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Histological and ultrastructural features of the peculiar seta and stem of 
Leucodon canariensis (Leucodontaceae)

Carmen Alfayatea  and Belén Estébanezb

aDepartment of Biochemistry, microbiology, cell Biology and genetic, Biology section, faculty of sciences, university of la laguna, la laguna, 
spain; bDepartment of Biology, faculty of sciences, autonoma university, madrid, spain

ABSTRACT
The seta and stem in Leucodon canariensis are examined by means of light microscopy, transmission and 
scanning electron microscopy. Their anatomies reveal relevant differences although both show a 
remarkable structural complexity, as their conducting tissues are equally effective in carrying out 
essential processes. Five types of cells have been recognized in the transverse sections: (i) in both seta 
and stem: stereids in the external region with a peripheral cuticle; (ii) in the stem only: parenchymatous 
cells with plasmodesmata underlying the stereids; in the seta only: (iii) an unusual area of nacreous-walled 
cells without live protoplasm, surrounding (iv) the food-conducting cells (leptoid-like), and again both 
in seta and stem: (v) hydroids in the internal region. The seta in this species has a peculiar organization 
and shares some characteristics with polytrichaceous mosses; the ultrastructural similarities and 
differences and functional significance of these cells are discussed, both systematically and in relation 
to the habit of the moss itself.

Introduction

The gametophyte is the dominant generation in mosses and 
generally consists of leafy haploid shoots with a stem that 
configurates the plant architecture and allows the coloniza-
tion of its habitat and occupation of a wider space, while the 
simple, unbranched sporophyte is dependent upon the 
gametophyte. This diploid phase presents a foot embedded 
in gametophyte tissue, a seta or stalk for food-conduction 
and connection of both extremes, and an apical capsule. The 
junction complex between gametophyte-sporophyte is a cru-
cial region for bryophyte life strategy (Uzawa and Higuchi 
2010), as the diploid generation is matrotrophic (Graham and 
Wilcox 2000; Haig 2013). Mosses, as non-lignified plants, are 
considered as lacking a true vasculature (Ligrone et  al. 2000, 
2008), although recently, Brodribb et  al. (2020) showed that 
mosses (Polytrichum commune Hedw.) exhibit functional par-
allels with the vascular system of higher plants.

Several studies have dealt with the anatomy of the moss 
gametophyte in recent years, but the anatomy of the sporo-
phytic seta remains comparatively little studied.

A summary of the main works on the anatomy of moss 
gametophytes and the setae in Bryophytina sensu Liu et  al. 
(2019) are listed in Table 1. In essence, the stem consists of 
three main regions: (1) an epidermis, usually with thick-walled 
cells, but in some taxa, sometimes corresponding with stere-
ids, (2) a cortex, divided into an outer, thick-walled scleroder-
mis and an inner zone of parenchymatous cells (often 
conducting parenchyma), and (3) a central strand, sometimes 

absent, consisting of hydroids [water-conducting cells (WCCs) 
with no cytoplasm], usually with very thin walls. In 
Polytrichopsida, hydroids have thick walls and are surrounded 
by specialized, food-conducting leptoids.

The seta anatomy parallels that of the stem, although it is 
often more complex: the wax-covered epidermis is more spe-
cialized as an isolating tissue, and the hydroid central strand 
is generally well developed and more often associated with a 
phloem-like tissue: true leptoids in Polytrichopsida or special-
ized, parenchymatous food-conducting cells (FCCs) of contro-
versial identity in other taxa (sometimes regarded also as 
leptoids s.l., see Glime 2017a; Woudenberg et  al. 2022).

Most of these studies have focused on acrocarpous rather 
than pleurocarpous mosses. This last group includes the 
genus Leucodon Schwägr., as the five Mediterranean and 
Macaronesian species of this genus (Hodgetts et  al. 2020) 
show a similar gametophyte morphology, and they fructify 
only rarely, their identification is usually difficult (Akiyama 
1988, 1994). Although some recent molecular studies on 
North Atlantic Leucodon species (Stech et  al. 2011) have 
yielded useful information on phylogenetic and biogeo-
graphic relationships, several questions remain unsolved, 
notably the taxonomic status of Leucodon immersus Lindb. 
and the affinities of Leucodon canariensis (Brid.) Schwägr.

The study of the anatomy and ultrastructure could be use-
ful both in identification and in assessing systematic affinities 
in the genus. However, the scarce histological observations 
refer only to a few gametophytic characters in Leucodon 
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Table 1. conducting tissues of stems and setae in a diversity of bryoid moss genera (only taxa with tem-observed conducting tissues are included, although not 
necessarily all the references include tem microcraphs).

author conducting tissues (outwards to inwards)

gametophyte stem
 Oedipodium schwägr. ligrone and Duckett 2011 no data on fccs, central strand of thin-walled hydroids.
 Atrichum P.Beauv. hébant 1967, 1968, 1969, 1977; 

stevenson 1974, schofield and 
hébant 1984; scheirer 1990; 
ligrone and Duckett 1994; ligrone 
et  al. 2002

true leaf traces, endodermal-like tissue; true leptoids with nacreous walls as 
fcc, well-developed central strand of thick-walled hydroids.

 Dawsonia r.Br. hébant 1969, 1975, 1977; scheirer 
1990; ligrone et  al. 2002; glime 
2017a

true leaf traces, endodermal-like tissue; true leptoids as fcc, well-developed 
central strand of thick-walled hydroids.

 Dendroligotrichum (müll.hal.) Broth. hébant 1973, 1976, 1977; scheirer 
1980; hébant in scheirer 1990; 
ligrone et  al. 2002

true leaf traces, endodermal-like tissue; true leptoids as fcc, well-developed 
central strand of thick-walled hydroids.

 Polytrichadelphus (müll.hal.) mitt. hébant 1974, 1977 true leaf traces, endodermal-like tissue; true leptoids as fcc, well-developed 
central strand of thick-walled hydroids.

 Polytrichum s. l. (including 
Polytrichum hedw. and 
Polytrichastrum g.l.sm.)

hébant 1975, 1977; schofield and 
hébant 1984; scheirer 1990; 
ligrone and Duckett 1996; ligrone 
et  al. 2000; ligrone et  al. 2002; 
Pressel et  al. 2006

true leaf traces, endodermal-like tissue; true leptoids, sometimes with 
nacreous walls, as fcc, well-developed central strand of thick-walled 
hydroids.

 Pogonatum P.Beauv. hébant 1974, 1977; ligrone and 
Duckett 1994

true leaf traces, endodermal-like tissue; true leptoids as fcc, well-developed 
central strand of thick-walled hydroids.

 Buxbaumia hedw. ligrone et  al. 1982 no explicit data on fcc; rudimentary stem with lipid-rich, highly vacuolated 
cells, no central strand of hydroids.

 Funaria hedw. hébant 1969, 1977; schulz and 
wiencke 1976, ligrone and Duckett 
1994

Both true and false leaf traces, conducting parenchyma of polarized cells as 
fcc, central strand of thin-walled hydroids.

 Timmiella (De not.) limpr. ligrone et  al. 1980 conducting parenchyma of polarized cells as fcc, central strand of thin-walled 
hydroids.

 Grimmia hedw. Kawai 1965; estébanez 1995 conducting parenchyma with porose walls (with primary pit fields) as fcc; 
small strand of thin-walled hydroids (lacking in some species).

 Leucophanes Brid. favali and Bassi 1978 homogeneous in cross section, conducting parenchyma with primary pit fields 
as fcc, no hydroids.

 Bryum s.l. (including Bryum hedw. 
and Ptychostomum hornsch.)

ligrone and Duckett 1994 false leaf traces, conducting parenchyma of polar cells as fcc, central strand 
of thin-walled hydroids.

 Mnium s.l. (including Mnium hedw. 
and Plagiomnium t.J.Koponen)

hébant 1967, 1968; ligrone and 
Duckett 1994, 1996; ligrone et  al. 
2000; ligrone et  al. 2002; glime 
2017a, 2017b

false leaf traces, conducting parenchyma of polar cells as fcc, central strand 
of thin-walled hydroids.

 Aulacomnium schwägr. ligrone and Duckett 1994;  
ligrone et  al. 2000

conducting parenchyma of polarized cells as fcc, central strand of thin-walled 
hydroids.

 Hookeria sm. hébant 1975; cortella et  al. 1994 conducting parenchyma with porose walls (with primary pit fields) as fcc; 
small central strand of thin-walled hydroids.

 Hylocomium schimp. Bonnot 1967; sokolowska et  al. 2017 conducting parenchyma in inner cortical layers as fcc, consisting of elongated 
cells with numerous thin-walled areas (probable primary pit fields), with no 
central strand of hydroids.

 Pleurozium mitt. noailles 1974; sokolowska et  al. 2017 conducting parenchyma in both inner and outer cortical layers as fcc, cells 
with oval, thin-walled areas (probable primary pit fields), small central 
strand of thin-walled hydroids.

 Isothecium Brid. alfayate 1995 conducting parenchyma with primary pit fields in transversal and longitudinal 
walls) as fcc; small central strand of thin-walled hydroids.

 Thuidium schimp. finocchio 1967; Bonnot  
(in hébant 1977)

inner cortical cells with pitted transverse walls as possible fcc, no central 
strand of hydroids.

 Neckera hedw. ligrone and Duckett 1994, alfayate 
1995; ligrone et  al. 2000

conducting parenchyma of polarized cells (with primary pit fields in 
transversal and longitudinal walls) as fcc; no central strand of hydroids.

 Cryptoleptodon renauld & cardot alfayate 1995 conducting parenchyma with porose transversal and longitudinal walls (with 
primary pit fields) as fcc; no central strand of hydroids.

sporophyte seta
 Oedipodium schwägr. ligrone and Duckett 2011 no explicit data on fcc (apparently conducting parenchyma), central strand of 

thin-walled hydroids.
 Dawsonia r.Br. hébant 1975, 1977 lacunar ring of parenchymatous cells with plasmodesmata-rich walls, and 

inner layer of leptoids with oblique transverse walls, as fcc; central strand 
of thin-walled hydroids.

 Dendroligotrichum (müll.hal.) Broth. hébant 1975, 1976, 1977; lacunar ring of parenchymatous cells with plasmodesmata-rich walls, and 
inner layer of leptoids with oblique transverse walls, as fcc; central strand 
of thin-walled hydroids.

 Pogonatum P.Beauv. favali and gianni 1975; ligrone and 
Duckett 1994

lacunar ring of parenchymatous cells with plasmodesmata-rich walls, and 
inner layer of leptoids with oblique transverse walls, as fcc; central strand 
of thin-walled hydroids.

 Polytrichum s.l. (including 
Polytrichum hedw. and 
Polytrichastrum g.l.sm.)

favali and Bassi 1974; hébant 1977; 
ligrone and Duckett 1994; ligrone 
et  al. 2000

lacunar ring of parenchymatous cells with plasmodesmata-rich walls, and 
inner layer of leptoids with oblique transverse walls, as fcc; central strand 
of thin-walled hydroids.

 Buxbaumia hedw. ligrone et  al. 1982 extensively lacunar cortex as probable fcc, with plasmodesmata-rich 
transverse walls; small central strand of few thin-walled hydroids.

(Continued)
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sciuroides (Hedw.) Schwägr., L. sciuroides var. morensis Schwägr. 
(Fuertes et  al. 1977), L. canariensis (Velázquez 1994) and the 
European–Asian species of Leucodon (Werner et  al. 2015).

L. canariensis (Brid.) Schwägr. (Leucodontaceae) is a moss 
endemic to the Canary Islands and Madeira, a mesophilous 
pleurocarpous and plagiotropic moss, epiphyte on tree bark, 
with a crawling-shoot type of growth. Its life-form type is a 
‘tail’ (shade-loving; radially leafed; creeping, shoots stand 
away from substrate) according to Magdefrau (1982). The 
sporophyte grows slowly and presents a very long seta (14–
24 mm) supporting a subspherical capsule with arthrodon-
tous peristome teeth.

In this paper we examine the detail of the histology and 
ultrastructure of seta and stem of L. canariensis from a laurel 
forest of Tenerife (Canary Islands).

Material and methods

Plant material

Samples of L. canariensis (Brid.) Schwägr., (Leucodontaceae 
Schimp., Hypnales; Hill et  al. 2006), were collected from a wet 
laurisilva at Monte de las Mercedes (948 masl, 28RCS566749; 
Tenerife, Canary Islands), a several million-year-old relict for-
est (Pliocene 6 my; Fernández-Palacios et  al. 2011). Voucher 
specimens were deposited at the Herbarium of the Biology 
Faculty (TFC), La Laguna University, with numbers: TFCBry no. 
9566, TFCBry no. 9567 and TFCBry no. 17531.

Sample preparation

The seta and stem were excised and processed for light 
microscopy (LM), transmission electron microscopy (TEM) and 
scanning electron microscopy (SEM), using standard proto-
cols as follows.

The same number of individuals was taken from each of 
the populations (3) mentioned above (TFCBry nos. 9566, 
9567, 17531). The sample size for each technique was: for 
fresh sections (LM) and histochemistry: seta n = 3, fertile 
stem n = 3, sterile stem n = 3; for samples embedded in resin 

(LM and TEM): seta n = 3, fertile stem n = 3, sterile stem n = 3; 
and SEM: seta n = 3, fertile stem n = 3, sterile stem n = 3. The 
seta development stage is post-meiotic, applied to all 
techniques.

LM
observations were made with a LM Leica DM4000B using a 
Leica QWin computer image apprehension system on 
semithin sections (1 µm) of resin-embedded material (seta 
and stem), obtained with glass knives and stained with tolu-
idine blue, and fresh sections (5 µm) of samples of setae and 
stems obtained with a frozen-microtome.

TEM
Middle portions of setae and stems were cut into pieces 
2 mm in length and fixed for 2 h in 3% glutaraldehyde in 
0.1 M phosphate buffer (PB), pH 7.4, at room temperature. 
After washing in 0.1 M in PB, they were postfixed in 1% oso4 
in PB 0.1 M and washed again in buffer solution. The samples 
were dehydrated in a graded ethanol series beginning at 
30% ethanol, treated with absolute ethanol and propylene 
oxide and embedded in Spurr’s (1969) resin. Semithin (1 µm) 
and ultrathin sections (70–90 nm) were produced using a 
Reichert-Jung Ultramicrotome. Ultrathin sections were stained 
with uranyl acetate and lead citrate. They were studied using 
a Zeiss 902 at Microscopy and Cytometry Centre, Complutense 
University, Madrid, or a JEoL JEM-1010 microscope at the 
Interdepartament Research Service, Universidad Autónoma 
de Madrid, operating a 100 kV.

SEM
The setae and stems were fixed in 3% glutaraldehyde buff-
ered in Na-cacodylate 0.1 M; then rinsed in 3% sucrose-Na-cac-
odylate 0.1 M buffer and dehydrated in an acetone series. 
Critical point drying was carried out after substituting ace-
tone with liquid Co2. Samples were sputtered with a gold 
coat (ca. 300 Å). They were observed with a JoEL-JSM-T-330A 
microscope (CSIC, Royal Botanical Garden, Madrid).

Q3

Q4

author conducting tissues (outwards to inwards)

 Funaria hedw. schulz and wiencke 1976; hébant 
1977; ligrone and Duckett 1994

tibia-like, polarized cells as fcc, central strand of thin-walled hydroids.

 Timmiella (De not.) limpr. ligrone and Duckett 1994 conducting parenchyma of polarized cells as fcc, central strand of thin-walled 
hydroids.

 Grimmia hedw. estébanez 1995 conducting parenchyma with thin transversal walls with plasmodesmata as 
fcc; very small central strand of thin-walled hydroids.

 Leucophanes Brid. favali and Bassi 1978 Both thick-walled peripheral layers and intermediate layers probably acting as 
fcc (with plasmodesmata); central strand of thin-walled hydroids.

 Tortula hedw. favali and gianni 1973 conducting parenchyma with transversal walls rich in plasmodesmata, central 
strand of thin-walled hydroids.

 Mnium s.l. (including Mnium hedw. 
and Plagiomnium t.J.Koponen)

Bassi and favali 1973, ligrone & 
Duckett 1994, 1996, ligrone et  al. 
2000

conducting parenchyma with transversal walls rich in plasmodesmata as fcc, 
central strand of thin-walled hydroids.

 Isothecium Brid. alfayate 1995 Parenchyma with thin walls and scarce plasmodesmata (fcc?), small central 
strand of ca. 20 thin-walled hydroids.

 Neckera hedw. alfayate 1995 Parenchymatous cortex with no plasmodesmata observed, small central strand 
(ca. 15 cells) of thin-walled hydroids.

 Cryptoleptodon renauld & cardot alfayate 1995 Parenchymatous cortex with no plasmodesmata observed, small central strand 
(ca. 15 cells) of thin-walled hydroids.

Table 1. continued.
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Histochemical studies
Some samples were also prepared for histochemical studies 
using LM. Tests were performed on frozen-microtome sec-
tions of setae and stems obtained from fresh material with a 
Reichert-Jung 1130/Biocut.

The following histochemical tests were performed: tolui-
dine blue (Sakai 1973; proteins), IKI (Johansen 1940; starch), 
Zn–Cl2–I (Rawlins and Takahashi 1952; cellulose), phlorogluci-
nol (Johansen 1940; Siegel 1953; lignin), ruthenium red 
(Johansen 1940; pectic substances), Sudan III (Johansen 1940; 
neutral lipids), Sudan Black B (Jensen 1962; total lipids), Nile 
blue (Jensen 1962; phospholipids), oso4 (Parducz 1967; 
unsaturated lipids) and aniline blue (Johansen 1940; callose). 
In all cases, the appropriate positive controls were used.

Results

The seta in the post-meiotic sporophyte (Figures 1 and 2) is 
organised into four concentric histological layers (Figure 1(A)), 
not so the stem (Figure 3). Both the outermost layer, consist-
ing of stereids (thus a stereome: ST; Figures 1(A,B)), and the 
central strand of hydroids (thus a hydrom: Hy; Figures 1(A) 
and 2(E,F)) are similar to the corresponding layers in the leafy 
stem (Figure 3(A)). The two intermediate layers of the seta do 

not have an equivalent in the gametophyte, where this space 
is filled by homogeneous parenchyma (Figures 1(A) and 3(A)). 
In the seta, the layer underlying the stereome consists of 
nacreous thickening cells and the layer adjacent to the cen-
tral hydrom contains FCCs [leptoids and specialized paren-
chyma cells as defined by Ligrone et  al. (2000) and Pressel 
et  al. (2006); Figures 1(A,F) and 2(A–C)].

Seta of the sporophyte

The peripheral stereome (with orange cell walls in fresh sec-
tions) is formed by two to three layers of thick electron-dense-
walled living cells (Figure 1(A,B)). The cytoplasm of these 
stereids contains large vacuoles, lipid inclusions, mitochon-
dria and chloroplasts showing well-developed grana, starch 
granules and plastoglobuli (Figure 1(B,C)). A thin 
electron-lucent cuticle is observed in the outermost region of 
the tangential walls (Figure 1(B)). The cuticle comprises visu-
ally distinct layers, defined following Jeffree (2006). The cell 
wall projections (CWPs) appear as reticulations on the out-
side edge of the cells (Figure 1(B,Bi)). The cuticle proper (CP) 
lies exterior to the projections. The CP is a uniform medium 
electron density layer just outside the dark edge of the cell 
wall matrix (Figure 1(Bi)).

Figure 1. sporophyte seta of L. canariensis (Brid.) schwägr. (a) light micrograph of a transverse section of the seta. four cell types are recognized from the 
outside to the inside of the section: stereids (st) in the outer region, underlying an unusual area of nacreous cells (nw), contiguous are the fccs/leptoids (fcc) 
and the hydroids (hy) in the inner region. (B–f) transmission electron micrographs of transverse sections of seta. (B) cell of the outermost layer of the seta 
showing thick-walled peripheral, plastids (ch), mitochondria and vacuoles. (Bi) Detail of the framed region in (B). cuticle of bi-layered structure that coat on the 
external surface, cP: cuticle proper, cwPs: cell wall projections. (c) Detail of chloroplasts (ch) with well-developed grana and thylakoids. (D) several layers of cells 
with thick walls and narrow lumen, similar to nacreous-walled sieve elements of vascular plants. (e) Detail of framed region in (D). the first wall (fw) is thin and 
electron-dense and, in contrast, the second wall (sw) of the nacreous-walled cell has a low electron-dense appearance and contains microfibrils. middle lamina: 
arrow. (f) fccs/leptoids (fcc) that show different cytoplasmic appearances and plasmodesmata (arrow) in their walls. these cells show dense granular material, 
irregular plastids, endoplasmic reticulum, lipid inclusions, numerous vesicles and membrane profiles throughout the electron-transparent cytoplasm. scale bar: 
a = 10 µm; B,D,f = 1.1 µm; e = 0.6 µm; c = 0.5 µm; Bi = 100 nm.
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Figure 2. sporophyte seta of L. canariensis (Brid.) schwägr. (a–f) transmission electron micrographs of seta. (a) two fccs/leptoids cells of the middle region in 
longitudinal section, separated by a perforated oblique end-wall (arrows). (B) Detail of the wall of two cells connected by abundant plasmodesmata (arrows) in 
transverse section. the content of these cells consists of chloroplasts (ch), multivesicular body (mv), cytoplasmic remnants as membranous structures, granular 
material and lipid-like inclusions (white asterisk). (c) numerous plasmodesmata in oblique end-wall of fccs/leptoid. (D) Pleomorphic plastids (ch), vesicles and 
remnants of membranes inside fccs/leptoid cell. (e,f) transverse section of fccs/leptoids (fcc) and adjacent hydroids (hy) in a seta. note the fccs/leptoids (fcc) 
with a cytoplasmic content consisting of a degenerating nucleus, dense granular material, mitochondria and sheets of endoplasmic reticulum adjacent to the 
inner wall layer, and hydroids (hy), as empty cells with their thin and low electron-dense walls. scale bar: a = 2.5 µm; f = 1.1 µm; B,c,e = 0.6 µm; D = 0.4 µm.

Figure 3. stem of L. canariensis (Brid.) schwägr. (a–D) light micrographs of stem. (a) transverse section of the mature stems, illustrating the external layers of 
stereids (st), the middle parenchymatous cortex (P) and the small central strand of hydroids (hy). (B,c) stems in transverse (B) and longitudinal sections (c), 
details of the parenchymatous cells showing thin-walled areas (arrows), representing pit-like areas. (D,e) longitudinal sections of the stems with parenchymatous 
cells showing plasmodesmata in pit fields (arrows) on the anticlinal walls, by lm of fresh material (D) and sem (e). scale bar: D = 25 µm; a–c = 10 µm; e = 5 µm.
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In the next zone innerwards, the cells with nacreous wall 
thickenings are arranged in three layers (Figure 1(A)) with 
few intercellular spaces. Ultrastructurally (Figures 1(D,E)) they 
lack whole protoplasms but may contain degenerated 
remains, such as fragments of the plasmalemma. The medial 
lamina is thin and electrondense, the primary wall is thin 
and of medium electron density, while the secondary wall is 
thickened, showing an irregular internal surface of the cell 
lumen. The lumen is quite reduced, often totally occluded 
(Figure 1(D)). This layer has lower electron density than the 
medial lamina and the primary wall and is composed of a 
loose fibrillar matrix with irregularly oriented microfibrils, 
mainly perpendicular to the long radial axis of the cell 
(Figure 1(E)). Plasmodesmata have not been observed in 
these cells.

Mature FCCs form the layer to adjacent to the nacreous 
cells, with three-four layers of living cells (Figures 1(A,F) and 
2(A–F)), rich in primary pit fields and plasmodesmata in all 
walls between contacting FCCs (Figures 1(F) and 2(A,B); 
arrows, Figure 2(C)). In longitudinal section, they are observed 
as elongated elements with oblique end walls (Figure 2(A,C)). 
At this post-meiotic stage of sporophyte development, the 
cytoplasm of these cells is variable in cross section and con-
tain a nucleus, sometimes in partial degeneration, dense 
granular material and various organelles, including pleiomor-
phic plastids, starchless, spherical vesicles, sheets of endo-
plasmic reticulum close to the plasmalemma, numerous 
mitochondria, vacuoles and lipid inclusions (Figures 1(F) and 
2(B,D–F).

The hydrom forms a large central strand in the seta (Figure 
1(A)), noticeable for containing a large number of cells (60–
80 cells in cross section; sample size: n = 9). These cells have 
thin, fibrillar, electron translucent walls although some of 
them show thickenings in the corners. These walls are unper-
forated and retain a thin primary wall and medial lamina, 
with few intercellular spaces (Figure 2(E,F)). These cells lack 
any living protoplasm, but may contain some lipid inclusions.

Stem of the gametophyte

The structure of the gametophyte stem of L. canariensis is 
similar in both fertile and sterile plants, is circular in cross 
section and has three concentric regions with 
well-differentiated cells according to their wall thickness and 
coloration in fresh sections (Figure 3(A–D)).

The mature outer region or stereome comprises three–
four layers of cells with reddish, thick walls and narrow lumen 
(Figure 3(A,D)). An external cuticle was also observed, similar 
to that of the seta of the sporophyte described above. 
Innerwards, and gradually, the stereome cell walls become 
thicker and their cytoplasm disappears, the innermost ones 
showing an almost empty cytoplasm with lipid inclusions 
and protoplasmic remains.

The intermediate region (Figure 3(A)) comprises six-seven 
layers of parenchymatous cells with thinner walls and abun-
dant plasmodesmata (Figure 3(B–E)). At mature stages, their 
walls are intact and show corner thickenings, with no inter-
cellular spaces; these cells have a sparse cytoplasm with 
some endomembranes remains of and lipid inclusions.

The internal strand, or hydrom, is of small diameter and 
consists of few (5–6) hydroids (Figure 3(A)). These cells are 
devoid of cytoplasm but conserve some lipid inclusions. Their 
walls are thinner not only than those of adjacent, parenchy-
matous cells, but also than the sporophytic hydroids. In lon-
gitudinal sections, they are observed as elongate cells with 
transverse or slightly oblique end walls.

The results of the histochemical tests for a qualitative 
approximation of the composition of the cell walls of the dif-
ferent histological layers are shown in Table 2. The walls of 
the stereids, nacreous cells, parenchymatous cells, FCCs and 
hydroids reacted positively to tests for proteins, cellulose, 
pectin, phospholipids and unsaturated lipids; and negatively 
for starch, lignin, neutral and total lipids and callose. These 
tests also confirmed the presence of a lipidic cuticle in both 
setae and stem. on the other hand, for the tests which the 
nacreous wall cells are positive, no differences showed in the 
staining intensity of the primary and secondary wall.

Discussion

The anatomy of seta and stem L. canariensis revealed histo-
logical differences between the stem and the seta, with max-
imum complexity in the sporophytic structure. The 
differentiation into four types of cellular regions in the seta, 
as observed in this study (stereids, nacreous cells, FCCs and 
hydroids), has only been described previously in polytricha-
ceous species (Ligrone and Duckett 1994; Ligrone et al. 2000), 
never before in other mosses (see Table 1). A more complex 
structure in the seta than in the stem has already been 
reported from several species of acrocarpous mosses, such as 

Table 2. results of the histochemical tests on transverse sections of setae (se) and stems (sm).

test compound

hydroids fccs/leptoids nacreous cells stereids cuticle

se/sm se se se/sm se/sm

toluidine blue Protein + + + + –
iKi starch – – – – –
Zn–cl2–i cellulose + + + + –
Phloroglucinol lignin – – – – –
ruthenium red Pectins + + + + –
sudan iii neutral lipids – – – – –
sudan Black total lipids – – – – +
nile blue Phospholipids + + + + –
oso4 unsaturated lipids + + + + +
aniline blue callose – – – – –

+ indicates a positive reaction.
– indicates no reaction.
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Funaria hygrometrica Hedw. and Splachnum luteum Hedw. 
(Hébant 1977), but in few pleurocarpous species: Neckera 
crispa Hedw. (Hébant 1977; Ligrone and Duckett 1994; 
Alfayate 1995; Ligrone et  al. 2000) and Cryptoleptodon longi-
setus (Mont.) Enroth (Alfayate 1995, as Leptodon longise-
tus Mont.).

In both seta and stem there are three to four layers of 
peripheral stereids with thick walls providing support, and 
with well-developed chloroplasts and mitochondria. The ste-
reome is outlined by a cuticle, common to both, seta and 
stem. The presence of a cuticle in bryophytes has been 
known for a long time, as pointed out by Strunk (1914), 
Hébant (1977) or, more recently, by Koch et  al. (2009), Budke 
et  al. (2011), Busta et  al. (2016) or Glime (2017c). Here, we 
follow Jeffree (2006) and recognize a bi-layered structure 
with thin CP and CWP, as observed by Sack and Paolillo 
(1983) in Funaria hygrometrica, while Budke et  al. (2011) 
pointed it out as a multi-layered structure. The histochemical 
analyses with Sudan B on cross sections (seta and stem) con-
firm its lipidic composition (Table 2). Parallel chemical analy-
sis in the same species (Alfayate et  al. 1997) showed the 
presence of triterpenoids (ursolic acid) and a lineal long-chain 
hydrocarbon with an odd C-number (C29H60), nonacosane, 
that might be part of the cuticle. This fits very well with the 
observations of Neinhuis and Jetter (1995), who described 
nonacosan-10-ol wax tubules in the sporophyte of 
Polytrichaceae, while in the sporophyte of Buxbaumia viridis 
(Moug. ex Lam. & DC.) Brid. ex Moug. & Nestl wax was 
observed forming platelets and granules (Koch et  al. 2009). 
Besides, it has been long suggested (Proctor 1979) that 
n-alkanes, considered as part of the cuticular wax in vascular 
plants, could have a similar role in bryophytes. The n-alkanes 
of bryophyte origin have been used as biomarkers in paleo-
environmental reconstructions in mires (see, for instance, 
ortiz et  al. 2011, 2016), although they could contribute to 
slow down water loss (Budke et  al. 2011, 2013). Meanwhile, 
their true role in mosses remains to be determined. The func-
tion of the epidermis as a transpiration barrier is connected 
with the presence of waxes (Riederer and Schreiber 2001), 
but the easy dehydration of the bryophytes would suggest 
that water retention is not the main function of the cuticle, 
although Buda et  al. (2013) provide evidence that the defi-
ciency in cuticular wax accumulation in a mutant of 
Physcomitrium patens (Hedw.) Mitt. (as Physcomitrella patens 
(Hedw.) Bruch & Schimp.) reduces its stress tolerance to des-
iccation. Epidermal waxes are common in mosses (Proctor 
1979; Glime 2017d), and probably play an important role in 
keeping balance between the need of external water storage 
and conduction, and of gas exchange for photosynthesis 
(Proctor 2008).

The cuticle can also provide a barrier against microorgan-
isms. This is consistent with the observation that microbial 
attacks lead to a loss of esters and wax hydrocarbons in 
mosses (Karunen and Ekman 1981), and with more recent 
research on the different functions of plants cuticle 
(Tafolla-Arellano et  al. 2013; Busta et  al. 2016). The role of 
triterpenes as components of the cuticles, and in protection 
and defence from pathogens or herbivores is known (Chen 
et  al. 2021). The presence of ursolic acid, as reported before 

(Alfayate et  al. 1997), could support this role for the cuticle 
in L. canariensis.

The very unusual thickening cells of the intermedial region 
of the seta, according to their morphology and their positive 
reactions to the cellulose, pectin and protein tests (following 
Esau and Cheadle 1958; Esau 1969) are similar to those of 
the nacreous-walled sieve elements of the vascular plants 
(Warmbrodt and Evert 1974; Perry and Evert 1975; Kuo and 
Stewart 1995). These cells are present in vascular cryptogams, 
as well as in seed plants (Esau 1969), and in both groups 
their walls have a low electron density and contain numerous 
microfibrils. In contrast, the walls of normal, non-nacreous 
sieve elements in vascular plants are uniformly and moder-
ately electrondense. The functional significance of the 
nacreous-walled sieve elements in vascular plants is not clear. 
The apparent reduction of their cell lumen in certain portions 
suggests that their translocation ability may be restricted 
(Kuo et  al. 1988, 1990). In mosses, leptoids with nacreous 
walls have been described by Schofield and Hébant (1984) in 
the gametophytes of Atrichum P.Beauv., of several species in 
the section Juniperina (Brid.) I.Hagen of the genus Polytrichum 
Hedw., and as an additional feature of FCCs (leptoids) in the 
seta of polytrichaceous mosses by Ligrone et  al. (2000). In 
these cases, the cell walls are somewhat thicker than those 
of the neighbouring parenchymatous cells, but in many other 
cases the thickness does not differentiate the leptoids from 
them. on the contrary, in L. canariensis the difference in 
thickness with normal FCCs/leptoids is striking. The composi-
tion of these walls (i.e. cellulose, pectins, proteins and phos-
pholipids in a loose fibrillar matrix) is similar to that of the 
leptoids of the gametophore of Atrichum undulatum (Hedw.) 
P.Beauv. (Stevenson 1977) and in the nacreous cells of the 
seta of L. canariensis (Table 2). This author noted that the for-
mation of the nacreous wall occurs after the cell enlarge-
ment, and that the wall microfibrils were perpendicular to 
the long axis of the cell, as we have observed in L. canariensis.

It is possible that in earlier stages of the sporophyte 
development in L. canariensis, these cells correspond to nor-
mal FCCs/leptoids, becoming later pachydermatous dead 
cells following the thickening of the walls and the autolysis 
of their protoplast. The function of these cells in the early 
stages of the sporophyte of L. canariensis remains to be 
determined.

In the post-meiotic stages observed here, the presence of 
a tissue where the wall ingrowth invades the cell lumen 
could be involved with an increase of mechanical support in 
the seta.

The average length of the seta in this species, up to 
24 mm, is remarkable for a pleurocarpous moss species and 
comparable to the setae of Thuidium delicatulum (Hedw.) 
Schimp. (20–38 mm), Thuidium tamariscinum (Hedw.) Schimp. 
(30–35 mm), Hypnum polypterum (Mitt.) Broth. (30 mm) and 
Hylocomiadelphus triquetrus (Hedw.) ochyra & Stebel [as 
Rhytidiadelphus triquetrus (Hedw.) Warnst.): 25–30 mm]. A long 
seta supporting the capsule vertically would facilitate spore 
dispersal over a wide area (Niklas 2000; Raven 2002) and 
increase the probability of the new generation growing away 
from the maternal, tail-type gametophyte of creeping shoots. 
Besides, its elongation also elevates the position of the 
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stomata present in the neck of capsule (Alfayate 1995). Haig 
(2013) considers it to increase the transpirational pull that 
draws nutrients that are needed for sporogenesis, but recently 
some new observations point at a non-crucially functional, 
spendable nature of bryophyte stomata (Renzaglia et  al. 
2020). It seems likely that the nacreous-walled cells of the L. 
canariensis seta may contribute structurally to the reproduc-
tive success of this species, considering that L. canariensis 
capsules contain viables spores of two types—uni/
multi-cellular medium-sized spores and multicellular, large 
spores (Alfayate et  al. 2013). Although the reduction of the 
seta is a common adaptative strategy in saxicolous and epi-
phytic pleurocarps (Hedenäs 2012; Huttunen et  al. 2018), the 
humid environment in the laurisilva, where L. canariensis 
lives, may require a more elevated capsule for an efficient 
spore dispersal. This need of a long seta could associate with 
highly developed conducting tissues, resulting in the com-
plex histology here described.

The position and morphology of the leptoids have already 
been described in the setae of Polytrichaceae species (see 
Table 1 for references). In those mosses, both seta and stem, 
with leptoids (FCCs) and hydroids, present a similar structure, 
whereas L. canariensis here is shown to present a greater tis-
sue differentiation in the sporophyte than in the gameto-
phyte, where FCCs/leptoids are absent.

Although some reviews extend the use of the term lep-
toid to relatively unspecialised parenchymatous cells (Glime 
2017a, Woudenberg et  al. 2022), most authors working on 
bryophyte ultrastructure restrict it to the specialized FCCs of 
polytrichaceous mosses (Ligrone et  al. 2000, 2012; Pressel 
et  al. 2006), in which ultrastructural studies have revealed a 
distinctive cytological organization that include plasmodes-
mata in the end walls, plastids, mitochondria and endoplas-
mic reticulum-derived vesicles along longitudinal arrays of 
endoplasmic microtubules, breakdown of the tonoplast, mix-
ing of the vacuolar and cytoplasmic contents and nuclear 
breakdown. Some of these characteristics are also present in 
the FCCs of L. canariensis, although no endoplasmic microtu-
bules were observed, a common feature with sieve elements 
that was also reported by Pressel et  al. (2006) in the FCCs 
(leptoids) of Polytrichastrum formosum (Hedw.) G.L.Smith (as 
Polytrichum formosum Hedw.) subjected to desiccation. The 
cytological organization of the FCCs can change and depends 
on different influences (Ligrone and Duckett 1996; Pressel 
et  al. 2006); these could be related to the fact that the sam-
ples studied here were post-meiotic specimens.

The presence of an endoplasmic reticulum, autophagic 
and multivesicular vacuoles in the cytoplasm of the FCCs, 
and the strong positive reaction to toluidine blue appear to 
confirm an active conducting activity in these cells. These 
observations support previous work on endomembranes 
(Hébant 1974; Pais and Carrapiço 1979a, 1979b) and symplas-
tic transport in mosses (Eschrich and Steiner 1967, 1968a, 
1968b; Hébant, 1970, 1973, 1977; Scheirer 1978; Ligrone 
et  al. 2000).

The well-developed FCCs and numerous imperforated 
hydroids in the L. canariensis seta indicate an efficient system 
of internal conduction towards the active tissues in the cap-
sule and may be needed in this long-stalked sporophyte, as 

has been considered for polytrichaceous mosses equipped 
with an internal system of specialized WCCs (Ligrone et  al. 
2002; Brodribb et  al. 2020). A strand of hydroids (60–80 cells 
in cross section, in the distal part) also appear in the foot of 
this species (Alfayate et  al. 2000), in accordance with Ligrone 
et  al. (1993) who suggested that in Bryidae foot and seta 
usually have a similar histological structure. Presuming that 
more hydroids conduct more water, this large central strand 
would represent that the endohydric mode of water move-
ment is predominant in the seta, while in the leafy stem (5–6 
hydroids) both endo- and ectohydric conduction would con-
cur (Ligrone et  al. 2000; Glime 2017a, 2017e).

The type of stem present in L. canariensis, differentiating 
from the epidermis inwards into three cellular regions: ste-
reome, parenchyma and hadrom, is common in both acrocar-
pous (Kawai 1971a, 1971c; Scheirer 1972; Ligrone et  al. 1980; 
Glime 2017a) and pleurocarpous mosses (Kawai 1971b, 1976, 
1977, 1978). It also agrees with the results reported for L. sci-
uroides (Hedw.) Schwägr. both typical and var. morensis 
Schwägr. (Fuertes et  al. 1997), but not with those reported by 
Velázquez (1994) for the same species, who described a stem 
without hydroids or solely vestigial ones. In pleurocarps, the 
stem central strand is held as an ancestral character state, 
whereas its absence would be a common reduction in epi-
phytic mosses (Hedenäs 2001, 2007, 2012; Huttunen et  al. 
2018). In the genus Leucodon, the plasmodesmata of the 
parenchymatous cells would contribute, together with the 
hydroids, to water conduction (Finocchio 1967; Hébant 1977; 
Ligrone et  al. 1980; Cortella et  al. 1994). This conducting 
parenchyma is common in other mesophytic mosses 
(Finocchio 1967; Caputo and Castaldo 1968), and in maintain-
ing cell-to-cell communication compatible with the function 
of internal transport (Trebacz and Fensom 1989; Ligrone 
et  al. 2000; Pressel et  al. 2006; Glime 2017c).

The histological study of the moss L. canariensis proves a 
unique internal structure, notably with respect to its conduct-
ing tissues and their adjacent nacreous cells. More studies 
searching for the presence of this tissue in other moss 
groups, especially allied taxa, are needed to assess its possi-
ble taxonomical and functional value.
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