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A B S T R A C T

Due to their random nature, obtaining reliable models that can describe the behaviour of waves is far from
simple. This paper presents an approach for forecasting the capabilities of wave energy converters (WECs) for
two points, one of them located offshore and the other nearshore. Bivariate Weibull distributions were fitted
from spectral significant wave height and mean peak period data. Then, models relating the parameters of these
distributions to the day of the year were obtained using mixture density networks, which give the distribution
of the predicted variables instead of their expected value. Energy conversion capabilities were forecasted by
generating a set of random values for the bivariate Weibull coefficients from the modelled distributions for
the period in question. Predicted cumulative distributions for spectral significant wave heights and mean peak
periods were then combined with the matrix of the converter in question, allowing the corresponding energy
conversion capability to be computed. The proposed method was validated by considering data from the last
three years, which were not used to train the models. The resulting predictions were consistent not only with
the expected seasonal behaviour, but also with the expected differences between the offshore and nearshore
points. It should be also noted that all the validation energy values fall into the forecasted 95% confidence
intervals, showing the effectiveness of the approach.
1. Introduction

A common problem on Islands is their limited interconnection with
other systems that could provide additional power. Because of that,
a high dependence on imported fuels is common. This is the case of
islands such as the Canary Islands. Moreover, land with a good potential
for renewable energy is limited. Hence, it is necessary to look to the sea
in the near future to meet the energy demand of islands, and especially
to wave energy, which promises to be one of the most exploited oceanic
sources of renewable energy in the future. Particularly in regions where
favourable bathymetric conditions concentrate wave energy, such as
the coasts of this archipelago (Iglesias and Carballo, 2011; Avila et al.,
2021a; Yung Tay and Wei, 2020; Sheng, 2019).

Currently the outcast of all the renewable energies in the Atlantic
islands is ocean energy, despite the fact that a great deal of research
has shown the significance of waves, between (25–30 kW/m) in some
regions of the Canarian archipelago (Avila et al., 2021a; Iglesias and
Carballo, 2011) - as resource.

It is important to clarify that the scarce development of wave energy
is not exclusive to isolated islands, because in the global renewable
energy industry, the devices for transforming wave energy into useful
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energy are not mature enough to be used on a marketable scale. Nev-
ertheless, a wide variety of demonstration prototypes of Wave Energy
Converters (WECs) has been implemented around the world, with over
100 such experimental WEC projects being developed. These projects
have been trialled in countries on different continents, such as America
(USA), Asia (China), Europe (Spain, UK, Portugal, Norway, Sweden,
Italy and France) and Oceania (Australia and New Zealand). The wave
energy sector is not stationary and it will continue to grow with eco-
nomic help from different governments and private investors, especially
in developed countries, until a competitive commercial prototype is
produced (Ahamed et al., 2020; Chen, 2016; Sheng, 2019; Yung Tay
and Wei, 2020).

Researchers working on WECs experimental projects are conducting
comprehensive analyses of the performance of their prototypes, includ-
ing the power conversion capabilities (power matrix) for different sea
states. In order to perform reliable forecasting of energy conversion
capabilities, models describing the waves behaviour are needed. Some
studies, such as those reported in Ahn et al. (2021, 2020), Azharul et al.
(2020), Barstow et al. (2008), Gonçalves et al. (2014), Puscasu (2014),
Sandvik et al. (2019), Swan Team (2020) and Group (1988) evaluate
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the importance of the third-generation (3G) wind-wave models, such
as Wave Modelling (WAM) and Simulating Waves Nearshore (SWAN)
for forecasting waves. Both models have been implemented in different
important research projects around the world such as the WorldWaves
(sea waves in the globe) and WERATLAS (European waters) projects.
In the North Atlantic Ocean, several assessments have been carried out,
also using 3G wind wave models, for example: Gonçalves et al. (2014),
develop a numerical prediction of wave power distribution around the
Canary Islands, and Bernardino et al. (2017) present a study of the
wave energy resources of the Cape Verde Islands, using the Simulating
Waves Nearshore (SWAN). Nevertheless, these analytical models still
need more enhancements for achieving an accurate description of the
non-linear and dynamical behaviour of the waves (Cavaleri et al.,
2020).

Empirical models based on Artificial Intelligence are becoming
stronger every day in dissimilar fields of science (Malekmohamadi
et al., 2011), and wave simulation and prediction is not different. One
such example of this is the application of different soft computing
techniques (Fuzzy Logic, Artificial Neural Network, Genetic Algorithm
and Support Vector Machine) in coastal studies in India (Dwarakish and
Nithyapriya, 2016; Gopinath and Dwarakish, 2015). Artificial Neural
Networks are being used to predict wave height in different places,
like the west coast of Portugal (Makarynskyy et al., 2005), and on
the Adriatic Sea off the shore of Croatia (Berbić et al., 2017). In the
North Atlantic Ocean the Fuzzy Inference Models (FIS) was used to
model wind and wave climatic simulations (Stefanakos and Vanem,
2018). Many other studies and implementations of soft computing (SC)
techniques in wave energy potential assessment have been carried out,
for example in Avila et al. (2020), Castro et al. (2014), Huang and
Xu (2019), Huang et al. (2019), Sanaz et al. (2013) and Santos et al.
(2018).

Mixture density networks (MDN) are a type of artificial neural
networks whose output, instead of being a point value, is a probability
density. Since it is represented by a mixture model, many probability
distributions of different shapes can be adequately represented. Conse-
quently, these networks can be used to model various phenomena with
a strong random component (Hjorth and Nabney, 1999; Kevin, 2020).

MDNs have been used in various engineering investigations such
as tomographic studies in marine oil fields (Earp et al., 2020), geolo-
cation (Chen et al., 2020), autonomous driving cars (Baheri, 2022),
quantifying the residential demand response potential (Shirsat and
Tang, 2021), etc. In the field of renewable energies, they have been
used mostly to forecast the energy production of wind turbines as
discussed in Camal (2020), Men et al. (2016), Zhang et al. (2019)
and Zhang et al. (2020), small-scale solar generation (Afrasiabi et al.,
2020) and to forecast the power generated by wind and photovoltaic
farms (Vallejo and Chaer, 2020). Therefore, the use of MDNs to forecast
sea waves will be very effective to implement different WECs around
the world in the future.

This paper presents a new approach for forecasting the sea wave
energy conversion based on MDNs that predict the values of bivariate
Weibull distributions of wave significant spectral heights and mean
peak periods. Through the Monte Carlo method, a number of simula-
tions can be done and the corresponding converted energy values are
computed, allowing estimating the confidence intervals of converted
power. The models were fitted with the data set of the Las Palmas Este
nearshore buoy (1414) and the Gran Canaria offshore buoy (2442),
both in Gran Canaria Island. The two buoys used in the study belong
to the Spanish State Ports network (Harbors of State of Spain, 2017).

This approach is new, to the best of our knowledge, not only due
to the application of the MDN to the sea wave energy conversion
forecasting, but also as it proposes a general methodology, which takes
into account the stochastic behaviour of the waves, that could be
applied, after the proper future validation, to other geographic regions
2

with different sea conditions.
The paper is arranged into nine different sections. Having presented
the introduction, the rest of the paper is organised as follows. Section 2
depicts the whole approach. Sections 3 and 4 discuss the geographic
location and datasets used in the study, as well as the main features
of the WECs considered. The modelling procedure for the Bivariate
Weibull distribution is given in Section 5. The training of the MDNs
and their evaluation are detailed in Section 6. Section 7 describes the
predicted wave energy conversion capability of the different WECs at
the study buoys. The proposed model is validated in Section 8, and
conclusions are provided in Section 9.

2. Description of the approach

The proposed approach (Fig. 1) was designed to handle the stochas-
tic nature of waves. This stochasticity was considered not only by using
bivariate Weibull distributions to describe the behaviour of the spectral
significant wave height and mean peak period, but also by reflecting the
variation of the Weibull coefficients through the year.

Based on periodically measured data of spectral significant wave
height and mean peak period over several years (Fig. 1a), bivariate
Weibull distributions are fitted for every day of the year (Fig. 1b) and
the corresponding coefficients are modelled by using mixed density
networks (Fig. 1c). These are a kind of artificial neural networks
that, instead of crisp values, predict probability distributions. In the
proposed approach, the mixed density networks give a probability
distribution for the bivariate Weibull distribution coefficients (output
variables) for a given value of the day of the year (input variable). To
estimate the generated power for a given converter, a set of coefficients
is randomly generated by using the predicted probability distribution
(Fig. 1d). With these coefficients, the predicted bivariate Weibull dis-
tributions (Fig. 1e) are combined with the power matrix (Fig. 1f) of
the converter in question and the corresponding converted power is
predicted.

Based on the set of predicted powers (Fig. 1g), the expected values
and confidence limits of the converted power for each day of the year
can be determined.

3. Geographic location and datasets

Avila et al. (2021a) state that five buoys are located in the Canary
Islands that provide data on the behaviour of sea waves in real time.
Three of these buoys are nearshore: Santa Cruz Buoy (1421) and
Granadilla Buoy (7401) in Tenerife and Las Palmas Este Buoy (1414) in
Gran Canaria. The other two are deep-water buoys: the Gran Canaria
buoy (2442) in Gran Canarias and the Tenerife Sur buoy (2446) in
Tenerife.

Two buoys were considered in this study (Fig. 2). The first one is the
offshore Gran Canaria buoy (2442), located at 28.20◦N and 15.78◦ W.
This buoy is around 8.0 km away from shore, with a mooring depth of
780 m. The second one is the nearshore Las Palmas Este buoy (1414),
whose position is 28.05◦N and 15.39◦W. This buoy is less than 2.0 km
from the shore, with a mooring depth of 30 m (Harbors of State of
Spain, 2017, 2018; PivotBuoy, 2019).

In this research, data were taken from the offshore buoy (2442)
and the nearshore buoy (1414), because both buoys have different
advantages compared to the other buoys, such as good and repre-
sentative locations, high influence of the easterlies, and data from
these buoys have been used in many technical and scientific studies.
More information on these buoys and their advantages can be found
at Harbors of State of Spain (2017, 2018) and PivotBuoy (2019).

Data from both buoys were accessed through the Spanish State Ports
dataset, which, for the Gran Canaria buoy, ranges from 1997 to 2019,
when the buoy (2442) was taken out of the seawater for maintenance
works (22 years). In the case of the Las Palmas Este buoy, the data set

covers a period of 27 years, from 1992 to 2019.
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Fig. 1. Graphical description of the proposed approach.
Fig. 2. Location of the buoys considered in the study.
The datasets used includes date and time of the measurement and
the measured values of spectral significant wave height, 𝐻 and mean
peak period, 𝑇 , which were recorded every three hours. For both
cases, the measurement accuracy was ±0.05 m for 𝐻 and ±0.05 s for
𝑇 (Harbors of State of Spain, 2017, 2018; PivotBuoy, 2019), 151,824
valid records were taken for Gran Canaria (offshore) buoy, and 226,679
for Las Palmas Este (nearshore) buoy. The measured data were not
pre-processed.

4. WEC systems

Sea waves are the most widely available renewable energy resource
in coastal countries in continents and in isolated islands, called upon
to cover a large share of the current global demand for electric-
ity (Falcão and Henriques, 2019; Sheng, 2019). According to different
authors (Bertram et al., 2020; Khan and Behera, 2021; Ulazia et al.,
2019), the theoretical worldwide amount of energy available from
waves alone is on the order of 32,000 TWh.

As Sheng discusses in (Sheng, 2019), the development of wave en-
ergy can yield great benefits for these countries such as: (i) an increase
in the renewable and traditional energy mix; (ii) more independence in
their energy supply; (iii) creation of jobs, (iv) reduced carbon dioxide
emissions; and (v) less visual impact.

As mentioned before, the wave power industry does not have a
commercial prototype yet, but the research and development work
done in the last few decades will lead to a commercial model sooner
rather than later (Robles et al., 2019). This makes it important to
3

Table 1
Main features of the WECs considered (Silva et al., 2013).

WEC Nominal Classification power matrix
Power [kW] resolution [m × s]

Aqua buoy 250 Point absorber 0.5 × 1.0
Oyster converters 290 Terminator 0.5 × 1.0
Wave dragon 7000 Terminator 1.0 × 1.0
SSG 20,000 Terminator 0.5 × 0.5
Pelamis 750 Absorber 1.0 × 0.5

develop an efficient computer predictor to determine the behaviour of
any kind of WEC in offshore and nearshore seawater.

Five WECs are considered on this study: Aqua Buoy, Oyster, Wave
Dragon, SSG, and Pelamis. All these WECs have a different power
take-off (PTO). When considering the mean peak period, 𝑇 , and the
spectral significant wave height, 𝐻 , power matrices can be used to
calculate the output power of WECs in various sea states. The five WECs
used in the study rely on two operating principles to transform the
oscillating motion of sea waves into useful energy: a hydro turbine in
Wave Dragon, Oyster, SSG and Aqua Buoy, and a hydraulic motor in
the case of Pelamis (Ahamed et al., 2020; Bertram et al., 2020) (see
Table 1).

Fig. 3 shows a graphical representation of the five power matrices
used in the calculations. Table 1 shows a few of the main features
of the WECs considered in the study, such as nominal power and
classification, taking into consideration the working principle and the
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Fig. 3. Power matrices of the WECs considered (Silva et al., 2013, data source).
bin resolution of the power matrix (Avila et al., 2021a; Majidi et al.,
2021; Sheng, 2019; Silva et al., 2013).

5. Bivariate Weibull distributions fitting

The first step in predicting the wave energy conversion capability
is to model the wave behaviour, which was done by representing the
joint probability distribution of spectral significant wave height, 𝐻 , and
mean peak period, 𝑇 , through a bivariate Weibull distribution:

𝑓 (𝐻, 𝑇 ) =
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(1)

where 𝑐1, 𝑘1, 𝑐2, 𝑘2, and 𝑐12 are the distribution parameters, and
B is the zero-order Bessel function. The corresponding parameters
4

0

are obtained using the Simultaneous Maximum Likelihood Estimate
method (Avila et al., 2021b; Barstow et al., 2008; Desouky and Ab-
delkhalik, 2019; Sorensen, 2006).

Numerous investigations on two-dimensional distributions reaffirm
that they can be an effective tool in the characterisation of the state
of the sea. One of the first theoretical approaches about bivariate
distribution was suggested by Ochi (1978). In the next decade many
others researchers working in this thematic, such is the case as Haver
(1985) and Mathisen and Bitner-Gregersen (1990) that study among
others thing the application of the Bivariate Weibull distributions,
obtaining satisfactory results. More recently others academics studies
were carry out about the application two-dimensional distributions
in the prediction of the sea state such as Iglesias (2018), Lucas and
Guedes Soares (2016) and Lucas and Guedes Soares (2015).

In order to fit the corresponding bivariate Weibull distributions, the
datasets were split into a validation set, composed of data from the
last three years (i.e., from 2017 to 2019, for the Gran Canaria and Las
Palmas Este buoys), and a training set comprising the remaining data
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Fig. 4. Bivariate Weibull coefficients.
(i.e., from 1997 to 2016 for the Gran Canaria buoy, and from 1992
to 2016 for the Las Palmas Este buoy). Bivariate Weibull distributions
were fitted for data from every day of the year, starting from January
1 (day 1) to December 31 (day 365).

In this study, a daily time frame was assumed to evaluate the
stochastic behaviour of different WECs, which was proposed in a recent
study by Jamei et al. (2022) in predicting ocean wave energy using
intelligent systems. The time scale of our model in the evaluation can
be reduced if necessary, for example: to a timeframe of three hours or
less.

Fig. 4a shows the values of the coefficients throughout the year
for the Gran Canaria buoy (i.e., the offshore case). As the graphs
show, there is a small variation in the values of these coefficients
for different days of the year. Note the decrease between May and
September in the values of coefficients c1 and c2, which represent the
point where the spectral significant wave height and the mean peak
period, respectively, reach their corresponding maximum probability.

Fig. 4b shows the behaviour of the bivariate Weibull coefficients for
the Las Palmas Este buoy (i.e., the nearshore case). Despite exhibiting
similar behaviour, there is a noticeable seasonal variation, not only for
𝑐1 and 𝑐2, but also for 𝑘1 and 𝑘2, with a small but perceptible increment
in the summer.

6. Training and evaluating the mixture density network

In order to model the probability distribution density of each coef-
ficient for any day of the year, the corresponding MDNs were trained.
This probability distribution was computed by the so-called mixture
density models, which can be considered as the weighted sum of five
5

normal density distributions:

𝑝(𝑦|𝑑) =
5
∑

𝑖=1

𝑤𝑖
√

2𝜋𝜎𝑖(𝑑)
exp

{

−
[𝜇𝑖(𝑑) − 𝑦]2

2[𝜎𝑖(𝑑)]2

}

; (2)

where 𝑦 represents the values of the coefficients, 𝑑 is the day of the
year, 𝜇𝑖 and 𝜎𝑖 are the means and standard deviations of the 𝑖th NDD
and 𝑤𝑖 are the corresponding weights.

The MDNs used (Fig. 5) consist of a combination of a feed-forward
network and a mixture density model. The feed-forward network is
composed of an input layer, which receives the value for the day of the
year but has not effect from a mathematical processing point of view, a
25 nodes-hidden layer with a sigmoid activation function, and a linear
output layer, which returns the values of the five weights, means and
standard deviations used by the mixture density model to predict the
probability density distribution, 𝑝(𝑦|𝑑), at 𝑑.

The training process was carried out through 500 training cycles,
with a value of inverse variance for weight initialisation equal to
100, and 5 iterations of K means. All these parameters were chosen
through a try-and-error process, where different combinations were
tried until reaching the lowest values of predicted error. Fig. 6 depicts
the mean values (thick line) and the 95% confidence limits (thin lines)
for each predicted coefficient, for Gran Canaria (Fig. 6a) and Las Palmas
Este (Fig. 6b). As the figures show, the maximum values of spectral
significant height and mean peak period, given by coefficients 𝑐1 and
𝑐2, are higher for Gran Canaria (offshore) than for Las Palmas Este
(nearshore), which can be explained by the stronger energy of offshore
waves. Note that both coefficients exhibit a seasonal behaviour for Gran
Canarias while, for Las Palmas Este, only 𝑐2 shows a significant seasonal
performance.

By contrast, coefficients 𝑘1 and 𝑘2, which determine the bell-shape
of the distributions, show analogous behaviour for both buoys, not
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Fig. 5. Representation of the used MDNs.

Fig. 6. Probability predictions for the bivariate Weibull distribution coefficients.



Applied Ocean Research 129 (2022) 103372D. Avila et al.
Fig. 7. Daily energy conversion forecasting.
only because their values are very similar but also because there is a
noticeable non-seasonal pattern in both cases.

Finally, the 𝑐12 coefficient, which represent the interaction between
the spectral significant height and the mean peak period, shows a
remarkable non-seasonal behaviour, but with higher values for Gran
Canaria (offshore) than for Las Palmas Este (nearshore).

7. Forecasting wave energy conversion capability

Based on the MDN models fitted as explained in the previous sec-
tion, the energy conversion capability forecasts were obtained for each
buoy and converted. In order to obtain the wave energy conversion
forecast, 100 analysis points were considered for each day of the year.
For every point, the values of the five parameters of the corresponding
bivariate Weibull distribution were randomly generated by following
the mixture probability distributions obtained from the MDN models:

𝑐𝑖1 = 𝜑1(𝑑), 𝑖 = 1,… , 100; (3a)

𝑘𝑖1 = 𝜑2(𝑑), 𝑖 = 1,… , 100; (3b)

𝑐𝑖2 = 𝜑3(𝑑), 𝑖 = 1,… , 100; (3c)

𝑘𝑖2 = 𝜑4(𝑑), 𝑖 = 1,… , 100; (3d)

𝑐𝑖12 = 𝜑5(𝑑), 𝑖 = 1,… , 100; (3e)

where 𝜑𝑗 , 𝑗 = 1,… , 5, are the mixture density probability given by the
MDN models, for a given value of day of the year, 𝑑.
7

Then, the expected wave energy conversion, 𝑃d, for a given con-
verter, can be computed by the expression:

𝑃d =
𝑚
∑

𝑟=1

𝑛
∑

𝑠=1
𝜉𝑟,𝑠𝑝𝑟,𝑠; (4)

where 𝜉𝑟,𝑠 is the energy conversion factor for the 𝑟th row and the 𝑠th
column of the power matrix, and 𝑝𝑟,𝑠, is the cumulative probability in
the corresponding interval (𝐻 l

𝑟 ≤ 𝐻𝑟 ≤ 𝐻u
𝑟 , 𝑇

l
𝑠 ≤ 𝑇𝑠 ≤ 𝑇 u

𝑠 ):

𝑝𝑟,𝑠 = 𝑝|𝐻 l
𝑟≤𝐻𝑟≤𝐻u

𝑟 ,𝑇 l
𝑠≤𝑇𝑠≤𝑇 u

𝑠
= ∫

𝐻u
𝑟

𝐻 l
𝑟

∫

𝑇 u
𝑠

𝑇 l
𝑠

𝑓 (𝐻, 𝑇 )𝑑𝑇𝑑𝐻 ; (5)

where 𝑓 (𝐻, 𝑇 ) is the bivariate Weibull probability distribution func-
tion, given by Eq. (1). This probability is computed numerically by
using the fifth-order Gauss–Legendre quadrature for double integrals:

𝑝𝑟,𝑠 =
(𝐻u

𝑟 −𝐻 l
𝑟)(𝑇

u
𝑠 − 𝑇 l

𝑠 )
4

5
∑

𝑖=1

5
∑

𝑗=1
𝜔𝑖𝜔𝑗𝑓 (𝐻𝑖, 𝑇𝑗 ); (6)

where 𝐻𝑖 and 𝑇𝑗 can be computed by the expressions:

𝐻𝑖 =
𝐻u

𝑟 +𝐻 l
𝑟

2
+

𝐻u
𝑟 −𝐻 l

𝑟
2

𝜁𝑖 (7a)

𝑇𝑗 =
𝑇 u
𝑠 + 𝑇 l

𝑠
2

+
𝑇 u
𝑠 − 𝑇 l

𝑠
2

𝜁𝑗 ; (7b)

and 𝜔𝑖|𝑗 and 𝜁𝑖|𝑗 the corresponding weights and evaluation points of the
interpolation polynomial see Table 2 (Kiusalaas, 2005).
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Fig. 8. Validation through the monthly converted power.
Table 2
Gauss–Legendre weights and positions.
𝑖|𝑗 𝜔𝑖|𝑗 𝜁𝑖|𝑗
1 0.236927 −0.906180
2 0.478629 −0.538469
3 0.568889 0.000000
4 0.478629 0.538469
5 0.236927 0.906180

Fig. 7 depicts the 100 random values of predicted power (black
points) with the corresponding expected value (thick white line) and
the lower and upper limits for the 95%-confidence interval (thin white
lines). These confidence intervals were obtained by fitting a five-term
mixture density probability distribution.

The number of 100 predicted power values was selected as a rea-
sonable trade-off between the probability for estimating the expected
value (based on the law of large numbers) and the computational cost.

As the graph shows, there are two main differences between the
energy conversion forecast for the Gran Canaria (offshore) and Las
Palmas Estes (nearshore) buoys. In the first place, Gran Canaria exhibits
higher energy conversion values than Las Palmas Este. This is especially
so for the Aquabuoy, Oyster and SSG converters. Another important
observation is the seasonal behaviour, which is more pronounced in
the Gran Canaria (offshore) buoy than in Las Palmas Este (nearshore).

This difference between the two buoys in terms of the energy
conversion forecast and the seasonal behaviour can be explained if
we consider Fig. 2. On this map, it is easy to identify the difference
8

between the Gran Canaria marine buoy (2442) and the Las Palmas
Este buoy (1414), near the coast. For example, buoy 2442 receives
the full influence of the waves coming from the North in the Atlantic
Ocean, which are only tapered by the distant influence of the Island of
Tenerife to the northwest. Buoy 1414, which is located near the coast,
is highly influenced by the shadow of the island of Gran Canaria, which
hampers high wave potentials in this position. As a result of its location,
however, buoy 1414 is more protected from the effects of inclement
weather in the region.

8. Validation

In order to validate the forecasting capabilities of the proposed
approach, the power for each month of the year was predicted. The
corresponding expected value and confidence intervals were obtained
by fitting a five-term mixture density model from forecasted power
data corresponding to the monthly period. By contrast, the power for
the validation, which considered those years that were not used for
training, was directly computed from the experimental data.

A graphical representation of the resulting values (see Fig. 8) shows
that all the computed power values, for the validation years, fall into
the predicted 95% confidence intervals, showing the reliability of the
predictor.

9. Conclusions

As a practical contribution to the field of Ocean Engineering, the
work presented a predictor of wave energy conversion capabilities. The
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model developed in the research could provide a useful computational
tool to evaluate the power take-off (PTO) of different WECs at any
position in the ocean, in both nearshore and offshore waters, preferably
on isolated islands. In a future study, the model could be tested with
data from buoys located near the European continent.

The main conclusion that can be drawn from this study is the
suitability of the proposed methodology for forecasting the energy
conversion capability from measured historical wave data. Also of note
is the model’s ability to deal with the confidence intervals despite the
expected values, which is more suitable for the intrinsically random
wave behaviour.

MDNs can be used to deal with the non-symmetric probability
distribution show not only by the bivariate Weibull coefficients but
also by the predicted converted power. The MDNs exhibit a remark-
able capability for modelling the behaviour of the wave parameters
(i.e., spectral significant wave height and mean peak period).

The forecasted energy conversion values for the different converters
show the effectiveness of the proposed approach, as they not only
reflect the expected behaviour for both the offshore and nearshore
buoys, but they also match the power data used for the validation.

As a future continuation of this work, several lines can be identified.
In the first place, the proposed approach should be validated with data
from other geographic regions, in order to verify its applicability in
different climatic conditions and sea wave behaviour. The use of a more
general bivariate distribution for modelling the behaviour of spectral
significant wave height and mean peak period could be also considered.
In this sense, using MDNs to directly predict the probability distribution
of spectral significant wave height and mean peak period, could be
an interesting option. Finally, hybrid models that combine theoretical
models and empirical data can also be considered.
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