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Abstract: Unmanned surface vehicles (USVs) are increasingly used for ocean missions and services
aimed for safer, more efficient, and sustainable routine operations. Path planning is a key component
of autonomy addressed to obstacle detection and avoidance. As a multi-optimization nonlinear prob-
lem, it should include computational time, optimal path, and maritime traffic standard procedures.
This becomes even more challenging for USV technologies propelled by harvesting ocean energy
from waves and wind. Sea current state and wind conditions significantly affect the USV energy
consumption becoming the path planning approach key for navigation performance and endurance.
To improve both aspects, an energy-efficient new path planning algorithm approach based on AI
techniques for computing feasible paths in compliance with the Convention on the International
Regulations for Preventing Collisions at Sea (COLREG) rules and taking energy consumption into
account according to wind and sea current data is proposed.

Keywords: unmanned surface vehicles (USV); obstacle avoidance (OA); path planning (PP);
artificial neural network (ANN); random forest (RF); multiple logistic regressor (MLR); support
vector machines (SVM)

1. Introduction

Climate change and environmental degradation are existential threats facing the world.
Maritime transport represents 93% of global trade volume, which highlighted the demand
for low-carbon and green transport. This involves increasing innovation and development
with a focus on the autonomy of aerial, ground, and underwater vehicles. This wave
comes from a resurging significant interest in uncrewed surface vehicles (USVs) and their
intelligent motion control navigation is in full swing [1–4]. In 2019, collision was considered
the second factor that causes navigation accidents as reported in the annual overview of
maritime casualties and incidents by the European Maritime Safety Agency. The COLREGs
were created to prevent and avoid collisions between ships, and present requirements,
which should be complied with by all vessels, in order to build modules that identify
encounter situations, determine the action manner, and assess the collision risk, etc. [5].
Transforming these rules into quantitative constraints to improve the practicality of traffic
in the sea environment and optimize results is needed.

Path planning is one of the fundamental aspects of autonomous systems and is carried
out on two levels: local path planning and global path planning based on sensor information
and environmental data information, respectively. Obstacle detection and avoidance (ODA)
through an environment including static barriers and moving target ships is a multi-
optimization nonlinear problem, which must consider several aspects, including optimal
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path, computational time, maritime traffic laws, and integrity, safety, and COLREG rules.
Information is crucial in the design of the planning algorithm; in addition, the planning
process must be followed by the correct execution and not only focused on completing the
tasks within a specific time.

Motivated by the above observations, this work compares several path planning artifi-
cial intelligence techniques, such as a data driven models, to resolve a multi-optimization
nonlinear problem. Hence, there is no need for theoretical demonstration, since they are
empirical models, which extract information from the historical data of the missions carried
out under supervision. This paper compares existing methods, but it is important to remark
that the novelty is how they are structured within the general planning scheme. The main
purpose of this study is to show the capacity of each model and to conclude the goodness
of each one, effectively solving the problem in question without having to solve complex
equations. Although it is possible to solve the problem by solving the equations, it is
important to point out that different drawbacks could appear as certain handicaps, such
as local minimums, convergence problems, or a huge computation time. Approach based
on driven-data learning can overcome the most significant difficulties that can face USVs.
The challenge consists of training models, based on data, that can meet the requirements of
the COLREGs, avoiding accidents. Furthermore, it should be remarked that the available
energy load and environmental conditions are considered in the proposed solution.

The remainder of this paper is organized as follows: An overview of existing methods
of collision avoidance path planning in USVs is provided in Section 2. In Section 3 are
descriptions of some AI techniques used in the proposed method in this paper. Then,
Section 4 presents a detailed description of the methodology used in the current study.
Section 5 contains experimental simulations to illustrate the feasibility and effectiveness of
the proposed scheme. Finally, Section 6 presents conclusions and ideas about future work.

2. Related Work

In the past decades, there was rapid growth in developing USV technology in several
fields for various applications and many different types of navigation missions. During
USV missions, ODA algorithms need to react quickly to obstacles in the environment and
return to the desired trajectory. The important processes of ODA are obstacle detection,
decision making, and avoidance operation. These processes should be executed consid-
ering several aspects, such as economy, safety, environmental behaviors, and COLREGs
constraints. There are many ways to characterize categories of algorithms applied to the
ODA. Many researchers made them more efficient, although there are many reviews on
this topic. In the early stages, the ODA requirements should be precisely defined with a
feasible solution, as in the case when the vehicle navigates in a beforehand-known mapped
environment with static barriers; that is, global path planning, which can be carried out
by solving a linear problem via heuristic search algorithms or by classical graph search
theory. Tam et al. [6] categorized the methods used in path planning into the heuristic
approach and deterministic approach, and Zhang et al. [7], in their work, distinguished
between four categories: traditional algorithms, soft computing algorithms, intelligent
learning algorithms, and spline curves.

The visibility graphs and grid-based path planning were proposed first in the form of the
Dijkstra algorithm [8], Hart et al. [9] developed A*, a faster alternative to the Dijkstra algorithm.
In real-time conditions, these methods are, in general, not effective. Other algorithms are
described based on the same principle of optimization. Stentz [10] introduced the D* algorithm,
which is a combination of the algorithms of Dijkstra and A*. This algorithm has the advantage
of being more robust to uncertainties related to the position of obstacles. Recently, the A*
algorithm was implemented and improved by different works, such as those by Chen et al. [11],
Singh et al. [12], and Campbell et al. [13]. In Souissi et al. [14], the authors distinguish four
categories of the A* variants: dynamic variants, any-angle movement, moving target points,
and anytime path planning.
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Path re-planning is proposed to cover real-time planning needs or avoidance under
dynamic environments. The artificial neural networks approach was the subject of numer-
ous articles [15–17]. Additionally, many current works used deep learning reinforcement
to generate trajectories [18,19]. The probabilistic methods, such as particle swarm optimiza-
tion [20], ant colony [21], probabilistic road mapping [22], the rolling windows method [23],
velocity obstacle [24], local reactive obstacle avoidance [25], optimal reciprocal collision
avoidance [26], dynamical virtual ship [27], finite control set model [28], evolutionary
approach [29], and so on. Vagale et al. [30] review the development of collision avoidance
and path planning for ASVs. The article presents a good and comprehensive historical
background on the subject, and provides a comparative study of algorithms, giving their
advantages and limitations.

Moreover, the main effort focused on using a deterministic search algorithm, such as
the grid-based methods, which search iteratively around the whole map, but sometimes,
the computing time increases exponentially.. Xia et al. [31] developed an algorithm based
on the velocity obstacle (VO) method and modified quantum particle swarm optimization
for USV collision avoidance.

As a deterministic search algorithm, Warren [32] devised an enhanced version of the
artificial potential fields method (APF), consisting of an expanded APF for multi-obstacles.
Song et al. [33] designed a new predictive artificial potential field using time information
and predictive potential to plan a smoother path.

The use of support vector machines (SVMs) for path planning applications is proposed
by Miura [34] for environments with known barriers. Sarkar [35] discussed the use of SVMs
as path planning algorithms to help robots with navigation through known and unknown
environments. Additional applications were presented in [36,37].

On the other hand, the motion control scheme implemented in the USVs is affected
by ocean disturbances. The most disturbing ocean disturbances for navigation are winds,
waves, and currents. In general, the effects of this disturbance affect the performance of
USVs that must follow a predefined trajectory. This is because, in most cases, the vehicle
does not move in the same direction as the current, and this will move the vehicle away
from the predefined path. Surface ships are constantly affected by the wind, which must
be counteracted. Moreover, the waves have a noticeable and direct effect on the course
controller of the USVs. If the waves are not considered, there can be discrepancies between
the simulated response and the actual one.

Vegal et al. [38] presented a comparative analysis of path planning and collision
avoidance algorithms for USV outline advantages and limitations of numerous algorithms.
Furthermore, it is pointed out in the paper that many created algorithms seem to be effective,
but they need to be tested in a real environment or with real traffic data. In this work, a
machine learning model was trained using real data and tested in simulations similar to
real data.

3. Preliminar and Methods Overview
3.1. Main Forces for an USV

According to [39] the main forces that govern a USVs movement are:

• Hydrodynamic forces (τhyd): added mass (virtual mass added to the ship by the mass
of water moved with the ship), potential damping, and viscous damping;

• Wave forces (τwaves);
• Hydrostatic forces (τhs restoring forces (buoyancy));
• Wind forces (τwind);
• Control and propulsion forces (τ): foil dynamics (sail, keel, and rudder) and thrusters.

The resultant USV movement is given by a combined effect of those forces and mo-
ments, as shown in Equation (8):

τT = τhyd + τhs + τwaves + τwind + τ, (1)
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M
.
v + C(v)v + D(v)v = τ + τwaves + τwind. (2)

The USV dynamic model is under-actuated and suitable for small marine vehicles as
the industry standard USV scale. In this paper, the dynamics and delays of USV actuators
are neglected.

3.2. Artificial Neural Networks (ANN)

In recent decades, the use of artificial intelligence grew exponentially in various fields
of research. According to Haykin [40], the work on ANN was motivated from inception by
the recognition that the human brain computes in an entirely different manner than the
conventional digital computer. The power of neural networks is the ability to learn from
the environment, to improve performance through learning (as the process that enables
to parameters of a neural network are adapted through a simulation process), and the
ability to model complex functional relationships by predefining the behaviour and the
interactions of variables. The tangent hyperbolic is used for all neurons and is defined by:

f (x) =
1− e−x

1 + e−x , where : x ∈ R. (3)

Considering a feedforward neural network, with m outputs, n inputs, and l hidden neurons:

• X = {x1, x2, . . . , xn} are the inputs;
• Y = {y1, y2, . . . , ym} are the outputs;
• wji and wkj, ∀1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ k ≤ m are the weights connecting first (inputs

neurons) with second (hidden neurons) and with the third layer (outputs neurons),
respectively, and;

• ϕi, ∀1 ≤ i ≤ n, are the activation functions.

The input of hidden neurons is calculated as:

netj = ∑n
i=1 xiwji = WT

j . (4)

With an output of: ϕi
(
netj

)
, given by:

yk = ∑l
j=1 ϕi

(
netj

)−
wkj. (5)

Figure 1 shows the universal architecture of the ANN.
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The next approach consists of using the ANN that is trained using the data obtained
from the first approach. The data are selected when the mission is carried out successfully.
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3.3. Random Forest Regressor (RFR)

The algorithm is a rival to boosting and an extension of bagging. Random forest [41]
operates by constructing a multitude of decision trees at training time. It makes use of both
categorical making classes or continuous making regression (see Figure 2).
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Figure 2. Diagram of a random forest regressor (RFR).

The methodology uses binary recursive partitioning to grow an ensemble of regression
trees, with each tree node’s predictor space being split into binary pieces based on a subset
of predictors randomly selected. The answer data were divided into two descendant nodes
at each binary split to optimize homogeneity and select the best binary split.

A random forest is made up of various tree predictors f (x, δk). Where x is a vector
of the observed inputs X. X and δk are independent and identically distributed random
vectors. Y is the output observed.

The random forest prediction for regression is the collection’s unweighted average error:

fn(x) =
1
K ∑K

k=0 f (x, δk). (6)

The goal is to estimate the regression function that is consistent if E[ fn(X)−Y]2 −→ 0
as n −→ ∞ .

3.4. Multi-Output Support Vector Regression (MSVR)

Support vector machines (SVMs) were exceptionally developed to clear up the statistics
classification problem [42]. SVMs were also successfully applied over the past few years in
vision, human–robot interaction, pattern matching-based tracking, and robot path planning
and navigation

SVMs project the input onto a new hyperspace using kernel functions so that complex
non-linear patterns can be easily represented. SVM can generate non-linear separating
hyperspace, which is appropriate for producing smooth paths with a relatively low cost.

Giving the training data (X, Y) ∈ Rnm, the goal is to find a function f (X) that has at
most ε deviation from the target Y:

f (X) = W·X + β, β ∈ R. (7)

So, the problem can be a convex optimization problem by minimizing 1
2‖W‖

2. subject to:{
Y−W·X− β ≤ ε
W·X + β−Y ≤ ε

. (8)
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3.5. Multiple Logistic Regressor (MLR)

Multiple logistic regression [43] is an extension of the simple logistic regression model,
in which a binary response is predicted based on multiple predictors, which can be both
continuous and categorical (see Figure 3). The equation with which we can obtain the
predictions in this case is:

Log
(

Pi
1− Pi

)
= ∑n

i=o βixi (9)

where Pi = P(Y|X = xi).
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4. Proposed Approach

The purpose here is to present an algorithm able to generate solutions in real time and
able to achieve a high level of autonomy and complying with COLREG’s rules.

The schematic of the proposed path planning system used in this article is shown in
Figure 4. The fundamental idea is to reach the destination waypoint. The distance between
the USV and the goal, and the distance between obstacles as they cross the collision zone,
are always calculated during the mission.

Firstly, we calculate the global path, from the destination to the goal, with the ML
method selected. Then, when an obstacle is detected in the collision zone, algorithm 1 is
applied to explore an alternative waypoint to avoid the obstacle. As a result, a new path to
the goal is created. After that, it is checked if the COLREG rules are satisfied and the main
forces of the USV can allow the vehicle to carry out the new maneuver and reach the new
waypoint. The constraints of the COLREGs rules on the obstacle avoidance behavior of
USVs give clear instructions on how a ship should behave when it encounters another ship.
Role 14, 15, 16, and 18 of COLREGs explain the four most encountered scenarios (head-on,
over-take, cross-right, and cross-left), which are taken in count in our algorithm.

Then, depending on the maneuver’s feasibility (available power and environmental
conditions), the USV either continues or performs an emergency stop, at which point an alarm
is activated and an alternative solution is searched again with the available predictions. The
calculations and the mission are completed when the destination is reached.

The proposed algorithm pointed out in the previous Figure 4 is previously explained in
Section 3 in order to learn from the historical data. These data are previously processed and
normalized. There are different methods to scale the data; although these transformations of
the inputs are not strictly necessary, they are carried out for practical reasons since learning
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is faster, the probability of reaching a local minimum decreases, and fewer iterations are
required during the training of the model.
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5. Results and Discussion

This section implements, discusses, and verifies the validity of a collision avoidance
system designed by our approach in different cases studies. The resultant USV movement
is evaluated in different environments; considering fixed and moving obstacles, critical
environment conditions (as: eddy) are considered mobile obstacles, and the simulations
considered COLREG compliance.

During implementation, our first step is to develop a region in which obstacles are
placed to check the performance of the proposed model. The calculations of this work were
carried out in the Win10 × 64 operating system (Intel (R) Core (TM) i5-4200U CPU 5, RAM
8 GB. The algorithm was implemented in Python with the Scientific Python Development
Environment (Spyder IDE 5.4.1).

5.1. Description of Data Used for Train and Testing the Methods

A Wave Glider SV2 (Liquid Robotics, Herndon, VA, USA), an ocean wave-propelled
USV with a two-module design, was used to gather the ocean data set used in this work
(Figure 5). A lower module, named the sub, is connected to the surface module (the float)
by an electro-mechanical umbilical of 4 m in length. Six fins, as part of the sub, moves with
a degree of freedom, allowing the alignment with the forward component of the underlying
orbital motion of the waves in the ocean surface, transforming the elliptical oscillation
at fin depth into a horizontal force to propel forward the float module, independently
of wave direction. The sub module has a rudder electronically controlled that allows
maneuverability to the platform’s yaw axis when navigating through a waypoints list
defined by the operator.
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Figure 5. Wave Glider SV2 in operation nearby a ship.

The float module has two solar panels located on top that provide a renewable source
of power to onboard navigation and telemetry systems, as well as the rest of any onboard
monitoring sensors and instrumentation. Beneath the solar panels, there are waterproof
payloads as housings for the data acquisition systems and supporting electronics for sensor
packages installed both below and above ocean surface on the float, as well as along the
umbilical, onto the sub, or as part of a tow body module below or behind the vehicle either
along the ocean surface at a given depth.

The wave glider’s control and navigation is managed through iridium satellite bi-
directional link from user shore stations. Navigation waypoints and all system commands
can be sent to the USV through the web-based graphical user interface wave glider moni-
toring system (WGMS). Telemetry packets containing exhaustive platform information and
sub-sampled payload sensor data are sent back to shore for real-time monitoring during
conducted missions using the same iridium link.

The data considered in this work consist of data collected in several short missions
within the Canary Islands (Spain), and other longer missions, such as the mission carried
out between the island of Faial (Portugal) and the island of Gran Canaria (Spain), this
mission lasted 54 days between November 2019 and January 2020. These real operating
scenarios, with a total of 213 days in their entirety (the period January 2019–July 2022),
provided the set of navigation and environmental data. The cases extracted that represent
collision avoidance situations were selected within this historical register. Each sample and
data selected for the study refers to an encounter situation.

These cases serve as training test validation data, where the initial location, direction,
and speed of the USV are set as appropriate in each situation. As the set of navigation and
environmental data are not uniform, the dimensions of the simulation area are established
in the two-dimensional plane. Note that the real map is divided in windows of dimension
(2500 m × 2500 m). However, only a subset of these windows was considered. That is, the
risking of collision scenarios was taking into account for the application of the proposed
approach. For the sake of simplicity, these two-dimensional planes are represented as
rectangles areas, being the coordinate (0, 0) the origin and the coordinate (50, 50) the
destination. The safety radius was established as 50 m, and it is assumed that the speed of
the USV and the moving obstacles are constant.

Additional tool layers based on AIS traffic navigation, ocean currents, ocean waves, etc.,
were added as data source to develop specific aids to navigation tools aiming to increase
navigation safety (see Figure 6).

5.2. Simulation Verification

After careful analysis of the recording data sets described in the previous section,
specific situations were selected; for example, when the USV encountered fixed obstacles
and when it had to modify its route to avoid colliding with ships and avoid eddies.

In the proposed algorithm, shown in Table 1, four models are used: MLR, RFR, ANN,
and MSVR. A total number of 2000 samples are the cases selected from the dataset. The
data, once normalized, are divided into three groups. The first group is for training, and
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usually contains 60% of the data, and is used for fitting the model parameters. Additionally,
20% of the data will be used for network validation during training. To avoid overfitting,
after every 50 iterations we check the accuracy result on the validation data set. Finally,
once the training is finished, the error is calculated on the 20% of the remaining data (test
data), to verify the goodness of the model. This process applies to all: ANN, MSVR, and
RFR models. The model with the highest accuracy in the verification set is saved as the
chosen model after training and testing.
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Table 1. Table with results derived from the four methods used.

Methods Data RMSE MAPE Explained Variance R2 Max Error

MLR
Train 0.75495 0.3012 0.99565 0.99565 8.2333
Test 1.231 0.3218 0.9929 0.9932 9.73785

RFR
Train 0.1542 0.1665 0.9992 0.99015 1.7062
Test 0.15285 0.1075 0.9992 0.99025 1.807

ANN
Train 0.0498 0.0359 0.9997 0.9997 1.43555
Test 0.0504 0.03385 0.9997 0.9997 1.57015

MSVR
Train 1.2131 0.20925 0.9935 0.99305 3.1789
Test 1.23585 0.20795 0.99335 0.99285 6.52935

5.3. Metrics to Evaluate the Goodness

The standard metrics scores used to evaluate the performance and the goodness of
the prediction of each method: root mean square error “RMSE”, mean absolute percentage
error “MAPE”, explained variance “EV”, coefficient of determination R2, and maximum
residual error “Max Error”.

The definitions of these metrics are:

RMSE =

√
∑|YPredicted − YObserved|

n
, (10)

EV = 1− var(YPredicted − YObserved)

var(YObserved)
(11)

MAPE =
1
n∑

∣∣∣∣YPredicted − YObserved
YObserved

∣∣∣∣ (12)

R2 = 1− ∑(YPredicted − YObserved)
2

∑
(
YObserved − YObserved

)2 . (13)
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5.4. Results

The metrics score is computed for the comprehensive evaluation index. Table 1 presents
the results of the four methods.

In Table 1, it is identified that is essential to employ various metrics for the evaluation
of the performance of our predictions. We can see that the explained variance and the R2 in
this study do not give a good understanding of the goodness of the models. However, the
combination of the scores given by RMSE and the max error metric shows the ANN as the
best model, followed by the RFR, MSVR, and MLR model, in this order.

We show results of two scenarios considered in this paper. The first environment
of USV navigation employing the proposed algorithm with the ANN model as a path
planning algorithm. In this proposed environment, the USV goes from starting point (0, 0)
to goal (40, 40) where many fixed obstacles in the environment are chosen arbitrarily with
an arbitrary radius (see Figure 7).
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Figure 7. USV path avoiding fixed obstacles. Figure 7. USV path avoiding fixed obstacles.

Figure 7 shows six different scenarios, and shows how the USV can reach the goal
without colliding with the fixed obstacles. Note that in this case, the COLREG rules are not
applied, given only fixed obstacles are considered.

On the other hand, a second scenario combining fixed and moving obstacles (with
different velocities) was also considered. In Figure 8a,b, two ships with different speeds as
mobile obstacles, two fix obstacles, and one eddy structure can be seen.
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avoiding: fixed obstacles, vessel in movement, and eddy (2).

Figure 8a,b, illustrates how the USV arrives at its destination while avoiding fixed
and moving obstacles and complying with COLREG rules. In Figure 8a, at time t = 1, the
USV avoids the first fixed obstacle; at time t = 2, the USV encounters a ship in a cross-right
situation that it must avoid. At t = 3, another fixed obstacle appears, and at t = 4, an eddy
must be avoided before reaching the destination with success.

In Figure 8b, at time t = 1, the USV avoids fixed obstacles. Then at time t = 2, the USV
make a stop emergency. Which is correct, because avoiding the vessel according to the
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COLREG, the USV has to deal with an addy, and strong current can change the trajectory
of the USV.

However, in Figure 8a,b, the USV does comply with the COLREG rules since some
obstacles are dynamic. Therefore, we can see the effectiveness of the algorithm in finding
trajectories with the least computational load, complying with the COLREG rules and
reaching the objective safely. As a result, real-time implementation of such an algorithm is
feasible in a maritime setting.

6. Conclusions

In this paper, an application anti-collision path planning algorithm for unmanned
surface vehicles is presented. It is important to remark that the algorithms consider the
available energy. The simulation results demonstrate that even in difficult and challenging
complicated encounter operational scenarios, the proposed path planning algorithm may
safely and correctly avoid the collision in compliance with COLREG rules. However,
the head-on and cross-right situations were considered in these models, but the overtake
scenario was not considered because the USV’s reduced navigation speed capabilities do
not go faster than compared to ships.

The model is appropriate when we dispose of high-quality real-time data. However,
this is not always the case. Therefore, a future line of research investigation should focus
on adding additional navigation and detection sensing capabilities that include optical
sensors (cameras) for image recognition. In this way, more valuable information is added
to the inputs, making more robust and accurate predictions. Particularly when finding
mobile obstacles, which do not transmit their position signals, or in other more complex
situations, such as when the boat abruptly changes its target in an emergency case or any
other unexpected reason. Employing these techniques, many constraints in navigations
could be solved, ensuring security and saving energy.
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