎ +
𝛼1)𝑛3𝜌𝑛−1 − 𝛼21 (𝑛 + 1) and 𝑓 ′

1(𝜌𝑎) = 2𝛼21𝑛
3(1∕𝜌𝑎 − 1).

2. It is obvious, since in this case 𝑓1(𝜌) is reduced to 2𝛼1ℎ𝜌.
3. The second derivative of the function 𝑓1 can be written as

𝑓 ′′
1 (𝜌) = 2(ℎ + 𝛼1)𝑛(𝑛 − 1)𝜌𝑛−2𝑓2(𝜌), where 𝑓2(𝜌) = (ℎ + 𝛼1)(2𝑛 +

1)𝜌𝑛+1+𝛼1
(

𝑛2 − (𝑛 + 1)2 𝜌
)

. Thus, as 𝑛 > 1, we only need to show
that 𝑓2 is a positive function in the interval (𝜌𝑎, 1) to complete the
proof. Since 𝑓 ′

2(𝜌) = (ℎ+𝛼1)(2𝑛2+3𝑛+1)𝜌𝑛−𝛼1 (𝑛 + 1)2 and 𝑓 ′′
2 (𝜌) >

0 for all 𝜌 > 0, then 𝑓 ′
2(𝜌) is a strictly increasing function with

𝑓 ′
2(𝜌𝑎) = 𝛼1𝑛 (𝑛 + 1) > 0. Therefore, 𝑓 ′

2(𝜌) > 0 for all 𝜌 ∈ (𝜌𝑎, 1)
and we deduce that 𝑓2 is also an increasing function on

(

𝜌𝑎, 1
)

.
The rest of the proof follows from 𝑓2(𝜌𝑎) = 𝛼1𝑛2(1 − 𝜌𝑎) > 0.
Consequently, 𝑓2(𝜌) > 0 on

(

𝜌𝑎, 1
)

.
4. As 𝑛 > 1 and 𝑓2(𝜌) is a positive function on

(

𝜌𝑎, 1
)

, this leads to
𝑓 ′′
1 (𝜌) < 0 and, therefore, 𝑓1(𝜌) is a strictly concave function on

(

𝜌𝑎, 1
)

. ■

Now, we prove Theorem 1.

Proof of Theorem 1.

1. If 𝑛 < ℎ∕(2𝛼1 + ℎ), then 𝑛 < 1 and, from (12), 𝑓1(1) =
ℎ
(

2𝛼1𝑛 + (𝑛 − 1)ℎ
)

< 0. Applying Lemma 1 and Bolzano’s Theo-
rem, 𝑓1 has a unique root 𝜌𝑏 on the interval (𝜌𝑎, 1), because 𝑓1(𝜌)
is concave and 𝑓 ′

1(𝜌𝑎) > 0. Thus, as 𝑓1(𝜌𝑎) > 0, then 𝑓1(𝜌) > 0
for 𝜌 ∈ (𝜌𝑎, 𝜌𝑏) and 𝑓1(𝜌) < 0 for 𝜌 ∈ (𝜌𝑏, 1). Note that, as
𝐿(𝜌𝑎) = −2𝑛𝛼1 (1 − 𝛽) (1 − 𝜌𝑎)

√

𝐴 − 𝛼0
√

𝑛(𝑛 + 1)𝛼1𝑟(1 − 𝜌𝑎) < 0,
we can consider the following cases:

(a) If 𝐿(𝜌𝑏) < 0, then necessarily 𝐿(𝜌) ≤ 0 for 𝜌 ∈ (𝜌𝑎, 1).
Thus, 𝑊 (𝜌) is a strictly decreasing function which attains
its minimum at 𝜌∗ = 1.

(b) If 𝐿(𝜌𝑏) ≥ 0, then the function 𝐿(𝜌) has a unique root 𝜌1 on
the interval (𝜌𝑎, 𝜌𝑏]. Comparing the values of 𝑊 (𝜌1) and
𝑊 (1) =

√

4𝐴ℎ∕ ((𝑛 + 1)𝑟), we obtain the optimal solution.

2. If 𝑛 ≥ ℎ∕(2𝛼1 + ℎ), then three scenarios can occur:

A. ℎ∕
(

2𝛼1 + ℎ
)

≤ 𝑛 < 1. Now 𝑓1(1) ≥ 0 and, by Lemma 1,
the function 𝑓1(𝜌) is always positive on (𝜌𝑎, 1). Thus,
the function 𝑊 (𝜌) has at most a local minimum on the
interval (𝜌𝑎, 1).

B. 𝑛 = 1. Since 𝑓1 is a strictly increasing function with
𝑓1(𝜌𝑎) > 0, it follows that 𝑊 (𝜌) has at most a local
minimum on the interval (𝜌𝑎, 1).

C. 𝑛 > 1. Taking into account that 𝑓1 is a strictly convex
function with 𝑓 ′

1(𝜌𝑎) > 0, we deduce, as in the above two
cases, that the function 𝑊 (𝜌) has at most a local minimum
9

on the interval (𝜌𝑎, 1).
Therefore, in the three scenarios, we can ensure that the function
𝐿(𝜌) has at most a root 𝜌 on the interval (𝜌𝑎, 1). Since 𝐿(𝜌𝑎) < 0,
𝐿(𝜌) has a unique root in such interval if and only if 𝐿(1) > 0.
Taking into account that 𝐿(1) = (2𝛽 + 𝑛− 1)ℎ

√

𝐴− 𝛼0
√

(𝑛 + 1)𝑟ℎ,
we obtain 𝐿(1) > 0 if and only if the condition proposed in 2(a)
is satisfied. ■

The following lemma provides some characteristics of the function
(𝜌) given by (13).

emma 2. Let 𝑀(𝜌) be given by (13). Then:

1. If 𝑛 > 1, then 𝑀(𝜌) is a strictly increasing function with 𝑀(0) =
−𝛼0

√

(𝑛 + 1)𝑟 < 0.
2. If 𝑛 = 1, then 𝑀(𝜌) is a constant function with 𝑀(𝜌) = 2𝛽

√

𝐴ℎ −
𝛼0
√

2𝑟.
3. If 𝑛 < 1, then 𝑀(𝜌) is a strictly decreasing function with lim𝜌→0+

𝑀(𝜌) = ∞ when 𝛽 > 0 and lim𝜌→0+ 𝑀(𝜌) = −𝜋0
√

(𝑛 + 1)𝑟, if 𝛽 = 0.

Proof. From (13), we obtain

𝑀 ′(𝜌) =
(𝑛2 − 1)𝑔1(𝜌)

√

𝐴ℎ𝜌𝑛−3

2
.

he rest of the proof is already immediate. ■

Now, we prove Theorem 2.

roof of Theorem 2. It is immediate taking into account Lemma 2,
(1) = (2𝛽 + 𝑛 − 1)

√

𝐴ℎ − 𝛼0
√

(𝑛 + 1)𝑟, 𝑊 (0) = 𝛼0∕𝛽 and 𝑊 (1) =
√

4𝐴ℎ∕ ((𝑛 + 1)𝑟). ■

The proof of Theorem 3 is given below.

roof of Theorem 3. Note that, in this case, 𝑀(0) = −𝜋0
√

(𝑛 + 1)𝑟 < 0.
e can consider the following scenarios:

(a) If 𝑛 < 1, then 𝑀(𝜌) < 0 for 𝜌 ∈ (0, 1) and, therefore, 𝑊 (𝜌) attains
its minimum at 𝜌∗ = 1.

(b) If 𝑛 = 1, then: (i) If 𝜋0 > 0, then 𝑀(𝜌) < 0 for 𝜌 ∈ (0, 1) and, as
in the previous case, 𝜌∗ = 1 and (ii) if 𝜋0 = 0, then 𝑀(𝜌) = 0 and
𝑊 (𝜌) =

√

2𝐴ℎ∕𝑟 for 𝜌 ∈ (0, 1]. Thus, the minimum is attained at
all points of the interval (0, 1].

(c) If 𝑛 > 1, then the function 𝑀(𝜌) is strictly increasing with
𝑀(1) = (𝑛 − 1)

√

𝐴ℎ − 𝜋0
√

(𝑛 + 1)𝑟. Thus, if 𝑀(1) ≤ 0, then 𝑊 (𝜌)
is strictly decreasing and it attains its minimum at 𝜌∗ = 1 and,
if 𝑀(1) > 0 (or equivalently, 𝜋0 < (𝑛 − 1)

√

𝐴ℎ∕((𝑛 + 1)𝑟)), then
𝑊 (𝜌) attains its minimum at arg𝜌∈(0,1){𝑀(𝜌) = 0} = 𝜌0. ■

roof of Corollary 1. The cases with 𝛼1 = 0 are immediate from
heorems 2 and 3. Also, if 𝛼1 > 0 and 𝛼0 ≥

√

2𝐴ℎ∕𝑟𝛽, the solution
𝜌∗ = 1 is obtained from Theorems 1 and 3.

To prove the result for 𝛼1 > 0 and 𝛼0 <
√

2𝐴ℎ∕𝑟𝛽, we observe
hat, from the part 2(a) of Theorem 1, the optimal solution 𝜌∗ can
e obtained by solving the equation 𝐿 (𝜌) = 0 with 𝜌 ∈

(

𝜌𝑎, 1
)

and
𝑎 = 𝛼1∕

(

𝛼1 + ℎ
)

. As 𝑛 = 1, we have 𝑔2 (𝜌) = 𝛼1 (1 − 𝜌)2 + ℎ𝜌2 and the
unction 𝐿(𝜌) is simplified to

(𝜌) = 2
(

𝛽ℎ𝜌 − (1 − 𝜌)𝛼1
)

√

𝐴 − 𝛼0
√

2𝑟
(

ℎ𝜌2 + 𝛼1(1 − 𝜌)2
)

o explicitly obtain the value of 𝜌∗, we consider the function 𝛬(𝜌) =
(𝜌)𝐿1(𝜌), where

1 (𝜌) = 2
(

𝛽ℎ𝜌 − (1 − 𝜌)𝛼1
)

√

𝐴 + 𝛼0
√

2𝑟
(

ℎ𝜌2 + 𝛼1(1 − 𝜌)2
)

.

It is easy to check that 𝛬(𝜌) can be written as 2
(

𝑞2𝜌2 + 2𝑞1𝜌 + 𝑞0
)

,
where 𝑞2 = 2𝐴(𝛼1 + 𝛽ℎ)2 − 𝛼20 (𝛼1 + ℎ)𝑟, 𝑞1 = 𝛼1

(

𝛼20𝑟 − 2𝐴(𝛼1 + 𝛽ℎ)
)

and
0 = 𝛼1(2𝛼1𝐴 − 𝛼20𝑟). That is, 𝛬(𝜌) is a quadratic and strictly convex

function with two real roots (or a double root), one of which is 𝜌∗.
∗
Since 𝛬(1) > 0, 𝜌 is necessarily the largest of the roots of 𝛬(𝜌). Thus,
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𝑞

𝑇

𝜌∗ = (−𝑞1 +
√

𝑞21 − 𝑞0𝑞2)∕𝑞2. Now, substituting the values of 𝑞0, 𝑞1 and
2, we obtain 𝜌∗ = 𝜌1.

Finally, using Eq. (6), we obtain the optimal cycle time 𝑇 ∗ as

∗ =
√

2𝐴
𝑟
(

ℎ (𝜌∗)2 + 𝛼1 (1 − 𝜌∗)2
)
. ■
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