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Abstract

In this paper, we study an inventory system for products where demand depends on time and price.
Shortages are allowed and are fully backordered. We suppose that the demand rate is the product of a
power time pattern and a three-parametric exponential price function. The objective is to determine the
economic lot size, the optimal shortage level and the best selling price to maximize the total profit per unit
time. We present an efficient procedure to determine the optimal solution of the inventory problem for all
possible scenarios. This procedure is illustrated with several numerical examples. A sensitivity analysis
of the optimal inventory policy with respect to the parameters of the demand rate function is also given.
Finally, the main contributions of this paper are highlighted and future research directions are introduced.
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1 Introduction

One of the main objectives in any company or organization that distributes products to other companies (or
supplying directly to customers) is to establish the sufficient quantity of products in stock to meet customer
demand at an acceptable price and in a reasonable period of time.

In general, this demand for articles is not constant, but fluctuates over time due to external causes that
occur in the market. Therefore, product stock control is a dynamic activity requiring the continuous revision
of the operational methods to reflect possible changes. As a consequence, inventory systems must adapt to
new situations by applying the most efficient inventory policies at any particular time. The development and
evolution of inventory models from the very beginning can be seen in Cardenas-Barrén et al. (2014).

Inventory management seeks to control the level of available stock so that customer demand is covered while
obtaining the greatest possible profit. To perform this control, it is necessary to work with mathematical models
that allow the properties of inventory systems to be represented. In this way, the optimal policies that must be
applied for an adequate inventory management can be obtained.

In the literature, there exist several papers where the demand rate depends on the selling price. Thus, for
example, Ghoreishi et al. (2015) studied an EOQ model with permissible delay in payments and price- and
inflation-induced demand. Jaggi et al. (2017) analyzed a two warehouse inventory model for non-instantaneous
deteriorating items, supposing that the demand rate depends on the selling price and full backlogging. Feng
et al. (2017) presented an inventory model for a perishable product that considers demand as a multivariate
function of its unit price, freshness and stock level. Mishra et al. (2017) developed an EOQ inventory model
where shortages are permitted, assuming the demand rate as a function of stock and selling price.

In this paper, we present and study an inventory model for determining the optimal policy for items in which
demand depends on time and the selling price of the article. Thus, the demand rate is the product of a power
time-function and a tri-exponential price-function. This price-function is a generalization of the commonly
exponential price-dependent demand functions used in the inventory literature.

The power-time demand pattern was introduced by Naddor (1966). Since then, more papers have appeared
with this type of demand. For example, Datta and Pal (1988) developed an inventory model with power

demand pattern, assuming a variable rate of deterioration. Lee and Wu (2002) studied an inventory model with



power demand pattern for items with Weibull distributed deterioration and full backlogging. Rajeswari and
Vanjikkodi (2011) analyzed a deterministic inventory model for which items are subject to constant deterioration,
assuming power demand pattern and partial backlogging. Mishra et al (2012) presented an EOQ model for
perishable items with power demand pattern and two-parameter Weibull distribution for deterioration under the
influence of inflation and time-value of money. Mishra and Singh (2013) developed an EOQ model for perishable
items with power demand pattern and quadratic deterioration rate, assuming that shortages are partially
backlogged. Rajeswari and Indrani (2015) studied a deterministic inventory model for linear time dependent
deteriorating items with power demand pattern and partial backlogging under total cost minimization. A
common characteristic of all the above papers is that the length of the inventory cycle is always known and
fixed. However, Sicilia et al. (2012, 2013) developed some inventory systems where the length of the inventory
cycle was a decision variable and, therefore, not constant. More recently, San-José et al. (2017) developed the
optimal policy for an inventory system with power demand pattern and partial backlogging in which the selling
price is a known constant and the length of the inventory cycle is a decision variable.

The demand rate, as a separable function of time and selling price, has also been considered in the inventory
literature. For instance, Smith et al. (2007) studied the benefit of sequential versus simultaneous optimization
within a newsboy problem in a pricing framework. Valliathal and Uthayakumar (2011) discussed the effects of
an economic order quantity model for non-instantaneous deteriorating items under price and time dependent
selling rate and time dependent partial backlogging. Avinadav et al. (2013) formulated an inventory model in
which the demand rate function is a multiplication of two factors: selling price and time after replenishment.
Soni (2013) analyzed an inventory model with demand influenced by both displayed stock level and selling price
under delay in payment. Wu et al. (2014) revisited Soni’s model and developed an optimization procedure
to find the optimal replenishment policies. Sarkar et al. (2014) considered a production-inventory model for
the selling price and the time dependent demand pattern in an imperfect production system. Avinadav et al.
(2014) developed two inventory models for determining the optimal pricing, order quantity and replenishment
period for items whose demand function can be separated into components of price and inventory age. Hossen
et al. (2016) developed a fuzzy inventory model for deteriorating items with price and time dependent demand

considering the effect of inflation on the system.



In some practical situations, it may be economically advantageous for the inventory manager to allow stock-
out in the inventory cycle. In this case, the customer must wait to receive his/her order until the arrival of
the next replenishment. For this reason, we suppose that shortages are allowed and fully backordered. That
is, all customers that arrive to the system in the stock-out period are willing to wait for the next order. Thus,
all backorders are met when a new order arrives to the system. An inventory model with full backlogging and
all-units quantity discounts, where the cost of a backorder includes a fixed cost and a cost which is proportional
to the length of time the backorder exists, was developed by San-José and Garcia-Laguna (2009). Birbil et al.
(2015) analyzed the impact of general ordering cost functions in EOQ-type models with shortages, which are
completely backlogged. Jaksi¢ and Fransoo (2015) studied the inventory control problem of a retailer working
under stochastic demand and stochastic limited supply, assuming that the unfilled part of the retailer’s order
is fully backordered. Mishra et al. (2015) presented the state-of-art application of a nuanced technique of
fuzzified EOQ control model allowing shortage with full backlogging. Prasad and Mukherjee (2015) analyzed a
deterministic inventory model for deteriorating items with stock and time dependent demand where shortages
are completely backordered. This situation of full backordering is also considered in the hypothesis of this paper.

In the inventory literature, no paper simultaneously considers a demand pattern which is potentially time-
dependent and exponentially price-dependent, with full backordering and the length of the inventory cycle as
an unfixed variable. These are precisely the assumptions on which the inventory system presented here is based.
Thus, the objective is to determine the economic lot size, the optimal shortage and the best selling price to
maximize the total profit per unit time. We suppose that the profit is represented by the difference between the
revenues from product sales and the sum of ordering cost, purchasing cost, holding cost and backordering cost.
Taking into account the above considerations, a procedure is developed for determining the optimal policy and
the best selling price of the product for all possible scenarios.

The rest of the paper is organized as follows. The second section establishes the properties of the inventory
system and presents the notation that will be followed throughout the paper. We then determine the profit
as a function of the lot size, the total shortage and the selling price of the product, and we formulate the
optimization problem to be solved related to inventory management. In the fourth section, some results that

allow the optimal policy to be determined are presented. Moreover, the special case of the exponential price



function most commonly used in the inventory literature is analyzed and we develop a simpler algorithm for
this case. Then, in the fifth section, some numerical examples are introduced to illustrate the application of the
optimization procedure previously described. Moreover, a numerical sensitivity analysis for the optimal policy
and maximum profit with respect to the parameters of the demand rate function is also presented. Finally,
the main contributions of this paper are synthesized and possible future research directions within the area of

inventory management are presented.

2 Assumptions and notation

The inventory model for a single item here developed is based on the following hypothesis:

1. The replenishment is instantaneous, the lead time is negligible and the planning horizon is infinite.

2. The inventory is continuously revised.

3. Stock-outs are allowed and the demand during that period is fully backordered.

4. A lot of @ units (the total demand during the inventory cycle) is ordered when the number of units
pending to serve reaches the amount B (total shortage amount).

5. The unit purchasing cost ¢ and the holding cost h per unit and unit time are known and constant.

6. The ordering cost A is constant and independent of the lot size.

7. The shortage cost m per backordered unit and per unit time is constant.

8. The demand rate A(¢,p) is a function dependent on time and on unit selling price p. It is assumed that
the demand rate is the product of a power time-function and a tri-exponential price-function.
The power demand pattern has been used by various authors in recent years (see, for example, Mishra and
Singh 2013, and Rajeswani and Indrani 2015). The assumption of exponentially price-dependent demand
has been used previously in the literature (see, for example, Jeuland and Shugan 1988, Hanssens and
Parsons 1993, and Song et al. 2008). However, to the best of our knowledge, this is the first work that

considers a tri-parameter exponential function more general than those of the previously cited authors.

The notation used throughout the paper is shown in Table 1.



Table 1. Notation

Q Lot size per cycle (> 0, decision variable)

B Maximum shortage quantity per cycle or the reorder point (> 0, decision variable)
S Inventory level at the beginning of the inventory cycle (> 0)

10} Length of the inventory cycle where the net stock is positive (> 0)

o Length of the inventory cycle where the net stock is negative (> 0)

T Length of the inventory cycle, that is, T = ¢ + o (> 0)

c Unit purchasing cost (> 0)

D Unit selling price (p > ¢, decision variable)

A Fixed ordering cost per order (> 0)

h Holding cost per unit and per unit time (> 0)

T Shortage cost per backordered unit and per unit time (> 0)

A(t, p) Demand rate at time ¢t when the selling price is p, with 0 <t < T and p > ¢
I(t,p) Inventory level at time ¢ when the selling price is p, with 0 < ¢ < T and p > ¢
n Demand pattern index (> 0)

P(Q,B,p) Total profit per unit time

3 The mathematical model

Next, we develop the mathematical model for the inventory system according to the assumptions previously
exposed.

We have assumed that the demand rate A(¢,p) multiplies the effects of a power time demand pattern and
an exponential function which depends on the selling price. Thus, A(t,p) = A1(t)A2(p), where A;(t) represents

the power time demand pattern given by

t

1/n—1
M) =1 (T> , with n > 0, (1)

(the parameter n is the index of the power time demand pattern) and Aa(p) is the tri-parameter exponential
function defined by

Aa(p) = ae™PP" with o > 0, 8> 0 and v > 0. (2)

The consideration of the inventory cycle T in the function A (¢) allows the influence of the replenishment policy
on the behavior of the customers to be described. Thus, let us suppose that a customer wants to buy an item
with expiry date, which is sold in two shops located in the same neighborhood and close to each other. The

prices of the item are identical in both shops. The length of the inventory cycle at the first shop is longer than



in the second one. This leads to a situation where, in the second shop, there is a greater stock rotation. In
which of the two shops would a customer buy the item? It is more likely that the customer will buy in the
second shop because the length of the inventory cycle is shorter and there is a greater stock rotation. This
means that the article is more likely to have been produced more recently and, logically, the customers prefer
these new items. Other explanation of the practical utility of the function A;(t) to describe the demand for
certain products can be seen in San-José et al. (2017). In the function A2(p), the parameter « can be interpreted
as the maximum possible level of demand, and  and v are coefficients of the selling price sensitivity. In the
exponential price-dependent demand models used in the inventory literature, demand is commonly described by
means of the function ae™PP. Several bi-exponential price models have been used by researchers to characterize
the sales in different markets (e.g., Cowling and Cubbin, 1971; Krishnamurthi and Raj, 1988; Bolton, 1989;
Song et al., 2008). In this paper, we extend this exponential price-dependent function, incorporating the new
parameter . Note that this parameter 7 can be interpreted analogously to the exponent parameter of the
power price-dependent model av — Bp? (see, for example Chen et al. 2006, Huang et al. 2013, and Avinadav et
al. 2014). So, the price-dependent function presented in this paper may be useful to represent the real demand
for some products because it allows a better adjust in empirical applications.

The point-price elasticity of the demand rate function presented here (that is, (p/A(p,t)) (OA(t,p)/Op) =
—Bvp") depends on the selling price p and is always decreasing; moreover, it is concave when v > 1 and
convex if v < 1. Thus, we can say that the parameter v of the tri-parametric exponential price-function
is an index of convexity of the demand rate function. Moreover, the price curvature of A(p,t) (that is,
A(p, t)(0*X(t,p)/Op?) [ (OA(t,p)/Op)* = 1 + (1 —v)/(Byp")) depends on the price decision variable p and the
coefficients 8 and ~ of the selling price sensitivity, unlike what happens in the bi-parametric exponential price
models where the curvature is equal to one.

In order to illustrate the effect of the parameters n and v on the demand, we have depicted the function
A(t,p) for different potential indexes in Figures 1, 2 and 3.

Taking into account that the demand during the stock-out period is fully backordered, the lot size () must

coincide with the demand during the inventory cycle. Thus,

T T
Q= / Az, p)de = ae™ PP / A (z)de = e PP T (3)
0 0



v>1 y=1 v<1

Figure 3 Demand rate functions A(¢,p) when n < 1

That is, the inventory cycle T is given by
T =€ Q/a. (4)

The total shortage amount during the inventory cycle is B. Thus, the initial inventory level is S = @ — B. This

level has to be equal to demand during the positive stock cycle ¢, that is,

¢
S = Q — B = /0 )\(Z‘,p)dx = e—Bpw/an—l/n (a¢)l/n (5)
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Therefore, the length of the inventory cycle where the net stock is positive is given by
eBp”
1—-n n
p=—>-Q "(Q-B)"

(07

The net stock level at time ¢, I(t,p), is

—BpY \ L/
ac Q _ B for0<t<T

1(tp) :/t¢A(g;,p)dx:s—/OtA(x,p)deQ [1— (

From (4) and (6), it follows that demand B during the stock-out period is given by

¢ 1/n
1(T>

T
B= / Nz, p)dz = ae PP'T
¢

The length of the stock-out period is

3.1 The objective function

Our objective is to maximize the average profit per unit time. The total profit per cycle is determined as the

difference between the revenue per cycle and the sum of the ordering, the purchasing, the holding and the

backordering costs. The revenue per cycle is p@, the ordering cost is A, the acquisition or purchasing cost is

c¢@. The holding cost is

HO = h/jl(t,p)dt:h/j [/t(b)\(x,p)dx] dtzh/ij(x,p)dx

heBr”

_ _ n+l ~1—n
o (n+1)a(Q B) @

and the backordering cost is given by

7r/¢T [—I(t,p)]dt = 7r/¢T {/(: )\(x,p)dx} dt = 7T/¢T(T —z)A\(z,p)dx

Q2 (Q _ B>n+1Q1—n
[BQ_n+1+ n+1 ]'

.
wePP

Hence, we see that the total profit per cycle is

® T
PT(Q.B.p) = (p—c)Q—A—h /O I(t,p)dt + 7 /¢ I(t, p)dt

(h + ) PP’
n+1)a

.
TePP

+(n—|—1)oz

(p—c)Q—A—

1—n n+1 ﬂ-eﬁp
Q@B - T



Thus, the average profit per unit time is given by

ade PP’ h4n
Q n+1

s
n+1

P(Q.B.p) = (p — c)ae " — Q" (Q-B)"" — B+ Q. (9)

Therefore, the aim is to determine the values of the decision variables @), B and p, with Q > 0,0 < B <@

and ¢ < p, which maximize the function P(Q, B, p) given in (9).

4 Solution of the problem

Next, we present a first result that will allow us to reduce the above optimization problem with three decision

variables to an optimization problem with a unique decision variable.

Lemma 1 Let P(Q, B,p) given by (9). Then:
1. The function P(Q, B,p) is strictly concave on the region A = {(Q,B) : @ > 0,0 < B < Q} for any fized
value of p.

2. For any fized value of p, the function P(Q, B, p) attains its mazimum value at the point (Q;, B}) given by

Q) = (n+ 1)aAe=Pr” (10)

nmw {1 — (ﬁ—ﬂ)l/n_

nm

B - Qp[1—<h+ﬁ) _ (1)

Proof. Please, see Appendix. m
Note that the point (Q}, B,) is in the interior of the feasible region A and is the solution of the system of
nonlinear equations (0P(Q, B,p)/0Q) = 0 and (0P(Q, B,p)/0B) = 0.

By evaluating P(Q, B, p) at the optimal point (Q5, B} ), we obtain the function

G(p) = P(@p Byop) = 72 [a(p— ) e™/2 2/, (12)

where the parameter 6 is defined as

-\ - () w

Thus, our problem now consists of determining the selling price which maximizes the function G(p) defined
by (12).
Next, we give some properties of the function G(p), which are easy to check.

10



1. The function G(p) is continuous on the interval [c, 00). Moreover, G(c) < 0 and lim,_, ., G(p) = 0.

2. The function G(p) is of class C! on (¢, 00). Furthermore, the derivative is

G'(p) = ae™ " p7 f(p7), (14)
where )
feP/2 1
fla) = (P8 4 ) 4 1 - v (15)

Note that since p > 0, sign(G’(p)) =sign(f(p”)). Therefore, we can determine the zeros of the function
G'(p) in the interval (¢, 00) through the study of the function f(x) in the interval (¢?,00). Next, we present

some characteristics of this last function.
1. The function f(x) is continuous on the interval (0, 00). Moreover, f(¢?) > 0 and lim,_, f(z) = oo.

2. The first derivative of f(x) is

f(x) = 2~/ <ﬂeeﬂm/25/ﬂgx =2 _ ﬁc) - % (16)

We can establish the following result.

Lemma 2 The function f(x) given by (15) is strictly convex on the interval (0,00) and it attains its minimum

value at the point

1 = arg,o{f'(x) = 0}. (17)

Proof. Please, see Appendix. m
Taking into account the previous results, we now present a new theorem which develops a simple approach

to obtain the optimal price p*.

Theorem 1 Let G(p), f(z), f'(x) and x1 be given, respectively, by (12), (15), (16) and (17).
1. If x1 < 7, then p* = o0 and G(p*) = 0.
2. If x1 > ¢ and f(x1) > 0, then p* = 0o and G(p*) = 0.
3. Otherwise (if x1 > " and f(z1) <0), let xg be given by To = arg,¢ (v 4,){f(z) = 0}.
(a) If G(:E(l)/y) < 0, then p* = oo and G(p*) = 0.

(b) If G(;v(l)/'y) >0, then p* = :v(l)/'y and the optimal profit is G(p*).

11



Proof. Please, see Appendix. ®
Note that the inventory system studied here is profitable only in the case (3.b) of Theorem 1.
In the next section, we analyze the special case when v = 1, because in that situation the conditions to

obtain the optimal selling price can be formulated in an even simpler way.

4.1 Optimal inventory policy when v =1

Note that the function f(z) given by (15) can be rewritten as

Bx/2
e r(x)) ,

T (18)

fla)=a"'/ (

where r(z) = Byc+ /71 — Byz'/7. When ~ = 1, the rational function r(x) has a unique term dependent on
x, while if v # 1, it always has two terms in the variable z. For this reason, if v = 1, it is easier to work with

the function fi(x) = xf(x) instead of f(x). Moreover, since v = 1, we see from (12) and (14) that

G(p) = e PP/? {oz (p—c)e /2 — 2\/50] (19)

and

G (p) = Vae /2 [Vae 7/ (Bc - p) + 1) + 80 . (20)

Thus, sign(G’(p)) =sign(f1(p)), where the function f;(x) has the following expression:

BOePr/?

f1($> V&i

+B(c—z)+1. (21)

For convenience, we consider the function fi(x) defined on the set of all real numbers. Next, we analyze

some properties of this function.

Lemma 3 The function fi(x) given by (21) is strictly convex on R and it attains its minimum value at the
point

et (58)

Proof. Please, see Appendix. m
Reasoning as we did above with the function f(x), but now taking the function fi(x), we have the following

result to obtain the optimal solution.

Theorem 2 Suppose that v = 1. Let G(p), fi(z) and p1 be given, respectively, by (19), (20) and (22).

12



1. If py <c¢, then p* = oo and G(p*) = 0.
2. If p1 > ¢ and f1(p1) > 0, then p* = 0o and G(p*) = 0.
3. If p1 > c and fi(p1) <0, then calculate pg = arg ¢ (., {f1(z) = 0}.

(a) If G(pp) < 0, then p* = co and G(p*) = 0.

(b) Otherwise, p* = po and the mazimum profit is G(po)-

Proof. Please, see Appendix. m

In addition, we can obtain some of the above conditions as functions of only the input parameters.

Lemma 4 We assume that v = 1. Let G(p), fi(x) and p; be given, respectively, by (19), (20) and (22). Let
Po = arng(c‘pl){fl (p) = 0}. Then:
1. The condition f1(p1) > 0 is equivalent to p1 < ¢+ 3/0.

2. The condition G(pg) < 0 is equivalent to py > c+ 2/p.

Proof. Please, see Appendix. m
Taking into account this last result, we are now able to establish the following efficient algorithm to determine

the optimal inventory policy when v = 1.

Algorithm 1

Step 1 Calculate p1 by using (22).

Step 2 If p1 < ¢+ 3/8, then go to Step 6.

Step 3 Calculate po = arg,e (., {f1(p) = 0}.

Step 4 If po > ¢+ 2/, then go to Step 6.

Step 5 Take p* = pg.
Calculate Q* = Qy. by using (10).
Calculate B* = B by using (11).
Calculate G* = G(p*) by using (12). Stop.

Step 6 Consider p* = oo. Put Q* =0, B* =0 and G* = 0. Stop.

13



5 Numerical examples

Next, we illustrate with several examples the theoretical results previously presented in the last section.

Example 1 Consider an inventory system with the hypotheses assumed in this paper. The parameter values
of the system are: ¢ =8, A =500, h =2, 7 = 3.2, a = 1250, 8 = 0.2, v = 1 and n = 2.5. From (13), we have
6 = 14.2030. Then p; = 32.1458. Since ¢+ 3/8 = 23 < p1, we calculate pg = 14.7572. Taking into account that
c+2/8 = 18, we see that p* = py. From (10), we have Q* = 284.543 and, from (11), B* = 50.2245. Therefore,

the optimal profit is G* = 211.853 and the optimal cycle is T* = 4.35544.

Example 2 We assume the same input data and parameters as in the previous example, but we change the
value of 8 to 8 = 0.4. Now, we have p; = 12.6072 and ¢+ 3/8 = 15.5 > p;. Thus, we fall into the case described

by step 2 of Algorithm 1. Consequently, the inventory system is non-profitable for any selling price p.

Example 3 We consider the same parameters as in Example 1, but modify the value of 8 to 8 = 0.3. Now, we
have p; = 18.7274 and ¢+ 3/ = 18 < py. Therefore, we calculate pg = 15.3505. Since ¢+ 2/ = 14.6667 < py,
we fall into the case described by step 4 of Algorithm 1. As in Example 2, the inventory system is always

non-profitable, but in this case the function G(p) has a local maximum at the point pg.

Example 4 Now, we suppose the same parameters as in Example 1, but change the value of v to v = 1.2.
From (15) and (17), we obtain 2y = 25.6839, ¢” = 12.1257 and f(z;) = 0.01145210 > 0. Applying Theorem 1,

we deduce, as in the previous example, that the inventory system is always non-profitable.

Example 5 Now, we assume the same parameters as in the previous example, but modify the value of 3 to
£ = 0.1. We obtain z; = 53.7625, f(x;) = —0.0410956, 27 = 24.2391 and G(mé/v) = 392.908. Therefore, the

1/

optimal selling price is ;"7 = 14.2483, the economic lot size is Q* = 370.424, the maximum shortage quantity

is B* = 65.3833 and the optimal cycle T* = 3.34565.

Example 6 We consider the same parameters as in Example 1, but change the value of v to v = 0.8. We
obtain x; = 33.7827, ¢¥ = 5.27803, f(z1) = —0.0915442, xy = 11.2920 and G(x(l)/v) = 1334.49. Thus, the

optimal selling price is p* = 2/7 = 20.6996 and the optimal inventory policy is Q*,B*) = (402.384,71.0245).
P gp p 0 P y policy ) )
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5.1 Sensitivity analysis

Next, we include an analysis of the behavior of the best selling price and the optimal inventory policy when the
price-dependent demand parameters or the demand pattern index are moved.

We consider the following parameters of the inventory system: ¢ = 8, A = 500, h = 2 and 7 = 3.2. We
present three tables to show the behavior of p*, @*, B* and G*as functions of «, 3, v and n. Tables 2, 3 and 4
display computational results when o € {1000, 1250, 1500}, 8 € {0.16,0.18,0.20,0.22}, v € {0.8,0.9,1,1.1,1.2}

and n € {0.5,1,2}. According to the obtained results, we can establish the following issues:

1. Having fixed the price-dependent parameters a, § and =, if the value of n is increasing, then there is a
point 7 such that p*(n) = oo for all n < 7 and p*(n) is finite when n > 7. Furthermore, when n > 7,
the optimal selling price p* and the maximum shortage quantity B* are strictly decreasing as n increases,
while the economic lot size and the maximum profit are strictly increasing.

2. The optimal inventory policy and the best selling price are not very sensitive to changes in the demand
pattern index n. The same occurs with the optimal profit. However, the optimal reorder point is more
sensitive to changes in the value of n.

3. Having fixed a, v and n, if the value of 3 is increasing, then there is a point ﬁ such that G(p*(8)) > 0
for all 8 < 3 and G(p*(B)) =01if 8 > E Moreover, when 8 < ﬁ, the economic lot size, the maximum
shortage and the optimal profit are strictly decreasing as the parameter 8 increases . The sensitivity of

the optimal policy to the parameter ( is slightly greater when the value n is small.

The same conclusion can be drawn for the parameter ~, if the parameters «, 8 and n are fixed.

4. Having fixed 3, v and n, if the value of « is increasing, then there exists a point @ such that G(p*(«)) > 0
for all @ > @ and G(p*(«)) = 0 if & < &. When « > @, the optimal selling price is strictly decreasing as
the parameter « increases, while the economic lot size, the maximum shortage and the optimal profit are
strictly increasing. The sensitivity of the optimal policy to this parameter « is slightly greater when the
value n is small.

5. In general, note that the demand sensitivity on price is high for high v values, which makes the system

non-profitable.
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6 Conclusions

In this paper, we study an inventory system for products whose demand combines multiplicatively a potential
function of time and a tri-exponential function of the selling-price (more general than those previously used in
the inventory literature). The possibility of stock-out is admitted and, in such a situation, unsatisfied demand
is served when a new replenishment arrives in the system. The objective is to maximize the profit per unit time,
assuming that the inventory cost is the sum of the costs of ordering, purchasing, holding and backordering.

We develop an approach to determine the optimal inventory policy, the best selling price and the maximum
profit in all possible scenarios. This approach is based on the reduction of the inventory problem with three
decision variables to an optimization problem with a single decision variable. Furthermore, we present a simpler
algorithm if we consider the exponential price function more commonly used in the inventory literature.

In order to study the effect of the parameters associated with demand rate on the optimal policy and on
the maximum profit, we give computational results which permit a sensitivity analysis of the inventory policy
to be established.

As future research related to this paper we can cite the following research lines: (i) to study the inventory
system with the same hypotheses for perishable items; (ii) to analyze the inventory system under the same
assumptions allowing partial backordering; (iii) to develop the inventory system considering stochastic demand,
(iv) to assume an infinite rate of replenishment and, hence, to determine the economic production quantity and

(v) to consider discounts in purchasing costs.
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Proof of Lemma 1.
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For a fixed value p, the function P(Q, B, p) is twice-differentiable on the region

A={(@ B):Q>0,0<B<Q}

The first partial derivatives are

OP(Q,B,p)  Aae PP h+4n B\" nB T
2 BT n+1( Q> <1+Q)+n+1 33)
OP(Q,B,p) B\"
—5 = (h+7r)(1—Q> -7 (24)
Thus, the second partial derivatives are given by
0°P(Q,B,p) _  24ce™®"  n(h+m) (1 B)"_l <3)2
0Q? - Q? Q Q Q
PP(@QB.p) _  (htmn B\
052 - Q < Q>
O*P(Q,B,p) _ (htmn (1_3)“3
0QOB - Q Q Q

If we prove that the determinant of the Hessian matrix is positive for all (@, B) € A, the first assertion
follows, because 9% P(Q, B, p)/0Q? < 0 for all (Q, B) € A.

Indeed, the determinant of the Hessian matrix is

2Aa (h + ) ne= PP’ ( B) nt

o -2

To prove the second assertion, it is sufficient to show that the point (Q}, B,) given by (10) and (11) belongs

= o5 = 0, which is immediate. ®
(@3:B5)

to A and that 22(Q.5.p) _ 9P(Q,Bp)
9@ l(q;.B;)

Proof of Lemma 2.

The second derivative of f(x) is

Ba/ B
() = 2~ @/ (506 2 [(iv/xa7 2)2 + 4] N (v +71)ﬂc> L2 )

23
Note that f”(z) > 0 for all z > 0. Moreover, lim,_,o+ f(z) = 0o and lim,_, f(z) = co. Therefore, the function
f(z) is strictly convex and it attains its minimum at point z; given by (17). m
Proof of Theorem 1.
1. If 3 < ¢, then f/(p7) > 0 for p > ¢ and, therefore, f(p?) > f(c?) > 0 for all p > ¢. Since
sign(G’(p)) =sign(f(p")), we see that the function G(p) is strictly increasing on (c, 00).
2. If 1 > ¢” and f(x1) > 0, then it is obvious that f(p?) > f(z1) > 0 for all p # m}/w and we conclude as
in the previous case.
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3. If 1 > ¢” and f(x1) < 0, then there exist two roots xg and T of the equation f(x) = 0, with ¢7 <
xo < 1 < T, such that the function f(z) is positive on (¢7,zg), negative on (xg,Z) and positive on
(Z,00). Thus, the function G(p) is strictly increasing on (¢7, xg), strictly decreasing on (zo,Z) and strictly

1/

increasing on (Z, 00). Therefore, G(p) attains its minimum at p* = z’” or p* = co. Comparing the values

G(xé/w) and lim,_,. G(p) = 0, we obtain the optimal selling price. m

Proof of Lemma 3.

From (21), we have

Joy g (805
fi(z) =5 (2\/5 - 1> (26)

and ﬁ?’eeﬁz/Q
fra) =250 (27)

4o

The rest of the proof follows from lim,_, o f1(x) = co and lim, , fi(z) = 0c0. m
Proof of Theorem 2.
This follows by the same method as in the proof of Theorem 1. m
Proof of Lemma 4.
1. Substituting p; given by (22) in the function f;(z) given by (21), we have fi(p1) = B(c —p1) + 3 and,
therefore f1(p1) > 0 is equivalent to p; < ¢+ 3/8.

2. Taking into account that fi(pg) = 0, it is verified that

6 = —VaeBpo <c—p0 + ;) )

Substituting this value into the expression (19) of the function, G becomes

o= (e 2)

Thus, G(pg) < 0 if and only if p, > c+2/5. m
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