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Abstract: Leishmaniasis and American trypanosomiasis are parasitic diseases that cause significant
clinical, social and economic impact on the population of tropical and subtropical countries.
Their current treatment is limited and presents multiple drawbacks, including high toxicity, high cost,
lengthy treatment plans, as well as the emergence of resistant species. Therefore, there is a need
to find new lead compounds with high potency against parasites and low toxicity in patients.
In the present work, the bioguided fractionation of an endemic plant from the Canary Islands,
Withania aristata, led to the identification of withanolide-type metabolites (1–3) with leishmanicidal
and trypanocidal activities. Compounds 1 and 3 showed a significant dose-dependent inhibition
effect on the proliferation of L. amazonensis promastigotes and T. cruzi epimastigotes, higher than the
reference drugs, miltefosine and benznidazole, respectively. Moreover, compounds 1–3 were more
potent (IC50 0.055–0.663 µM) than the reference drug against the intracellular amastigote stage of
L. amazonensis, with a high selectivity index on murine macrophage cells (SI 58.66–216.73). Studies on
the mechanism of death showed that the compounds induced programmed cell death or that which
was apoptosis-like. The present findings underline the potential of withanolides as novel therapeutic
antikinetoplastid agents.
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1. Introduction

Leishmaniasis and American trypanosomiasis (Chagas disease), protozoal diseases, are neglected
tropical diseases causing considerable morbidity, affecting millions of people every year worldwide [1].
Leishmaniasis is an infectious disease caused by protozoal parasites of the genus Leishmania and is
transmitted by the bite of a sand fly belonging to the genera Lutzomyia and Phlebotomus. Leishmaniasis
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presents three different forms: cutaneous, mucocutaneous and visceral [2]. Furthermore, American
trypanosomiasis affects nearly 8 million people in endemic countries and the available treatments only
include benznidazole or nifurtimox, which are effective only in the acute phase of the infection [3].
Despite advances in antiparasitic chemotherapy and supportive care, these diseases have remained
a public health challenge, mostly due to problems associated with chemotherapeutic regimen. In fact,
the treatment of these infections has been ineffective by variable sensitivity between species, toxicity,
route of administration, requirement for long courses of administration, resistance, adverse effects and
cost [4]. In this sense, natural products from plants are a promising source of novel lead compounds,
characterized by unique chemical architectures, pharmacophores and inherent drug-like properties [5].

The genus Withania (Solanaceaea) is distributed in the Macaronesian region, the east of
Mediterranean area, and south Asia [6], and some species are well known in folk medicine.
The therapeutic potential of Withania species has been ascribed to the presence of withanolides,
which are structurally diverse C28-steroidal compounds with an ergostane skeleton [7]. In particular,
Withania aristata is an endemic plant from the Canary Islands, popularly known as orobal. This plant
has been used in traditional medicine as a scarring agent, antispasmodic, as well as for rheumatism,
eye diseases and otitis, insomnia, constipation and urinary pathologies [8]. Previous phytochemical
studies on W. aristata described the isolation of withanolide-type metabolites with cytotoxic [9,10] and
diuretic properties [11], including the well-known antiproliferative agent withaferin A [12].

Several typical markers of mammalian apoptosis have been found in Leishmania, suggesting the
existence of an apoptosis-like death in this genus. These markers include: cell shrinkage, nuclear
chromatin condensation, DNA fragmentation, membrane blebbing, mitochondrial transmembrane
potential loss and phosphatidylserine exposure [13]. Moreover, Leishmania cell death appears very
peculiar, since different stimuli can induce a form of cell death with the same phenotypic features as in
mammalian apoptosis that could be named Leishmania apoptosis [14] or apoptosis-like.

The present work reports the identification of three known withanolides from the leaves
of W. aristata through a bioassay-guided fractionation carried out against Leishmania spp. and
Trypanosoma cruzi. In order to investigate the mechanism of action for their antiparasitic effects,
a group of experiments was performed to study the induction of the apoptosis-like mechanism.

2. Results and Discussion

2.1. Bioassay-Guided Fractionation

The hexanes and acetone extracts of the leaves of Withania aristata were evaluated against
promastigote forms of L. amazonensis and L. donovani, and on the epimastigote stage of T. cruzi.
Cytotoxicity on murine macrophages was also assessed searching for selectivity (Table 1). In addition,
miltefosine and benznidazole were evaluated for comparative purposes as reference drugs against
leishmaniasis and Chagas disease respectively. Miltefosine shows IC50s of 2.64 µg/mL and 1.35 µg/mL
against L. amazonensis and L. donovani, respectively, and CC50 of 29.42 µg/mL, whereas benznidazole
showed an IC50 of 1.81 µg/mL against T. cruzi, with a CC50 of 104.1 µg/mL. The acetone extract showed
activity against the three tested species, with IC50s between 2.87 and 20.25 µg/mL. The most sensitive
species was L. amazonensis and the less sensitive one was L. donovani. The selectivity index (SI), ranging
from 2.1 to 14.9, was a promising fact to continue with the bioassay-guided fractionation. Therefore,
the acetone extract was submitted to vacuum liquid chromatography on silica gel affording three
fractions, F1–F3 (Scheme 1). The most active fractions, F2 (IC50 values ranging from 1.02 to 12.73 µg/mL)
and F3 (IC50 values ranging from 3.63 to 22.28 µg/mL), exhibited potent activity on L. amazonesis
and T. cruzi, similar to the reference drugs. Furthermore, both fractions showed a good selectivity
index (SI around 11.0) on murine macrophages (Table 1), highlighting these two fractions as the most
promising ones.

The most active fractions, F2 and F3, were further chromatographed on a silica gel column yielding
seven (F2A–F2G) and six sub-fractions (F3A–F3F), respectively, which were assayed against the three
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parasite species. From Fraction 2, F2D exhibited a potent antikinetoplastid effect on L. amazonensis
and T. cruzi, which was also higher than, and similar to, miltefosine (IC50 0.36 versus 2.64 µg/mL)
and benznidazole (IC50 1.73 versus 1.81 µg/mL), respectively. Regarding fraction F3, sub-fraction
F3D was the most active one on the three parasites species, showing IC50s of 1.01 and 3.67 µg/mL
for L. amazonensis and L. donovani, respectively, and an IC50 of 3.59 µg/mL for T. cruzi. In addition,
the active fractions showed a moderated cytotoxic profile, with CC50 values (>7.65 µg/mL) high enough
to continue with the phytochemical analysis.

Table 1. Activity a against promastigote stage of Leishmania spp., epimastigote stage of T. cruzi, and
cytotoxicity against eucariotic cells of the extract, fractions and sub-fractions from Withania aristata leaves.

Extract/Fractions L. amazonensis
IC50

b (µg/mL)
L. donovani

IC50 (µg/mL)
T. cruzi IC50

(µg/mL)
Murine Macrophages CC50

c

(µg/mL)

Acetone extract 2.87 20.25 12.78 42.63
Fraction 1 12.27 19.12 28.91 81.39
Fraction 2 1.02 12.73 1.12 11.22

F2A 1.37 >50 11.24 13.79
F2B 1.05 3.06 1.93 8.02
F2C 1.40 4.21 3.14 10.23
F2D 0.36 1.85 1.73 7.65
F2E 0.19 2.70 2.02 13.90
F2F 2.11 >50 5.74 21.12

Fraction 3 4.53 22.28 3.63 46.11
F3A 2.51 9.03 8.42 22.90
F3B 2.48 5.96 6.04 23.78
F3C 2.35 >50 5.56 16.08
F3D 1.01 3.67 3.59 9.56
F3E 3.42 >50 7.05 21.57
F3F 19.52 >50 >50 43.98

Miltefosine d 2.64 1.35 29.42
Benznidazole d 1.81 104.1
a Sub-fraction not included (F2G) in the table was inactive (IC50 > 50 µg/mL) against the three parasite species.
b IC50: concentration able to inhibit 50% of the cells. c CC50: concentration able to reduce the cell viability by 50%.
d Drugs used as the positive controls.
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Therefore, sub-fraction F2D was submitted to purification steps, affording the known withanolides
1–3 (Scheme 1, Figure 1). Moreover, sub-fraction F2E showed to be the most potent one on L. amazonensis
(IC50 value 0.19 µg/mL), which after preparative TLC yielded compound 1. Furthermore, sub-fraction
F3D was submitted to preparative TLC, affording withanolides 2 and 3 (Scheme 1). Their chemical
structures were identified as withaferin A (1) [10], 4β,17α,27-trihydroxy-1-oxo-witha-2,5,24-trienolide
(2) [9] and witharistatin (3) [10] by spectrometric and spectroscopic data, including 1D and 2D NMR
experiments, and comparison with data reported in the literature.
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Figure 1. Chemical structure of withanolides 1–3 isolated from Withania aristata.

Compounds 1–3 were evaluated against the three parasite species (Table 2). The results, over
the promastigote stage, showed that compounds 1 and 3 were 7.8- and 2.3-fold more potent than the
reference drug [15] against L. amazonensis (IC50 0.83 and 2.82 µM, respectively). Moreover, compounds
1 and 3 were 6.8- and 2.9-fold more potent than benznidazole against T. cruzi epimastigotes (IC50 1.02
and 2.41 µM, respectively). Regarding the selectivity index (SI) on macrophages, as shown in Table 2,
compound 1 has a potent effect on L. amazonensis (SI 14.36 versus 11.14 for miltefosine).

Table 2. Activity of withanolides 1–3 against the promastigote stage of Leishmania, epimastigote stage
of T. cruzi and cytotoxicity against eucariotic cells.

Cp
L. amazonensis
IC50 (µM ± SD)

a
SI L. donovani

IC50 (µM ± SD) SI T. cruzi IC50
(µM ± SD) SI c

Murine
Macrophages
CC50 (µM) b

1 0.83 ± 0.07 14.36 13.22 ± 1.16 0.91 1.02 ± 0.10 11.69 11.92 ± 1.08
2 27.37 ± 1.03 3.12 >50 14.68 ± 0.43 5.82 85.47 ± 6.00
3 2.82 ± 0.07 4.35 20.88 ± 1.33 0.59 2.41 ± 0.11 5.09 12.26 ± 1.16

M d 6.48 ± 0.10 11.14 3.31 ± 0.11 21.81 72.18 ± 1.25
B d 6.95 ± 0.50 57.54 399.91 ± 1.04

a IC50: concentration able to inhibit 50% of parasites, expressed asµM± standard deviation (SD). b CC50 concentration
able to inhibit 50% of murine macrophages, expressed as µM ± standard deviation (SD). c SI: selectivity index
(CC50/IC50). d M: miltefosine, B: benznidazole were used as the positive controls. Cp: Compounds.

Moreover, activity of the withanolides (1–3) against the intracelular amastigote stage of
L. amazonensis (Table 3) was higher than that of miltefosine (IC50 3.12 µM), showing IC50 values
ranging from 0.055 to 0.663 µM. In fact, withanolides 1 and 3 were 56- and 14.9-fold more potent than
the reference drug. Besides, the three compounds showed a higher selectivity index than miltefosine
(Table 3), showing compound 1 to have an SI of 216.73 versus 23.13 for miltefosine.

Table 3. Activity of withanolides 1–3 against amastigote of L. amazonensis.

Compound L. amazonensis IC50 (µM ± SD) SI a

1 0.055 ± 0.009 216.73
2 0.663 ± 0.075 128.91
3 0.209 ± 0.028 58.66

Miltefosine 3.12 ± 0.12 23.13
a SI: selectivity index (CC50/IC50).



Pathogens 2019, 8, 172 5 of 13

2.2. Mechanisms of Cell Death

The programmed cell death or apoptosis-like death, is crucial for parasite development and
pathogenesis, and the ability of a drug to modulate the life or death of a parasite is recognized for its
immense therapeutic potential [16]. In this work, we carried out several experimental approaches to
research the apoptotic potential of the withanolides 1–3 on L. amazonesis and T. cruzi.

2.2.1. Withanolides induced Mitochondrial Damage in L. amazonensis

The effect of the tested compounds on the mitochondrial membrane potential was determined
by JC-1 fluorescence measure. Moreover, the tested compounds induced a noticeable decrease in
the depolarization of L. amazonensis mitochondrial membrane (∆Ψm), since the JC-1 dye remained
in the cytoplasm in its monomeric form (Figure 2), thereby showing no clear effect on T. cruzi.
The mitochondrial damage was confirmed by quantifying the ATP level after 24 h. Compound 1 at IC90

produced a strong decrease in the total ATP level for L. amazonensis (Figure 3). Furthermore, this effect
was not seen in T. cruzi, with an ATP level similar to the untreated cells and with a slight decrease
when incubated with compound 1.
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Due to T. cruzi epimastigotes being seemingly unaffected at the mitochondrial level by the assayed
compounds, analysis of the cell death mechanism was continued only in the L. amazonensis species.

2.2.2. Withanolides Caused Chromatin Condensation in Treated Cells

In view of the obtained results, we decided to analyze the chromatin condensation event, a hallmark
of apoptosis-like death, in which small and compact chromatin nuclei appear. To this end, parasites of
L. amazonensis were incubated for 24 h with the IC90 of the withanolides, and subsequently, stained with
Hoechst and propidium iodide. Condensation of chromatin in the parasites was clearly observed by
fluorescence microscopy, since the treated cells showed a higher amount of bright blue in the nucleus
(Figure 4). In addition, propidium iodide staining in red was observed in parasites of L. amazonensis
treated with compound 1, indicating an advanced process of death, as confirmed by the transmitted
light image, in which parasites appeared to be visibly damaged.
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(blue) in treated cells. Red fluorescence corresponds to the propidium iodide stain. C-: Control. Images
were obtained using an EVOS FL Cell Imaging System.

2.2.3. Withanolides Induce Cytoplasmic Membrane Permeability in Treated Cells.

The cytoplasmic membrane permeability assays on promastigotes of L. amazonensis with
withanolides 1–3 (Figure 5) showed green fluorescence inside the cells, indicating that the plasmatic
membrane permeability was slightly damaged, since the cells preserved their integrity and shape.

2.2.4. Withanolides Induce Oxidative Stress in L. amazonensis

As could be observed in Figure 6, after 24 h of incubation of L. amazonensis promastigotes
with the IC90 of the withanolides 1–3, the treated cells showed a higher amount of red staining in
the cytoplasm. This corresponds with the reactive oxygen species (ROS) accumulation inside the
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cell, a well-established event on cells before undergoing a programmed cell death. ROS induced by
chemotherapeutic agents is closely associated with mitochondrial function, cytochrome c release,
and the apoptosis-like mechanism.

Some species belonging to the Withania genera have been shown to present antileishmanial
activity. One of the most studied is Withania somnifera, a well-known plant in the Ayurvedic medicine
system, which extracts exhibited activity against L. donovani parasites on in vivo models as well as
against L. major promastigotes and intracellular amastigotes [17,18]. Withania coagulans aerial parts
demonstrated activity against L. major [19]. Furthermore, to the best of our knowledge, only a study on
the evaluation of Withania somnifera against T. cruzi has been reported [20].
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Withanolides have attracted considerable attention due to their potential in drug research
and development [7]. In particular, withaferin A, a well-known anticancer drug candidate, exerts
its anticancer effect via induction of apoptosis in several human cancer cells [21]. Recent studies
have revealed that withaferin A-analogues are potent apoptotic inducers in different tumor cell
lines, evidenced by DNA fragmentation, chromatin condensation and phosphatidylserine exposure,
indicating an apoptosis mechanism of action in cancer cells [22,23]. Moreover, the leishmanicidal
activity of withaferin A has been reported against L. donovani, inducing an apoptosis-like cell death
mechanism by inhibiting protein-kinase C, leading to the depolarization of mitochondrial membrane
potential and releasing of cytochrome c into the cytosol, which induces formation of ROS inside cells,
causing oxidative DNA lesions [24]. Our data agree with these previous studies, because depolarization
of mitochondrial membrane potential was detected, as well as accumulation of ROS, DNA condensation
and a lack of ATP, that proves the mechanism of apoptosis-like in L. amazonensis induced by withaferin
A (1), as well as by compounds 2 and 3. These compounds could induce apoptosis-like through the
mitochondrial pathway initiated by ROS production. Therefore, our proposal is that withanolides-type
compounds could induce the formation of ROS, leading this excessive ROS to trigger apoptosis-like
death by altering the mitochondrial membrane potential and damaging the respiratory chain, as has
been proven in a human leukemia cell line [25].
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3. Material and Methods

3.1. General Procedures

Optical rotations were recorded at 25 ◦C on a Perkin Elmer 241 automatic polarimeter in CHCl3
and the [α]D values are given in 10−1 deg cm2/g. IR (film) spectra were recorded on a Bruker IFS 55
spectrophotometer. NMR spectra were performed on Bruker Avance 500 and 600 spectrometers at
300 0K. The EIMS and HREIMS data were obtained on a Micromass Autospec spectrometer. HRESIMS
(positive mode) were performed on an LCT Premier XE Micromass Electrospray spectrometer. Silica gel
60 (particle size 15–40 and 63–200 µm, Macherey-Nagel) was used for column chromatography (CC),
while silica gel 60 F254 was used for analytical thin layer chromatography (TLC). Centrifugal planar
chromatography was performed by a Chromatotron instrument (model 7924T, Harrison Research
Inc., Palo Alto, CA, USA) on manually coated silica gel 60 GF254 (Merck, Kenilworth, NJ, USA) using
1, 2, or 4 mm plates. The developed TLC plates were visualized by UV light and then spraying
with HOAc-H2SO4-H2O (80:16:4), followed by heating at 100 ◦C for 3 min. All the used solvents
were purchased from Panreac. Reagents, deuterated solvents and benznidazole were provided by
Sigma-Aldrich. For bioassays, Schneider’s medium (Sigma-Aldrich, St. Louis, MO, USA), Alamar
Blue® reagent (Invitrogen, Life Technologies, Carlsbad, CA, USA), EnSpire® Multimode Plate Reader
(Perkin Elmer, Waltham, MA, USA), RPMI 1640 and LIT media (Gibco, Thermo Fisher, Madrid, Spain),
and Leika DMIL inverted microscope (Leika, Wetzlar, Germany) were used. Miltefosine, used as
a reference drug, was purchased from Æterna Zentaris, Charleston, SC, USA.

3.2. Plant Material

W. aristata leaves were harvested in Icod de los Vinos (Tenerife, Canary Islands, Spain). A voucher
specimen (TFC 53219) is stored at the Herbarium of the Department of Botany, University of La Laguna,
Tenerife. The identification was performed by MSc Cristina González Montelongo.

3.3. Extraction, Bioassay-Guided Fractionation and Isolation

The air-dried powdered W. aristata leaves (60.0 g) were extracted successively with hexanes and
acetone in a Soxhlet apparatus. The organic extracts were concentrated under reduced pressure to
give hexanes (1.1 g, 1.8%) and acetone (1.8 g, 3.0%) extracts. Both extracts were assayed against two
species of Leishmania spp. promastigote form and epimastigote stage of T. cruzi for their anti-protozoal
activity. After the preliminary screening, the active acetone extract was subjected to a bioassay-guided
fractionation procedure. In this way, the extract was fractioned by liquid chromatography on silica gel,
eluted with hexanes/EtOAc (2:8, 0.5 L), EtOAc (0.5 L) and EtOAc/EtOH (8:2, 0.5 L), affording three
fractions (F1–F3). The most active F2 fraction (328.0 mg) was chromatographed on silica gel column
eluting with mixtures of increasing polarity of hexanes/EtOAc (2:8 to 0:10) and EtOAc/EtOH (10:0 to 9:1)
to yield 39 sub-fractions, which were combined on the basis of their TLC profile in seven sub-fractions
(F2A to F2G). Sub-fraction F2D (88.1 mg) was chromatographed on silica gel by centrifugal thin-layer
chromatography (CTLC) on a 1 mm plate, using mixtures of dichloromethane (DCM)/acetone from
9:1 to 7:3) as eluent to give six sub-fractions (F2D1 to F2D6). Sub-fraction F2D4 (19.4 mg) was further
purified by preparative TLC with hexanes/EtOAc (1:10) to yield compounds 1 (11.2 mg), 2 (1.9 mg) and
3 (2.4 mg). Sub-fraction F2E (10.0 mg) was further purified by preparative TLC with DCM/acetone
(8.5:1.5) to yield compound 1 (7.3 mg). Fraction F3 (107.0 mg) was chromatographed on a silica gel
column eluting with mixtures of increasing polarity of hexanes/EtOAc (9:1 to 0:10) and EtOAc/EtOH
(10:0 to 8:2) to yield 31 sub-fractions, which were combined on the basis of their TLC profile in six
sub-fractions (F3A–F3F). Sub-fraction F3D (7.2 mg) was further purified by preparative TLC with
DCM/acetone (8:2) to yield compounds 2 (4.1 mg) and 3 (2.9 mg). The structures of the compounds
were identified as withaferin A (1) [10], 4β,17α,27-trihydroxy-1-oxo-witha-2,5,24-trienolide (2) [9] and
witharistatin (3) [10] by NMR spectroscopy and mass spectrometry, and comparison with data reported
in the literature.
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3.4. Cultures

To perform the experiments, promastigotes of L. amazonensis (MHOM/BR/77/LTB0016) and
L. donovani (MHOM/IN/90/GE1F8R) and epimastigote T. cruzi (Y strain) were employed. Leishmania
species were cultured in Schneider’s medium (Sigma-Aldrich, Madrid, Spain) at 26 ◦C supplemented
with 10% fetal bovine serum (VWR, Biowest, Nuaillé, France) as well as in RPMI 1640 medium
(Gibco, Thermo Fisher, Madrid, Spain). Epimastigotes of T. cruzi were cultured in Liver Infusion
Tryptose (LIT) medium supplemented with 10% fetal bovine serum at 26 ◦C. For the cytotoxicity assays,
murine macrophage cell line J774A.1 (ATCC TIB-67) was maintained at 37 ◦C in a 5% CO2 atmosphere
in RPMI 1640 medium supplemented with 10% fetal bovine serum.

3.5. Leishmanicidal and Trypanocidal Assays Cytotoxic Effect Evaluation

3.5.1. Leishmanicidal Activity Assay

Promastigote in logarithmic phase were used for plate preparation, and the in vitro antiprotozoal
assay was performed in 96-well plates. The different fractions or compounds were serially diluted on
the wells and 106 parasites/mL were finally added. The activity of the fraction was calculated by the
alamarBlue® method [26]. In addition, the active pure molecules were tested against the amastigote
stage of L. amazonensis.

The amastigote activity was performed according to Jain et al. [27]. After allowing the
transformation of rescued amastigotes to promastigotes, the activity was evaluated by AlamarBlue
method. After incubation, the fluorescence was measured in a Perkin Elmer EnSpire spectrofluorometer
and fluorescence was measured at emission peak 585 nm.

3.5.2. Trypanocidal Capacity Assay

For the evaluation against the epimastigote stage of T. cruzi, assays were performed following the
same procedure mentioned in Section 3.5.1., modifying the density to 2 × 105 parasite/well and using
LIT medium.

3.5.3. Cytotoxicity Assay

The cytotoxicity was evaluated using a macrophage cell line J774A.1 in RPMI medium.
Macrophages were plated and at 105 macrophages/well and, subsequently, serial dilution of samples
were added to the plates. After 24 h of incubation cell viability was determined by the alamarBlue® [28].

3.6. Mechanisms of Cell Death

3.6.1. Mitochondrial Membrane Potential evaluation

To perform the experiment, JC-1 Mitochondrial Membrane, Potential Assay Kit, Cayman Chemical,
was employed according the instructions of the kit. Red and green fluorescence was measured with
an Enspire microplate reader (PerkinElmer, Waltham, MA, USA).

3.6.2. Measurement of ATP

To determine the ATP level of the parasites, the Cell Titer-Glo® Luminescent Cell Viability Assay
(Promega, Madison, WI, USA) was used following the manufacturer’s instructions after incubation of
the parasites with the calculated IC90 of the tested withanolides for 24 h.

3.6.3. Chromatin Condensation Determination

The detection of condensed chromatin, was performed using the Vybrant™ Apoptosis Assay
Kit #5, Hoechst 33342/Propidium Iodide (Invitrogen, Carlsbad, CA, USA). Parasites were incubated
with the IC90 of the pure compounds for 24 h, then collected and centrifuged. The cell pellet was
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resuspended in RPMI, added to a black plate and incubated with the Hoechst 33342 and the propidium
iodide. Then the plate was protected from light for 20 min at 4 ◦C. The EVOS FL Cell Imaging System
(Invitrogen, ThermoFisher, Carlsbad, CA, USA) was used to observe the cells, using the DAPI (Hoechst)
and RFP (PI) Light Cubes.

3.6.4. Plasma Membrane Permeability

In order to detect membrane permeability alterations SYTOX® Green dye was used. Briefly,
106 parasites/mL previously incubated with the IC90 of the compounds for 24 h, were incubated with
SYTOX® Green (Molecular Probes, Eugene, OR, USA) at 1 µM. The fluorescence was monitored in
an EVOS FL Cell Imaging System AMF4300, Life Technologies, USA. This dye is impermeable to intact
cells, but when their membrane permeability is changed, SYTOX Green has the capacity to get inside
the cell and attach to DNA, increasing its fluorescence >500 times.

3.6.5. Oxidative Stress

CellRox Deep Red Oxidative Stress Reagent (Thermo Fisher Scientific, Waltham, MA, USA) is
a probe designed to measure reactive oxygen species (ROS) in live cells, exhibiting strong fluorogenic
signal under oxidative state. Following the manufacturer’s protocol, parasites were incubated with the
compounds at the IC90 concentration for 24 h, then washed, and incubated with 5µM of CellRox Reagent
for 30 min at 26 ◦C. Then, parasites were centrifuged and resuspended in buffer. H2O2 at 600 µM for
30 min was used as positive control [29]. A fluorescence microscope (EVOS FL) was used to observe
the cells. The signal for Deep Red is localized in the cytoplasm.

3.7. Statistical Analysis

Data are presented as mean ± SE. Non-linear regression analysis was used for the IC50 (inhibitory
concentration 50) and CC50 (cytotoxic concentration 50) calculations. All determinations were performed
in triplicate and the data shown are representative results from at least three independent experiments.
Statistical differences between means were tested using one-way analysis of variance (ANOVA; three or
more samples), using the SigmaPlot 12.0 software. A significance level of p < 0.05 was used.

4. Conclusions

In summary, the bioassay-guided fractionation of W. aristata against Leishmania spp. and T. cruzi
was employed to identify drug candidates for the treatment of leishmaniasis and/or Chagas disease.
We have successfully identified three potent and selective withanolides with significant leishmanicidal
profiles, and high selectivity indexes for L. amazonensis. In addition, withanolides induced several
ultrastructural and morphological changes in promastigotes of L. amazonensis. Mitochondrial membrane
potential changes, ROS production, phosphatidylserine externalization, cell shrinkage, a rounded
shape of the parasites, nuclear condensation and no change in membrane permeability were observed
in parasites that were treated with the mentioned molecules. The major finding in the present study was
that these withanolides induced programmed cell death in L. amazonensis, sharing several phenotypic
characteristics with other cases of programmed cell death in metazoans, and exhibiting them as
promising candidates against leishmaniasis. These findings support future investigations for further
biochemical studies to unveil the mechanism of action of these withanolides, which can lead to the
optimization of treatment for leishmaniasis.
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