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Abstract

In this paper, we study an inventory system for products where demand depends on time and price.

Shortages are allowed and are fully backordered. We suppose that the demand rate is the product of a

power time pattern and a three-parametric exponential price function. The objective is to determine the

economic lot size, the optimal shortage level and the best selling price to maximize the total profit per unit

time. We present an efficient procedure to determine the optimal solution of the inventory problem for all

possible scenarios. This procedure is illustrated with several numerical examples. A sensitivity analysis

of the optimal inventory policy with respect to the parameters of the demand rate function is also given.

Finally, the main contributions of this paper are highlighted and future research directions are introduced.
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1 Introduction

One of the main objectives in any company or organization that distributes products to other companies (or

supplying directly to customers) is to establish the sufficient quantity of products in stock to meet customer

demand at an acceptable price and in a reasonable period of time.

In general, this demand for articles is not constant, but fluctuates over time due to external causes that

occur in the market. Therefore, product stock control is a dynamic activity requiring the continuous revision

of the operational methods to reflect possible changes. As a consequence, inventory systems must adapt to

new situations by applying the most efficient inventory policies at any particular time. The development and

evolution of inventory models from the very beginning can be seen in Cárdenas-Barrón et al. (2014).

Inventory management seeks to control the level of available stock so that customer demand is covered while

obtaining the greatest possible profit. To perform this control, it is necessary to work with mathematical models

that allow the properties of inventory systems to be represented. In this way, the optimal policies that must be

applied for an adequate inventory management can be obtained.

In the literature, there exist several papers where the demand rate depends on the selling price. Thus, for

example, Ghoreishi et al. (2015) studied an EOQ model with permissible delay in payments and price- and

inflation-induced demand. Jaggi et al. (2017) analyzed a two warehouse inventory model for non-instantaneous

deteriorating items, supposing that the demand rate depends on the selling price and full backlogging. Feng

et al. (2017) presented an inventory model for a perishable product that considers demand as a multivariate

function of its unit price, freshness and stock level. Mishra et al. (2017) developed an EOQ inventory model

where shortages are permitted, assuming the demand rate as a function of stock and selling price.

In this paper, we present and study an inventory model for determining the optimal policy for items in which

demand depends on time and the selling price of the article. Thus, the demand rate is the product of a power

time-function and a tri-exponential price-function. This price-function is a generalization of the commonly

exponential price-dependent demand functions used in the inventory literature.

The power-time demand pattern was introduced by Naddor (1966). Since then, more papers have appeared

with this type of demand. For example, Datta and Pal (1988) developed an inventory model with power

demand pattern, assuming a variable rate of deterioration. Lee and Wu (2002) studied an inventory model with
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power demand pattern for items with Weibull distributed deterioration and full backlogging. Rajeswari and

Vanjikkodi (2011) analyzed a deterministic inventory model for which items are subject to constant deterioration,

assuming power demand pattern and partial backlogging. Mishra et al (2012) presented an EOQ model for

perishable items with power demand pattern and two-parameter Weibull distribution for deterioration under the

influence of inflation and time-value of money. Mishra and Singh (2013) developed an EOQ model for perishable

items with power demand pattern and quadratic deterioration rate, assuming that shortages are partially

backlogged. Rajeswari and Indrani (2015) studied a deterministic inventory model for linear time dependent

deteriorating items with power demand pattern and partial backlogging under total cost minimization. A

common characteristic of all the above papers is that the length of the inventory cycle is always known and

fixed. However, Sicilia et al. (2012, 2013) developed some inventory systems where the length of the inventory

cycle was a decision variable and, therefore, not constant. More recently, San-José et al. (2017) developed the

optimal policy for an inventory system with power demand pattern and partial backlogging in which the selling

price is a known constant and the length of the inventory cycle is a decision variable.

The demand rate, as a separable function of time and selling price, has also been considered in the inventory

literature. For instance, Smith et al. (2007) studied the benefit of sequential versus simultaneous optimization

within a newsboy problem in a pricing framework. Valliathal and Uthayakumar (2011) discussed the effects of

an economic order quantity model for non-instantaneous deteriorating items under price and time dependent

selling rate and time dependent partial backlogging. Avinadav et al. (2013) formulated an inventory model in

which the demand rate function is a multiplication of two factors: selling price and time after replenishment.

Soni (2013) analyzed an inventory model with demand influenced by both displayed stock level and selling price

under delay in payment. Wu et al. (2014) revisited Soni’s model and developed an optimization procedure

to find the optimal replenishment policies. Sarkar et al. (2014) considered a production-inventory model for

the selling price and the time dependent demand pattern in an imperfect production system. Avinadav et al.

(2014) developed two inventory models for determining the optimal pricing, order quantity and replenishment

period for items whose demand function can be separated into components of price and inventory age. Hossen

et al. (2016) developed a fuzzy inventory model for deteriorating items with price and time dependent demand

considering the effect of inflation on the system.
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In some practical situations, it may be economically advantageous for the inventory manager to allow stock-

out in the inventory cycle. In this case, the customer must wait to receive his/her order until the arrival of

the next replenishment. For this reason, we suppose that shortages are allowed and fully backordered. That

is, all customers that arrive to the system in the stock-out period are willing to wait for the next order. Thus,

all backorders are met when a new order arrives to the system. An inventory model with full backlogging and

all-units quantity discounts, where the cost of a backorder includes a fixed cost and a cost which is proportional

to the length of time the backorder exists, was developed by San-José and Garćıa-Laguna (2009). Birbil et al.

(2015) analyzed the impact of general ordering cost functions in EOQ-type models with shortages, which are

completely backlogged. Jakšič and Fransoo (2015) studied the inventory control problem of a retailer working

under stochastic demand and stochastic limited supply, assuming that the unfilled part of the retailer’s order

is fully backordered. Mishra et al. (2015) presented the state-of-art application of a nuanced technique of

fuzzified EOQ control model allowing shortage with full backlogging. Prasad and Mukherjee (2015) analyzed a

deterministic inventory model for deteriorating items with stock and time dependent demand where shortages

are completely backordered. This situation of full backordering is also considered in the hypothesis of this paper.

In the inventory literature, no paper simultaneously considers a demand pattern which is potentially time-

dependent and exponentially price-dependent, with full backordering and the length of the inventory cycle as

an unfixed variable. These are precisely the assumptions on which the inventory system presented here is based.

Thus, the objective is to determine the economic lot size, the optimal shortage and the best selling price to

maximize the total profit per unit time. We suppose that the profit is represented by the difference between the

revenues from product sales and the sum of ordering cost, purchasing cost, holding cost and backordering cost.

Taking into account the above considerations, a procedure is developed for determining the optimal policy and

the best selling price of the product for all possible scenarios.

The rest of the paper is organized as follows. The second section establishes the properties of the inventory

system and presents the notation that will be followed throughout the paper. We then determine the profit

as a function of the lot size, the total shortage and the selling price of the product, and we formulate the

optimization problem to be solved related to inventory management. In the fourth section, some results that

allow the optimal policy to be determined are presented. Moreover, the special case of the exponential price
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function most commonly used in the inventory literature is analyzed and we develop a simpler algorithm for

this case. Then, in the fifth section, some numerical examples are introduced to illustrate the application of the

optimization procedure previously described. Moreover, a numerical sensitivity analysis for the optimal policy

and maximum profit with respect to the parameters of the demand rate function is also presented. Finally,

the main contributions of this paper are synthesized and possible future research directions within the area of

inventory management are presented.

2 Assumptions and notation

The inventory model for a single item here developed is based on the following hypothesis:

1. The replenishment is instantaneous, the lead time is negligible and the planning horizon is infinite.

2. The inventory is continuously revised.

3. Stock-outs are allowed and the demand during that period is fully backordered.

4. A lot of Q units (the total demand during the inventory cycle) is ordered when the number of units

pending to serve reaches the amount B (total shortage amount).

5. The unit purchasing cost c and the holding cost h per unit and unit time are known and constant.

6. The ordering cost A is constant and independent of the lot size.

7. The shortage cost π per backordered unit and per unit time is constant.

8. The demand rate λ(t, p) is a function dependent on time and on unit selling price p. It is assumed that

the demand rate is the product of a power time-function and a tri-exponential price-function.

The power demand pattern has been used by various authors in recent years (see, for example, Mishra and

Singh 2013, and Rajeswani and Indrani 2015). The assumption of exponentially price-dependent demand

has been used previously in the literature (see, for example, Jeuland and Shugan 1988, Hanssens and

Parsons 1993, and Song et al. 2008). However, to the best of our knowledge, this is the first work that

considers a tri-parameter exponential function more general than those of the previously cited authors.

The notation used throughout the paper is shown in Table 1.
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Table 1. Notation

Q Lot size per cycle (> 0, decision variable)

B Maximum shortage quantity per cycle or the reorder point (≥ 0, decision variable)

S Inventory level at the beginning of the inventory cycle (≥ 0)

φ Length of the inventory cycle where the net stock is positive (≥ 0)

σ Length of the inventory cycle where the net stock is negative (≥ 0)

T Length of the inventory cycle, that is, T = φ+ σ (> 0)

c Unit purchasing cost (> 0)

p Unit selling price (p ≥ c, decision variable)

A Fixed ordering cost per order (> 0)

h Holding cost per unit and per unit time (> 0)

π Shortage cost per backordered unit and per unit time (> 0)

λ(t, p) Demand rate at time t when the selling price is p, with 0 < t < T and p ≥ c
I(t, p) Inventory level at time t when the selling price is p, with 0 ≤ t < T and p ≥ c
n Demand pattern index (> 0)

P (Q,B, p) Total profit per unit time

3 The mathematical model

Next, we develop the mathematical model for the inventory system according to the assumptions previously

exposed.

We have assumed that the demand rate λ(t, p) multiplies the effects of a power time demand pattern and

an exponential function which depends on the selling price. Thus, λ(t, p) = λ1(t)λ2(p), where λ1(t) represents

the power time demand pattern given by

λ1(t) = 1
n

(
t

T

)1/n−1

, with n > 0, (1)

(the parameter n is the index of the power time demand pattern) and λ2(p) is the tri-parameter exponential

function defined by

λ2(p) = αe−βp
γ

, with α > 0, β > 0 and γ > 0. (2)

The consideration of the inventory cycle T in the function λ1(t) allows the influence of the replenishment policy

on the behavior of the customers to be described. Thus, let us suppose that a customer wants to buy an item

with expiry date, which is sold in two shops located in the same neighborhood and close to each other. The

prices of the item are identical in both shops. The length of the inventory cycle at the first shop is longer than
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in the second one. This leads to a situation where, in the second shop, there is a greater stock rotation. In

which of the two shops would a customer buy the item? It is more likely that the customer will buy in the

second shop because the length of the inventory cycle is shorter and there is a greater stock rotation. This

means that the article is more likely to have been produced more recently and, logically, the customers prefer

these new items. Other explanation of the practical utility of the function λ1(t) to describe the demand for

certain products can be seen in San-José et al. (2017). In the function λ2(p), the parameter α can be interpreted

as the maximum possible level of demand, and β and γ are coefficients of the selling price sensitivity. In the

exponential price-dependent demand models used in the inventory literature, demand is commonly described by

means of the function αe−βp. Several bi-exponential price models have been used by researchers to characterize

the sales in different markets (e.g., Cowling and Cubbin, 1971; Krishnamurthi and Raj, 1988; Bolton, 1989;

Song et al., 2008). In this paper, we extend this exponential price-dependent function, incorporating the new

parameter γ. Note that this parameter γ can be interpreted analogously to the exponent parameter of the

power price-dependent model α− βpγ (see, for example Chen et al. 2006, Huang et al. 2013, and Avinadav et

al. 2014). So, the price-dependent function presented in this paper may be useful to represent the real demand

for some products because it allows a better adjust in empirical applications.

The point-price elasticity of the demand rate function presented here (that is, (p/λ(p, t)) (∂λ(t, p)/∂p) =

−βγpγ) depends on the selling price p and is always decreasing; moreover, it is concave when γ ≥ 1 and

convex if γ ≤ 1. Thus, we can say that the parameter γ of the tri-parametric exponential price-function

is an index of convexity of the demand rate function. Moreover, the price curvature of λ(p, t) (that is,

λ(p, t)(∂2λ(t, p)/∂p2)/(∂λ(t, p)/∂p)2 = 1 + (1 − γ)/(βγpγ)) depends on the price decision variable p and the

coefficients β and γ of the selling price sensitivity, unlike what happens in the bi-parametric exponential price

models where the curvature is equal to one.

In order to illustrate the effect of the parameters n and γ on the demand, we have depicted the function

λ(t, p) for different potential indexes in Figures 1, 2 and 3.

Taking into account that the demand during the stock-out period is fully backordered, the lot size Q must

coincide with the demand during the inventory cycle. Thus,

Q =

∫ T

0

λ(x, p)dx = αe−βp
γ

∫ T

0

λ1(x)dx = αe−βp
γ

T . (3)
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γ > 1 γ = 1 γ < 1

Figure 1 Demand rate functions λ(t, p) when n > 1

γ > 1 γ = 1 γ < 1

Figure 2 Demand rate functions λ(t, p) when n = 1

γ > 1 γ = 1 γ < 1

Figure 3 Demand rate functions λ(t, p) when n < 1

That is, the inventory cycle T is given by

T = eβp
γ

Q/α. (4)

The total shortage amount during the inventory cycle is B. Thus, the initial inventory level is S = Q−B. This

level has to be equal to demand during the positive stock cycle φ, that is,

S = Q−B =

∫ φ

0

λ(x, p)dx = e−βp
γ/nQ1−1/n (αφ)

1/n
(5)
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Therefore, the length of the inventory cycle where the net stock is positive is given by

φ =
eβp

γ

α
Q1−n(Q−B)n. (6)

The net stock level at time t, I(t, p), is

I(t, p) =

∫ φ

t

λ(x, p)dx = S −
∫ t

0

λ(x, p)dx = Q

[
1−

(
αe−βp

γ

Q
t

)1/n
]
−B, for 0 ≤ t < T

From (4) and (6), it follows that demand B during the stock-out period is given by

B =

∫ T

φ

λ(x, p)dx = αe−βp
γ

T

[
1−

(
φ

T

)1/n
]

(7)

The length of the stock-out period is

σ = T − φ =
eβp

γ

α
Q

[
1−

(
1− B

Q

)n]
. (8)

3.1 The objective function

Our objective is to maximize the average profit per unit time. The total profit per cycle is determined as the

difference between the revenue per cycle and the sum of the ordering, the purchasing, the holding and the

backordering costs. The revenue per cycle is pQ, the ordering cost is A, the acquisition or purchasing cost is

cQ. The holding cost is

HC = h

∫ φ

0

I(t, p)dt = h

∫ φ

0

[∫ φ

t

λ(x, p)dx

]
dt = h

∫ φ

0

xλ(x, p)dx

=
heβp

γ

(n+ 1)α
(Q−B)

n+1
Q1−n

and the backordering cost is given by

π

∫ T

φ

[−I(t, p)] dt = π

∫ T

φ

[∫ t

φ

λ(x, p)dx

]
dt = π

∫ T

φ

(T − x)λ(x, p)dx

=
πeβp

γ

α

[
BQ− Q2

n+ 1
+

(Q−B)n+1Q1−n

n+ 1

]
.

Hence, we see that the total profit per cycle is

PT (Q,B, p) = (p− c)Q−A− h
∫ φ

0

I(t, p)dt+ π

∫ T

φ

I(t, p)dt

= (p− c)Q−A− (h+ π) eβp
γ

(n+ 1)α
Q1−n (Q−B)

n+1 − πeβp
γ

α
BQ+

πeβp
γ

(n+ 1)α
Q2.
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Thus, the average profit per unit time is given by

P (Q,B, p) = (p− c)αe−βp
γ

− αAe−βp
γ

Q
− h+ π

n+ 1
Q−n (Q−B)

n+1 − πB +
π

n+ 1
Q. (9)

Therefore, the aim is to determine the values of the decision variables Q, B and p, with Q > 0, 0 ≤ B ≤ Q

and c ≤ p, which maximize the function P (Q,B, p) given in (9).

4 Solution of the problem

Next, we present a first result that will allow us to reduce the above optimization problem with three decision

variables to an optimization problem with a unique decision variable.

Lemma 1 Let P (Q,B, p) given by (9). Then:

1. The function P (Q,B, p) is strictly concave on the region Λ = {(Q,B) : Q > 0, 0 ≤ B ≤ Q} for any fixed

value of p.

2. For any fixed value of p, the function P (Q,B, p) attains its maximum value at the point (Q∗p, B
∗
p) given by

Q∗p =

√√√√√ (n+ 1)αAe−βpγ

nπ

[
1−

(
π

h+π

)1/n] (10)

B∗p = Q∗p

[
1−

(
π

h+ π

)1/n
]

=

√√√√√ (n+ 1)αAe−βpγ
[
1−

(
π

h+π

)1/n]
nπ

(11)

Proof. Please, see Appendix.

Note that the point (Q∗p, B
∗
p) is in the interior of the feasible region Λ and is the solution of the system of

nonlinear equations (∂P (Q,B, p)/∂Q) = 0 and (∂P (Q,B, p)/∂B) = 0.

By evaluating P (Q,B, p) at the optimal point (Q∗p, B
∗
p), we obtain the function

G(p) = P (Q∗p, B
∗
p , p) = e−βp

γ/2
[
α (p− c) e−βp

γ/2 − 2
√
αθ
]

, (12)

where the parameter θ is defined as

θ =

√√√√ n

n+ 1
Aπ

[
1−

(
π

h+ π

)1/n
]
. (13)

Thus, our problem now consists of determining the selling price which maximizes the function G(p) defined

by (12).

Next, we give some properties of the function G(p), which are easy to check.
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1. The function G(p) is continuous on the interval [c,∞). Moreover, G(c) < 0 and limp→∞G(p) = 0.

2. The function G(p) is of class C 1 on (c,∞). Furthermore, the derivative is

G′(p) = αe−βp
γ

pγf(pγ), (14)

where

f(x) = x−1/γ
(
βγθeβx/2√

α
+ βγc

)
+

1

x
− βγ. (15)

Note that since p > 0, sign(G′(p)) =sign(f(pγ)). Therefore, we can determine the zeros of the function

G′(p) in the interval (c,∞) through the study of the function f(x) in the interval (cγ ,∞). Next, we present

some characteristics of this last function.

1. The function f(x) is continuous on the interval (0,∞). Moreover, f(cγ) > 0 and limx→∞ f(x) =∞.

2. The first derivative of f(x) is

f ′(x) = x−(1+1/γ)

(
βθeβx/2(βγx− 2)

2
√
α

− βc
)
− 1

x2
(16)

We can establish the following result.

Lemma 2 The function f(x) given by (15) is strictly convex on the interval (0,∞) and it attains its minimum

value at the point

x1 = argx>0{f ′(x) = 0}. (17)

Proof. Please, see Appendix.

Taking into account the previous results, we now present a new theorem which develops a simple approach

to obtain the optimal price p∗.

Theorem 1 Let G(p), f(x), f ′(x) and x1 be given, respectively, by (12), (15), (16) and (17).

1. If x1 ≤ cγ , then p∗ =∞ and G(p∗) = 0.

2. If x1 > cγ and f(x1) ≥ 0, then p∗ =∞ and G(p∗) = 0.

3. Otherwise (if x1 > cγ and f(x1) < 0), let x0 be given by x0 = argx∈(cγ ,x1){f(x) = 0}.

(a) If G(x
1/γ
0 ) < 0, then p∗ =∞ and G(p∗) = 0.

(b) If G(x
1/γ
0 ) ≥ 0, then p∗ = x

1/γ
0 and the optimal profit is G(p∗).
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Proof. Please, see Appendix.

Note that the inventory system studied here is profitable only in the case (3.b) of Theorem 1.

In the next section, we analyze the special case when γ = 1, because in that situation the conditions to

obtain the optimal selling price can be formulated in an even simpler way.

4.1 Optimal inventory policy when γ = 1

Note that the function f(x) given by (15) can be rewritten as

f(x) = x−1/γ
(
βγθeβx/2√

α
+ r(x)

)
, (18)

where r(x) = βγc+ x1/γ−1 − βγx1/γ . When γ = 1, the rational function r(x) has a unique term dependent on

x, while if γ 6= 1, it always has two terms in the variable x. For this reason, if γ = 1, it is easier to work with

the function f1(x) = xf(x) instead of f(x). Moreover, since γ = 1, we see from (12) and (14) that

G(p) = e−βp/2
[
α (p− c) e−βp/2 − 2

√
αθ
]

(19)

and

G′(p) =
√
αe−βp/2

[√
αe−βp/2 (β(c− p) + 1) + βθ

]
. (20)

Thus, sign(G′(p)) =sign(f1(p)), where the function f1(x) has the following expression:

f1(x) =
βθeβx/2√

α
+ β(c− x) + 1. (21)

For convenience, we consider the function f1(x) defined on the set of all real numbers. Next, we analyze

some properties of this function.

Lemma 3 The function f1(x) given by (21) is strictly convex on R and it attains its minimum value at the

point

p1 =
2

β
ln

(
2
√
α

βθ

)
. (22)

Proof. Please, see Appendix.

Reasoning as we did above with the function f(x), but now taking the function f1(x), we have the following

result to obtain the optimal solution.

Theorem 2 Suppose that γ = 1. Let G(p), f1(x) and p1 be given, respectively, by (19), (20) and (22).
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1. If p1 ≤ c, then p∗ =∞ and G(p∗) = 0.

2. If p1 > c and f1(p1) ≥ 0, then p∗ =∞ and G(p∗) = 0.

3. If p1 > c and f1(p1) < 0, then calculate p0 = argx∈(c.p1){f1(x) = 0}.

(a) If G(p0) < 0, then p∗ =∞ and G(p∗) = 0.

(b) Otherwise, p∗ = p0 and the maximum profit is G(p0).

Proof. Please, see Appendix.

In addition, we can obtain some of the above conditions as functions of only the input parameters.

Lemma 4 We assume that γ = 1. Let G(p), f1(x) and p1 be given, respectively, by (19), (20) and (22). Let

p0 = argp∈(c.p1){f1(p) = 0}. Then:

1. The condition f1(p1) ≥ 0 is equivalent to p1 ≤ c+ 3/β.

2. The condition G(p0) < 0 is equivalent to p0 > c+ 2/β.

Proof. Please, see Appendix.

Taking into account this last result, we are now able to establish the following efficient algorithm to determine

the optimal inventory policy when γ = 1.

Algorithm 1

Step 1 Calculate p1 by using (22).

Step 2 If p1 ≤ c+ 3/β, then go to Step 6.

Step 3 Calculate p0 = argp∈(c.p1){f1(p) = 0}.

Step 4 If p0 > c+ 2/β, then go to Step 6.

Step 5 Take p∗ = p0.

Calculate Q∗ = Q∗p∗ by using (10).

Calculate B∗ = B∗p∗ by using (11).

Calculate G∗ = G(p∗) by using (12). Stop.

Step 6 Consider p∗ =∞. Put Q∗ = 0, B∗ = 0 and G∗ = 0. Stop.
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5 Numerical examples

Next, we illustrate with several examples the theoretical results previously presented in the last section.

Example 1 Consider an inventory system with the hypotheses assumed in this paper. The parameter values

of the system are: c = 8, A = 500, h = 2, π = 3.2, α = 1250, β = 0.2, γ = 1 and n = 2.5. From (13), we have

θ = 14.2030. Then p1 = 32.1458. Since c+ 3/β = 23 < p1, we calculate p0 = 14.7572. Taking into account that

c+ 2/β = 18, we see that p∗ = p0. From (10), we have Q∗ = 284.543 and, from (11), B∗ = 50.2245. Therefore,

the optimal profit is G∗ = 211.853 and the optimal cycle is T ∗ = 4.35544.

Example 2 We assume the same input data and parameters as in the previous example, but we change the

value of β to β = 0.4. Now, we have p1 = 12.6072 and c+3/β = 15.5 ≥ p1. Thus, we fall into the case described

by step 2 of Algorithm 1. Consequently, the inventory system is non-profitable for any selling price p.

Example 3 We consider the same parameters as in Example 1, but modify the value of β to β = 0.3. Now, we

have p1 = 18.7274 and c+ 3/β = 18 < p1. Therefore, we calculate p0 = 15.3505. Since c+ 2/β = 14.6667 < p0,

we fall into the case described by step 4 of Algorithm 1. As in Example 2, the inventory system is always

non-profitable, but in this case the function G(p) has a local maximum at the point p0.

Example 4 Now, we suppose the same parameters as in Example 1, but change the value of γ to γ = 1.2.

From (15) and (17), we obtain x1 = 25.6839, cγ = 12.1257 and f(x1) = 0.01145210 ≥ 0. Applying Theorem 1,

we deduce, as in the previous example, that the inventory system is always non-profitable.

Example 5 Now, we assume the same parameters as in the previous example, but modify the value of β to

β = 0.1. We obtain x1 = 53.7625, f(x1) = −0.0410956, x0 = 24.2391 and G(x
1/γ
0 ) = 392.908. Therefore, the

optimal selling price is x
1/γ
0 = 14.2483, the economic lot size is Q∗ = 370.424, the maximum shortage quantity

is B∗ = 65.3833 and the optimal cycle T ∗ = 3.34565.

Example 6 We consider the same parameters as in Example 1, but change the value of γ to γ = 0.8. We

obtain x1 = 33.7827, cγ = 5.27803, f(x1) = −0.0915442, x0 = 11.2920 and G(x
1/γ
0 ) = 1334.49. Thus, the

optimal selling price is p∗ = x
1/γ
0 = 20.6996 and the optimal inventory policy is (Q∗, B∗) = (402.384, 71.0245).

14



5.1 Sensitivity analysis

Next, we include an analysis of the behavior of the best selling price and the optimal inventory policy when the

price-dependent demand parameters or the demand pattern index are moved.

We consider the following parameters of the inventory system: c = 8, A = 500, h = 2 and π = 3.2. We

present three tables to show the behavior of p∗, Q∗, B∗ and G∗as functions of α, β, γ and n. Tables 2, 3 and 4

display computational results when α ∈ {1000, 1250, 1500}, β ∈ {0.16, 0.18, 0.20, 0.22}, γ ∈ {0.8, 0.9, 1, 1.1, 1.2}

and n ∈ {0.5, 1, 2}. According to the obtained results, we can establish the following issues:

1. Having fixed the price-dependent parameters α, β and γ, if the value of n is increasing, then there is a

point n̂ such that p∗(n) = ∞ for all n ≤ n̂ and p∗(n) is finite when n > n̂. Furthermore, when n > n̂,

the optimal selling price p∗ and the maximum shortage quantity B∗ are strictly decreasing as n increases,

while the economic lot size and the maximum profit are strictly increasing.

2. The optimal inventory policy and the best selling price are not very sensitive to changes in the demand

pattern index n. The same occurs with the optimal profit. However, the optimal reorder point is more

sensitive to changes in the value of n.

3. Having fixed α, γ and n, if the value of β is increasing, then there is a point β̂ such that G(p∗(β)) > 0

for all β < β̂ and G(p∗(β)) = 0 if β ≥ β̂. Moreover, when β < β̂, the economic lot size, the maximum

shortage and the optimal profit are strictly decreasing as the parameter β increases . The sensitivity of

the optimal policy to the parameter β is slightly greater when the value n is small.

The same conclusion can be drawn for the parameter γ, if the parameters α, β and n are fixed.

4. Having fixed β, γ and n, if the value of α is increasing, then there exists a point α̂ such that G(p∗(α)) > 0

for all α > α̂ and G(p∗(α)) = 0 if α ≤ α̂. When α > α̂, the optimal selling price is strictly decreasing as

the parameter α increases, while the economic lot size, the maximum shortage and the optimal profit are

strictly increasing. The sensitivity of the optimal policy to this parameter α is slightly greater when the

value n is small.

5. In general, note that the demand sensitivity on price is high for high γ values, which makes the system

non-profitable.
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6 Conclusions

In this paper, we study an inventory system for products whose demand combines multiplicatively a potential

function of time and a tri-exponential function of the selling-price (more general than those previously used in

the inventory literature). The possibility of stock-out is admitted and, in such a situation, unsatisfied demand

is served when a new replenishment arrives in the system. The objective is to maximize the profit per unit time,

assuming that the inventory cost is the sum of the costs of ordering, purchasing, holding and backordering.

We develop an approach to determine the optimal inventory policy, the best selling price and the maximum

profit in all possible scenarios. This approach is based on the reduction of the inventory problem with three

decision variables to an optimization problem with a single decision variable. Furthermore, we present a simpler

algorithm if we consider the exponential price function more commonly used in the inventory literature.

In order to study the effect of the parameters associated with demand rate on the optimal policy and on

the maximum profit, we give computational results which permit a sensitivity analysis of the inventory policy

to be established.

As future research related to this paper we can cite the following research lines: (i) to study the inventory

system with the same hypotheses for perishable items; (ii) to analyze the inventory system under the same

assumptions allowing partial backordering; (iii) to develop the inventory system considering stochastic demand;

(iv) to assume an infinite rate of replenishment and, hence, to determine the economic production quantity and

(v) to consider discounts in purchasing costs.
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Appendix

Proof of Lemma 1.
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For a fixed value p, the function P (Q,B, p) is twice-differentiable on the region

Λ = {(Q,B) : Q > 0, 0 ≤ B ≤ Q}

The first partial derivatives are

∂P (Q,B, p)

∂Q
=

Aαe−βp
γ

Q2
− h+ π

n+ 1

(
1− B

Q

)n(
1 +

nB

Q

)
+

π

n+ 1
(23)

∂P (Q,B, p)

∂B
= (h+ π)

(
1− B

Q

)n
− π (24)

Thus, the second partial derivatives are given by

∂2P (Q,B, p)

∂Q2
= −2Aαe−βp

γ

Q3
− n (h+ π)

Q

(
1− B

Q

)n−1(
B

Q

)2

∂2P (Q,B, p)

∂B2
= − (h+ π)n

Q

(
1− B

Q

)n−1
∂2P (Q,B, p)

∂Q∂B
=

(h+ π)n

Q

(
1− B

Q

)n−1
B

Q

If we prove that the determinant of the Hessian matrix is positive for all (Q,B) ∈ Λ, the first assertion

follows, because ∂2P (Q,B, p)/∂Q2 < 0 for all (Q,B) ∈ Λ.

Indeed, the determinant of the Hessian matrix is

2Aα (h+ π)ne−βp
γ

Q4

(
1− B

Q

)n−1
To prove the second assertion, it is sufficient to show that the point (Q∗p, B

∗
p) given by (10) and (11) belongs

to Λ and that ∂P (Q,B,p)
∂Q

∣∣∣
(Q∗

p,B
∗
p)

= ∂P (Q,B,p)
∂B

∣∣∣
(Q∗

p,B
∗
p)

= 0, which is immediate.

Proof of Lemma 2.

The second derivative of f(x) is

f ′′(x) = x−(2+1/γ)

(
βθeβx/2

[
(βγx− 2)2 + 4γ

]
4
√
αγ

+
(γ + 1)βc

γ

)
+

2

x3
(25)

Note that f ′′(x) > 0 for all x > 0. Moreover, limx→0+ f(x) =∞ and limx→∞ f(x) =∞. Therefore, the function

f(x) is strictly convex and it attains its minimum at point x1 given by (17).

Proof of Theorem 1.

1. If x1 ≤ cγ , then f ′(pγ) > 0 for p > c and, therefore, f(pγ) > f(cγ) > 0 for all p ≥ c. Since

sign(G′(p)) =sign(f(pγ)), we see that the function G(p) is strictly increasing on (c,∞).

2. If x1 > cγ and f(x1) ≥ 0, then it is obvious that f(pγ) > f(x1) ≥ 0 for all p 6= x
1/γ
1 and we conclude as

in the previous case.
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3. If x1 > cγ and f(x1) < 0, then there exist two roots x0 and x̃ of the equation f(x) = 0, with cγ <

x0 < x1 < x̃, such that the function f(x) is positive on (cγ , x0), negative on (x0, x̃) and positive on

(x̃,∞). Thus, the function G(p) is strictly increasing on (cγ , x0), strictly decreasing on (x0, x̃) and strictly

increasing on (x̃,∞). Therefore, G(p) attains its minimum at p∗ = x
1/γ
0 or p∗ =∞. Comparing the values

G(x
1/γ
0 ) and limp→∞G(p) = 0, we obtain the optimal selling price.

Proof of Lemma 3.

From (21), we have

f ′1(x) = β

(
βθeβx/2

2
√
α
− 1

)
(26)

and

f ′′(x) =
β3θeβx/2

4
√
α

> 0 (27)

The rest of the proof follows from limx→−∞ f1(x) =∞ and limx→∞ f1(x) =∞.

Proof of Theorem 2.

This follows by the same method as in the proof of Theorem 1.

Proof of Lemma 4.

1. Substituting p1 given by (22) in the function f1(x) given by (21), we have f1(p1) = β(c − p1) + 3 and,

therefore f1(p1) ≥ 0 is equivalent to p1 ≤ c+ 3/β.

2. Taking into account that f1(p0) = 0, it is verified that

θ = −
√
αe−βp0

(
c− po +

1

β

)
.

Substituting this value into the expression (19) of the function, G becomes

G(p0) = αe−βp0
(
c− po +

2

β

)
.

Thus, G(p0) < 0 if and only if po > c+ 2/β.
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Jakšič, M., Fransoo, J.C., 2015. Optimal inventory management with supply backordering. International

Journal of Production Economics 159, 254–264.

Jeuland, A.P., Shugan, S.M., 1988. Channel of distribution profits when channel members form conjectures.

Marketing Science 7, 202—210.

Krishnamurthi, L.K., Raj, S.P., 1988. A model of brand choice and purchase quantity price sensitivities.

Marketing Science 7, 1–20.

Lee, W.C., Wu, J.W., 2002. An EOQ model for items with Weibull distributed deterioration, shortages and

power demand pattern. International Journal of Information and Management Sciences 13, 19–34.

Mishra, S., Raju, L.K., Misra, U.K., Misra, G., 2012. A study of EOQ model with power demand of deterio-

rating items under the influence of inflation. Gen. Math. Notes 10, 41–50.

Mishra S.S., Gupta, S., Yadav, S.K., Rawat, S. 2015. Optimization of fuzzified Economic Order Quantity model

allowing shortage and deterioration with full backlogging. American Journal of Operational Research 5,

103–110.

Mishra, S.S., Singh, P.K., 2013. Partial backlogging EOQ model for queued customers with power demand and

quadratic deterioration: computational approach. American Journal of Operational Research 3, 13–27.

Mishra, U., Cárdenas-Barrón, L.E., Tiwari, S., Shaikh, A.A., Treviño-Garza, G., 2017. An inventory model un-

der price and stock dependent demand for controllable deterioration rate with shortages and preservation

technology investment. Annals of Operations Research 254, 165–190.

Naddor, E., 1966. Inventory Systems, New York: John Wiley.

Prasad, K., Mukherjee, B., 2016. Optimal inventory model under stock and time dependent demand for time

varying deterioration rate with shortages. Annals of Operations Research 243, 323–334.

Rajeswari, N., Indrani, K., 2015. EOQ policies for linearly time dependent deteriorating items with power

demand and partial backlogging. International Journal of Mathematical Archive 6, 122–130, 2015.

Rajeswari, N., Vanjikkodi, T., 2011. Deteriorating inventory model with power demand and partial backlog-

ging. International Journal of Mathematical Archive 2, 1495–1501.

23
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