
(A,m)-ISOMETRIES ON HILBERT SPACES
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Abstract. A bounded linear operator T on a Hilbert space H is called an (A,m)-isometry, for
some positive operator A on H and integer m if

m∑
k=0

(−1)m−k
(m
k

)
T ∗kATk = 0.

We give some properties of (A,m)-isometries. In particular, we focus on spectral properties

and the relation between (A,m′)-isometries and m-isometries. Also, we obtain some dynamic
properties of (A,m)-isometries as: a negative answer to [22, Question 1] with an example of an

A-isometric which is N -supercyclic and sufficient conditions for an (A,m)-isometry to be not

N -supercyclic. Moreover, we prove that the perturbation of (A,m)-isometry by a bigger class
than nilpotent operators is not N -supercyclic.

1. Introduction

Throughout this paper, H denotes a Hilbert space, X a Banach space and L(X) the algebra of
all bounded and linear operators on X.

Given any positive integer m, it is said that the operator T ∈ L(H) is an m-isometry if

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0 , (1)

where T ∗ denotes the adjoint operator of T . The notion of m-isometric operator was introduced
by Agler in [1] and was thoroughly studied by Agler and Stankus in [4, 5, 6]. This definition is one
of the generalizations of isometry.

It is clear that (1) is equivalent to

m∑
k=0

(−1)m−k
(
m

k

)
‖T kx‖2 = 0, (2)

for all x ∈ H.

Let A ∈ L(H) be a positive operator and let m be a positive integer. An operator T ∈ L(H) is
said an (A,m)-isometry if

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kAT k = 0 . (3)

An operator T is a strict (A,m)-isometry if T is an (A,m)-isometry and is not an (A,m − 1)-
isometry. If m = 1, it is called A-isometry, that is, T is an A-isometry if T ∗AT = A. The class of
(A,m)-isometries has been introduced by Sid Ahmed and Saddi [23], and studied by other authors.
See [14, 15, 18, 20, 22, 23, 24].

For any T ∈ L(H), we denote by R(T ) and ker(T ), the range and the null space of T , respectively.
The following are trivial examples of this class.
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(1) If A :≡ I, then

T is an m-isometry if and only if T is (A,m)-isometry .

(2) If A :≡ 0, then any operator on L(H) is an A-isometry.
(3) If T is A-isometry, then any operator of the form T + L(H, ker(A)) is an A-isometry.

Notice that an (A,m)-isometry can not be injective.

Example 1.1. Let A :=

 1 1 0
1 2 0
0 0 0

 and T :=

 2 1 0
−1 0 0
0 0 0

 be operators defined on C3. It

is not difficult to prove that T is a strict (A, 3)-isometry which is not injective.

Let us recall that, for T ∈ L(H), the orbit of a subset E ⊆ H under T is defined by

Orb(T,E) := {Tnx : x ∈ E, n ∈ N}.

An operator T is said to be N -supercyclic if there exists an N -dimensional subspace E of H such
that Orb(T,E) is dense in H. If N = 1, we say that T is supercyclic.

In 1997, Ansari and Bourdon [7] proved that an isometry on a Banach space can not be su-
percyclic. Later, Faghih and Hedayatain [16] extended this result to m-isometric operators on a
Hilbert space. In [8] Bayart proved that an m-isometry on a Banach space isn’t N -supercyclic.

The paper is organized as follows. In Section 2, we study the relation between m-isometries
and (A,m′)-isometries. In general, these classes are different. However, with some additional
hypotheses we get that (A,m)-isometry has similar properties as the class of m-isometries. Also,
we prove that the spectrum of an (A,m)-isometry with a non zero operator A must intersect the
unit circle. Indeed, for any compact subset K of C with intersection in the unit circle, we find a
Hilbert space, a positive operator A and an A-isometry with spectrum K. In Section 3, we study the
relationship between m-isometries and (A,m′)-isometries, for particular cases (finite-dimensional
case and infinite-dimensional case with the unilateral weighted shift operator). In the final section,
we prove that an A-isometry with 0 not in the point spectrum of A, can not be N -supercyclic.
Also, we give a negative answer of [22, Question 1], with an example of an A-isometry which is
N -supercyclic. Moreover, we extend the result of [25, Theorem 2.2] and [18, Theorem 2.3] in the
following way: the sum of an (A,m)-isometry S and an A-nilpotent operator Q on a Hilbert space
H that commutes with S can not be N -supercyclic if ker(A) is invariant under S and Q and
dim(H/ker(A)) > N .

2. Properties of (A,m)-isometries

Henceforth, A will denote a positive operator unless explicitly stated otherwise.
The purpose of this section is to present some properties of the class of (A,m)-isometries. We

give some similar and different properties between (A,m)-isometries and m-isometries.
A first natural question is the following: Is there any relation between m-isometries and (A,m)-

isometries?
Example 1.1 shows that in general an (A,m)-isometry isn’t an m′-isometry, for any m′. On the

other hand, the following example proves that for a fixed positive operator A, we have no relation
between the class of m-isometries and (A,m)-isometries.

Example 2.1. Let A :=

 0 0 0
0 1 1
0 1 1

 and T :=

 0 0 −1
1 0 0
0 1 0

 ∈ L(C3). Then it is clear that

T is an isometry and isn’t A-isometry.

Let T be an (A,m)-isometry. We define the A-covariance operator of T by

∆A
T :=

1

(m− 1)!

m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)
T ∗kAT k .
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By [23, Theorem 2.1], the A-covariance operator, ∆A
T , is a positive operator. An important

property says that
T ∗∆A

TT −∆A
T = 0 . (4)

Hence an (A,m)-isometry (m-isometry) is ∆A
T -isometry (∆T -isometry). See [23] for more properties

of the A-covariance operator.
Assume that T is an (A,m)-isometry and an A′-isometry, for some positive operators A and A′.

Is A′ = a∆A
T for some a > 0?

This is not true in general.

Example 2.2. Consider the operators T :=

(
1 1
0 1

)
, A :=

(
1 1
1 2

)
and A′ :=

(
0 1
−1 2

)
on R2. Then it is not difficult to check that T is a strict (A, 3)-isometry and A′-isometry with
A′ 6= a∆A

T , for all a > 0.

In the next proposition, we obtain some immediate properties.

Proposition 2.1. Let T ∈ L(H) be an (A,m)-isometry. Then the following properties hold:

(1) If S ∈ L(H) is unitarily equivalent to T , then S is an (A,m)-isometry.
(2) If H1 is a closed invariant subspace of T , then the restriction of T to H1, T|H1

is a
(PH1A|H1

,m)-isometry where PH1 is the orthogonal projection with range H1 and PH1A|H1

is a positive operator of L(H1).

Proof. (2) Let us prove that PH1
A|H1

is a positive operator of L(H1). Let x ∈ H1. Then

〈PH1
A|H1

x, x〉 = 〈Ax, PH1
x〉 = 〈Ax, x〉 ≥ 0 .

�

Denote the approximate point spectrum of A by σap(A).
With some extra spectral condition on A, the classes of (A,m)-isometries and m-isometries are

“almost the same”, as showed the following result.

Proposition 2.2. Let T ∈ L(H) be an (A,m)-isometry such that 0 /∈ σap(A). Then T is an

m-isometry on (H, ||.||A), where ||x||A := ‖A1/2x‖ and A1/2 is the square root of A.

Proof. It is immediate since 0 /∈ σap(A) implies that (H, ||.||A) is a Hilbert space. �

In general, we are interested in obtaining sufficient conditions on T to be an (A,m)-isometry for
some A ≥ 0. Using the same ideas of the theory of m-isometries for perturbation by commuting
nilpotent operators obtained in [9, 10, 11], we have the following for (A,m)-isometries.

Theorem 2.1. Let T ∈ L(H) be an (A,m)-isometry. Then

(1) For every x ∈ H, we have that ‖A1/2Tnx‖ is a polynomial at n of degree at least m− 1.
(2) If Q is a nilpotent operator of order n that commutes with T , then T+Q is an (A, 2n+m−2)-

isometry.

Proof. The proof of the first part is similar to [10, Theorem 2.1] and the second part to [9, Theorem
3]. �

It is well-known, in the theory of m-isometries, that if T is an isometry that commutes with a
nilpotent operator of order exactly n, then T + Q is a strict (2n − 1)-isometry, that is, T + Q is
a (2n − 1)-isometry and not a (2n − 2)-isometry, [11, Theorem 2.2]. However, strictly part of this
result is not valid for the class of (A,m)-isometries as proves the following example.

Example 2.3. Consider the operators A :=

(
0 0
0 α

)
, with α > 0 , T :=

(
2 −1
0 1

)
and

Q :=

(
0 1
0 0

)
on C2, when it is seen that T and T +Q are A-isometries.

The following proposition is an immediate consequence of the definition of (A,m)-isometry.

Proposition 2.3. Let T, A ∈ L(H) such that A ≥ 0 and T be an (A,m)-isometry. Then
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(1) ker(T ) ⊆ ker(A). In particular, if ker(A) = {0}, then T is injective.
(2) If T is invertible, then T−1 is an (A,m)-isometry.

It is well-known that the approximate point spectrum of an isometry T is contained in the unit
circle. Hence the spectrum of T is the closed unit disc if it is not invertible or a closed subset of the
unit circle if it is invertible. Indeed, Agler and Stankus proved the same property for m-isometries
[4]. So, a first glance, it could be interpreted that isometries and m-isometries have similar spectra.
However, this is not totally true, see [12] for more details. Moreover, (A,m)-isometries have not
the same spectrum as m-isometries. Indeed, an easy statement is that (A,m)-isometries can not
be bounded below, even with points outside of the unit disc as proves the following example.

Example 2.4. If A :=

 0 0 0
0 0 0
0 0 α

 with α > 0 and T :=

 2 −1 0
0 1 0
0 0 0

 ∈ L(C3), then T is

A-isometry and σ(T ) = {0, 1, 2}.

The next result gives a necessary spectral condition to be an (A,m)-isometry.

Theorem 2.2. The spectrum of an (A,m)-isometry with A 6= 0 must intersect the unit circle.

Proof. It is enough to prove the result for m = 1, since every (A,m)-isometry is an A′-isometry,
where A′ is the A-covariance operator of T .

Assume that T is an A-isometry such that σ(T ) ∩ ∂D = ∅.
Let us prove that A is the null operator. By functional calculus we get that H = H1 ⊕ H2,

T = T1⊕T2, with Ti := T|Hi
, i = 1, 2, such that σ1 := σ(T1) = σ(T )∩D and σ2 := σ(T2) = σ(T )∩Dc

.
Let us prove that A|H1

≡ 0. Using that H1 is an invariant subspace of T and T is A-isometry,
so by Proposition 2.1, we get that T1 is a PH1

A|H1
-isometry, and with spectral radius less than 1,

since σ(T1) ⊂ D. Hence Tn
1 h1 converges to 0 for any h1 ∈ H1. Then for any h ∈ H1, we obtain that

〈Ah, h〉 = 〈ATnh, Tnh〉 = 〈ATn
1 h, T

n
1 h〉 → 0 as n→∞.

This means that 〈Ah, h〉 = 0 for all h ∈ H1, then A|H1
≡ 0 .

Let us prove that A|H2
≡ 0. Since σ(T2) = σ(T ) ∩ Dc

, then T2 is an invertible and PH2
A|H2

-
isometry. By Proposition 2.3 and the proof of the fist part, we derive the result. �

Theorem 2.3. Let K be a compact subset of C such that K ∩ ∂D 6= ∅. Then there exists an
infinite dimensional Hilbert space H and T, A ∈ L(H), with A ≥ 0 such that T is an A-isometry
with σ(T ) = K.

Proof. Let H := `2(N)⊕ C. Consider a positive operator of L(H), A :=

(
0 0
0 α

)
, with α > 0.

Since K∩∂D 6= ∅, we define a linear operator T on H as T :=

(
D 0
0 λ

)
, where λ ∈ K∩∂D and

D(x1, x2, ...) := (β1x1, β2x2, ...) with {βn : n ∈ N} = K. Then we obtain that T is an A-isometry
and σ(T ) = σ(D) ∪ {λ} = K. �

Assume that A is a non negative positive operator of L(H). We will present some non trivial
examples.

2.1. On finite dimensional Hilbert space. By Agler, Helton and Stankus, any m-isometry on
a finite dimensional Hilbert space is of the form a unitary operator plus a commuting nilpotent
operator [3]. Moreover, by [11, Theorem 2.7] on R2 there are only isometries and 3-isometries.
Indeed, by [12] the strictly 3-isometries on R2 have a particular form.

Lemma 2.1. [12] The strict 3-isometries on R2 are of the form ±I +Qi, where Qi is a non-zero
nilpotent operator given by:

Q1 :=

(
0 1
0 0

)
, Q2 :=

(
0 0
1 0

)
or Q3 :=

(
1 λ
−λ−1 −1

)
, with λ 6= 0.
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The above result gives some ideas for (A, 3)-isometries on R2.

Theorem 2.4. Let Ti := ±I + Qi be a strict 3-isometry on R2. Then Ti is an A-isometry, with
A ≥ 0 if and only if A ≡ Ai, i = 1, 2, 3, where

(1) A1 :=

(
0 b
−b a

)
, a ≥ 0 and b ∈ R.

(2) A2 :=

(
a b
−b 0

)
, a ≥ 0 and b ∈ R.

(3) A3 :=

 b+ c

2λ
b

c
λ(b+ c)

2

,
λ(b+ c)

2
≥ 0.

Proof. Let us prove part (3), the other cases are similar. Assume that T3 =

(
2 λ
−λ−1 0

)
.

Consider a positive operator of L(R2), A =

(
a b
c d

)
.

Suppose that T3 is A-isometry, that is, T ∗3AT3 − A ≡ 0. Then we get the following system of
equations 

3a− 2λ−1(b+ c) + λ−2d = 0

aλ2 − d = 0

2aλ− (c+ b) = 0

and the solution is given by a =
b+ c

2λ
and d =

λ(b+ c)

2
.

Moreover, it is not difficult to prove that A3 :=

 b+ c

2λ
b

c
λ(b+ c)

2

 is a positive operator if and

only if
λ(b+ c)

2
≥ 0. Hence we obtain the result. �

The m-isometries on a finite dimensional Hilbert space has a concrete form: isometries plus
commuting nilpotent operator. So, what can we say about (A,m)-isometries on finite dimensional
Hilbert space?

Question 2.1. Let H be a finite dimensional Hilbert space and T ∈ L(H) be an (A,m)-isometry.
Is it possible to write T as the sum of an A-isometry and nilpotent operator which commutes?

In general, we do not know the answer of that question. Our examples satisfy that decomposition,
that is, A-isometry plus a commuting nilpotent operator.

Example 2.5. If T1 :=

(
2 1
−1 0

)
and A1 :=

(
1 1
1 2

)
∈ L(C2), then T1 is a strict 3-isometry

and a strict (A1, 3)-isometry with T1 := I +Q1 where Q2
1 = 0. Moreover, if A :=

(
A1 0
0 0

)
and

T :=

(
T1 0
0 0

)
, then we obtain that T isn’t an m-isometry, for any integer m, and it is a strict

(A, 3)-isometry with T := S + Q where S :=

(
I 0
0 0

)
is an A-isometry and Q :=

(
Q1 0
0 0

)
is

a 2-nilpotent operator such that SQ = QS.

2.2. Unilateral weighted shift. We will assume that (en)n≥1 is an orthonormal basis of `2(N).
The unilateral weighted shift T on `2(N) with weight sequence (wn)n≥1 it is defined by

Ten := wnen+1, for all n ≥ 1.
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Corollary 2.1. [2, Corollary 3] A unilateral weighted shift T on `2(N) with weight sequence (wn)n≥1

is strictly m-isometric if and only if there exists a polynomial p of degree m−1 with real coefficients
such that for all integers n ≥ 1, we have p(n) > 0 and

|wn|2 =
p(n+ 1)

p(n)
. (5)

Corollary 2.2. Let T be a unilateral weighted shift with weight sequence (wn)n≥1 and p be the
monic polynomial satisfying (5). If T is a strict m-isometry with even m, then there exists a root
αj0 of p such that αj0 ∈ (−∞, 1).

Proof. By Corollary 2.1, there exists a polynomial p of odd degree m−1 that satisfies (5). Suppose
that there exists a root αj1 ∈ (1,∞) \ N, then there exist integer n1 ∈ N and a root αj′1

of p, such
that:

αj′1
, αj1 ∈ (n1, n1 + 1).

That is, for all integers n ≥ 1, we have (n−αj1)(n−αj′1
) > 0, since p(n) > 0, for all integers n ≥ 1

and the numbers of roots of p is odd. Hence there exists a root αj0 such that αj0 ∈ (−∞, 1). �

Remark 2.1. From Corollary 2.2, we conclude that p could be written as:

p(x) = (x− α1)(x− α2)...(x− αm−1),

such that for all integers n ≥ 1, where j0 ∈ (−∞, 1) is taking as 1, without lost of generality. Then
we have that (n− α1) > 0 and

(n− α2)(n− α3) > 0,
(n− α4)(n− α5) > 0,

. . . ,
(n− αm−2)(n− αm−1) > 0.

Recall the following combinatorial result.

Lemma 2.2. [26, Eq. 0.154 (3)] If n is a positive integer, then

n∑
k=0

(−1)n−k
(
n

k

)
kj = 0

for all j ∈ {0, 1, ..., n− 1}.

In Section 2, we have recalled that an m-isometry is a ∆T -isometry. Now, we are interested in the
study of m-isometry with the unilateral weighted shift related with the concept of (A,m′)-isometry,
for some positive operator A and some integer m′.

Theorem 2.5. Let T be a unilateral weighted shift with weight sequence (wn)n≥1 on `2(N), which
is a strict m-isometry, let p be the monic polynomial satisfying (5) and let αj’s be the roots of p.

(1) If m is even, then T is a strict A`-(m− `)-isometry, where

A`en :=


1

Π`+1
j=2(n− αj)

en, if ` is even

1

Π`
j=1(n− αj)

en, if ` is odd

for all integers n ≥ 1 and 1 ≤ ` ≤ m− 1, where α1 ∈ (−∞, 1).
(2) If m is odd, then T is a strict A2`-(m− 2`)-isometry, where

A2`en :=
1

Π2`
j=1(n− αj)

en,

for all integers n ≥ 1 and 1 ≤ ` ≤ m−1
2 .
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Proof. Let us prove it for even m. Assume that 1 ≤ ` ≤ m− 1. By Remark 2.1, we obtain that if
` is even, then Π`+1

j=2(n− αj) > 0 and if ` is odd, then Π`
j=1(n− αj) > 0, for all n ∈ N. Then A` is

a positive operator.
For even `, we consider the diagonal operator A` with diagonal

λn :=
1

Π`+1
j=2(n− αj)

.

Denote

β`(A, T, x) :=
1

`!

∑̀
k=0

(−1)`−k
(
`

k

)
〈AT kx, T kx〉 ,

for any positive integer `. Let x =
∑

n≥1 xnen ∈ `2(N). We have

βm−`(A`, T, x) =
1

(m− `)!

m−∑̀
k=0

(−1)m−`−k
(
m− `
k

)
〈A`T

kx, T kx〉

=
1

(m− `)!

m−∑̀
k=0

(−1)m−`−k
(
m− `
k

)∑
n≥1

|xn|2〈A`T
ken , T

ken〉

=
1

(m− `)!
∑
n≥1

|xn|2
m−∑̀
k=0

(−1)m−`−k
(
m− `
k

) n+k−1∏
j=n

|wj |2〈A`en+k , en+k〉

=
1

(m− `)!
∑
n≥1

|xn|2
m−∑̀
k=0

(−1)m−`−k
(
m− `
k

) n+k−1∏
j=n

p(j + 1)

p(j)
〈A`en+k , en+k〉

=
1

(m− `)!
∑
n≥1

|xn|2
m−∑̀
k=0

(−1)m−`−k
(
m− `
k

)
p(n+ k)

p(n)

1∏`+1
j=2(n+ k − αj)

.

Since,

p(n+ k)∏`+1
j=2(n+ k − αj)

=


(n+ k − α1), if ` = m− 2,∏m−1

j=`+2(n+ k − αj)(n+ k − α1), if ` 6= m− 2.

By Lemma 2.2, we obtain that

m−∑̀
k=0

(−1)m−`−k
(
m− `
k

)
p(n+ k)∏`+1

j=2(n+ k − αj)
= 0.

Hence βm−`(A`, T, x) = 0, which means that T is a strict A`-(m− `)-isometry.
The rest of the cases are similar. �

Corollary 2.3. Let T be a unilateral weighted shift with weight sequence (wn)n≥1 on `2(N) and
let p be the monic polynomial satisfying (5). If T is an m-isometry, then there exists a nonzero
positive operator Am−1 given by

Am−1en :=
1

p(n)
en, for all n ≥ 1,

such that T is an Am−1-isometry, where 0 ∈ σap(Am−1)\σp(Am−1).
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3. Dynamic properties

The purpose of this section is to give some dynamic properties of (A,m)-isometries.
Denote

LA(H) := {T ∈ L(H) : R(T ∗A) ⊂ R(A)} .
In the following result we summarize some positive results.

Theorem 3.1. [22] Let T ∈ L(H) be an (A,m)-isometry. Then

(a) A power bounded A-isometry is never supercyclic.
(b) If (‖Tnx‖)n∈N is eventually increasing for any x ∈ H, then T is not supercyclic.
(c) If T ∈ LA(H), 0 /∈ σ(A) and ∆A

T is injective, then T is not N -supercyclic.

By a similar expression of (2), Bayart [8] and Hoffman, Mackey and Searcoid [19] have introduced
the concept of m-isometries on Banach space context. That is, a bounded linear operator T : X −→
X on a Banach space X is an (m, p)-isometry (m ≥ 1 integer, p > 0 real) if

m∑
k=0

(−1)m−k
(
m

k

)
‖T kx‖p = 0, (6)

for all x ∈ H. In [14] Duggal has introduced the following definition of (A,m, p)-isometry in a
Banach space context using similar ideas. An operator T ∈ L(X) is an (A,m, p)-isometry if

m∑
k=0

(−1)m−k
(
m

k

)
‖AT kx‖p = 0 (x ∈ X) .

If A is a positive operator defined in a Hilbert space, then T ∈ L(H) is an (A,m)-isometry if and
only if T is an (A1/2,m, 2)-isometry with the definition given by Duggal, where A1/2 is the square
root of A.

We present a different and easy proof of Duggal’s result on Hilbert space. A similar proof works
on Banach spaces.

Corollary 3.1. [14, Corollary 2.6] Let A, T ∈ L(H) such that 0 /∈ σap(A). If T is an (A,m)-
isometric, then T can not be N -supercyclic.

Proof. By Proposition 2.2, T is an m-isometry on (H, |||.|||A). Moreover, Bayart has proved that
an m-isometry can not be N -supercyclic, [8, Theorem 3.3]. So, the result is obtained. �

The above result can be improved. For that we need some lemmas.

Lemma 3.1. Let A, T ∈ L(H) such that T is A-isometry and 0 /∈ σp(A). Then the following
properties hold:

(a) There exists M > 0 such that ‖ATn‖ ≤M for all positive integer n.
(b) For any nonzero x ∈ H, ATnx9 0 as n→∞.

Proof. Suppose that T is an A-isometry. Then, ‖ATnx‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Hence we obtain the
first part of the result.

Let x ∈ H be a nonzero vector. Since 0 /∈ σp(A), so we have ‖ATnx‖ = ‖Ax‖ 6= 0. So

‖ATnx‖ → ‖Ax‖ 6= 0 as n→∞ .

Thus ATnx9 0 as n→∞, for any nonzero x ∈ H. �

Lemma 3.2. Let T, A ∈ L(H). If T and A satisfies properties (a) and (b) of Lemma 3.1, then T
can be extended to an isometry on a Banach space.

Proof. Define F : `∞(C) −→ C a linear functional that satisfies:

(1) If xn ≤ yn, then F ((xn)) ≤ F ((yn)).
(2) For any (xn)n∈N ∈ `∞(C), F ((xn)) = F ((xn+1)).

(3) F ((xn)) is the limit of a subsequence of
x1 + ...+ xn

n
.
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Define a new norm on X by |||x||| := F ((‖ATnx‖)). Let us prove that |||x||| is a norm. Let
x ∈ H be a nonzero vector. Since ‖ATn‖ ≤M , for all n, then (‖ATnx‖)n∈N ∈ `∞(C) for all x ∈ H.
Further by (b), ATnx9 0 as n→∞ for every x ∈ H \ {0}, that is, there exists M0 > 0 such that:

‖ATnx‖ ≥M0 , for all n .

Hence
‖ATx‖+ ‖AT 2x‖+ ...+ ‖ATnx‖

n
≥M0 > 0, for all n. (7)

By definition of the linear functional and (7), we have that |||x||| > 0. Then |||.||| is a norm on
H. Let x ∈ H. Then

|||Tx||| = F ((‖ATn+1x‖)) = F ((‖ATnx‖)) = |||x||| .

Let H̃ denote the completion of X with the norm |||.|||. Hence T extends to an isometry T̃ on

(H̃, |||.|||).
�

Theorem 3.2. If T ∈ L(H) is an A-isometry such that 0 /∈ σp(A), then T can not be N -supercyclic.

Proof. By Lemma 3.1 we have that T and A satisfies the hypothesis of Lemma 3.2. The result is
consequence of [8, Theorem 3.4]. �

With some additional hypothesis, it is possible to prove that (A,m)-isometries are not N -
supercyclic.

Corollary 3.2. Let A, T ∈ L(H) such that 0 /∈ σp(∆A
T ). If T is an (A,m)-isometric, then T can

not be N -supercyclic.

Proof. Since T is an (A,m)-isometry, by (4) we have that T is a ∆A
T -isometry. By Theorem 3.2

yields the result. �

In the following result Hedayatian proved a general result of Corollary 3.2.

Theorem 3.3. [18, Theorem 2.3] If T ∈ L(H) is an (A,m)-isometry such that dim(H/ ker(∆A
T )) >

N , for some N ≥ 1, then T is not N -supercyclic.

In [15, Theorem 4], Faghih-Ahmadi proved that any (A,m)-isometry is not supercyclic. However,
in the next example, we prove that it is not correct, even for the N -supercyclic class. Also, this
example gives a negative answer of [22, Question 1].

Example 3.1. Let H := CN ⊕ `2(N). Consider the positive operator A of L(H), A := ICN ⊕0, and
T ∈ L(H), T := ICN ⊕ λB where |λ| > 1 and B(x1, x2, ...) := (x2, x3, ...). Then T is an A-isometry.
Indeed,

〈AT (z, (x1, x2, ...)), T (z, (x1, x2, ...))〉 = 〈(z, 0), (z, λ(x2, x3, ...))〉

= |z|2

= 〈A(z, x), (z, x)〉.

However, T is N -supercyclic by [13].

In the literature there are some perturbation results for the class of m-isometries. See for example
[9, 11, 17, 21]. We are interested in introducing a new concept that generalizes the class of the
nilpotent operators, the K-nilpotent operator.

Definition 3.1. Let X and Y two Banach spaces, Q ∈ L(X) and K a map from X to Y . We say
that Q is K-nilpotent if there exists n ≥ 1 such that

R(Qn) ⊆ ker(K). (8)

Note that if ker(K) = {0}, then Q is a classical nilpotent operator.
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The next result generalizes [25, Theorem 2.2] and [18, Theorem 2.3]. See also [9, Theorem 3],
[17, Theorem 4] and [21, Theorem 16].

Theorem 3.4. Let S ∈ L(H) be an (A,m)-isometry and Q ∈ L(H) be an A-nilpotent such that
SQ = QS. If ker(A) is invariant under S and Q and dim(H/ker(A)) > N , then S + Q is not
N -supercyclic.

Proof. Suppose that T := S +Q is N -supercyclic on (H, ||.||). Since

||x||2A = 〈Ax, x〉 ≤ ||A||||x||2, ∀x ∈ H,
then T is N -supercyclic on (H, ||.||A).

If Q(ker(A)) ⊆ ker(A) and S(ker(A)) ⊆ ker(A), then we can define S̃0 and Q̃0 on H/ker(A) by

S̃0[x] := [Sx], Q̃0[x] := [Qx]

and

T̃0 := S̃0 + Q̃0.

Moreover, for each x ∈ H, ||[x]||A = ||x||A. Then S̃0 is an m-isometry. Indeed,
m∑

k=0

(−1)m−k
(
m

k

)
||S̃k

0 [x]||2A =

m∑
k=0

(−1)m−k
(
m

k

)
||[Skx]||2A

=

m∑
k=0

(−1)m−k
(
m

k

)
||Skx||2A = 0.

Let n ∈ N be such that R(Qn) ⊆ ker(A).

For x ∈ H, we have Q̃n
0 [x] = [Qnx] = [0]. Thus Q̃0 is a nilpotent operator on H/ker(A) of order

n0 ≤ n. We can consider the following commutative diagram

H
T−→ H

ϕ↓ ↓ ϕ

H/ker(A)
T̃0−→ H/ker(A)

where ϕ is the canonical projection map. Then, T̃0 is supercyclic. Let K be the completion of

H/ker(A) and T̃ , Q̃ and S̃ the extensions of T̃0, Q̃0 and S̃0 on the Hilbert space K. Then T̃ = S̃+Q̃,

where S̃ is an m-isometry, Q̃ is an n0-nilpotent and S̃Q̃ = Q̃S̃. However, T̃ is N0-supercyclic, with

1 ≤ N0 ≤ N . On the other hand, [9, Theorem 3.1] implies that T̃ is a (2n0 + m − 2)-isometry on
the Hilbert space K.
We suppose that N < dim(H/ker(A)) < ∞, so we get a contradiction by [13, Theorem 3.4]. If

dim(H/ker(A)) = ∞, then we obtain that T̃ is a (2n0 + m − 2)-isometry which is N0-supercyclic
on an infinite dimensional Hilbert space, which is a contradiction [8, Theorem 3.3]. �

Remark 3.1. The condition of invariance of ker(A) under the operator S, in the above theorem

is necessary. In fact, if S :=

(
0 1
−1 −2

)
and A :=

(
0 0
0 2

)
of L(R2), then it is clear that A is

a positive operator and S is a strict (A, 3)-isometry which satisfies that S(ker(A)) ( ker(A). So in

this case is not well defined the operator S̃.

Theorem 3.4 could be obtained in Banach space context using the definition of Duggal of
(A,m, p)-isometry.

Define the map Np := (β
(p)
m−1(A, T, .))

1
p : X → R. Then Np is a semi-norm satisfying

(β
(p)
m−1(A, T, x))

1
p ≤ ||A||(1 + ||T ||p)

m−1
p ||x|| ,

and

T (ker(Np)) ⊆ ker(Np).
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where

β
(p)
` (A, T, x) :=

1

`!

∑̀
k=0

(−1)`−k
(
`

k

)
‖AT kx‖p .

The proof of the following result is similar to Theorem 3.4.

Theorem 3.5. Let S,Q ∈ L(X), S is an (A,m, p)-isometry and Q an Np-nilpotent satisfying
Q(ker(Np)) ⊆ ker(Np) and SQ = QS. If dim(X/ ker(Np)) > N , then T = S + Q is not N -
supercyclic.
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