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A B S T R A C T

The implementation of anomaly detection systems represents a key problem that has been focusing the efforts
of scientific community. In this context, the use one-class techniques to model a training set of non-anomalous
objects can play a significant role. One common approach to face the one-class problem is based on determining
the geometric boundaries of the target set. More specifically, the use of convex hull combined with random
projections offers good results but presents low performance when it is applied to non-convex sets. Then, this
work proposes a new method that face this issue by implementing non-convex boundaries over each projection.
The proposal was assessed and compared with the most common one-class techniques, over different sets,
obtaining successful results.
. Introduction

Over the past decades, the use of classifiers has been commonly
pplied to solve a wide range of problems in many different fields, such
s medicine [1] or industrial systems [2], among others [3]. The classi-
ication process consists of assigning an object to its class or category,
here the object is defined by a set of feature values [4]. Typically, a

lassification problem cannot be solved using simple known rules [5].
hus, the classifier implementation must face a learning process from
set of training objects. Once it is obtained, it is able to label unseen

uture objects.
Depending on the number of classes to be assigned, the classification

an be binary or multi-class. In both cases, significant amount of
nstances belonging to each category must be ensured to achieve a good
lassifier [4]. However, in many applications, it is possible to obtain
he training objects only from one class, because obtaining data from
ther classes is expensive, difficult, or even impossible [6]. All these
ases, that may represent critical unknown events, or system failures
elong to the non-target class or negative class. This kind of problems,
here the objects can be assigned to a known class (target or positive

lass) or to the rest of possible classes (non-target or negative class), is
efined as one-class classification [7,8], novelty detection [9] or outlier
etection [10,11]. The main concern in one-class classification tasks is
o obtain a proper description of the target class from the training set,
ue to the lack of information about the outliers behavior [7].
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From a given set of objects, corresponding to the target class,
different approaches can be considered to face the issue of one-class
classification: density methods, reconstruction methods and boundary
methods [4,12]. The most direct method to achieve a one-class classi-
fication is based on establishing a threshold in the density estimation
of the training data. The use of different density distributions, such as
Gaussian, Poisson or Parzen Density, have been proven to be success-
ful [7]. However, a significantly high amount of training data is needed
to achieve good results. Fig. 1 shows the threshold level over a one-
dimensional Gaussian distribution. If a future object does not exceed
the threshold distribution, it is classified as outlier.

Another common approach to achieve the novelty detection is based
on reconstruction methods. With this method, a model is implemented
from the training data with the aim of minimizing the reconstruction
error. Once the model is obtained, objects from non-target class would
lead to high reconstruction error, and the outlier should be detected.
This approach has been validated with different techniques, such as
k-means, Self-Organization Maps (SOM), Learning Vector Quantization
(LVQ), Principal Component Analysis or Autoencoder Networks. Fig. 2
shows the main basis of this approach, where the real input 𝑢 is
compared with the reconstructed input 𝑢𝑅.

The last one-class approach consists of determining the spatial limits
of the training instances [4]. Hence, once the boundaries are set, the
vailable online 11 August 2020
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Fig. 1. Outlier detection using Gaussian distribution.

Fig. 2. General approach for reconstruction method.

Fig. 3. Novelty detection in R2 using convex hull.

criteria to identify a non-target class object, is based on the distance
to the decision boundary. In comparison with density methods, this
approach can give better results when the training data size is low. The
use of One-Class Support Vector Machine (OCSVM), maps the data into
a high-dimensional space and then, a hyper-plane that maximizes the
distance between the data and the origin is obtained. A similar process
is followed with Support Vector Data Description (SVDD), but in this
case, a hyper-sphere is implemented instead of a hyper-plane [7].

An effective method to obtain the approximated boundaries of a
target class is based on the convex hull of the training set [13,14]. In
this case, the novelty detection is solved from a geometrical point of
view, using the dataset convex hull [4]. An outlier detection process in
R2 is shown in Fig. 3. The gray points represent the training instances,
the green point represents a test data belonging to the target class and
the red point is an outlier.

This method leads to good performance in one-class classification
tasks [15]. However, the convex hull definition in high-dimensional
spaces is computationally expensive [16]. In [13], a convex hull ap-
proximation of a given dataset is obtained from 𝑝 random 2D projec-
tions, reducing significantly the computational cost. The most critical
weakness of this method appears when the dataset has non-convex
nature, especially when the outliers lie inside the convex surface. This
paper proposes a new method that solves the problem of determining
the limits of non-convex datasets. The proposal was validated by testing
different convex and non-convex sets, obtaining successful results in
general terms.

The paper is structured as follows: after the present introduction,
the motivation of this work is described. Section 3 provides a detailed
51
Fig. 4. Enlargement and contraction of a convex hull.

explanation about the proposed method. Then, the experiments and
results are shown in Section 4. Finally, the conclusions and future works
are listed.

2. Motivation

This section provides a general overview of the one-class technique
based on convex hull calculation, whose limitations represent the main
motivation of this work. As explained in Section 1, it is possible to
define the limits of a target class from a set of training objects using its
convex hull. The convex hull 𝐶𝐻 of a dataset 𝐷 ∈ R𝑛 is known as the
minimum convex set that contains all points, according to Eq. (1) [14].

𝐶𝐻(𝐷) =

{

|𝐷|

∑

𝑖=1
𝛽𝑖𝑥𝑖 ∣ (∀𝑖 ∶ 𝛽𝑖 ≥ 0) ∧

|𝐷|

∑

𝑖=1
𝛽𝑖 = 1, 𝑥𝑖 ∈ 𝐷

}

(1)

Once the convex hull 𝐶𝐻(𝐷) is calculated, the outlier is detected
when a new object does not belong to the hull. This method can provide
good performance if the dataset does not have anomalous objects, since
the appearance of outliers in the training set may lead to an inaccurate
decision model [17]. Thus, the size of the convex hull can be modified
using a parameter 𝜆 ∈ [0,+∞), according to Eq. (2) [18].

𝑣𝜆 ∶ {𝜆𝑣 + (1 − 𝜆)𝑐 ∣ 𝑣 ∈ 𝐶𝐻(𝐷)} (2)

where 𝑣 contains the vertexes of the original convex hull with respect to
the center 𝑐 = (1∕𝐷)

∑

𝑖 𝑥𝑖,∀𝑖 = 1,… , |𝐷|, and 𝑣𝜆 contains the modified
vertexes of the convex hull. From this equation, it is concluded that
values of 𝜆 greater than 1 expand the convex hull and lower than 1,
contract it. An example of this feature is shown in Fig. 4, where the dots
represent the original convex hull, the diamonds delimit the enlarged
convex hull and the squares represent the area contracted. This vertexes
modification is performed from the center, identified with a cross.

However, this approach presents two main weaknesses: the com-
putational cost and the wrong performance with non-convex sets. The
calculation of the convex hull of a high-dimension dataset requires
a significant computational cost [13]. If a dataset is composed of 𝑁
samples in R𝑛, the cost estimation of the convex hull calculation is
𝑂(𝑁 (𝑛∕2)+1) [13]. This problem is solved by using the Approximate
Polytope Ensemble (APE) technique. This technique consists of making
𝑝 random 2D projections of the original dataset. Then, for each 2D
projection, the convex hull is calculated. Once the convex hull is
modeled, the criteria used to determine the nature of a test data is the
following: if the point is out of at least one of these projections, it is
labeled as outlier. The main idea of this approach can be seen in Fig. 5,
where a dataset in R3 is projected in two 2D planes, where the red
dot represents an outlier. In this case, the novelty detection is correctly
achieved because the red dot is out of the convex hull of projection #2.
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Fig. 5. Novelty detection using the approximate convex hull.

Fig. 6. Novelty detection using the approximate convex hull.

Despite the good performance shown by this method [12–14], its
use in non-convex sets, may lead to unsuccessful classification. When
the dataset is not convex, there are significant cases where the approx-
imate polytope does not detect the anomalous points. This inaccurate
classification would happen when the outliers are well separate from
initial dataset but they lie inside the convex hull. An example of this
situation with a c-shaped set is shown in Fig. 6. In this case, the
anomaly, represented with a red dot, cannot be detected.

3. Non-convex boundary over projections

This work proposes the Non-Convex Boundary over Projections
(NCBoP) method that aims to avoid the main weaknesses of APE
described in previous section. To achieve this objective, once 𝑝 random
projections are made, the convex hull calculation is replaced by a non-
convex polygon that will be the border of the points projected over each
of those auxiliary planes 𝜋1,… , 𝜋𝑝. The main idea of this novel method
when applied over a non-convex set in R3 can be seen in Fig. 7. Then,
this section describes the proposed technique to build the non-convex
polygon as well as its mathematical aspects.

3.1. Mathematical background

The first problem that needs to be solved is to check if a point
is completely within a non-convex polygon. Before moving on to the
52
Fig. 7. Novelty detection using Non-convex polygon.

solution of this problem, let us first check whether a point is to the left
or to the right of a line segment.

Lemma 3.1. Let (𝑎, 𝑏) be a line segment with coordinates of the end points
of the segment (𝑥1, 𝑦1) and (𝑥2, 𝑦2) respectively. Let 𝑝 = (𝑥, 𝑦) be a point
somewhere in the plane 𝑋𝑌 , and let

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 (3)

be the equation of the segment where 𝐴 = −(𝑦2 − 𝑦1), 𝐵 = (𝑥2 − 𝑥1), 𝐶 =
−(𝐴𝑥1 − 𝐵𝑦1).

Then, a point 𝑝 = (𝑥, 𝑦) lies on the left of the line segment given by A,B
and C if,

𝐴𝑥 + 𝐵𝑦 + 𝐶 > 0 (4)

a point lies on the right of the line segment given by A,B and C if,

𝐴𝑥 + 𝐵𝑦 + 𝐶 < 0 (5)

Finally, the point lies exactly on the line if,

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 (6)

Since a polygon is a combination of more than two line segments,
the aim is to check if the point lies inside the polygon

Lemma 3.2. Let 𝑎1,… , 𝑎𝑛 be a convex polygon. The point 𝑝 = (𝑥𝑦) is
inside the polygon if it lies on the left of edges 𝑎1𝑎2,… , 𝑎𝑛−1𝑎𝑛, 𝑎𝑛𝑎1.

Proof. Follows from Lemma 3.1. □

Remark. It is drawn a horizontal ray originating from the point p and
extend it towards infinity in the right direction, and then, it is counted
the number of intersection the ray makes with the edges of the polygon.
A point 𝑝 = (𝑥, 𝑦) lies inside a non-convex polygon if the number of
intersection is even, the point is outside the polygon, otherwise it is
inside the polygon.

Proof. Follows from Lemma 3.2. □

3.2. Algorithm description

Let us describe the algorithm designed to build a non-convex poly-
gon that is the border of the cloud of points projected in the auxiliary
planes. This algorithm has been designed supporting us in the following
works [19–21]. The step by step working of the algorithm on the point
set 𝑃 is given below.
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Let 𝑃 = {𝑃0, 𝑃1,… , 𝑃𝑛} be a set of points in the plane 𝑋𝑌 . The
lgorithm’s first step is to find the starting point from which the non-
onvex pole is going to be built. Next, the polygon will be built so
hat this is the border of the non-convex hull. The detailed steps of
he algorithm are enlisted below.

1. Find the point (𝑝0) with the lowest y-coordinate. If a tie occurs,
select the point with the lowest x-coordinate.

2. Find the k-nearest points to the current point. For this, the vec-
tors 𝑃0𝑃𝑖 with 𝑖 ∈ {1,… , } are made and the shortest euclidean
distance in the real plane is sought.

3. Sort the k-nearest points based on the polar angle, that is, the
angle made by the line with the 𝑥-axis. This way, you will find
the 𝑃𝑖 with 𝑖 ∈ {1,… , 𝑛} point with the lowest polar angle. To
determine if the segment 𝑃0𝑃1 or the segment 𝑃0𝑃3 makes the
greater angle with the axis 𝑥, it is calculated the vector product
of the vectors 𝑃1𝑃0 and 𝑃1𝑃3. If the cross product is positive, it
means that the vector 𝑃1𝑃0 is clockwise from the vector 𝑃1𝑃3
with respect to the 𝑥 axis. This indicates that the angle made by
the 𝑃1𝑃3 vector is greater.

4. After classification, the furthest point from 𝑃0 is kept and all
other points are removed.

5. The first two points of the list are always on the non-convex hull.
It its maintained a stack data structure to keep track of the non-
convex hull vertices. It is pushed these two points and the next
point 𝑃3 on the list into the stack.

6. Now let us see if the next point in the list turns left or right
(Lemma 3.1) from the two points at the top of the stack. If it
turns to the left, it pushed this object into the stack. If it turns
right, the item from the top of the stack is removed and the
process is repeated for the remaining items.

7. Loop to number 2 until come back to 𝑃0, then, go next step.
8. The criteria to decide if the algorithm must be stopped, takes

into consideration whether all the points are either in the non-
convex polygon created by the algorithm (Lemma 3.1), or inside
the non-convex polygon (Lemma 3.2). In the case that all the
points are inside or in the polygon, the algorithm ends. Oth-
erwise, it looks for the point closest to the point outside the
polygon and then, a new iteration starts in step 2.

4. Experiments and results

In this section, the different experiments carried out and the
achieved results are presented.

4.1. Performance assessment of the proposal

To validate the non-convex proposal, it was compared with the
most typical one-class techniques, including the Approximate Polytope
Ensemble, whose performance improvement is sought. The techniques
were tested with different hyperparameter values with the aim of
selecting the best possible configuration. These are summarized next:

• Approximate Polytope Ensemble (APE) [17].

– Number of projections.
– Expansion parameter.

• Autoencoder Artificial Neural Network (AANN) [22].

– Hidden layer function.
– Number of layers in the hidden layer.
– Outlier fraction in the training set.

• Gaussian Model (GM) [7].

– Model width.
– Outlier fraction in the training set.
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able 1
ain features of each dataset.
Dataset Instances Target size Outliers Dimension

Normal 10 249 10 000 249 3
C-shaped 7649 7500 149 3
S-shaped 11 879 11 700 179 3
Y-shaped 6025 5850 175 3
Flower-Shaped 9143 9000 143 3

Breast Cancer 683 444 239 9
Cardio 1831 1655 176 21
Ionosphere 351 225 126 33
Letter Recognition 1600 1500 100 32
Vowels 1456 1406 50 12
Wine 129 119 10 13

• K-Centers (KC) [23].

– Number of clusters.
– Outlier fraction in the training set.

• K-Means (KM) [6].

– Number of clusters.
– Outlier fraction in the training set.

• K-Nearest Neighbor (KNN) [24,25].

– Number of neighbors.
– Outlier fraction in the training set.

• Minimum Spanning Trees (MST) [26].

– Length of max paths.
– Outlier fraction in the training set.

• Parzen Density Estimator (PDE) [27].

– Width.
– Outlier fraction in the training set.

• Principal Component Analysis (PCA) [28].

– Components.
– Outlier fraction in the training set.

• Support Vector Data Description (SVDD) [7].

– Kernel Width.
– Outlier fraction in the training set.

These algorithms were trained over two different groups of datasets,
whose main features are detailed in Table 1:

• Convex and non-convex three-dimensional shapes comprise the
first group: Normal distribution, C-shaped, S-shaped, Y-shaped,
and Flower-shaped. These sets are generated artificially as a part
of this work. In this case, the randomly generated outliers are
placed nearby the target set ensuring by visual inspection that
they are outside the positive class boundaries (Fig. 8).

• The second group of sets is collected from real applications,
available in the ODDS benchmark [29]. In this case, the datasets
used were: Breast Cancer Wisconsin, Cardio, Ionosphere, Letter
Recognition, Vowels and Wine. They are chosen because they
belong to a significant variety of fields, with also a wide range
of dimensions, as shown in Table 1.

To evaluate the performance of the classifier, the Area Under the
Receiving Operating Characteristics Curve (AUC) parameter was taken
into consideration [30]. This parameter, that establishes a relationship
between true positive and false positive rates, presents two main ad-
vantages. First, it is able to offer a single measure of the classifier

performance, representing the probability of classifying as positive a
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Fig. 8. Representation of the synthetic datasets used to validate the proposal.
random positive instance [30]. The second advantage of this parameter
is the insensitivity to classes distribution changes [31], that is a espe-
cially relevant feature in one-class problems. A 𝑘−𝑓𝑜𝑙𝑑 cross-validation
with 𝑘 = 10 was implemented to ensure a reliable measure of each
technique performance.

4.2. Results

The experiments configuration described above offered the results
presented in this subsection. First, Table 2 shows the best AUC for each
technique and dataset, which is the criteria to choose a configuration.
Then, the time needed to implement the classifier and the time to
calculate the nature of a test sample are shown in Tables 3 and Table 4,
respectively.
54
4.3. Statistical analysis

As the main goal of the experiments’ setup is to validate the pro-
posal, a statistical analysis is mandatory [32,33]. In this work, two
different statistical analysis were carried out. First, a Bonferroni–Dunn
test was developed to compare the NCBoP with the rest of conventional
one-class techniques [34]. After checking the results achieved over
each dataset with a significance level at 5%, NCBoP only performs
significantly better than PDE. The rest of one-class techniques remain
inside the critical difference (CDD) around NCBoP ranking, as shown
in Fig. 9.

However, this method is generally conservative, so a Wilcoxon
signed-ranks test is also applied to evaluate the NCBoP performance
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Table 2
AUC results over the tested datasets.

NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 100.00 100.00 99.57 100.00 99.97 100.00 100.00 100.00 94.95 98.18 99.99
C-shaped 93.93 85.64 86.02 84.98 96.29 95.29 97.54 98.81 96.39 82.85 99.69
S-shaped 92.63 80.76 86.02 84.98 96.29 95.57 98.97 98.84 95.92 74.74 94.83
Y-shaped 98.83 66.42 83.44 61.92 92.96 93.34 97.28 98.17 94.84 62.46 98.61
Flower-Shaped 98.07 60.75 80.72 84.68 89.80 89.70 97.50 98.53 94.69 80.72 93.39

Breast Cancer 95.65 89.87 94.87 95.88 94.80 96.44 96.43 95.95 88.52 94.35 96.35
Cardio 93.96 92.36 88.35 88.88 88.62 90.82 92.18 92.40 53.88 89.00 93.06
Ionosphere 90.69 90.81 90.76 90.19 91.61 90.70 91.19 90.88 53.64 91.94 92.03
Letter Recognition 73.03 70.08 73.20 77.43 61.02 70.62 87.40 86.83 50.50 76.05 73.53
Vowels 91.32 84.61 88.01 89.39 83.45 89.19 96.71 98.00 50.32 89.71 89.11
Wine 98.18 95.46 93.64 97.27 90.96 97.73 96.68 97.68 55.46 95.00 92.73
Table 3
Training times over the tested datasets.

NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 0.55 0.07 1.45 0.03 62.70 0.07 12.96 30.77 20.82 0.30 1631.60
C-shaped 0.69 6.62 2.19 0.01 34.01 0.04 6.39 13.32 8.97 0.05 401.87
S-shaped 0.61 2.95 2.19 0.01 34.01 0.18 22.83 67.76 18.80 0.06 1263.21
Y-shaped 1.02 0.46 1.67 0.01 23.44 0.03 3.81 6.96 3.60 0.05 211.69
Flower-Shaped 11.56 1.00 0.48 0.01 50.78 0.02 8.78 17.39 10.73 0.06 601.70

Breast Cancer 1.20 0.11 0.21 0.01 1.20 0.00 0.01 0.04 0.10 0.02 0.07
Cardio 9.68 0.19 0.17 0.01 1.30 0.01 0.22 0.42 0.49 0.02 5.40
Ionosphere 1.54 0.10 4.05 0.01 0.11 0.01 0.01 0.01 0.04 0.02 0.02
Letter Recognition 12.98 0.29 787.64 0.01 0.92 0.03 0.28 0.61 0.46 0.05 7.98
Vowels 7.96 0.78 1.95 0.00 0.69 0.01 0.16 0.31 0.35 0.02 1.75
Wine 1.47 0.01 1.72 0.01 0.15 0.01 0.01 0.02 0.01 0.04 0.02
Table 4
Calculation times over the tested datasets.

NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 25.96 3.18 0.01 0.00 0.12 0.00 0.58 1.71 0.14 0.01 0.14
C-shaped 45.45 437.98 0.02 0.00 0.16 0.01 0.38 0.71 0.12 0.01 0.01
S-shaped 26.72 125.09 0.02 0.00 0.16 0.01 0.69 1.96 0.21 0.01 0.12
Y-shaped 79.67 34.74 0.02 0.01 0.11 0.01 0.25 0.76 0.10 0.01 0.01
Flower-Shaped 655.75 54.97 0.02 0.00 0.15 0.00 0.41 1.01 0.11 0.01 0.19

Breast Cancer 257.70 23.03 0.08 0.02 0.01 0.01 0.02 0.11 0.03 0.01 0.01
Cardio 1703.62 32.77 0.04 2.80 0.03 0.01 0.07 0.82 0.04 0.01 0.01
Ionosphere 637.97 38.61 0.10 0.04 0.04 0.02 0.03 0.22 0.05 0.02 0.02
Letter Recognition 3062.40 68.04 0.10 0.01 0.07 0.03 0.10 1.23 0.09 0.03 0.04
Vowels 2469.40 241.39 0.07 0.01 0.05 0.02 0.07 0.45 0.05 0.01 0.02
Wine 4117.04 25.23 0.88 0.15 0.27 0.35 0.16 0.46 0.26 0.26 0.13
Fig. 9. Graphical representation of Bonferroni–Dunn test (𝑝 = 0.05, CD = 3.9697).
[34]. This non-parametric test establishes a comparison between each
pair of classifiers (NCBoP against the rest), taking into consideration
the differences over each dataset, ranking these differences. This test
leads to two main conclusions (𝑝 = 0.05):
55
• NCBoP performs significantly better than APE, AANN, GM, KC,
PCA and PDE.

• The null hypothesis of similar performance is accepted for KM,
KNN, MST and SVDD.
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4.4. Results overview

This subsection aims to detail an overview of the final results previ-
ously presented. In general terms, the proposed approach presented a
successfully performance with all datasets. Furthermore, it is important
to remark that this novel method overcomes the APE technique in
all sets but one, with a remarkable difference in non-convex sets (C-
Shaped, S-Shaped, Y-Shaped and Flower-Shaped). Then, the weaknesses
exposed in the motivation section seems to be overtaken.

Besides the AUC performance, that has been analyzed through the
statistical analysis, it is important to consider the computational cost of
each technique, in terms of training time to achieve each classifier. In
this field, NCBoP presents greater values when it is tested over the real
dataset instead of the synthetic datasets, although the synthetic ones
have a significantly more samples. Then, we can conclude that working
with high-dimensional datasets results in greater training times.

The NCBoP presents a main point to be reinforced, which is the
time needed to estimate the label of a new test sample. This situation
is consequence of the number of projections configured to achieve the
classifier. Increasing the number of random planes implies an increase
in the number of projections to check if the data belongs to the
non-convex polygon.

5. Conclusions and future works

The present research work proposes a novel method to implement
one-class classifiers based on boundary methods. The main idea of this
technique to improve the existing APE algorithm when it is applied over
convex and non-convex sets. With this aim, instead of a convex hull,
a non-convex polygon is constructed over each random projection of
the training set. The proposal has been validated over eleven different
datasets: five of them correspond to synthetic convex and non-convex
three-dimensional sets, and the six left correspond to datasets from
real applications. The proposal is compared with ten typical one-class
techniques. After a statistical analysis, it is concluded that NCBoP
presents performance rates that matches, at least all of them.

This contribution can present an interesting support to detect devi-
ations in a wide variety of fields. The increasing competitiveness and
the pursuit of energy efficiency, especially in developed nations, are
focusing the attention in tools that help to detect anomaly situations.
Hence, its implementation can complement predictive and corrective
maintenance plans, and it can be a key part of systems optimization
procedures in industries. In this sense, the low computational cost
compared with other cutting edge one-class techniques can be a really
interesting feature when the novelty detection system is implemented
using the edge computing methodology.

As future works, there are many lines that can continue with the
present research. First, it could be interesting to think about an online
implementation that could offering the possibility of modifying the
non-convex polygons as the system evolves. To implement this idea,
the training time should be reduced. Then, it could be interesting
to perform a preliminary study to determine the proper number of
projections based on the number of instances and variables. Since
many systems could present different operating points corresponding
to the target class, which are clearly separate, the implementation of
hybrid topologies could represent a good idea. These topologies could
consist of dividing the target class into different groups using clustering
algorithms.
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