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SUMMARY

The Lyman-α forest is composed of a series of absorption lines in the spectrum of distant quasars,

which are produced due to the interaction of ultraviolet radiation with neutral hydrogen clouds

in the intergalactic medium. By analyzing the distribution in space and the statistical properties

of these lines, valuable information can be inferred about the distribution of gas density in

the intergalactic medium, which also allows to infer the distribution of dark matter in these

regions. The Lyman-α forest also allows measurements of baryon acoustic oscillations which

are particularly important to investigate the expansion history of the universe and to constrain

cosmological parameters.

To reduce systematic errors, selection effects, and compare observations with theoretical models,

Lyman-α forest observations are compared with synthetic spectra generated through full

cosmological hydrodynamic N-body simulations. However, the fast advance in technology

and instrumentation allows the detection of regions at ever greater cosmological distances and

at resolutions beyond the capacity of current simulations. For this reason, it is of particular

importance to improve alternative and computationally efficient methods for the generation of

mock catalogs of the Lyman-α forest.

In this research it is proposed the application of an efficient Hamiltonian Monte Carlo (hereafter

HMC) scheme inspired by the work by Kitaura et al. 2012b, to generate high-resolution line-

of-sight absorption spectra from the data obtained from the GADGET3-OSAKA cosmological

simulation (Aoyama et al. 2018; Shimizu et al. 2019). The HMC method allows to explore the

parameter space more efficiently, saving the maximum computational resources for the generation

of mock catalogs. Also, this study includes a model of selection effects, such as the completeness,

which can affect the measurement of absorption lines in quasar spectra.

From the implementation of the HMC method, it was possible to generate absorption spectra

of the Lyman-α forest with a precision of ∼ 5% up to a scale of k ∼ 1.0hMpc−1, imposing an

arbitrary 1D power spectrum (i.e., along the line of sight) and preserving the 3D power spectrum

(i.e., over the whole simulation box). This can allow the generation of more precise Lyman-α

forest catalogs, ensuring the correct spatial correlations and taking into account selection effects

such as completeness.
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RESUMEN

El bosque de Lyman-α está compuesto por una serie de ĺıneas de absorción en el espectro de

cuásares distantes, que se producen debido a la interacción de la radiación ultravioleta con

el hidrógeno neutro en el medio intergaláctico. Mediante el análisis de la distribución en el

espacio y de las propiedades estad́ısticas de estas lineas se puede inferir información valiosa sobre

la distribución de la densidad de gas en el medio intergálactico, que a su vez permite inferir

la distribución de materia oscura en estas regiones. El bosque de Lyman-α también permite

la medición de las oscilaciones acústicas bariónicas que son particularmente importantes para

explorar la expansión del universo y constreñir parámetros cosmológicos.

Para reducir errores sistemáticos, errores de selección, y comparar las observaciones con modelos

teóricos, las observaciones del bosque de Lyman-α son comparadas con espectros sintéticos

generados a partir de sofisticadas simulaciones hidrodinámicas o de N-cuerpos. Sin embargo, el

rápido avance en instrumentación permite la detección de regiones a distancias cosmológicas cada

vez mayores y a resoluciones mas allá de la capacidad de las simulaciones actuales, por lo cual es

de particular importancia recurrir a métodos alternativos y computacionalmente eficientes para

la generación de catálogos del bosque de Lyman-α.

En esta investigación se propone la aplicación del método HMC (Hamiltonian Monte Carlo)

expuesto en (Kitaura et al 2012b) para generar espectros de absorción en la linea de visión de

alta resolución a partir de los datos obtenidos de la simulación cosmológica GADGET3-OSAKA

(Aoyama et al. 2018; Shimizu et al. 2019). El método HMC permite explorar el espacio de

parámetros de manera más eficiente, ahorrando al máximo el gasto computacional requerido para

la generación de catálogos. De igual manera, en este estudio se incluye la modelación de efectos

de selección, como la completitud, que puede afectar la medición de las ĺıneas de absorción en los

espectros de cuásares.

A partir de la implementación del método HMC se logró generar espectros de absorción del

bosque de Lyman-α con una precisión del ∼ 5% hasta una escala de k = 1.0hMpc−1 que además

tienen la caracteŕıstica de conservar las correlaciones en una y tres dimensiones de los datos de

partida dando lugar a la generación de catálogos del bosque de Lyman-α mas precisos y teniendo

en cuenta efectos de selección como la completitud.
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1 INTRODUCTION

The study of the large-scale structure of the universe is essential to understand its origin and

evolution. Currently observed structures began as small perturbations in the primordial plasma

caused by quantum fluctuations at early cosmological time. Observations from Lyman-α (hereafter

Lyα) Forest indicate that galaxies and clusters of galaxies are distributed in structures such as

filaments forming the well-known cosmic web (Bond and Wadsley 1997). Besides, the luminous

matter only represents a small fraction of the total components of the universe. The comparison

between theory and observations leads to the postulation of the existence of dark matter and

dark energy. The composition of dark matter is not clear and have a significant influence in the

formation of structures. Also, the accelerated expansion of the universe (Riess et al. 1998) is

attributed to dark energy, whose properties remain largely unknown. The understanding of the

nature and equation of state of dark energy is one of the biggest challenges in Cosmology.

An important cosmological tool in the understanding of dark energy are the Baryon Acoustic

Oscillations (BAOs), which are a characteristic pattern observed in the large-scale distribution of

matter in the universe. BAOs arise from sound waves that propagated in the early universe when

photons and baryons were tightly coupled. These sound waves left an imprint on the matter

distribution, creating a preferred scale known as the sound horizon, of about 150Mpc. The

characteristic scale of BAOs can be used as a standard ruler to estimate cosmological distances.

Also, BAOs precision measure allows to constrain cosmological parameters, such as the density

of dark matter, the Hubble parameter H0 or the primordial power spectrum. Comparing the

observed BAOs signature at different redshifts it is possible to determine the expansion history

of the universe and investigate the equation of state of dark energy.

BAOs can be measured through the statistical analysis of the distribution of galaxies at large

scales. From the estimation of the two-point correlation function the BAOs can be observed

as a distinctive peak at a scale corresponding to the sound horizon. Another method in the

measure of BAOs comes from the determination and study of the angular power spectrum of the

anisotropies of the CMB, which captures the statistical properties of temperature fluctuations,

related to the characteristic scale of the primordial density fluctuations that gave rise to BAOs.

A technique applied in last years for the detection of BAOs comes from the Lyα forest, the main

topic of this investigation, which consists in a collection of absorption lines in the spectrum of

distant quasars. These absorption lines are caused by the Lyα resonant scattering of photons

with the neutral hydrogen atoms present in the intergalactic medium. By conducting a detailed

analysis of the statistical properties and spatial distribution of these absorption lines, it is possible

6



1 INTRODUCTION 7

to reconstruct the matter distribution on large scales. This includes studying the formation

and evolution of structures such as galaxies and galaxy clusters. Additionally, the Lyα forest

provides an opportunity to study the nature of dark matter and dark energy since its properties

and distribution are influenced by gravity at small scales where baryon physics is relevant, and

at large scales is influenced by the expansion of the universe.

There are several surveys which measured hundreds of thousands of Lyα forest spectra, including

the Sloan Digital Sky Survey (SDSS), the Baryon Oscillation Spectroscopic Survey (BOSS), the

Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Dark Energy Spectroscopic

Instrument (DESI). Through the use of high-precision telescopes and spectrographs, these surveys

have mapped vast volumes of the universe and provided detailed line-of-sight (LOS) absorption

spectra from sources at different redshift. Then, observations are compared with mock catalogs

(hereafter mocks for shortness), which are synthetic data obtained from cosmological simulations

that describe the large-scale evolution of the universe, incorporating detailed physical models

that account for the physics of neutral hydrogen and its interaction with radiation.

Lyα forest mocks provide valuable insights into the formation of large-scale structures in the

high-redshift universe. Additionally, mocks are used to tighten the constrains on cosmological

models through the comparison of the results obtained from simulations with observations. The

improvements in the detection instruments allows to obtain LOS spectra with increasingly higher

resolutions, at the same time even more distant objects can be observed. This implies the

implementation of numerical simulations of large cosmological volumes at very high resolutions,

making impractical the use of N-body simulations or hydrodynamic simulations due to the

high computational cost required. An alternative is to apply computational methods based on

statistical models that accurately reproduce the observed large-scale matter distribution at the

resolution required by current surveys.

The aim of this investigation is to develop a scheme for the generation of high-resolution

absorption spectra in the LOS from synthetic data from hydrodynamic simulations through the

implementation of a Hamiltonian Monte Carlo sampling method (HMC). The novel approach of

this study is to ensure that the generated spectra accurately preserve correlations in both one

and three dimensions. To this purpose, it is of particular interest the study of the properties of

the one- and three-dimensional power spectrum of the Lyα forest absorption flux. This accuracy

is crucial for creating data mocks that can be compared with surveys, enabling a more precise

and comprehensive understanding of the characteristics of the Lyα forest.



2 FRAMEWORK

2.1 Large Scale Structure of the Universe

The ΛCDMmodel is the currently accepted cosmological model in the description of the observable

universe, it is consistent with observations including the properties of the CMB, the distribution

of galaxies, and the observations from supernovae. In this cosmological description the universe

starts with the Big Bang about 13.7 billion years ago. As the universe expanded and cooled,

matter collapses to form galaxies and stars. Observations indicate that the actual distribution of

matter in the universe is not uniform, galaxies form large structures such as clusters and there are

low-density regions known as voids. However, at scales greater than 100Mpc, the Cosmological

Principle (CP) can be considered valid.

The CP states that the universe is homogeneous and isotropic on large scales, and has important

implications for the study of the large-scale structure of the universe and its evolution over

time. It allows to model the universe as an homogeneous fluid and apply the tools of fluid

dynamics to study its behavior. The theoretical framework given by the General Relativity

theory allows a description of the global geometry of the universe and relate it with the energy

density components through Friedmann’s equations:

(
ȧ

a

)
=

8πG

3
ρ− κc2

a
+

Λc2

3
(1)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+ Λc2 (2)

where ρ(t) is the energy density, p(t) the pressure, and the Hubble expansion rate can be written

as H = ȧ/a. The differential equations (1), (2) have two free parameters κ and Λ, and a(t), ρ(t)

and p(t) are unknown, then, to find a solution a third equation is needed. This comes from the

equation of state of the fluids:

p = wρ (3)

With w = 0 for non-relativistic matter, w = 1/3 for radiation and w = −1 for the description

of dark energy as a cosmological constant Λ. According to the values of κ and Λ, and the

contribution of the different components of the universe to the values of p(t) and ρ(t), different

solutions to the Friedmann’s equations can be obtained, which leads to different scenarios in the

large-scale evolution of the universe. The energy density of each component of the universe is

typically expressed relative to the critical energy density Ωi = ρi/ρc. Where ρc is defined as the

energy density that gives place to a non-curvature universe (κ = 0):
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ρc =
3H2

0

8πG
(4)

Where H0 is the Hubble constant. According to the measurements obtained from Planck satellite

(Planck Collaboration, Aghanim et al. 2020) H0 = 67.7 km/s/Mpc, the adimensional density of

baryonic matter Ωb = 0.0482, of dark matter ΩM = 0.307 and dark energy ΩΛ = 0.6928.

In an isotropic and homogeneous universe, the formation of structures started from primordial

quantum fluctuations formed at early cosmological time that were amplified during the inflation

period with a characteristic spectrum of amplitudes across different length scales. This density

fluctuations can be expressed as a relative deviations of density δ respect to the homogeneous

mean density ρ̄:

δ(r⃗) =
ρ(r⃗)− ρ̄

ρ̄
=

ρ(r⃗)

ρ̄
− 1 (5)

A good approximation for early cosmological times is consider that the density fluctuations ρ(r⃗)

are small compared with the mean density ρ̄, that means δ(r⃗) << 1. This assumption is known

as linear perturbation theory and allows to neglect the second-order terms in the evolution of the

fluctuations. For the case of domain of non-relativistic matter (w = 0) one gets:

δ̈ + 2
ȧ

a
δ̇ − c2s

a2
∇2δ = 4πGρ̄δ (6)

Where cs =
√
|∂p/∂ρ| is the sound speed. A detailed derivation of this equation can be found

in (Peebles 1980). The first term in the l.h.s. of equation (6) represents the density growth,

the second term is the Hubble’s friction since the expansion of the universe opposes to the

concentration of matter, the third term corresponds to the pressure contribution, and the term

on the r.g.s. is the gravitational contribution.

Proposing a solution to equation (6) in the form of a fluctuation density field within a finite

volume V = L3, which can be decomposed into a Fourier series expansion:

δ(r⃗) =
∑
k

δ(k⃗)eik⃗·r⃗ (7)

Where k⃗ is the wave vector given by |⃗k| = 2π/λ with λ the characteristic wavelength of the

fluctuation. The boundary conditions implies |⃗k| = 2πn/L with n = {0, 1, 2, ...}. Then, the

fluctuation field can be considered as a collection of modes with different wavelengths and its

can be studied independently. Tiny values of λ (large values of k) correspond to small-scale

structures, while huge values of λ (small values of k) correspond to large-scale structures.
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2.2 The Power Spectrum

A statistical analysis of the distribution of matter in the universe can be very useful in the

understanding of structure formation and the validation of cosmological models. The two-point

correlation function ξ(r⃗) is a statistical measure that provides information about the spatial

correlations between pairs of objects in the universe. ξ(r⃗) describes the excess of probability of

finding two objects at a given separation distance, compared to the case of a random distribution.

It is defined as:

ξ(r⃗) = ⟨δ(r⃗)δ(r⃗ + x⃗)⟩ (8)

The two-point correlation function provides insights into the underlying physical processes that

shape the large-scale structure of the universe and is usually measured for galaxies or other

cosmological tracers like the Lyα Forest. There are physical processes that affect fluctuations

on particular scales, such as gravity, so is useful the estimation of the power spectrum, which

contains valuable information about the amplitude of density fluctuations as a function of the

scale k⃗. The power spectrum can be defined as the variance of the Fourier modes k⃗ of density

fluctuations (Linder 1997):

P (k⃗) ≡ ⟨δkδ′k⟩ = ⟨|δk|2⟩ (9)

Where the angle brackets denotes average over all modes. The power spectrum is related with

the two-point correlation function through the Fourier transform:

ξ(r⃗) = ⟨δ(r⃗)δ(r⃗ + x⃗)⟩ = (2π)−3
∫

P (k⃗)eik⃗r⃗d3k (10)

Measuring the power spectrum at different redshifts reveals key information about cosmological

parameters of the universe, such as dark matter and energy densities, cosmic expansion rate, and

the nature of primordial fluctuations. Also, detect effects of fundamental physics in the universe,

such as the existence of exotic particles and predictions by theories beyond the ΛCDM model.

In the linear approximation each mode evolves independently, this means that density fluctuations

have variances that are scale-invariant, so its statistics do not change with the characteristic

scale. Perturbations caused by a random phase process like quantum fluctuations will follow a

Gaussian probability distribution:

f(δk) = (2π)−3/2P (k⃗)−3/2 exp

(
−|δk|2

2P (k⃗)

)
(11)

However, as the universe evolves, denser regions exert a stronger gravitational pull, causing a

non-linear growth of perturbations. This produces deviations from gaussianity in the current
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observed distribution of matter on scales where gravity is relevant, and generates correlations

between fluctuations of different wavelengths λ and amplitudes.

2.3 Baryon Acoustic Oscillations

The relevance of the pressure and the gravitational terms in equation (6) depends on the value

of the characteristic length of the fluctuations λ respect to a critical wavelength known as the

Jeans length defined as:

λJ = cs

√
π

(1 + w)(1 + 3w)ρ̄
(12)

For non-relativistic matter λJ = cs
√
π/ρ̄. For λ > λJ , the gravitational term will dominate over

the pressure term, leading to a solution where the fluctuations can grow. On the other hand,

for λ < λJ , the pressure term dominates, and the solution corresponds to a damped harmonic

oscillator due to Hubble’s friction, therefore the fluctuations will oscillate without growing. This

is the case before recombination when the Universe consisted in a strongly coupled photon-baryon

fluid in thermodynamic equilibrium. The interplay between gravitational attraction and radiation

pressure led to the formation of an oscillatory pattern around the density fluctuations.

At the time of recombination at z ≈ 1500, the decrease in the density of free electrons causes an

increase in the mean free path of the photons, reaching a point at which the mean scattering

time of the photons exceeds the Hubble time H−1 (which represents the characteristic time of

the expansion rate at that time). This leads to the decoupling of photons at z ≈ 1150, which are

responsible for the cosmic background radiation that is detected today. At that moment, baryons

are not longer affected by the radiation pressure, and the oscillations in the perturbations freeze,

leaving an imprint on the distribution of matter, an excess of density at a characteristic length

rs = 150Mpc, this phenomena is known as Baryon Acoustic Oscillations.

BAOs can be identify as a peak in the correlation function and is large enough to not be

affected by non-linear processes of structure formation. Since the position of the acoustic peak

in the correlation function in comoving coordinates is practically the same from the time of

recombination to the present, it can be used as a standard ruler to measure distances on large

scales (Eisenstein et al. 2005). Unlike other standard rules, BAOs is not an observable physical

object, instead its scale is inferred from statistical measurements of the distribution of objects

and is necessary surveying large cosmological volumes.

Since BAOs is printed in the distribution of matter in three dimensions, its characteristic scale can

be measured both in the radial direction, which is related to the redshift, and in the transverse



2 FRAMEWORK 12

direction as the angle it subtends in the sky, this is illustrated in Figure 1. As it can be assumed

the value of rs in comoving coordinates as invariant, knowing the angular measure of BAOs, the

angular distance DA(z) can be obtained (Basset and Hlozek, 2009).

Figure 1: Radial length and transverse size in terms of the Hubble distance DH(z) and angular distance

DA(z) respectively. Figure from (Basset and Hlozek, 2009).

DA(z) is defined as the associated distance to the euclidean relation of the arc length. For an

object of size L at a redshift z which subtends an angle dθ on the sky is given by:

DA =
L

dθ
(13)

This relation is valid at low redshift in which the curvature and the expansion of the universe

can be neglected. However a more general expression can be derived from the Robertson-Walker

metrics and Friedmann’s equations:

DA(z) =
c

H0(1 + z)
√
−Ωk

sin
(√

−Ωkχ(z)
)

(14)

Where Ωk is the adimensional curvature energy density and χ(z) is the comoving distance defined

as:

χ(z) = c

∫ z

0

1

H(z)
dz (15)

For the case of a flat universe, which is a good approximation supported by observations and

form part of the ΛCDM model, one has Ωk = 0 and (13) can be considered valid, taking into

account the dependence of L with redshift and its relation with the comoving distance, one leads

to:

DA(z) =
χ(z)

1 + z
(16)

On the other hand, rs on the radial direction represents a redshift difference dz from which a

measure of the expansion rate H(z) can be obtained. This can be achieved from the definition of
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Hubble distance:

DH(z) =
c

H(z)
(17)

DH(z) represents the distance at which the recession speed is equal to the speed of light. And sets

a limit to the distance over objects can be observed. H(z) is related with the energy components

of the universe as:

H = H0

√∑
i

Ωi0(1 + z)3(1+wi) (18)

In the description of our universe from ΛCDM model:

H(z) = H0

√
Ωr0(1 + z)4 +Ωm0(1 + z)3 +ΩΛf(z) (19)

Has been taken into account that the curvature is negligible. The function f(z) determines

the evolution of dark energy, for the case of the cosmological constant f(z) = 1. Therefore, by

measuring the characteristic scale of BAOs in the radial direction as a redshift difference dz, the

value of DH(z) can be inferred:

DH(z) =
rs

1 + z
dz (20)

Likewise, from the measurement of BAOs in the transversal direction, the value of dθ is inferred,

and the value of the angular distance can be obtained:

DA(z) =
rs

1 + z

1

dθ
(21)

One approach is to treat rs as unknown, then a determination of BAO scale at different redshifts

are necessary. By comparing ratios of distances DA(z)/DA(z
′) and DH(z)/DH(z′) between two

different measurements of BAO, a model-independent approach can be employed. Other approach

is to determine rs from the theoretical model and an estimation of cosmological parameters from

a different method like the measurements of the CMB, enabling distance calculations. This

approach is more model-dependent than the first one and can allow to constrain models of

dark energy with a redshift-dependent equation of state f(z) (Seo and Eisenstein 2003). Both

approaches can lead to the determination of H(z) at different redshifts and and can be applied

to reconstruct the expansion history of the universe (wang 2006).

2.4 Lyα Forest

The Lyα forest was predicted by James Gunn and Bruce Peterson (Gunn and Peterson 1965),

and was one of the first evidences of the existence of the intergalactic medium (IGM). The

neutral hydrogen HI of the IGM produces an absorption line in the ultraviolet radiation emitted
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by distant quasars at a wavelength of λLα = 121.6 nm, which corresponds to the Lyα atomic

transition of an electron from the ground state (n = 1) to n = 2 orbital. Since the interacting gas

regions are located at different redshift from the observer, this phenomena is detected as a series

of absorption lines. Due to the extinction of the Earth’s atmosphere, which absorbs light with

wavelengths below 360 nm, the detection of the Lyα forest mostly comes from quasars at z > 2.

Most of the detected lines are within a wavelength range of 400 nm to 900 nm, as is shown in

Figure 2.

Figure 2: Lyα forest absorption lines in a quasar spectrum at z = 3.63 detected with the HIRES

spectrograph on the Keck 10m telescope in Hawaii. Figure from Womble et al. 1996.

Gunn and Peterson predicted that at a high enough redshift this absorption would manifest as a

distinctive absorption trough in the spectrum of a quasars, this is known as the Gunn-Peterson

effect. Subsequent surveys focused on studying QSOs revealed that a high redshift the collective

emission of ionizing radiation from all known sources produces a powerful ultraviolet radiation

field intense enough to maintain the hydrogen in a highly ionized state. The Gunn-Peterson

trough is a evidence of the re-ionization epoch that take place between z ∼ 20 and z ∼ 6. During

that period the formation of stars begin inside galaxies and produce a high UV radiation emission

capable of ionize the neutral hydrogen.

The Lyα forest can be quantified according to the density column that produces it (Weymann

et al. 1981). Most of the detected absorption lines corresponds to column densities among

N ∼ 1013 cm−2 and N ∼ 1016 cm−2. Regions with a high density (N ∼ 1017 cm−2) will behave

optically thick to radiation and a discontinuity will be observed in the Lyman limit at 91.2nm,

regions like this are called Lyman Limit Systems (LLS). At even higher densities (N ∼ 1019 cm−2),

the radiation is rapidly absorbed in the external regions keeping the gas in the central regions

mostly neutral, this is known as self-shielding. In Damped Lyman Systems (DLA) the Lorentzian

profile of the absorption line can be detected. On the other hand, when a quasar expels a
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considerable amount of matter In the LOS, a broadening of absorption lines of the Lyα and other

metals like carbon CIII or silicon SiIV is produced. This broadening is caused by the dispersion

velocity of the exiting gas, resulting in the emergence of broad absorption lines (BAL) within the

quasar’s spectrum.

The Lyα forest can provide valuable insights of the properties of the IGM. The temperature and

density of the gas regions depends on the heating produced by photo-ionization and the adiabatic

cooling. Most of the gas that give place to the Lyα forest is in mildly density, diffuse and not

shock-heated regions, which leads to a relation between T and ρ in the form of a power law:

T = T0

(
ρ

ρ̄

)γ

(22)

where T0 and γ are related with the UV radiation background and the reionization history of the

universe and its values have been estimated around 4000K < T0 < 10000K and 0.3 < γ < 0.6

(Hui and Gnedin 1997). Under the assumption of photoionization equilibrium, the recombination

rate of protons and electrons to form HI is in balance with the reionization rate caused by the

UV radiation:

nenpα(T) = nHIΓHI (23)

where ΓHI is the photoionization rate of the neutral hydrogen and α(T ) ∝ T−0.7. The fraction of

neutral hydrogen is given by xHI = nHI/nH. Neglecting the abundance of helium and metals in

the IGM nH = ρ/mp, with mp the mass of the proton. And considering that ne ≈ nH, equation

(23) leads to (Rauch 1998):

nHI =
α(T)

ΓHIm2
p

ρ2 (24)

Then, the density of neutral hydrogen will be proportional to ρ2T−0.7/ΓHI.

On the other hand, the optical depth of the IGM can be related with the density of neutral

hydrogen nHI as (Gunn and Peterson, 1965):

τ =
πe2

mec

fLαλLα

H(z)
nHI (25)

where fLα is the Lyα oscillator strength. Equations (24) and (25) lead to an expression linking

the optical depth τ and ρ/ρ̄ known as the Fluctuating Gunn-Peterson Approximation, (FGPA

hereafter, Rauch 1998):

τ = A

(
ρ

ρ̄

)β

(26)
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where β ≡ 0.7−2.0 and A is a normalization constant. The FGPA is widely used in the generation

of fast approximated Lyα forest simulations. It is an extension of the original Gunn-Peterson

approximation, which assumes a fully neutral IGM. The main idea behind the FGPA is that

during the cosmic reionization epoch, the IGM is not uniformly ionized but exhibits spatial

variations in the HI fraction. These variations results in fluctuations in the absorption of light by

neutral hydrogen. The absorption flux F and the optical depth τ can be related as:

FT =
F

FC
= e−τ (27)

where FT is the transmitted flux, obtained by normalizing the observed flux F to the (fitted)

quasar continuum FC .

The statistical analysis of the Lyα forest contains valuable information that can be used to

constrain cosmological parameters (McDonald et al. 1999), the position of BAO peak and the

expansion history of the universe (McDonald and Eisenstein 2007), and the mass of neutrinos

(Seljak et al. 2005). The increase in the last years in the number of detected sources and the

resolution of the spectrographs made it possible a more precise reconstruction of the distribution of

gas of the IGM at cosmological distances, along with the advance in models based on simulations

allows to study the distribution of matter in the large scale structure and make inferences of the

properties of dark matter (Kitaura et al. 2012b; Sinigaglia et al. 2021).

2.5 Surveys and Mock Catalogs

Surveys of QSOs spectra at high redshift are valuable tools for investigating the distribution of

matter on large scales and exploring the processes that influenced the formation and evolution of

structures and refining the comprehension of the fundamental forces and dynamics governing

the expansion of the universe. This section is a brief review of the main Lyα forest surveys, and

then, a description of mock catalogs and its relevance in recent research in Cosmology.

The Sloan Digital Sky Survey (SDSS) has mapped large volumes of the universe the Data Release

16 (DR16) in September 2021 includes data from all these surveys and had observed and cataloged

over ∼ 500, 000 quasars. The Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson et al.

2013) is an extension of SDSS that specifically focuses on detecting BAOs. The BOSS Data

Release 12 (DR12) in July 2015 include the spectra of ∼ 160, 000 quasar data set to measure

BAOs. The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) is a continuation of

BOSS focused on the study of the expansion history of the universe and investigate the nature of

dark energy (Zhao et al. 2021).
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The novel Dark Energy Spectroscopic Instrument (DESI) (Levi et al. 2019) consists of thousands

of robotically controlled optical fibers that are positioned to capture light from specific targets.

DESI upcoming data releases are going to considerably increase the number of spectra from

galaxies and QSOs and also increase the resolution of the detected absorption LOS. This

improvement in the large-scale measurements also requires an improvement in the modeling of

the Lyα forest.

Lyα forest mock catalogs consist in a collection of synthetic absorption LOS obtained from

simulations based on a theoretical model. Mocks play a crucial role to validate cosmological

models and also identify systematic errors in the surveys. Simulations are implemented considering

the physics of the ionization of hydrogen by radiation sources such as stars and quasars, as

well as the radiative cooling of gas and recombination processes. Once the Physics has been

established, the synthetic spectra are obtained by tracing absorption LOS across the simulation

volume and applying an interpolation method to calculate the optical depth based on the thermal

and ionization history of the gas. Then, the generated synthetic spectra are compared to actual

observations.

Earliest hydrodynamic simulations of the IGM and the absorption of Lyα forest incorporate a

structure formation model, galaxy evolution and the properties of the gas (Miralda-Escudé et al.

1996). These simulations revealed that the fundamental characteristics of the IGM are slightly

influenced by the cosmological model. Over time, other numerical approaches have been applied

to model the properties of the IGM, like Smoothed Particle Hydrodynamics in Eulerian and also

Lagrangian description (Zhang et al. 1995).

To reproduce realistic absorption lines consistent with observations, recent hydrodynamic

simulations take into account different effects such as HI self-shielding, redshift space distortions,

thermal broadening, and nonlinear corrections on small scales. This considerably increases the

time and computational cost necessary to reproduce the behavior of the IGM in the cosmological

volumes required for the surveys. To address this issue different approaches have been used.

One method consists in applying the FGPA to independent dark matter fields obtained from

DM-only N-body simulations. Other methods apply approximated gravity solvers and Gaussian

random fields. Also, methods focused on the correction of shell crossing (Kitaura & Hess 2013).

Alternative techniques focusing on matching the Lyα forest probability distribution function

(PDF) and the power spectrum have been also developed. In general, a high level of precision in

modeling two-point and three-point statistics is crucial to reproduce the statistical properties of

the Lyα forest (Sinigaglia et al. 2022, and references therein).
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The aim of this research consists in developing a scheme to produce absorption spectra along the

LOS at the resolution required for the generation of mock catalogs for current Lyα forest surveys

with high precision and a consistent 1D and 3D power spectrum based on synthetic spectra

of lower resolution obtained from dark matter hydrodynamic simulations. Two methods were

tested. First, I applied a lognormal transformation to obtain a gaussian component of the optical

depth and added to it a gaussian noise at small scales, iteratively adjusted. The second method

consists in the implementation of a Hamiltonian Monte Carlo scheme and the incorporation of

the Leapfrog scheme as a numerical integrator to achieve efficient exploration of the parameter

space (Kitaura et al. 2010). This chapter describes the implementation of both methods, first a

description of the accuracy and computational advantages of the gaussian noise model, and then,

the HMC sampling scheme. Finally, in section 3.4 a description of a model for the completeness,

a selection effect relevant in the Lyα forest.

3.1 Transmitted flux in the line of sight

The Gaussian noise model and the HMC scheme were tested with data from the cosmological

smoothed-particle hydrodynamic (SPH) code GADGET3-OSAKA (Aoyama et al. 2018; Shimizu

et al. 2019) at a comoving volume of (500Mpch−1)3 at z = 2 with Nc = 128 cells in each

dimension with the values of the transmitted flux field FT , which results in a resolution of

4Mpch−1.

Figure 3: Graphic description of the NGP and the CIC interpolation methods.

The absorption flux from simulations is represented on a discretized 3D mesh, while the

observations are one-dimensional spectra in a certain range of wavelengths. In order to obtain

a realistic spectrum that can be compared with observations, the first step is to establish LOS

18
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along the volume once the position of the observer and the position of the quasar have been

defined. To determine the flux along the LOS from the field values in each cell, an interpolation

method is applied, in which a mass assignment function w(d) is introduced to establish the value

to each bin of the spectrum according to its proximity to the cells of the computational volume.

In the Nearest Grid Point (NGP) interpolation the mass assignment function is defined as:

w(d) =

 1 d ≤ Hc/2

0 otherwise
(28)

Where Hc is the cell length defined as the physical comoving length over the number of cells Nc.

On the other hand, in the Cloud in Cell (CIC) interpolation w(d) is defined as:

w(d) =

 1− d
Hc

d ≤ Hc

0 otherwise
(29)

Both methods are illustrated in figure 3 for the case of a two dimensional grid. Figure 4 shows

an example of two LOS obtained from the simulation volume with the NGP and the CIC.

Figure 4: Absorption flux for two random LOS defined in the comoving volume from reference simulation.

The NGP method is shown in red and CIC in blue.
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It can be noticed that the CIC method produces an apparent loss of information compared to

the NGP, due to the dependence of the mass assignment function on the parameter Hc in each

method, implying that the CIC applies a larger smoothing in the assignment of the absorption

flux values. Therefore, the NGP interpolation is adopted in this investigation.

Figure 5: upsampling of a LOS from the reference simulation. The upper panels shows a skewer from the

reference simulation at a resolution of 4Mpch−1. On the left in configuration space and right in Fourier

space. The middle panels shows the same skewer after an expansion of twice the resolution 2Mpch−1 and

the bottom ones a four times the resolution 1Mpch−1. The dotted line corresponds to the Nyquist

frequency of the low resolution skewer.
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3.2 Gaussian Noise Model

The Gaussian probability distribution is widely used in statistics because it describes the random

variation observed in many natural phenomena. The central limit theorem states that the sum

of a large number of independent random variables, each with any distribution, tends towards a

Gaussian distribution. This property makes the Gaussian noise method an useful approximation

for modeling complex signals with the advantage of being computationally efficient.

In the Lyα forest the observable data is the absorption flux FT . From simulations one can

obtained an absorption flux field FT in a comoving volume, which in this context represents a

coarse-grained version of the high-resolution signal. The first step is to apply the interpolation

method described in section 3.1 to obtain the absorption flux in the LOS (skewers hereafter),

then upsample the low-resolution LOS to match the desired high-resolution. In this particular

case the tests were performed on data at a resolution of 4Mpch−1 to obtain a sample of twice the

resolution 2Mpch−1. The analysis was limited to an improvement of resolution by just a factor

of 2 to save computational time, in practice one seeks to reach a resolutions of 0.05Mpch−1

The physical information of the Lyα forest extracted from the reference simulation is contained in

the large scales up to the resolution of the simulation allows, that is, up to the so-called Nyquist

frequency:

Kn =
πNc

L
(30)

with Nc = 128 and L = 500Mpch−1, which in the case of this investigation leads to a value of

Kn = 0.8hMpc−1. The upsampling provides high-resolution skewers, but the relevant physical

information is still limited up to the Nyquist frequency at this point, as is shown in figure 5.

Also, the upsampling introduces an artificial noise beyond the Nyquist frequency that can be

noticed in the right panels of figure 5.

The next step is to add a Gaussian field to the upsampled data. The field is generated following

a random Gaussian distribution with carefully chosen parameters obtained from an optimization

method. The random field should have appropriate amplitudes to represent the high-frequency

details that are missing in the low-resolution data. Since the optical depth τ is positive-defined

and from equation (27) it can be seen that FT is restricted to assume values between 0 and 1,

this makes a sampling in flux or optical depth complicated to perform. An alternative is to define

the signal as a lognormal transformation from flux as follows.

According to equation (27) the optical depth is given as: τ = − ln(FT ). And the optical depth
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contrast as:

δτ =
τ − τ̄

τ̄
(31)

with τ̄ is the mean of the optical depth field. Under the assumption that the optical depth follows

a lognormal distribution, its underlying gaussian distribution is given by:

δτG = ln(1 + δτ)− µ (32)

where µ is the mean of the δτ field:

µ = ⟨ln(1 + δτ)⟩ . (33)

Then δτG is gaussian distributed, can take positive and negative values making it the suitable

option for sampling. Then, the field is added to δτG and is generated from a random Gaussian

distribution with zero mean and a standard deviation σG dependent on the optical depth as:

σG = σ0

(
τ

τ̄

)c

(34)

Where σ0 and c are free parameters that were obtained from the implementation of a Markov

Chain Monte Carlo optimization method. The values of σ0 = 0.7 and c = 1.1 leads to an accuracy

of 5% till k = 1hMpc−1 in the 1D power spectrum as will be shown in chapter 4. To preserve

the 3D correlations that arise from the data and guarantee that the addition of the small scales

do not spoil the 3D power spectrum, the Hoffman-Ribak condition is applied (Hoffman-Ribak

1991). In practice this condition establishes that the addition of Gaussian noise must keep the

mean of the values of δτG from the reference data.

3.3 Hamiltonian Monte Carlo Sampling

Bayesian Inference

Frequentist statistics focus on the analysis of data and making inferences based on the frequency

or proportion of events. It is based on the principles of probability theory and assumes that the

parameters in a statistical model are fixed but unknown. On the other hand, Bayesian statistics

provides a framework for updating beliefs and making inferences about unknown quantities using

prior knowledge and observed data. Bayesian framework is based on Bayes’ Theorem, which

relates a given data collection d with the signal one wants to improve s as:

P (s|d) = L(d|s)
E(s)

P (s) (35)
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Where:

P (s|d) is the probability of the signal s given the data d, and it is known as the posterior.

L(d|s) is the probability distribution of the data d given the signal s. This is the model of the

data and it is known as the likelihood.

P (s) is the probability distribution of s before considering the evidence E(s), and it is known as

the prior.

E(s) is the marginal probability of the data over the parameters, and it is known as the evidence,

which is given by:

E(s) =

∫
P (s)L(d|s)ds (36)

In this context, s represents the unknown parameters of the model, and d represents the observed

data. The theorem allows to estimate the posterior probability distribution P (s|d) given the

observed data and the initial knowledge represented by the prior. The evidence acts as a

normalization constant that can be neglected since the goal is to sample the posterior distribution

from a given power spectrum (Kitaura et al. 2012b), then:

P (s|d) ∝ L(d|s)P (s) (37)

HMC Scheme

The HMC sampling introduced by Duane et al. (1987) allows to efficiently generate samples

from a target distribution and its particularly well-suited for sampling in high-dimensional

parameter space compared to traditional Markov Chain Monte Carlo (MCMC) methods like the

Metropolis-Hastings algorithm. Apply the Hamiltonian dynamics to propose new samples allows

to avoid random walk behavior and a more coherent exploration of the parameter space, leading

to an acceptance rate of 100% with small deviations due to numerical errors. This results in an

efficient and faster convergence to the target distribution.

The Hamiltonian represents the total energy of a system and provides the basis for analyzing

and understanding the dynamics of the system within the phase-space, in which each point

corresponds to a position s and momentum p for all particles in the system. The phase-space

allows an analysis of the dynamics and system’s behavior, such as the conservation of energy.

In the HMC approach, the position s represents the signal one wants to improve moving in the
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phase-space through the momenta p. The Hamiltonian is defined as:

H(s,p) = K(p) + E(s) (38)

K(p) is the kinetic energy that can be defined as:

K(p) ≡ 1

2

∑
ij

piM
−1
ij pj (39)

where Mij is the Hamiltonian mass, a symmetric and positive-defined matrix which represents

the covariance of the momenta, is the degree of freedom of the Hamiltonian sampler and its

election is very relevant in the efficiency of the HMC. E(s) is the potential energy which can be

defined from the posterior distribution:

E(s) = − ln[P (s|d)] = − ln[L(d|s)P (s)] . (40)

According to equation (32), the election of the signal as s = δτG leads to the election of a gaussian

prior for the HMC scheme:

P (s) =
1√

(2π)Nc detC
exp

(
−1

2
s†C−1s

)
(41)

which is a multivariate gaussian distribution with zero mean, Nc is the number of grid cells along

the LOS and C =< s†s > is the covariance matrix which is diagonal for a non-coupled modes.

The likelihood represents the model of the data and is given by a Poisson/Gamma probability

distribution, which considers that noise is independent between cells (Kitaura et al 2012b). In

the particular case of this research, the data is the optical depth d = τ , and the likelihood:

L(d|λi) =
∏
i

λNi
i e−λi

Ni!
(42)

where λi is the expectation value of optical depth in the i cell and is related with the signal as:

λi = τ̄ eb(δτG+µ) (43)

where b is a bias, in practice is a free parameter that can be estimated with an optimization

method, and the mean µ can be obtained from the δτG field see the appendix A of Kitaura et al.

(2012b):

µ = − ln(⟨exp(δτG)⟩) (44)
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Once the prior and the likelihood have been defined, from equation (40) the potential energy of

the Hamiltonian reads:

E(s) = − ln[P (s)]− ln[L(d|s)] = 1

2
δτ †GC

−1δτG +
∑
i

λi −Ni ln(λi) + c (45)

where c contains all the constant terms. To sample the posterior, the HMC is based on an

analogy with the Hamiltonian dynamics, where the evolution of the system due to the momenta

p allows to obtain new values of the position s. The evolution of s and p over time are described

with Hamilton’s equations:
dsi
dt

=
∂

∂pi
H(s,p) (46)

dpi
dt

= − ∂

∂si
H(s,p) (47)

From the definition of canonical distribution, the Hamiltonian can be related to the joint

distribution function of the signal and the momenta as:

P (s,p) =
1

Z
e−H(s,p) (48)

with Z the partition function. The joint distribution function can be expressed as the product of

two independent probability functions P (s) and P (p):

P (s,p) = P (s)P (p) =

[
1

Zk
e−K(p)

] [
1

ZE
e−E(s)

]
. (49)

Taking into account equations (39) and (45), Hamilton’s equations can be expressed as:

dsi
dt

=
∂

∂pi
K(p) =

∑
j

M−1
ij pj (50)

dpi
dt

= − ∂

∂si
E(s) = C−1δτG + b(τ̄ eb(δτG+µ) −Ni) (51)

Due to the conservation of energy, as s and p evolved with time the Hamiltonian is conserved

Ḣ = 0. However, in practice Hamilton’s equations must be solved numerically and unavoidably

an error is introduced. Therefore, the choice of the numerical method is relevant in the efficiency

of the HMC. The Leapfrog discretization is a suitable option since it conserves the volume in the

phase-space ensuring ergodicity. Furthermore, it has the characteristic of being time-reversible.

In the Leapfrog scheme, the values of s and p for the next iteration are given by:

pi

(
t+

ϵ

2

)
= pi (t)−

ϵ

2

∂E(s)

∂si
(52)
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si (t+ ϵ) = si (t) + ϵM−1
ij pi

(
t+

ϵ

2

)
(53)

pi (t+ ϵ) = pi

(
t+

ϵ

2

)
− ϵ

2

∂E(s)

∂si
(54)

During each time step ϵ, the Leapfrog scheme alternates between updating the positions and

momenta of the particles. This involves computing the “force” which comes from the gradient of

the potential energy acting on a particle based on its current position to update the momenta

for a half step ϵ/2 followed by updating the position based on the updated momenta and then

other half step for the momenta. This process is repeated a number of time iterations Nsteps.

To avoid resonant trajectories and ensure an efficient exploration of the parameter space, ϵ and

Nsteps are randomly chosen.

Since the numerical approach introduces an error in the conservation of the Hamiltonian, and

the initial signal has not been sampled from the correct distribution, it is necessary to introduce

the Metropolis-Hastings acceptance criterion, in which the probability of acceptance of a new

state (s′, p′) from an old state (s, p) is given by:

Paccept = min
[
1, e−[H(s′,p′)−H(s,p)]

]
(55)

3.4 Estimation of the Completeness

Completeness is a type of selection effect that arises when some objects or structures in the

universe are systematically undersampled or not detected by the survey due to various factors

such as observational thresholds, instrumental limitations, or specific survey design. This

introduces biases and distortions in the observed data. In the context of Lyα forest survey, the

detection of many absorption features as possible allows to study statistical properties such as

the distribution of density fluctuations. Then, completeness refers to the degree to which the

survey has successfully identified and measured the properties of the absorption flux.

Different factors can affect the completeness of a Lyα forest survey, like the sensitivity of the

observations, which determines the minimum detectable absorption strength. If the sensitivity is

low, weak absorbers may go undetected, leading to lower completeness. Also, the presence of

noise in the data and the specific data analysis techniques employed in the survey. An estimation

of the completeness can be performed through simulations and mock data sets. By comparing

synthetic absorption features with known properties with the observational data, mocks can

assess the efficiency and limitations of the survey in recovering these features.

Then, modelling the completeness in the implementation of mock catalogs allows to identify
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systematic and selection effects that can be used to calibrate the surveys. Let us define a model

for the absorption flux following Kitaura et al. (2012b):

F obs
T = RFT + ϵn (56)

where F obs
T is the observable absorption flux, ϵ is a random noise component and R is the response

operator given by the completeness. R is in general a diagonal matrix and can be written as:

Rij = wiδ
K
ij (57)

where δKij is the Kroenecker delta and wi is the completeness in the i cell. The value of wi can be

calculated from the number of LOS intersecting that particular cell. Then, those cells in which

no spectral line have been detected will have a completeness wi = 0 and the cell which is crossed

by the largest number of spectral lines will have wi = 1 and is taken as a reference to establish

the value of the completeness in the other cells.

Figure 6: Model for the completeness in the Lyα Forest. Left: In the case of a simulation volume at

redshift 0 with the observer at x = 250Mpch−1 and z = 0. Right: Simulation volume at redshift 2.

A model for the completeness was estimated by randomly sampling LOS along a volume of 1283

cells and applying the NGP interpolation method discussed in section 3.1 to estimate the number

of counts in a cell caused by different spectra LOS. Figure 6 shows two slices at y = 0 of the 3D

model of the completeness. When zooming in the z = 0 regions of the comoving volume (left

panel of Figure 6), it can be seen how in the cells closest to the observer the number of counts

saturates, making the completeness in other regions negligible.
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Different tests were performed to study the efficiency and accuracy of the Gaussian noise model

and the Hamiltonian Monte Carlo scheme in sampling high resolution absorption flux. The

training dataset was the absorption flux field from the cosmological SPH code GADGET3-OSAKA,

in a box of 1283 cells in a comoving volume of 500Mpch−1. From this box a NGP interpolation

was applied to extract low-resolution skewers assuming a plane-parallel approximation, meaning

that the observer is far enough to assume that the skewers are parallel to each other, and only

intersect the cells along one of the dimensions of the box. Under this assumption completeness

can be ignored. Then, the small scales are printed in the low resolution skewers. To fulfill the

statistical properties of the Lyα forest, two quantities are of particular interest:

1. The mean 1D power spectrum P (k)1D, the average power spectrum of each of the skewers.

2. The 3D power spectrum, obtained by averaging the modes in Fourier space in spherical shells.

The performed tests consisted of sampling skewers with twice the resolution of the reference

data, that is, start from a resolution of 4Mpch−1 and reach a resolution of 2Mpch−1. As

anticipated previously, the resolution upsampling is limited to a factor of 2 to minimize the

use of computational resources and save computational time, since this work work is mainly

meant to provide a proof of concept. To assess the accuracy of the applied methods in controlled

conditions, the available absorption flux field from the reference simulation in the same comoving

volume in a box of 2563 cells were used as a reliable data to make a comparison. Then, the

P (k)1D and P (k)3D of the sampled high resolution skewers were compared with the obtained

from the box of 2563 cells. Figure 7 shows the absorption flux along the same LOS from the low

resolution reference box compared to the values from the high resolution box to illustrate the

presence of small-scale fluctuations.

Figure 7: Skewers obtained in plane-parallel approximation from the same coordinates in the comoving

volume of the reference simulation. Left: Skewer from low-resolution box (1283). Right: Skewer from high

resolution box (2563). In can be seen the effect of small-scale fluctuations on the absorption flux

28
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The optical depth along the line of sight can be estimated from the absorption flux. The

exponential in equation (27) produces a non-linear relation between FT and τ , which implies

that an accurate reconstruction of the small scales in optical depth does not necessarily imply

that the absorption flux are correctly reconstructed.

4.1 PDF of the absorption Flux and Optical Depth

The statistical properties of the Lyα forest can be analyzed by inspecting the probability

density function (one-point statistics), the power spectrum (two-point statistics) and higher

order statistics like the bispectrum (three-point statistics). The PDF of the Lyα forest provides

valuable information about the underlying physical processes that shape the distribution of

neutral hydrogen in the IGM. It characterizes the statistical behavior of the absorption lines,

revealing the typical range of the absorption flux, the presence of peaks or troughs, and any

other patterns or deviations from a smooth distribution.

Figure 8 shows the frequency distribution of the absorption flux values from the reference data

at 1283 cells and 2563 cells. It can be seen that the PDF of the absorption fluxes is highly

bimodal since the observations of the Lyα forest mostly comes from regions of low density where

F ≃ 1 and regions of high density where F ≃ 0. This behavior makes it difficult to work out

an analytical model for the PDF of the flux, and offers another reason in favor of choosing a

lognormal transformation of the optical depth δτG as the candidate signal for the HMC scheme.

Figure 8: Frequency distribution of log(FT ). Left: Low resolution box. Right: High resolution box

Figure 9 shows the frequency distribution of the optical depth from the box of 2563 cells. It can
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be seen that more frequent values of τ are in the range of values [0, 102], which are the values that

determines the absorption flux. For τ ≃ 0, FT ≃ 1. For τ ≃ 102, FT ≃ 10−44. Intermediate values

of τ exhibit a linear frequency distribution up to higher values, the becoming less frequent. The

frequency distribution of log10(τ) is shown in the right panel of figures 9. Taking the logarithm

allows to appreciate in more detail the PDF of the optical depth, which exhibits a multimodal

behavior with peaks at different values and the most relevant for the Lyα forest are between

−2 ≤ log(τ) ≤ 2.

Figure 9: For high resolution box. Left: Frequency distribution of τ . Right: Frequency distribution of

log(τ)

Lognormal Transformation

Due to the restriction in the values of the absorption flux FT and the difficulty of modeling its

frequency distribution, it turns out to be useful sampling the small scales taking as a training

data the lognormal transformation of the optical depth δτG (equation (32)). The assumption

that the optical depth follows a lognormal distribution has been applied in other investigations

and generation of mocks of the Lyα forest (Font-Ribera et al. 2012; Lukić et al. 2015; Farr et

al. 2020). Also a lognormal transformation with a Gaussian prior in the HMC scheme has been

implemented in other studies (Kitaura & Angulo 2012; Hernández-Sánchez et al. 2021).

The efficiency of the HMC scheme is highly dependent on the definition of the PDF of the signal

δτG which is related to the data τ according to equation (43):

λi = τ̄ eb(δτG+µ)
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Figure 10: Lognormal model for the PDF of the optical depth. The values of the free parameters

τ̄ = 109.0 and b = 1.0 where obtained with the EMCEE optimization method. Left: The lognormal model

in the PDF of log(τ) corresponds to a Gaussian distribution. Right: Comparison between the lognormal

model and frequency distribution from the data for the values of τ between [0, 10].

The free parameters τ̄ and b were estimated using a Monte Carlo Markov Chain (MCMC)

optimization method implemented in Python with the lognormal model described in chapter 3

and taking as baseline the PDF obtained from the optical depth of the reference simulation. The

right panel of Figure 10 shows the lognormal model for τ̄ = 109.0 and b = 1.00 compared with the

PDF of τ from the reference simulation. It can be seen that this model is a good approximation

for the values of τ between 0 and 10. The left panel shows the PDF of log(τ) and the lognormal

model with the same values of the free parameters, which corresponds to a Gaussian distribution.

Figure 11 shows an accurate definition of the lognormal model with τ̄ = 350.0 and b = 0.78,

however this model produces and excess of probability in the values of τ greater than 1.

Several tests with the MCMC optimization method and the lognormal model revealed that a

single lognormal distribution can accurately fit only a specific range of the PDF of τ . A bimodal

or even a multimodal lognormal probability distribution may allow to obtain a more precise

model for the PDF of the optical depth. Figure 12 shows the results of the optimization with a

two lognormal model (equation (58)) and six free parameters τ̄1 = 110.0, τ̄2 = 310.0, b1 = 0.90,

b2 = 1.70, B1 = 8.0, B2 = 0.85. This model accurately fits the frequency distribution of the

values of τ that determine the absorption flux.

log(τ) = B1 − τ̄1 exp[b1(δτG + µG)] +B2 − τ̄2 exp[b2(δτG + µG)] (58)
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Figure 11: Lognormal model with τ̄ = 109.0 and b = 1.0 obtained from the EMCEE optimization method.

Left: PDF of log(τ) which is a Gaussian distribution. Right: Comparison of data and model for the

values of τ between [0, 10].

Figure 12: Two Lognormals model for the PDF of logarithm of the optical depth. The values of the free

parameters τ̄1 = 110.0, b1 = 0.90, B1 = 8.0, τ̄2 = 310.0, b2 = 1.70, B2 = 0.85 where obtained with the

EMCEE optimization method. Left: The two lognormals model in the PDF of log(τ). Right: Comparison

between the model and frequency distribution from the data for the values of τ between [0, 10].

The definition of a multimodal lognormal approximation for the signal may be an even more
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accurate model for the PDF of optical depth. However, the HMC scheme may be get stuck in

one of the modes, producing an inefficient exploration of the parameter space. An improvement

for future investigations consists on the implementation of a tempered HMC scheme, where an

additional term is introduced into the Hamiltonian to enable a more effective exploration of

parameter space.

4.2 Gaussian Noise Sampling Results

The method was implemented in Python, the skewers from the low resolution (LR) data were

obtained with the method described in section 3.1 and stored in a collection of arrays of dimension

NLR = 128. To increase the resolution of a skewer an upsampling is applied that consists of

replicate each value of the low resolution array to create an array of dimension NHR = 256, in

general FHR[n ∗ i : n ∗ i+ 1] = FLR[i] for the i element in the LR array and n = 2 the expansion

factor. Figure 14 shows the 1D power spectrum P (k)1D and the 3D power spectrum P (k)3D of

the optical depth after the upsampling compared with the P (k)1D and P (k)3D from the high

resolution (HR) reference data.

Since the upsampling does not reconstruct the information encoded in the small scales, a lack

of power can be seen at high k in the 3D power spectrum, which also has an effect in all scales

in the 1D power spectrum. This is known as aliasing and can lead to systematic errors in the

generation of mock catalogs and observational errors in the BAO measurement. Sampling small

scales accurately allows to correct the aliasing and preserves the statistical properties of the

absorption flux. The Gaussian Noise model consists in iteratively adding a HR resolution signal

in δτG to correct the lack of power on small scales and applying the Hoffman-Ribak condition

in each iteration to ensure that the addition of Gaussian noise does not change the 3D power

spectrum.

Figure 13:Values of log(τ) of a skewer from the HR reference data (red) and from the Gaussian noise

sampling method after 20 iterations (blue).
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It can be seen from figure 14 that aliasing produces a systematic aliasing in the 1D power

spectrum that is around ∼ 0.37 ∼ 1/
√
8. In the iterative method applied to add the Gaussian

noise, a normalization constant was also introduced to correct this bias. From different tests an

estimation of the optimal values of the free parameters of equation (34) were found: σ0 = 0.9

and c = 1.3.

Figure 14: Comparison between the optical depth power spectrum of the HR reference data (red line) and

the upsampled data (blue line). Left panels: The 1D power spectrum and the ratio between the P (k)1D

of the upsampled data and the P (k)1D of the HR reference data. Right panels: The 3D power spectrum

and the ratio of the upsampled and the HR reference data.

With this values of the free parameters the Gaussian noise model was applied to 1282 skewers

obtained in plane-parallel approximation from the LR data. Figure 16 shows the result of the

sampling method in a random skewer compared with the same skewer obtained from HR reference

data. It can be seen that the method is not entirely accurate and presents deviations to the

values of optical depth in some regions. The P (k)1D and P (k)3D obtained from the 1282 skewers

are shown in figure 15. The model shows a precision of 5% in the 1D power spectrum at the

scales between 0.01 ≤ k ≤ 1.

In comparison with other studies in which only the 1D power spectrum of the absorption flux is

studied and the effect of the sampled small scales in the 3D power spectrum is not explicitly
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addressed (see e.g., see for instance Farr et al. 2020, where instead the two point correlation

function is studied), the result achieved here demonstrates that the modelling of the small scales

preserve a high accuracy also in the 3D power spectrum.

Figure 15: Comparison between the flux power spectrum of the HR reference data (red line) and the

sampled skewers with the Gaussian noise model (blue line). Left panels: The 1D power spectrum and the

ratio between the P (k)1D of the sampled skewers and the HR reference data. Right panels: The 3D

power spectrum and the ratio of the P (k)3D.

To verify that the method preserves the statistical properties of the flux absorption from the

reference LR data, a downsampling of the sampled HR skewers was performed and the 1D and 3D

power spectra were compared with those of the reference data (Figure 16). It can be seen an error

of less than 5% in the 1D power spectrum and an error of around 10% in the 3D power spectrum.

This method has the advantage of being computationally efficient and saves computational time

since it does not require the calculation of expensive operations. This can be useful to sample at

even higher resolutions, which is the case of the generation of mock catalogs for Lyα forest surveys.
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Figure 16: 1D and 3D power spectrum of the downsampled skewers for comparison

4.3 Hamiltonian Sampling Results

The Hamiltonian Markov Chain Montecarlo was implemented in Python based on the investigation

from Hernández-Sánchez et al. (2021). The HMC scheme can perform a more precise sampling of

the HR scales in comparison with the random Gaussian field sampling since it allows to include

the information from the PDF of the optical depth in the data given the signal model (equation

(43)). This relation is contained in the Poisson/Gamma likelihood which allows to have control

over the errors introduced in the scheme.

In the same way, the definition of the prior according to the lognormal nature of the optical depth

is a reasonable approximation for the small scales which are desired to sample. The Hamiltonian

mass matrix from equation (41) which represents the covariance of the signal can be obtained

from the 1D power spectrum of the HR reference data according to its relation from equation (10).

In practice, the information extracted from the P (k)1D is printed in the initial signal through

a convolution in Fourier space. Then, with the definition of the posterior from the prior and

the likelihood the scheme was performed to sample HR skewers and also, the Hoffman-Ribak
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condition was applied in order to keep the 3D power spectrum from the LR data.

Figure 17: Sampling of an absorption flux skewer (blue line) with the HMC scheme an free parameters

τ̄ = 109.0 y b = 1.0 compared with the reference data (red line). From top to bottom: it = 1, it = 6,

it = 11, it = 19, it = 30, it = 50.

First, different test were carried out to assess the efficiency of the HMC scheme in the

reconstruction of a single HR skewer with the values of the free parameters of equation (43)

obtained from the MCMC optimization method: τ̄ = 109.0 and b = 1.0. Figure 17 shows the

sampling of an absorption flux skewer at different iterations of the HMC. As can be seen the

scheme reach convergence at around 50 iterations, also the sampled skewer accurately reproduces

the flux values close to 0 and close to 1, while present deviations in intermediate values. This is

due to the choice of the free parameters from the model of the PDF shown in figure 12, which

approximately fits the low and high values of log(τ) that corresponds to the flux values of F =1

and F = 0. However, it does not fit the intermediate values of log(τ) which determine the flux

between 0 and 1.

The accuracy of the results from the Hamiltonian sampling are very sensitive to the chosen value
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of the time step ϵ and the number of evaluations Nsteps of the leapfrog numerical integrator. A

large value of ϵ can leads to an inefficient exploration of the parameter space while a small value

of ϵ allows a detailed exploration of the parameter space. A low number of evaluations Nsteps

leads to unexplored regions, and a high Nsteps results in increase the computational time, which is

an important issue to take into account given the high number of skewers needed to be sampled.

Nsteps ϵ iteration of convergence MSE Number of HMC evaluations

5 0.01 48 0.56 194

5 0.05 50 0.53 199

5 0.1 47 0.49 199

15 0.01 48 0.67 294

15 0.05 50 0.76 302

15 0.1 47 0.69 318

20 0.01 48 0.75 457

20 0.05 47 0.74 463

20 0.1 50 0.77 471

Table 1: Results from the performed tests to find the optimal values of Nsteps and ϵ.

Different tests were doing to estimate the optimal values for ϵ and Nsteps, two criteria were

analyzed, the mean squared root (MSE) between the reference HR data and the sampled signal,

and the number of evaluations of the HCM. The results are shown in table 1, it can be noticed

that the number of iterations of convergence for all tests were around 50. To find an equilibrium

between an optimal number of evaluations of the HMC and accuracy respect to the reference

data, the scheme was run with the values of Nsteps = 15 and ϵ = 0.05.

To compensate the lack of power due to aliasing in the 1D power spectrum, a kernel was defined

as the ratio between the power spectrum from the HMC sampled data and the obtained from

the reference HR data:

K(k) =
[P (k)1D]HMC

[P (k)1D]ref
(59)

The kernel was iteratively applied to the P (k)1D used to estimate the Hamiltonian mass matrix,

which represents the variance of the signal and has an important effect in the coherency of the

scheme keeping the statistical properties of the LR data. Figure 18 shows the effect of the kernel

in the sampling of a skewer with the HMC scheme, note the improvement in the accuracy respect

to the Gaussian noise model (Figure 13).
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Figure 18: Sampling of a skewer with the HMC scheme and the Kernel application. Top: the values of

log τ along the skewer. Middle: The LR flux absorption for comparison. Bottom: HR flux absorption

Figure 19 shows the P (k)1D and P (k)3D of the absorption flux from 2562 sampled skewers

with the HMC scheme. The convergence is reached after 20 iterations, which represents an

improvement with respect to the Gaussian sampler. The calculation of the gradients of the

Hamiltonian and the implementation of the second order leapfrog numerical integrator leads

to an increase in the accuracy in the reconstruction of the absorption flux but it requires more

computational time, a factor of around 16 compared with the Gaussian noise method.
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To study the effect of aliasing along one dimension, the scheme was applied to sampling 1282

skewers in plane-parallel approximation from a resolution of 128 to 256 bins. To compare with

the absorption flux of the LR reference data, a one-dimensional downsampling was performed.

The systematic aliasing introduced by three-dimensional downsampling was studied in previous

sections and requires a normalization factor of
√
8. While the performed tests point out to a

normalization factor of
√
2 in the one-dimensional case. Then, to compare the LR reference data

with the 1D downsampled data, a normalization factor of
√
8/

√
2 = 2 is introduced in the 1D

and 3D power spectrum (Figure 20).

Figure 19: P (k)1D and P (k)3D of flux from the sampled skewers with the HMC scheme for 1, 5, 10, 20

and 50 iterations.

It can be seen that the sampling model reproduce the 1D and 3D power spectrum of the absorp-

tion flux from the reference simulation with high accuracy, with an error of around 5% up to

scales of k = 1Mpch−1. The achieved precision at these scales are comparable with the obtained

in other investigations (Lukić et al. 2014; Farr et al. 2020; Walther et al. 2021; Chabanier et al.

2022), with the advantage that the sampling of the high-resolution scales takes into account the

three-dimensional power spectrum P (k)3D.
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Figure 20: 1D and 3D power spectrum of the downsampled skewers from the HMC scheme

A relevant result of this investigation from several tests with the Hamiltonian sampler is that the

Hoffman-Ribak condition can be neglected since the HMC is based on the model of the data

given the signal from the study of the PDF of the optical depth, and the 1D power spectrum of

the HR reference data. Then, the definition of a new sample preserves the statistical information

of the low-resolution reference data.

Future investigations consists on apply the sampling methods at the required resolution of Lyα

forest surveys which is around 40 kpch−1, that means sampling high resolution skewers at ∼ 12500

cells, which is unreachable for hydrodynamic or N-body simulations. The Gaussian noise and

HMC scheme become more important due to their efficiency and low computational consumption.

Improvements to the applied method include a better lognormal model for the optical depth

PDF taking into account its multimodal nature, which in turn requires the implementation of a

tempered Hamiltonian Monte Carlo scheme (see Graham & Storkey 2016).
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In this investigation I described the fundamental aspects of the Lyα forest and its applications

in the understanding of the properties of the intergalactic medium, the distribution of dark

matter, the equation of state of dark energy and the expansion history of the universe through

BAO measure. Given the cosmological importance of an accurate detection of the Lyα forest

absorption flux the creation of mock catalogs at high resolution scales and considering all kind

error sources are needed.

In this context, two different schemes to sample HR absorption flux from data of a reference

hydrodynamic simulation were explored. To obtain skewers along the LOS from the flux field of

the reference simulation, an interpolation method was described. All the performed tests point

to the choice of a Nearest Grid Point (NGP) interpolation over a Cloud In Cell (CIC) in order to

minimize the aliasing, an effect affecting the estimation of the 1D and 3D power spectra of the

absorption flux. A selection effect was studied, the completeness, which constitutes one of the

main sources of error in the detection of the Lyα forest and must be taken into account in the

implementation of mock catalogs.

The LR resolution skewers obtained from the absorption flux field of the reference simulation

were used as a training data for the implemented schemes, and a lognormal transformation was

applied given the restrictions to the values of the absorption flux. The latter turned out to

be a good approximation for the definition of a model for the probability density function of

the optical depth. Improvements for future works includes the consideration of the multimodal

nature of τ .

The first scheme consists on the addition of a Gaussian noise to the LR data. The results

presented in Figure 17 allows to conclude that the scheme reaches a precision of ∼ 5% in the

reconstruction of the power spectrum 1D while it presents a greater error in the reconstruction

of the power spectrum 3D. The advantage of this method is the low computational time required

for its execution, which is a plus given the high number of skewers needed to be sampled (∼ 2562)

and more for the implementation of realistic mock catalogs of the Lyα forest. The performed

tests shows a computational time of a factor 16 times lower than the required for the HMC

scheme.

The HMC scheme requires a longer computational time for its execution, but it is a more accurate

method is based on the Hamiltonian Mechanics analogy to explore the parameter space through

the calculation of the gradients of the Hamiltonian using the Leapfrog numerical integrator. The

42
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choice of a Gaussian prior with a lognormal transformation was justified by the statistical nature

of the optical depth. On other hand, the definition of the data model given the signal from

a Poisson/Gamma likelihood allows to reach a precision of ∼ 5% in sampling skewers from a

resolution of 128 cells to 256 cells. Future studies can be focused on exploring other models

for the likelihood and the definition of the model given the signal, also applied to the sampling

scheme at higher resolutions.

In this investigation, all the tests were focused on sampling skewers with a resolution of 256

cells, so the choice of a second order leapfrog over fourth order results more efficient given

its advantage in sampling with small systems in the space of parameters. This allows to save

computational time. The results of HMC scheme presented in Figure 20 show a better accuracy

in the reconstruction of the P (k)1D of the absorption flux, and also an improvement in the P (k)3D

with respect to the Gaussian noise scheme, which is under the ∼ 5% and is comparable with

the results of other studies focus on sampling high resolution skewers of the Lyα Forest. Also,

Figure 18 shows an accurate reconstruction of the small scales, since the Hamiltonian sampler

can make use of the information known from the PDF of optical depth.

Finally, the novelty of this investigation was the joint study of the 1D power spectrum and

the 3D power spectrum of the Lyα forest absorption flux in order to accurately reproduce the

statistical properties of the Lyα forest from the application of a Bayesian inference scheme based

on the data from state-of-the-art hydrodynamic dark matter simulations. The analysis of the

one-point and the two-point statistics leads to the generation of accurate mock catalogs for

current Lyα forest forest surveys and contribute to the understanding of the large scale structure

of the Universe.
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