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Abstract

In this work we develop a deterministic inventory model for an item whose demand depends on both
selling price and time since the last inventory replenishment. More specifically, we assume that the demand
rate additively combines the effects of selling price and a time-power function. Moreover, we consider that
the holding cost is a power function of the amount of time that a firm holds inventory in stock. The objective
is to determine the inventory cycle and the selling price that maximize the total inventory profit per unit
time. We present an efficient algorithm to solve this inventory problem. Some numerical examples are
provided to illustrate how the algorithm operates.
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1 Introduction

Inventory management studies and analyzes the best way to organize the stock of products that a company
sells in such a way as to meet customer demand, incurring the minimum possible cost. To do so, it is necessary
to implement the most efficient inventory management procedures to guarantee good results. All this requires
a set of mathematical models and optimization techniques that allows the best inventory policies to be found.

The main contribution of this paper is to present, discuss and solve a new inventory model that can easily be
applied to managing real-life products, for which the consumers’ behavior depends on the selling price and the
time since the last inventory replenishment. Thus, the inventory model developed in this paper can be useful
for products sensitive to price changes, such as: (i) cooked items, fish, fruit or yoghurts, among others, which
have a higher demand at the beginning than at the end of the inventory period; (ii) sugar, milk, coffee or oil,
among others, which can have a lower demand at the start of the inventory cycle, and (iii) electrical goods,
supplies, furniture, kitchen utensils or applicance, among others, which have a quasi-constant demand during
the inventory cycle.

Since Harris (1913) published the well-known economic order quantity (EOQ) model, thousands of papers
on inventory models have been developed in operations research literature. For recent reviews on mathematical
inventory models, we refer the reader to Andriolo et al. (2014), Bazan et al. (2016), Bushuev et al. (2015), Glock
et al. (2014) and Shekarian et al. (2017). As in Harris’ model, many authors suppose that the demand rate is a
known constant. Thus, Yang et al. (2007) developed a collaborative pricing and replenishing policy with finite
planning horizon for an inventory system. Also, Gao et al. (2011) studied two bi-level pricing models for pricing
problems in a supply chain.

However, in real inventory systems, the demand rate may not be constant and depends on time. Thus,
Naddor (1966) introduced the power demand pattern as an adequate function to model the customer demand
process. As he noted, it plays a notable role in the inventory management. By using this function, it is assumed
that the demand depends on both time and the length of the inventory cycle. There are several works in the
literature dealing with the power demand pattern. Goel and Aggarwal (1981) developed an inventory model
with power demand pattern for deteriorating items, Datta and Pal (1988) studied an inventory system with

power demand pattern and variable rate of deterioration. Lee and Wu (2002) analyzed an inventory system with



power demand pattern for deteriorating items, allowing shortages. Dye (2004) presented an inventory model
with time-proportional backlogging rate and power demand pattern. Other papers with power demand pattern
and partial backlogging are, among others, Singh et al. (2009), Rajeswari and Vanjikkodi (2011), and Mishra
and Singh (2013).

A common characteristic of the previous models with a power demand pattern is that they consider a
fixed inventory cycle. Sicilia et al. (2012) developed several inventory systems in which the length of the
inventory cycle was not fixed. More recently, San-José et al. (2017) studied an inventory system with power
demand pattern where the length of the inventory cycle is a decision variable. San-José et al. (2018) developed
the optimal policy for an inventory system with full backlogging where demand multiplicatively combines the
effects of a price-logit function and a power demand pattern, assuming that the inventory cycle is a decision
variable. In this work, we also suppose that the inventory cycle is not fixed and consider that it is a decision
variable in the model.

In many inventory systems, it is also assumed that the unit holding cost is a linear function of time in
storage. However, this hypothesis may not be realistic for some products. Naddor (1966) analyzed an inventory
model in which the holding cost was non-linear with respect to time. Weiss (1982) studied an inventory model
with non-linear holding cost and constant demand rate from the perspective of minimizing costs per unit time.
Weiss showed that these models with non-linear holding cost can be applicable to any inventory system where
the value of the product decreases non-linearly the longer it is held in stock. Later on, Ferguson et al. (2007)
revisited the deterministic model analyzed by Weiss (1982) and indicated that it is an approximation of the
optimal lot size for perishable goods, such as milk and its derivatives, sold in small- to medium-size grocery
stores. Alfares (2007) considered an inventory model for an item with stock-dependent demand rate and storage
time-dependent holding cost using two types of discontinuous step functions. Urban (2008) extended the Alfares
model from the perspective of maximizing the average profit. Pando et al. (2012) developed an inventory system
from the perspective of maximizing profits, but assuming an inventory-level dependent demand rate and power
holding cost. Recently, San-José et al. (2015) presented an inventory model with partial backlogging, assuming
that the unit holding cost has two significant components: a fixed cost and a variable time-power cost.

One of the main goals of inventory management is to maximize the profit per unit time. Since the profit



depends on the selling price, several researchers have considered inventory systems where the demand rate is
a function of the unit selling price as a decision variable. Thus, Kunreuther and Richard (1971) investigated
the relation between the pricing and inventory decisions when the selling price depends on the quantity sold
per unit of time. Smith et al. (2007) analyzed the benefits of joint price and order quantity optimization as
compared with a sequential decision process in which the price is determined first, followed by the determination
of the order quantity. Kabirian (2012) studied an economic production quantity model in which the demand
rate depends on the selling price and the unit purchasing cost is a decreasing function of the lot size. Also, some
authors have considered that the demand rate is a function of the marketing parameters and the selling price
(see, for example, Bhunia et al., 2015; Mondal et al., 2009 and Shah et al., 2013). However, it is more usual that
the demand rate is a function of the selling price and time. In this case, either a multiplicative relation or an
additive relation between the effects can be considered. Thus, Chung and Wee (2008) developed an integrated
single-retailer/single-manufacturer imperfect production model with partial backordering, warranty-period and
stock-level-dependent demand. Yang et al. (2013) analyzed a deteriorating model of a manufacturer purchasing
materials and selling products to multi-market with time-varying and price-sensitive demand, considering single
and multiple production cycles in a finite time horizon. Panda et al. (2013) developed a deterministic inventory
model for perishable items where the demand rate is a function that can be separated into multiplicative effects
of price and time. Soni (2013) studied an inventory model with demand influenced by both displayed stock
level and selling price for non-instantaneous deteriorating items under delay in payment. His model assumes a
demand rate which is additive with respect to both selling price and stock level. Wu et al. (2014) revisited Soni’s
model and noticed two deficiencies in it. They complemented the shortcomings and developed an optimization
procedure to find the optimal replenishment policies. Avinadav et al. (2014) analyzed two models for determining
the optimal pricing and the replenishment period for items whose demand function is a separable function of
price and time. Wang and Huang (2014) studied a production—inventory problem for a seasonal item, assuming
that the demand rate is an additive function of time and price within the selling period. Zhang et al. (2016)
studied a decision-making problem for a firm with deteriorating items to jointly determine the sales price,
preservation technology, service investments and replenishment policy under an additively separable function

of sales price and service level (which obviously depends on time). Recently, Herbon and Khmelnitsky (2017)



developed an inventory replenishment model with additive demand rate which generalizes the pseudo-additive
model suggested in Avinadav et al. (2014).

In the management literature, a linear price dependence of demand is widely assumed. This is because
it is relatively simple to estimate its parameters and the empirical results are easily interpreted. Moreover,
it is an advantage that each elasticity of demand depends on the value of the variable (see Oum, 1989 for
more details). Alfares and Ghaithan (2016) presented a deterministic inventory model with all-units quantity
discounts, where the demand rate is a linearly decreasing function of the selling price and the unit holding-cost
is a linearly increasing function of the storage time. Jadidi et al. (2017) studied a joint pricing and inventory
decision problem in a single period model with a price-dependent and stochastic demand, where the mean
demand varies linearly with the price. Marand et al. (2017) analyzed a service-inventory system in which the
arrival rate is modeled as a linear function of the price. More recently, Rubio-Herrero and Baykal-Giirsoy (2018)
presented a mean—variance analysis of the single-product, single-period, price-setting newsvendor problem with
price-dependent demand in which the expected demand is a linear function of the retailer’s price. Other papers
on inventory models with linear price-demand have been developed by Bai et al. (2016), Chowdhury et al. (2015),
Hong and Lee (2013), Hossen et al. (2016), Maihami and Abadi (2012), Panda et al. (2017) and Zhang et al.
(2016). Table 1 summarizes the major characteristics of the previously cited papers that have been published
from the year 2000.

In this work, we study a deterministic EOQ model for an item whose demand depends on both selling price
and time. More specifically, we suppose that the demand rate additively combines the effects of selling price
and a time-power function. Furthermore, we consider that the demand varies linearly with the selling price
because this is wholly justified for some products in which demands are lost due to price sensitivity (see Panda
et al. (2017)). As we have already commented, this assumption is common in the literature. Moreover, following
Weiss (1982), we consider that the holding cost is a power function of the time period in stock. The objective
consists in determining the inventory cycle and the selling price to maximize the total inventory profit per unit
time. In order to solve the inventory problem, we use a sequential optimization procedure, and based on this,
we develop an effective algorithm which finds the optimal selling price and the optimal inventory cycle that

determine the maximum profit per unit time. To the best of our knowledge, this is the first work that additively
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combines a price-dependent demand and a power-time demand pattern, while also considering a variable inven-
tory cycle and a non-linear holding cost.

The structure of this work is as follows. Section 2 presents the assumptions that characterize the inventory
system under study and introduces the notation used throughout the work. Section 3 deals with the mathemat-
ical formulation of the proposed model. Then we give the theoretical results and provide the optimal policy in
Section 4. Moreover, we show how some models in the inventory literature can be obtained as particular cases
from the model studied here. Numerical examples and a sensitivity analysis are shown in Section 5. Finally,

the conclusions are described in Section 6.

2 Assumptions and notation

Notation is shown in Table 2.

Table 2. List of notation

Parameters

K Ordering cost per replenishment (> 0)

D Unit purchasing cost (> 0)

h Scale parameter of the holding cost (> 0)

0 Elasticity parameter of the holding cost (> 1)

o Scale parameter of the part of the price-dependent demand (> 0)
B Sensitivity parameter of the demand with respect to price (> 0)
¥ Scale parameter of the part of the time-dependent demand (> 0)

Demand pattern index (> 0)

Decision variables

T Length of the inventory cycle (> 0)

s Unit selling price (s > p)

Other variables

q Lot size per cycle (> 0)

Functions

H(t) Cumulative holding cost per unit held in stock during ¢ units of time

D(s,t) Demand rate at time ¢ for a selling price s, with 0 <t < T
I(s,t) Inventory level at time ¢ for a selling price s, with 0 <t < T
TP(s,T) Total profit per cycle

B(s,T) Profit per unit time




The assumptions used in developing the inventory model are presented below.

1.

2.

3.

4.

10.

An inventory system for a single item is considered.

The planning horizon is infinite.

The replenishment is instantaneous and the item is replenished periodically (each inventory cycle).

The purchasing cost p is fixed and known.

The selling price s is a constant that must be determined.

Shortages are not allowed.

The ordering cost K is fixed and regardless of the lot size.

The demand rate D(s,t) is a function of the unit selling price and the time that the inventory is held in

stock. We consider that D(s,t) = Di(s) + D(t), where D;(s) is the linear price-demand given by
Di(s)=a— s, witha>0,8>0and p<s<a/f

and Do (t) represents the power—time demand defined as

t (1—n)/n
Dy(t) = (l> (T) , with v > 0 and n > 0.

Thus, « is the scale parameter of the linear price-demand, [ is a coefficient of the selling price sensitivity,

v is the scale parameter of the time-dependent demand and n is the index of the power time demand

pattern (representing the way in which the units are taken from the inventory in order to satisfy the

demand of the customers). Therefore, the demand rate additively combines the effects of the selling price

and a time—power function.

The cumulative holding cost for a unit held in stock during ¢ units of time is a power function of the

time in storage. Thus, we suppose that H(t) = ht®, where h > 0 is the scale parameter and § > 1 is the

elasticity parameter of the holding cost.

The lot size per cycle is equal to the total demand throughout the inventory cycle, that is, ¢ = |, OT D(s,t)dt =

(o — Bs+)T.

3 Mathematical model

We consider that an order of ¢ units is received at time ¢ = 0. During the period (0,T), the inventory level

I(s,t) decreases due to demand and drops to zero at t = T'. Hence, for all ¢t € [0,T'), the inventory level at time



t is given by

I(s,t) :q—/o D(s,u)du:/t D(s,u)du = (oo — Bs)(T —t) +~T

SO
T
Taking into account the above assumptions, revenue and costs at each inventory cycle are calculated below:
e Revenue: sq = sI(s,0) = s(a—Bs+v)T
e Purchase cost: pg = p(a — Bs +~)T

e Order cost: K

e Holding cost: fOT H(t)D(s,t)dt = hb(s)T' 7, where for simplicity we define

_a—fs y
b(s) = 1+6 1+n5>0' (1)

The total profit per cycle TP(s,T) is the difference between the revenue per inventory cycle and the sum of

the purchasing cost, the ordering cost and the inventory holding cost per cycle. Then,

TP(s,T) = (s — p)(a — Bs +7)T — (K + hb(s)T*+). (2)

Our objective consists in maximizing the total profit per unit time. So the inventory profit per unit time is

given by
B(s,T) = % =(s—p)a—Ps+7)— (;f + hb(s)T5> : (3)

Thus, the optimization problem addressed in the paper is

B(s,T 4
Jnax (5,T), (4)

where Q ={(s,T): T >0and p < s < a/f}.

4 Solution of the problem

Firstly, we will study the concavity of the function B(s,T'). To do this, we calculate the first and second order

partial derivatives of B(s,T'). So the Hessian matrix of B(s,T'), denoted by Hp, is

62B(S,T) 82B(S,T) _2/8 @T(S—l
HB _ Os 0s0T _ 1+0 . (5)
82B(s, T 82B(s,T Sh s — _
Sel) 25T Bohpo=t 2K hS(5 — 1)b(s) T2




2
Since det(Hp) = 4%( +2B5(8 — 1)hb(s)T°~2 — (%T‘sfl) is not always positive, B(s,T) is neither concave
nor convex. For this reason, we will use a sequential optimization procedure to solve the problem (4).

We suppose s € [p,a/f] is fixed and T > 0 is variable. Thus, we are considering the univariate function

By(T) = B(s,T). Taking the derivative of B(T'), we obtain

K _
BL(T) = = héb(s)T°1
and the second derivative is
2K _
B!(T) = — <T5 + hd(6 — 1)b(s)T?° 2) .

As BY(T) < 0 for all T > 0, Bs(T') is a concave function. Since limpyg Bs(T) = limp_, o Bs(T) = —oo, the

maximum of B, (T) is attained at the point T%*(s), which solves the equation B.(T) = 0. Thus,

Evaluating the function B(s,T') at T*(s) yields

F(5) = Bs.T"(s)) = (s = p){a = B +9) = G0 )

Also,
F(s) = (s = p)(a = Bs +7) = (L+0)hb(s) (T"(s))" (8)
Next, we analyze the behavior of the function F(s) to obtain the optimal selling price. It is evident that
F(s) is a continuous and differentiable function on the interval (p, a/3). Now, taking the derivative of F(s), we

obtain

F/(s) = a =285+ + Bp-+ o0 (T°(6))". )

From (9) it follows that F'(s) is a strictly increasing function when v > « — Bp. In this case, it is obvious
that the maximum of the function F'(s) is attained at the point s* = «/8.
Otherwise (that is, if v < o — 8p), we define the point

_ aty+pBp
S0 = —o5

It is clear that, in this case, we have p < s, < a/f. Note that b(s,) = % + 195 > 0 and F'(s,) =
)5/(1+5)

Bh

16 (Wb(so)

10



Since F'(s) > 0 for s € (p, o], F(s) is a strictly increasing function on the interval (p, s,). Next, we study
the behavior of this derivative F”(s) when s € (s,, /). Note that F(s) is a twice differentiable function on

the interval (s,,«/8). Now, taking the second derivative of F(s), we have
B26h

T oy e (10)

F'(s) = —2B8+

Consequently, if there exists a solution 5 € (s,,a/8) to the equation F’(s) = 0 in the interval (s,,a/3), that

solution should satisfy F”'(3) = —% (3), where
f(s) =2(146)%b(s) + 6(cr — 285 + v + Bp). (11)
Hence, f(s) is a strictly linear decreasing function. From this, we deduce that the function F(s) has at most

two local extremes in the interval (s,,a/8). Let s; be the root of the function f(s). It is easy to check that

Py 2
51= 50 + Aria5b(50)- (12)

Moreover, it is necessary that § < s; so that the function F'(s) has a local maximum at the point 5 € (s,, /).

The following result provides a criterion for determining the optimal value of the unit selling price.
Theorem 1 Let s, = (a+ v+ 8p)/(28), s1 = 5o + (1 4+ 6)?b(s,)/(B(1 + 25)) and F(s), F'(s) and F"(s) be
given, respectively, by (7), (9) and (10). The optimal selling price s* is characterized as follows:

1. If v > a— Bp, then s* = a/p.

2. If y < a—Bp and F'(a/B) < 0, then s* is the unique solution to the equation F'(s) = 0 in the interval

(80,/B).
3. Ify<a—PBp and F'(a/B) > 0, then the following cases can occur:
(a) If s1 > «/f, then s* = a/p.
(b) If sy < /B and F'(s1) > 0, then s* = a/p.
(¢) Otherwise (s1 < a/f and F'(s1) <0), let s = arg,e(s, 5 {1F'(s) = 0}.
i. If F(5) < F(a/B), then s* = a/B.

it. If F(3) > F(a/B), then s* =3.

Proof.
1. Tt is immediate because F(s) is a strictly increasing function on the interval (p, a/f).

11



2. In this case, F(s) has a unique local extreme § on the interval (s,,a/3). So, F(s) is a strictly increasing
function on (p,s) and strictly decreasing on (s,«/8). Therefore, F(s) attains its maximum at § =
argee(s,.a/p) 1 E" () = 0}.

3. Note that, in this case, the function F(s) has zero or two local extreme points on the interval (s,, /).

We can consider the following situations:

(a) If s; > «/f, then the function F’(s) has no roots on the interval considered. Therefore, the function
F(s) is strictly increasing in that interval.
(b) We have divided the proof into two cases:
i. If s1 < a/f and F’(s1) > 0, then F’(s) has no roots on the interval (s,,/3). The rest of the
proof runs as in the previous case.
ii. If s3 < o/ and F'(s1) = 0, then F(s) is a non-decreasing function on (s, a/8). Thus, F(s)

attains its maximum at the point s* = «/f.

(c) Finally, if s < o/ and F’(s1) < 0, then F(s) has two local extreme points on (s,,«/3): s and 57,
with § < 87 < $1. Now, the function F(s) is strictly increasing on (p, ), strictly decreasing on (s, 57)
and strictly increasing on (51, «/8). Therefore, F'(s) attains its maximum at point s* = § or at point

s*=a/f. m

Let us mention some important consequences of the previous results, which allow the optimal inventory

cycle T, the economic lot size ¢* and the maximum profit per unit time B* to be explicitly determined.

Corollary 1 If s* = «/8, then T* =T, = "R/K(1+ n)/dvh, ¢* = vT, and B* = (o — pp)(v/B) — (1 +

5)K/(3T,).

Proof. It follows immediately after taking into account (1), (6) and (7). m

* * K * KpB(a—pBs*+7) * *
Corollary 2 If s* < a/f, then T* = 6(1%)1)(5*)(%‘2*70[777%), g = 6(1+6)b(s*()(255*—o’j*’yfﬁp) and B* = (s* —

2p(s* "
p)(a — Bs* + ) + L) (0 — 285 1 4 Bp).

Proof. In this case, we have F'(s*) = 0. From (7), F’(s) can be rewritten as F'(s) = o — 2B8s+ v+ Op +

W. The rest of the proof follows immediately. m

12



Taking into account the above properties, we can develop an algorithm to solve the inventory problem

presented in this paper.

Algorithm

Step 1 If v > a — Bp then go to Step 8.
Otherwise, go to the next step.

Step 2 Calculate s, = (a+ v + p)/(20).

Step 3 If F'(a/B) < 0, calculate § = arg ¢ (s, o/ {1F"(s) = 0}. Go to Step 9.
Otherwise, go to the next step.

Step 4 Calculate s1 = s, + (1 + 8)2b(s,)/(B(1 + 26)).

Step 5 If s1 > o/ then go to Step 8.
Otherwise, go to the next step.

Step 6 If F’(s1) > 0 then go to Step 8.
Otherwise, go to the next step.

Step 7 Calculate s = arg,¢(,, s {F"(s) = 0}.
If F'(5) > F(«/B) then go to Step 9.

Otherwise, go to the next step.

K(1+6n) ) 1/(1+9)

Step 8 The optimal selling price is s* = /8 and the optimal cycle is T* =T, = ( 59k

The optimal profit is given by B* = B, = (a — 8p)(v/8) — (1 + §) K /(6T,). Stop.
Step 9 The optimal selling price is s* = s.

From (6), calculate T* = T*(s*) and, from (7), calculate B* = F(s*). Stop.

4.1 Particular models

Next, we show how some inventory models developed by other authors can be obtained as particular cases from

the model studied here.

(1) If we suppose that n = 1 and «, 8 — 0, we obtain the inventory system analyzed by Weiss (1982) and

Ferguson et al. (2007).

(2) If we consider § = 1 and o, — 0, we have the inventory model with power demand pattern without

shortages (see Sicilia et al. (2012)).
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(3) If we assume that n =1, 6 = 1 and v — 0, then we obtain the same model proposed by Kunreuther and
Richard (1971) and Smith et al. (2007) when, in their models, a linear demand curve is considered. More-
over, the optimal solution determined by the algorithm developed here coincides with the “simultaneous
solution” given by those authors.

(4) If we suppose that n = 1, § = 1 and v — 0, then we obtain the same model proposed by Kabirian
(2012) when, in his model, it is assumed that the production cost is constant, demand rate is linear and
production rate tends to infinity.

(5) If we assume that § =1 and 3, — 0, then we have the classical EOQ model proposed by Harris (1913).

In this case, the inventory problem 4 is reduced to maxrso Bo(T) = (s — p)a — (% + %aT).

5 Numerical examples

In this section, we present several numerical examples to illustrate how the algorithm operates.

Note that the previous algorithm considers five cases (dependent on the parameters of the system) that must
be analyzed to find the optimal selling price. For that, we give five numerical examples that illustrate each of
those situations.

Example 1 Let us assume the parameters o = 120, 8 = 1, v = 10, n = 0.5, K = 200, p = 40, h = 1.05
and 6 = 1.5. In this case, v < a — fp. By using the algorithm of the previous section, we have s, = 85 and
F'(a/B) = —67.3003. Therefore, the optimal selling price is s* = arg,¢ (s5,120) {3&% — 254170 = 0} =
85.6472. From (6), we obtain the optimal inventory cycle T* = T*(s*) = 2.11779 and, from (7), the maximum

profit per unit time is B* = 1867.18. Finally, the economic order quantity is ¢* = 93.9301.

Example 2 We now consider an inventory system with the following parameters: o = 120, g = 1, v = 60,
n =25, K = 1600, p = 35, h = 1.5 and 6 = 2. We have v < a — Op and calculate the values s, = 107.5,
F'(a/B) = 4.50632, s; = 117.118 and F’(s1) = 0.582939. Therefore, the optimal inventory policy is s* = a/8 =

120, T* = 7.68197, B* = 4787.58 and ¢* = 921.836.

Example 3 Suppose the same parameters as in Example 2, but change the values of K, v and p to K = 1000,
v = 40 and p = 55, respectively. Again, we have v < a — 8p and s, = 107.5. Now F’'(«a/B) = 3.26372,

s1 = 116.412, F'(s1) = —2.58107 and § = 113.223. Since F(a/f) = 2400.49 and F(3) = 2409.99, we conclude
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that the optimal unit selling price is s* = 5. Consequently, T* = 4.78460, ¢* = 223.809 and B* = 2409.99.
Note that, in this case, the equation F”(s) = 0 has another root at the point so = 119.249 in which the function

F(s) has a relative minimum (F(s2) = 2399.40).

Example 4 Assume the same parameters as in Example 2, but modify the values of v and n to v = 80 and
n = 2, respectively. We have v < a — 8p. Next, we calculate s, = 117.5, F'(a/8) = 0.178721 and s; = 147.8.

Therefore, the optimal inventory policy is s* = /8 = 120, T* = 3.21830, B* = 6054.26 and ¢* = 257.464.

Example 5 Assume the same parameters as in Example 1, but change the value of g to g = 2.8. Now, we
obtain 7 > «a — Bp. By using the algorithm described in the previous section, we see that the optimal inventory
policy is * = /8 = 42.8571, T* = 3.45712, B* = —67.8478 and ¢* = 34.5712. Therefore, the inventory system
is non-profitable for any unit selling price.

Figures 1 to 5 depict the profit functions B(s,T') for each of the numerical examples 1 to 5, respectively.

5.1 Sensitivity analysis

Let us consider an inventory system with the assumptions described in Section 2 and the following input data:
a=120,=1,v=10, K =200 and h = 5.

To analyze the effect of the unit purchasing cost p, the demand pattern index n and the holding cost
elasticity d on the optimal policy, we provide a table containing some calculations that show the behavior of
s*, T*, ¢* and B* as functions of p, n and 6. More specifically, Table 3 exhibits computational results when

p € {26,36,40,44,60,70}, n € {0.25,0.5,1,2,4} and ¢ € {1,1.25,1.5,3}. These results present certain insights
into the inventory model studied here. Some issues are the following;:
1. With fixed n and §, the optimal unit selling price s* and the optimal inventory cycle T™ increase as the

unit purchasing cost p increases. However, the economic lot size ¢* and the maximum profit per unit time

B* decrease as p increases.

2. With fixed n and p, the optimal unit selling price s*, the optimal inventory cycle T and the economic

lot size ¢* decrease as the unit holding cost elasticity J increases.

3. With fixed p and §, the optimal unit selling price s*, the optimal inventory cycle 7%, the economic lot size

¢* and the maximum profit per unit time B* increase as the power demand index n increases.
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4. Note that, in general, the optimal profit B* is more sensitive to changes in the purchasing cost p than to

changes in the parameters ¢ and n.

In order to evaluate the sensitivity of the optimal selling-policy of the inventory model with respect to the
input parameters of the model K, h and -y, Table 4 shows the obtained results when a = 120, 8 = 1.25, p = 40,
n=2,6 = 1.25, K € {200,300,400, 500,600}, h € {0.5,0.75,1,1.25,1.5,1.75} and v € {10, 20,30,40}. These
results allow the following conclusions to be established:

(i) With fixed K and -, the optimal unit selling price s* increases as the scale parameter of the holding cost
h increases. However, the optimal inventory cycle T, the economic lot size ¢* and the maximum profit
per unit time B* decrease as h increases.

(ii) With fixed h and ~, the optimal profit per unit time B* decreases as the ordering cost K increases.
However, the optimal selling price s*, the optimal inventory cycle T* and the economic lot size ¢* increase
as K increases.

(iii) With fixed K and h, the optimal inventory cycle T* decreases as the parameter v increases. However,
the optimal selling price s*, the economic lot size ¢* and the optimal profit per unit time B* increase as
v increases.

(iv) In general, the optimal selling price s* is not very sensitive to changes in the parameters K, h and ~. In

fact, the changes with respect to the parameters K and h are very small.

6 Conclusions

An inventory model for a single item whose demand depends on both selling price and time is developed. More
specifically, we suppose that the demand rate is the sum of a linear function with respect to the unit selling price
and of a power-time function. Furthermore, we assume that the holding cost is a power function of the amount
of time in stock. The goal is to maximize the total inventory profit per unit time. This objective function can
have several local optimum points. To solve the problem, we develop an effective algorithm that analyzes all
possible cases that can occur in the inventory system and finds the global maximum. Although, in general,

the optimal solutions cannot be expressed in closed form, they can be obtained easily by using some numerical
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method to solve the non-linear equations, e.g., the bisection method. Several numerical examples are provided
to illustrate how the algorithm works to obtain the optimal inventory policy.

The proposed inventory model can be implemented for real-life products that have a demand pattern with
the characteristics described in the introduction. Thus, demand for cooked products, fish, fruit and yoghurts,
among others, which have (for a fixed price) higher demand at the beginning than at the end of the inventory
cycle, can be considered in the model, assuming a demand pattern index greater than one. Also, there are other
products where demand, for a fixed price, is lower at the beginning of the inventory cycle. Thus, household
goods such as sugar, milk, coffee and oil, among others, have major demand when the amount in the inventory
decreases significantly. In this case, the fluctuation of demand can be modeled considering a demand pattern
index less than one. Lastly, other products have, for a fixed price, a constant demand during the inventory
cycle. For instance, electrical goods, supplies, furniture, kitchen utensils and appliances, etc. This situation can
be modeled by using a demand pattern index equal to one. We present an efficient procedure which finds the
optimal selling price and the optimal inventory cycle that determine the maximum profit per unit time for any
demand pattern index. Consequently, the inventory model studied in the paper gives insights into inventory
management and can help managers in decision-making, providing greater efficiency in logistic operations.

Some future research lines related to this paper could be the following: (a) to develop the inventory model
allowing shortages; (b) to analyze the inventory system considering deteriorating items; (c) to study the in-
ventory system assuming discounts in purchasing costs; (d) to consider that the selling price depends on the
time since the last inventory replenishment and (e) to develop the inventory system under the assumption of

stochastic demand.

Acknowledgements

We wish to thank the anonymous referees for their useful suggestions and comments, which have greatly im-
proved the paper. This work is partially supported by the Spanish Ministry of Economy, Industry and Competi-

tiveness and European FEDER funds through the research projects MTM2013-43396-P and MTM2017-84150-P.

19



References

H.K. Alfares, Inventory model with stock-level dependent demand rate and variable holding cost, Int. J. Prod.

Econ. 108 (2007) 259-265.

H.K. Alfares, A.M. Ghaithan, Inventory and pricing model with price-dependent demand, time-varying holding

cost, and quantity discounts, Comput. Ind. Eng. 94 (2016) 170-177.

A. Andriolo, D. Battini, R.W. Grubbstréom, A. Persona, F. Sgarbossa, A century of evolution from Harris’s

basic lot size model: Survey and research agenda, Int. J. Prod. Econ. 155 (2014) 16-38.

T. Avinadav, A. Herbon, U. Spiegel, Optimal ordering and pricing policy for demand functions that are separable

into price and inventory age, Int. J. Prod. Econ. 155 (2014) 406—417.

Q. Bai, X. Xu, J. Xu, D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent

demand over a finite planning horizon, Appl. Math. Model. 40 (2016) 9342-9361.

E. Bazan, M.Y. Jaber, S. Zanoni, A review of mathematical inventory models for reverse logistics and the future

of its modeling: An environmental perspective, Appl. Math. Model. 40 (2016) 4151-4178.

A K. Bhunia, A.K. Shaikh, G. Sharma, S. Pareek, A two storage inventory model for deteriorating items with

variable demand and partial backlogging, J. Ind. Prod. Eng. 32 (2015) 263-272.

M.A. Bushuev, A. Guiffrida, M.Y. Jaber, M. Khan, A review of inventory lot sizing review papers, Manage.

Res. Rev. 38 (2015) 283-298.

R.R. Chowdhury, S.K. Ghosh, K.S. Chaudhuri, An inventory model for deteriorating items with stock and price

sensitive demand, Int. J. Appl. Comput. Math 1 (2015) 187-201.

C.J. Chung, H.M. Wee, An integrated production-inventory deteriorating model for pricing policy considering
imperfect production, inspection planning and warranty-period- and stock-level-dependant demand, Internat.

J. Systems Sci. 39 (2008) 823-837.

T.K. Datta, A.K. Pal, Order level inventory system with power demand pattern for items with variable rate of

deterioration, Indian J. Pure Ap. Mat. 19 (1988) 1043-1053.

20



C.Y. Dye, A note on “An EOQ model for items with Weibull distributed deterioration, shortages and power

demand pattern”, Int. J. Inform. Manage. Sci. 15 (2004) 81-84.

M. Ferguson, V. Jayaraman, G.C. Souza, Note: an application of the EOQ model with nonlinear holding cost

to inventory management of perishables, Eur. J. Oper. Res. 180 (2007) 485-490.

Y. Gao, G. Zhang, J. Lu, H.M. Wee, Particle swarm optimization for bi-level pricing problems in supply chains,

J. Glob. Optim. 51 (2011) 245-254.

C.H. Glock, E.H. Grosse, J.M. Ries, The lot sizing problem: a tertiary study, Int. J. Prod. Econ. 155 (2014)

39-51.

V.P. Goel, S.P. Aggarwal, Order level inventory system with power demand pattern for deteriorating items,
in: Proceedings of the All India Seminar on Operational Research and Decision Making, University of Delhi,

New Delhi, 1981, pp. 19-34.

F.W. Harris, How many parts to make at once, Factory, The Mag. Manage. 10 (1913) 135-136 and 152.

A. Herbon, E. Khmelnitsky, Optimal dynamic pricing and ordering of a perishable product under additive

effects of price and time on demand, Eur. J. Oper. Res. 260 (2017) 546-556.

K. Hong, C. Lee, Optimal time-based consolidation policy with price sensitive demand, Int. J. Prod. Econ. 143

(2013) 275-284.

M.A. Hossen, M.A. Hakim, S.S. Ahmed, M.S. Uddin, An inventory model with price and time dependent

demand with fuzzy valued inventory costs under inflation, Ann. Pure Appl. Math. 11 (2016) 21-32.

0. Jadidi, M.Y. Jaber, S. Zolfaghari, Joint pricing and inventory problem with price dependent stochastic

demand and price discounts, Comput. Ind. Eng. 114 (2017) 45-53.

A. Kabirian, The economic production and pricing model with lot-size-dependent production cost, J. Glob.

Optim. 54 (2012) 1-15.

H. Kunreuther, J.F. Richard, Optimal pricing and inventory decisions for non-seasonal items, Econometrica 39

(1971) 173-175.

21



W.C. Lee, JJW. Wu, An EOQ model for items with Weibull distributed deterioration, shortages and power

demand pattern, Int. J. Inform. Manage. Sci. 13 (2002) 19-34.

R. Maihami, I.N.K. Abadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items

under permissible delay in payments and partial backlogging, Math. Comput. Model. 55 (2012) 1722-1733.

A.J. Marand, H. Li, A. Thorstenson, Joint inventory control and pricing in a service-inventory system, Int. J.

Prod. Econ. (2017), https://doi.org/10.1016/j.ijpe.2017.07.008.

S.S. Mishra, P.K. Singh, Partial backlogging EOQ model for queued customers with power demand and quadratic

deterioration: computational approach, Am. J. Oper. Res. 3 (2013) 13-27.

B. Mondal, A.K. Bhunia, M. Maiti, Inventory models for defective items incorporating marketing decisions with

variable production cost, Appl. Math. Model. 33 (2009) 2845-2852.

E. Naddor, Inventory Systems, John Wiley, New York, 1966.

T.H. Oum, Alternative demand models and their elasticity estimates, J. Transp. Ecom. Pol. 23 (1989) 163-187.

S. Panda, S. Saha, M. Basu, Optimal pricing and lot-sizing for perishable inventory with price and time depen-

dent ramp-type demand, Int. J. Syst. Sci. 44 (2013) 127-138.

S. Panda, S. Saha, N.M. Modak, S.S. Sana, A volume flexible deteriorating inventory model with price sensitive

demand, Tékhne 15 (2017) 117-123.

V. Pando, J. Garcia-Laguna, L.A. San-José, Optimal policy for profit maximising in an EOQ model under

non-linear holding cost and stock-dependent demand rate, Int. J. Syst. Sci. 43 (2012) 2160-2171.

N. Rajeswari, T. Vanjikkodi, Deteriorating inventory model with power demand and partial backlogging, Int.

J. Math. Arch. 2 (2011) 1495-1501.

J. Rubio-Herrero, M. Baykal-Giirsoy, On the unimodality of the price-setting newsvendor problem with additive

demand under risk considerations, Eur. J. Oper. Res. 265 (2018) 962-974.

L.A. San-José, J. Sicilia, D. Alcaide-Lépez-de-Pablo, An inventory system with demand dependent on both

time and price assuming backlogged shortages, Eur. J. Oper. Res. 270 (2018) 889-897.

22



L.A. San-José, J. Sicilia, J. Garcia-Laguna, Analysis of an EOQ inventory model with partial backordering and

non-linear unit holding cost, Omega-Int. J. Manage. Sci. 54 (2015) 147-157.

L.A. San-José, J. Sicilia, M. Gonzalez-De-la-Rosa, J. Febles-Acosta, Optimal inventory policy under power

demand pattern and partial backlogging, Appl. Math. Model. 46 (2017) 618-630.

N.H. Shah, H.N. Soni, K.A. Patel, Optimizing inventory and marketing policy for non-instantaneous deterio-
rating items with generalized type deterioration and holding cost rates, Omega-Int. J. Manage. Sci. 41 (2013)

421-430.

E. Shekarian, N. Kazemi, S.H. Abdul-Rashid, E.U. Olugu, Fuzzy inventory models: A comprehensive review,

Appl. Soft Comput. 55 (2017) 588-621.

J. Sicilia, J. Febles-Acosta, M. Gonzélez-De la Rosa, Deterministic inventory systems with power demand

pattern, Asia Pac. J. Oper. Res. 29 (2012), article ID 1250025.

T.J. Singh, S.R. Singh, R. Dutt, An EOQ model for perishable items with power demand and partial backo-

rdering, Int. J. Oper. Quant. Manage. 15 (2009) 65-72.

N.R. Smith, J.L. Martinez-Flores, L.E. Cardenas-Barrén, Analysis of the benefits of joint price and order
quantity optimisation using a deterministic profit maximisation model, Prod. Plan. Control 18 (2007) 310-

318.

H.N. Soni, Optimal replenishment policies for non-instantaneous deteriorating items with price and stock sen-

sitive demand under permissible delay in payment, Int. J. Prod. Econ. 146 (2013) 259-268.

T.L. Urban, An extension of inventory models with discretely variable holding costs, Int. J. Prod. Econ. 114

(2008) 399-403.

C. Wang, R. Huang, Pricing for seasonal deteriorating products with price- and ramp-type time-dependent

demand, Comput. Ind. Eng. 77 (2014) 29-34.

H.J. Weiss, Economic order quantity models with nonlinear holding costs, Eur. J. Oper. Res. 9 (1982) 56-60.

23



J. Wu, K. Skouri, J.T. Teng, L.Y. Ouyang, A note on “optimal replenishment policies for non-instantaneous
deteriorating items with price and stock sensitive demand under permissible delay in payment”, Int. J. Prod.

Econ. 155 (2014) 324-329.

P.C. Yang, H.M. Wee, S.L. Chung, Y.Y. Huang, Pricing and replenishment strategy for a multi-market deteri-

orating product with time-varying and price-sensitive demand, J. Ind. Manag. Optim. 9 (2013) 769-787.

P.C. Yang, H.M. Wee, J.C.P. Yu, Collaborative pricing and replenishment policy for hi-tech industry, J. Oper.

Res. Soc. 58 (2007) 894-900.

J. Zhang, Q. Wei, Q. Zhang, W. Tang, Pricing, service and preservation technology investments policy for

deteriorating items under common resource constraints, Comput. Ind. Eng. 95 (2016) 1-9.

24



/.
///////////A
i,
Yy

120
040 .
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Fig. 2. Graphic of B(s,T') for Example 2
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Fig. 3. Graphic of B(s,T) for Example 3

Fig. 4. Graphic of B(s,T') for Example 4
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