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Resumen

La clasificación de entidades u objetos presentes en la naturaleza es uno de los primeros pasos en un
análisis cient́ıfico, esta acción lleva a la búsqueda de patrones comunes que permitan entender los
fundamentos f́ısicos que se encuentran detrás de dicha clasificación. En el contexto de la astrof́ısica,
y en concreto de las galaxias, la clasificación de las mismas es una necesidad de cara a entender
su contexto evolutivo y su formación. La clasificación morfológica de las galaxias se basa en la
búsqueda de las estructuras que las componen: el bulbo (la parte central), el disco (zona con
simetŕıa axial en torno a un plano), la barra (un objeto que se mueve como un sólido ŕıgido en
torno al centro galáctico) y los brazos espirales (zonas de alta densidad de estrellas, gas y polvo
en el disco). El primer tipo de clasificación fue la visual, que se basaba en detectar a ojo estas
estructuras; luego, con el paso del tiempo, han ido apareciendo nuevos tipos de clasificación como
el CAS (Concentración Asimetŕıa y Suavidad), que se basa en la medición de estos parámetros, y
las descomposiciones fotométricas, que se basan en recrear las estructuras anteriores con distintas
formas funcionales como los perfiles de Sérsic (Sérsic 1963), exponenciales (Freeman 1970) y de
Ferrers (Ferrers 1870), teniendo cada uno de ellos un numero determinado de parámetros libres.

Es en este ultimo tipo de clasificación en el que se centra este trabajo, ya que actualmente hay
una variedad de códigos que permiten hacer descomposiciones fotométricas en 2D como GALFIT
(Peng et al. 2010), GASP2D (Méndez-Abreu et al. 2008) o IMFIT (Erwin 2015). Pero estos
emplean métodos de minimización de mı́nimos cuadrados, basados en Levenberg–Marquardt, que
pueden presentar algunos problemas tales como: soluciones no f́ısicas, complicación a la hora de
buscar condiciones iniciales, inversión de componentes, etc. Para tratar de solventar todas estas
dificultades, el objetivo de este trabajo es construir un nuevo código que se cimiente en la estad́ıstica
Bayesiana, ANDURYL, que permita solventar estos problemas. Una vez desarrollado el código,
se aplicó a un caso cient́ıfico analizando las galaxias del cúmulo de galaxias Abell 2142; en el
contexto de realizar un trabajo preliminar del proyecto WEAVE Nearby Cluster Survey (WEAVE
2023), que analizará poblaciones de galaxias enanas en cúmulos de galaxias, al fin de ahondar en
el conocimiento acerca del comportamiento, evolución y formación de estos sistemas.

Los datos para llevar a cabo el trabajo han sido extráıdos de SDSS (Sloan Digital Sky Survey);
un proyecto cuyo objetivo es mapear la mayor cantidad de cielo posible usando datos proporcionados
por imágenes y espectros de millones de objetos. Para ello se ha hecho un cruce entre la base de
datos de SDSS y la información espectroscópica de Liu et al. (2018), de manera que podemos
descargar aquellas imágenes de galaxias que fueron clasificados como miembros del cúmulo por
Liu et al. (2018). SDSS emplea cinco filtros fotométricos que funcionan en distintos intervalos de
longitudes de onda; en concreto para este trabajo se ha empleado la banda “i”, que opera en una
longitud de onda efectiva de 7481 Å.

A la hora de analizar las imágenes de las distintas galaxias de SDSS se han creado máscaras
para no incluir los objetos que se encuentren en la imagen, a excepción de la galaxia de estudio,
empleando para ello el código SExtractor1. Entre otros efectos ANDURYL, tiene en cuenta que al
crear los modelos a partir de los perfiles fotométricos hay que convolucionar el modelo obtenido
con la Point Spread Function (PSF), para poder comparar el modelo con la observación.

La versión actual de ANDURYL incluye un perfil de Sérsic y un perfil Sérsic+exponencial.
Teniendo esto en cuenta, para poder ajustar los parámetros libres se han estudiado dos métodos
Bayesianos diferentes, el Hamiltonian Monte Carlo (HMC; Duane et al. 1987) y Nested Sampling
(Skilling 2004). Ambos métodos se encargan de muestrear el espacio de parámetros, dando una

1https://www.astromatic.net/software/sextractor/
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descripción completa de la distribución de probabilidad posterior de cada parámetro, de donde se
puede inferir el valor más probable de los mismos. El primer método se basa en realizar un mapeo
del espacio de parámetros empleando una dinámica hamiltoniana. Mientras que el segundo, a
partir de cambios de variable, analiza el hipervolumen del espacio de parámetros bajo una curva
unidimensional.

Usando ANDURYL hemos comparado ambos métodos Bayesianos, encontrándose que el Nested
Sampling proporcionaba un mejor muestreo del espacio de parámetros, razón por la cual se eligió
como método de inferencia principal del código. Se emplearon 500 muestras de simulaciones de
galaxias creadas a partir de un perfil de Sérsic y 500 creadas a partir de un Sérsic+exponencial
para testear la robustez del código. Se analizó ambas muestras con los dos perfiles disponibles,
encontrándose que los resultados mostraban que el código funcionaba correctamente.

Se procedió entonces al análisis de la muestra de galaxias de A2142, en donde se midieron
distintas relaciones de escala como la Faber-Jackson (Faber & Jackson 1976), que relaciona la
dispersión de velocidad de las estrellas con la masa de las galaxias, y la relación masa-tamaño. En
ambos casos se encontró que las galaxias analizadas segúıan las tendencias derivadas para otras
muestras de la literatura, dentro de los márgenes de error.

A partir de los resultados obtenidos se puede decir que el desarrollo del código ha resultado
satisfactorio y que se han cumplido los objetivos propuestos; teniéndose una nueva herramienta
para poder explorar la formación, evolución y comportamiento de las galaxias en distintos entornos.
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Chapter 1

Introduction

1.1 Galaxy classification methods

The classification of objects, animals or any entity helps us to organize, order, and sequence the
information. From here, common characteristics can be found in the classified entities, patterns,
that help us to understand, among other things, the physical foundation of that classification.

The objects of interest of this work are galaxies, which are systems composed of millions of
stars, gas and dust, gravitationally bound and embedded in a dark matter halo. They have a very
varied and rich morphology, but with elements in common. The bulge, is the central group of stars
with spheroidal symmetry; is usually composed of old stars (∼ 10 Gyr), although it depends on
the type of bulge. The bar, is a central bar-shaped structure composed of stars that moves as a
rigid body around the galaxy center. There is also the disc, which is a part with axial symmetry
around the rotation axis. And there are the spiral arms, which are structures with a high density of
stars, gas and dust that agglutinate material in the disc in a spiral shape. An example of a galaxy
containing all of them can be seen in Fig. 1. All of these structures can be found in galaxies, but
some may or may not be present. And from here arises the first method of classification.

Fig. 1: Image of a galaxy named UGC 6093 containing bulge, disc, bar, and spiral arms1.

In 1926, Edwin Hubble presented the morphological classification scheme known as Hubble’s
sequence (Hubble 1926). This system categorize galaxies based on their visual appearance, as

1https://www.nasa.gov/image-feature/goddard/2018/hubbles-barred-and-booming-spiral-galaxy
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1.1: Galaxy classification methods

a way of trying to understand their formation, evolution, and intrinsic properties. At the core
of Hubble’s classification is the recognition that galaxies come in various shapes and sizes. The
system classifies galaxies into three main categories: ellipticals, spirals, and irregulars. Each
category further branches out into subtypes, forming a comprehensive framework to describe the
morphological characteristics of galaxies, as can be seen in Fig. 2.

Fig. 2: Diagram of the Hubble sequence of galaxies, taken from Hubble (1936).

Elliptical galaxies, denoted by the letter “E”, are typically round or elongated without prominent
structure. They range from E0 (more circular) to E7 (more elongated). Lenticular galaxies (S0)
have a disc structure with a central concentration of stars (bulge). Spiral galaxies, labeled with
the letters “S” or “SB” (for barred spirals), showcase a central bulge surrounded by distinct spiral
arms. The arms can be loosely wound (Sc), tightly wound (Sa), or intermediate (Sb). Irregular
galaxies, denoted by the letter “I,” defy the well-defined structures seen in elliptical and spiral
galaxies. They exhibit a diverse range of shapes, often irregular or peculiar, lacking any clear
symmetrical pattern. Notably, the 1936 version of Hubble’s diagram excluded irregular galaxies,
as their lack of rotational symmetry rendered their placement uncertain at that time.

With the passage of time, this type of morphological classification has been further developed,
with works such as de Vaucouleurs (1959) or van den Bergh (1976). But these classification
methods, based purely on qualitative visual properties, suffers from several problems: it is superficial
since it does not depend on quantifiable physical properties, subjective since it depends on the
person who will carry out the classification, it depends on the orientation of the galaxy, the visual
classification of the galaxy varies depending on the spectral range in which it has been taken the
image, etc.

As a result of this, new ways of classifying galaxies have been created over time, such as
the CAS (Concentration, Asymmetry, Smoothness) parametric classification (Abraham et al.
1994; Conselice 2003). This method is based on the measurement of these three parameters
when classifying, and each of them is a number that quantifies some aspect of the galaxy’s
structure. Concentration measures the central clump of light on the object, asymmetry measures
how symmetrical the object is, and smoothness measures the fraction of light that can be found
on small-scale objects. Since this method has not been used in this work, it will not be discussed
in greater detail. We only add that recent advances in Machine Learning and Deep Learning
techniques have led to a consistent automation of this method (Huertas-Company et al. 2008;
Domı́nguez Sánchez et al. 2018).

Carlos Marrero de la Rosa 2



1.2: Photometric decompositions algorithms

There is another type of classification of interest, and on which this work is based, the classification
by photometric decompositions. It is based on parametric techniques that use functional forms to
describe the surface brightness distribution of the different structures that make up or can make
up a galaxy.

The analysis of the distribution of light in galaxies is complicated by the wide variety of sizes,
shapes, and structures. However, it provides a large amount of information on, for example, the
evolution of the galaxy disc, the cosmic evolution of galactic morphology, the central structure of
early galaxies, etc. When performing brightness profile modeling, residuals can be calculated as
the difference between the model and the real image, and this will provide information about unfit
components of the galaxy, such as unresolved nuclear components, spiral arms, etc.

To model the surface brightness of these components, different types of profiles are used, such
as the Sérsic profile (Sérsic 1963), which is usually used for the bulge part, the exponential profile,
that is usually used for the disc part (Freeman 1970), and the Ferrers profile (Ferrers 1870), which
is used for the bars.

1.2 Photometric decompositions algorithms

To model the different components of the galaxies and obtain the parameters that define them,
in order to infer scale relation, among other things. This can be achieved from the photometric
decompositions described above.

Initially, the photometric decompositions were carried out in one dimension (Freeman 1970),
adjusting the surface brightness profile simultaneously for the different components; this gave rise
to non-linear fits with a multitude of free parameters, where a change in the initial conditions led
to very different fits (Gao & Ho 2017). Nowadays, it is possible to carry out photometric fits in
two dimensions, fitting directly all pixels.

For this, there are numerous codes that perform 2D photometric decompositions, such as
GASP2D (Méndez-Abreu et al. 2008), GALFIT (Peng et al. 2010) or IMFIT (Erwin 2015), among
others. All these codes use minimization methods usually a least-squares fitting algorithm that
uses the Levenberg-Marquardt technique to find the best solutions when fitting the galaxies to
the different models. Moreover they suffer from serious drawbacks (Lange et al. 2016): (I) local
minima trapping; (II) un-realistic solutions; (III) reversal of components (Allen et al. 2006); (IV)
indecisiveness as to which model to use; and (V) bad representation of final errors. To try to
overcome these inconveniences, photometric decompositions can be made within the framework
of Bayesian statistics, being able to solve the problem of entrapment in local minima by the
exploration of parameter space, prevent unreal solutions and the inversion of components providing
prior information, and one of the most important aspects, the posterior distribution resulting from
performing this fit allows an estimation of the uncertainty in the parameters, including covariances,
something that is more difficult and expensive to achieve in conventional algorithms.

In this sense, a code to perform photometric decompositions that uses Bayesian statistics
represents a considerable improvement; which would lead to a better analysis of the photometric
parameters of galaxies and, therefore, to a better understanding of the physical processes that
occur behind their formation and evolution. In Argyle et al. (2018), a Bayesian code called PHI
(https://github.com/SEDMORPH/PHI/) was developed with the purpose of obtaining a robust
morphological analysis of galaxies. However, the code is developed in IDL programming language,

Carlos Marrero de la Rosa 3
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1.3: Scaling relations and galaxy clusters

and this imposes some limitations when it comes to sharing it with the community, among other
things.

1.3 Scaling relations and galaxy clusters

The currently concordant cosmological model, the ΛCMD, is quite successful in reproducing
observations of large-scale structures in the universe. The dark matter halos convert their potential
energy into kinetic energy, virializing; this allows galaxies to form as baryonic matter cools down.
The understanding of the evolution of light structures is necessary to explain the relations between
dark matter and baryonic structures. Furthermore, the physical properties of galaxies such as their
gas content, stellar age, or star formation rate are correlated with galactic morphology (Clauwens
et al. 2018; Tacchella et al. 2016). So, a precise quantitative description of the galactic structures
is fundamental to be able to advance in the understanding of galactic evolution. There are a
number of correlations between some properties of galaxies, such as: the effective radius, the
average effective surface brightness and the central velocity dispersion of galaxies. If they could
be represented in 3D, they would be distributed along a plane, which is known as the fundamental
plane (Djorgovski & Davis 1987).

From here, several other relations can be obtained that are nothing more than a projection of the
fundamental plane. The projection of the velocity dispersion and the effective surface brightness
gives rise to the Faber-Jackson relation (Faber & Jackson 1976). This relation can be inferred
from the Virial Theorem, 2K + U = 0 (K ≡kinetic energy, U ≡potential energy). Therefore,
those galaxies that are virialized systems will follow the Faber-Jackson relationship. This trend
represents the “cooling diagram” on which the theories of galaxy formation are based (Costantin
et al. 2020). Expressing this relation in terms of the luminosity L, and the velocity dispersion σ,
it can be state that

L ∝ σ4. (1)

There is also a relation between the mass-size of the bulges and discs of the galaxy, although
this is a bit more complex than the previous one, since spheroidal and discy galaxies show different
trends (Méndez-Abreu et al. 2021). However, the study of this relation helps to understand the
evolution of galaxies in different mass ranges.

In this framework, it could be said that knowledge about galactic evolution is based on the
observation and modeling of different systems with different characteristics. There is one particular
object in the universe, galaxy clusters, which are the highest density regions known, and mark the
largest and most massive virialized features (Kravtsov & Borgani 2012). As they are regions of
high density, they serve to study the interactions between the objects that compose them and their
neighborhoods.

Given the current theoretical framework, galaxy clusters are formed from mergers of smaller
dark matter halos that are virialized, and their study would allow us to see how the environment
influences the shape of galaxies. In addition, early-type galaxies are more common in these clusters
than in the general field, which makes them excellent regions to investigate the origin and evolution
of this type of galaxies and what phenomena may lead to their formation, and the investigation of
the physical processes that occur and that lead to the evolution of galaxies in these environments
is a current reason for discussion (Boselli & Gavazzi 2014).

One of the associated problems is the evolution of dwarf galaxies, those that have between 107

and 109 solar masses. Despite the fact that these objects are the most numerous types of galaxies
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1.4: WEAVE Spectrograph Project

in the local system, their formation and evolution are still not fully understood. This ignorance
becomes clear when, despite being the largest group in the local universe, the numbers still do
not agree with those obtained in the models (Moore et al. 1999), among other problems. Then
it is necessary to have information and measurements of dwarf galaxies to be able to solve these
problems, and this is where the WEAVE Nearby Cluster Survey comes in.

1.4 WEAVE Spectrograph Project

The WEAVE instrument (William Herschel Telescope Enhanced Area Velocity Explorer, WEAVE
(2023)) is a new multi-object spectrograph that will be located on the 4.2 m William Herschel
Telescope, which is located at the Roque de los Muchachos Observatory, on La Palma in the
Canary Islands. With its new technology, it will allow obtaining up to 1000 simultaneous spectra,
where the fiber-fed spectrograph comprises two arms, one optimized for blue wavelengths and the
other one for red wavelengths. It will be able to operate in two resolutions of 5000 and 20000 and
it will be located at the primary focus of the WHT. In February 2023 the integral field unit of
WEAVE was commissioned, in this same year the verification observations should begin.

The WEAVE Nearby Cluster Survey will aim to study, in particular, low-mass galaxies, with the
purpose of shedding light on the different aspects of their evolution and formation. To understand
these physical processes it will be necessary to have an appropriate data set, which is what is
intended to be obtained with this survey. Among others, the survey has the following scientific
objectives: to study the orbital structure of low-mass galaxies in clusters, stellar populations,
metallicities, and the star formation history of cluster dwarf, scaling relations of dwarf galaxies,
etc. In order to cover this range, a surface brightness limit will be used, in the r band, of
µr = 20 mag arcsec−2. This survey will observe clusters of galaxies that are in an environment of
150 Mpc, which emit X-ray flux. One of the targets of these observations will be the galaxy cluster
Abell A2142, an X-ray luminous galaxy cluster located near the constellation Corona Borealis, at
∼ 381 Mpc with a redshift of ∼ 0.09 (Kopylova & Kopylov 2022).
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1.5 Objectives

In line with the Bayesian framework, one of the initial objectives of this work was to translate PHI
from IDL to Python, improving those aspects that could have become obsolete. But, finally, it was
decided to create a completely new code from scratch, ANDURYL2 (A bayesiaN Decomposition
code for Use in photometRY Labors); which would use a modern Bayesian method as the core of
its photometric fitting engine. Once the code is created, it was applied to mock and real samples
of galaxies, to test its reliability and analyze the results in search of possible errors. The sample
of real galaxies chosen to carry out the first science with ANDURYL was the cluster of galaxies
A2142. The galaxies of this cluster will be the subject of future analysis with the new instrument
WEAVE, the current study is design as a preparatory work to be applied to the full WEAVE
Cluster Survey.

Once the real galaxies have been analyzed, different scale relations have been measured, such
as Faber-Jackson and mass-size, in order to verify that the results produced by ANDURYL for
real galaxies follow these relations, which would support the results themselves. So the objectives
of this project can be summarized as follows:

1) Creation of the ANDURYL code with different model options available.

2) Application of the code to a sample of mock galaxies that contain only bulges and bulge+disc
galaxies, and the comparison of the parameters with which the samples have been created
and those returned by ANDURYL.

3) Application of the code to a sample of real galaxies, to carry out the first science with
ANDURYL and prepare the tools to be ready for the WEAVE Cluster Survey.

2https://github.com/CarlosMDLR/ANDURYL
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Chapter 2

Data

Two different types of data have been used, depending on their use for the testing of the code or the
scientific analysis. Regarding the former, 500 bulge mock galaxies were used, created from a Sérsic
profile, and another 500 bulge-disc mock galaxies, created from a combination of a Sérsic profile and
an exponential one. These mock galaxies were created using the GASP2D code (Méndez-Abreu
et al. 2008), having been used in other works such as Méndez-Abreu et al. (2017). It should be
noted that both, ANDURYL and GASP2D are codes that use a different methodology, and the
functions used for the photometric profiles are also different.

For the scientific analysis, data from 234 galaxies belonging to the cluster A2142, have been
used. To obtain the catalog of real galaxies that has been used, a crossmatch was made between
the Sloan Digital Sky Survey (SDSS) catalog for this cluster and the Liu et al. (2018) catalog,
imposing as conditions that the galaxies were classified as members by Liu and that the velocity
dispersion was measured in the SDSS spectra database.

For both types of mock galaxies it was not necessary to do a pre-processing of the data, all
of them had the same noise and the same Point Spread Function (PSF) parameters incorporated,
which was modeled from a Moffat function. However, for the A2142 cluster galaxies it was necessary
to carry out different actions to obtain: (i) the images of each galaxy, (ii) the measurement of the
corresponding PSF, and (iii) the creation of masks for each case.

2.1 Sloan Digital Sky Survey

SDSS is a project whose goal is to map as much of the sky as possible, providing enough information
for cosmological scale studies, as well as other astrophysics studies. This project has measured, of
the order of millions of spectra and images in a range of wavelength bands, from 3551Å to 8931Å,
a range observed using five filters, detailed below.

To carry out these observations SDSS has a series of telescopes and instruments, beginning
with the Sloan Foundation Telescope, a 2.5 m telescope at Apache Point Observatory with a 1.08
m secondary mirror, more details of which can be seen at Gunn et al. (2006). For the fourth
phase of SDSS, observations of the southern hemisphere from the Irénée du Pont Telescope at Las
Campanas Observatory, which is another 2.5 m telescope, were included. Details of the telescope
are described in detail in Bowen & Vaughan (1973).

Currently SDSS also has several spectrographs, like BOSS. They are two identical spectrographs
where each one uses two cameras, red and blue, with a dichroic splitting the light at roughly 6000
Å and a full wavelength range from 3600 to 10400 Å. The high resolution APOGEE spectrograph
is a multi-object, with a spectral resolution around R=22500.
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2.2: Obtaining galaxy maps and PSF synthesis

SDSS has had various phases during its years of operation, and for each phase they publish
a certain number of data releases. They are cumulative, that is, each new one that comes out
includes all the sky coverage of prior releases. Each one incorporates new techniques, observation
methods, etc. Therefore, we proceed to give details of Data Release 16 (DR16; Ahumada et al.
2020), which is the one that has been used in this work.

DR16 includes six types of data: images, optical spectra, infrared spectra, Integral Field Unit
(IFU) spectra, stellar library spectra, and catalog data. The ones of interest for this work are
mainly the images. All of them are accessible and downloadable from their website1. It includes
SDSS data taken until August 2018, and encompasses more than one-third of the entire celestial
sphere. Specifically, the number of unique, primary sources amounts to 469,053,874, of which
208,478,448 are galaxies.

The camera built for collecting imaging data for SDSS consists of two arrays, one that uses 30
CCDs of 2048x2048 pixels and another array of 24 CCDs of 400x2048, both with the same pixel
size, with the pixel scale being 0.396 [arcsec/px] (Gunn et al. 1998).

In order to handle the data generated by the imaging camera, the SDSS data processing factory
employed a series of interconnected processes. These processes, functioning as pipelines, undertook
the tasks of data processing and calibration. Their primary objective is to eliminate instrumental
signatures and refine the data to generate a range of valuable data products. Among the outcomes
are enhanced images, purged of any artifacts caused by the instruments, a photometric solution
for nocturnal conditions, and a comprehensive catalog of the diverse objects discovered within the
dataset.

After this, the Science Archive Server provides the survey images, called “corrected frames”, as
“frames-*.fits.bz2” files. The units of these images are not given in usual counts, but in nanomaggies
per pixel, and that they are already subtracted from the sky brightness. A nanomaggy is 10−9

times the flux F of the source relative to the standard source F0 (which defines the zeropoint of
the magnitude scale). SDSS uses five particular filters, called (u, g, r, i and z), each one operates
in a determined range of wavelength, where the effective wavelength of each of them can be seen
in Table. 1.

Table 1: Effective wavelength and magnitude limit for the different filters used by DR16 of SDSS.

Filters: u g r i z

Effective
wavelength

(Å)
3551 4686 6165 7481 8931

Magnitude
limit

22.0 22.2 22.2 21.3 20.5

2.2 Obtaining galaxy maps and PSF synthesis

Of the galaxies resulting from the crossmatch between SDSS and Liu et al. (2018), the data is
downloaded from the SDSS “i” filter. Once this is done, the right ascension and declination
coordinates of each galaxy are used to find them in their corresponding frame. We use the radius
R90, which encompasses 90 % of the Petrosian flux, as a measure to make a rectangular clip around

1https://www.sdss.org/
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2.3: Creating masks using SExtractor

Fig. 3: Example of an ellipse around an object using SExtractor. 2

the center of the galaxy of radius 10× R90.

The Petrosian flux (Petrosian 1976), as described in SDSS, for any band is defined as the flux
that is within a certain number of times np the Petrosian radius rp. The latter being the point at
which the ratio between the local surface brightness in an aperture and the mean surface brightness
reaches a certain value. Therefore, the expression for the Petrosian flux can be written as

Fp ≡
nprp∫
0

2πr
′
I(r

′
)dr

′
, (2)

where I(r
′
) is the azimuthally averaged surface brightness profile.

Now that the images of each galaxy have been downloaded and resized, the PSF must be
measured for each field. The PSF is nothing more than the response of an optical system to a
point light source, and in observational astrophysics, from relatively large ground-based telescopes,
atmospheric turbulence (seeing) is the dominant contribution to the PSF. Using the “pyraf”3

package, a program was developed to find the stars in each field with a number of counts greater
than five times the sky noise. Once the stars were found, each one of them was fitted with a Moffat
function (see Eq. (3)), obtaining the Full Width at Half Maximum (FWHM) and the parameter
β.

fMoffat(r;α, β) =
β − 1

α2

[
1 +

( r

α

)2
]−β

; α =
FWHM

2
√
2β−1 − 1

. (3)

2.3 Creating masks using SExtractor

When analysing the galaxies from the SDSS fields in which they are found, it is highly possible
that stars, or other galaxies, are found within the cutout field of view. It is necessary to mask
these other sources and leave only the galaxy of interest, so that the subsequent photometric fit
is not compromised. As there are a large number of galaxies to be analyzed, making the masks
individually was ruled out; making therefore necessary to create an algorithm that allows the 234
necessary masks to be automatically made. This is where SExtractor4 comes in, which is a program
that builds a catalog of objects from an astronomical image.

With the PSF information obtained in the previous section, the SExtractor configuration files
can be created for each galaxy image. In this way, SExtractor returns information about the

2https://astromatic.github.io/SExtractor/Position.html#basic-shape-parameters-a-b-theta
3https://iraf-community.github.io/pyraf.html
4https://www.astromatic.net/software/sextractor/
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2.3: Creating masks using SExtractor

objects in the image. Specifically, the position parameters of each object (x,y) are saved, as well
as the ellipticity, the position angle of the semi-major axis (A) with respect to the x-axis of the
image, the semi-major and minor axes themselves (A, B), all of them for an ellipse that encloses
most of the light of the found object, as can be seen in Fig. 3.

With these obtained parameters, ellipses can be generated that mask all the objects found in
an image, so mask files can be generated for each galaxy image. The way in which the program
that has been designed to build the masks works is that, with the information from the ellipses,
these are generated in a mesh with the size of the galaxy image, magnifying the size of the ellipses
by a certain value in order to ensure that it covers the desired object. The contour and interior
of these ellipses is associated with a null value, while the exterior of these ellipses has the unit
value. Therefore, they can be used so that the pixels covered by these ellipses are not taken into
account in the subsequent Bayesian treatment. It must be taken into account that the object to
be analysed, which is the galaxy located near the center of the image, must not be covered. So,
the ellipse that is associated with the galaxy of interest is also assigned with the unit value, and it
is superimposed on the mesh. In this way, if there are objects close to the galaxy of interest, the
masks of these objects will not affect the surroundings of the galaxy, as can be seen in Fig. 4.

Fig. 4: Example of a mask created for one of the sample galaxies.
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Chapter 3

Methodology

This section will deal with the internal functioning of ANDURYL, as well as the photometric
decomposition models used by it, and the different Bayesian inference methods that have been
used throughout the work. The way in which ANDURYL works can be summarized in a few short
steps:

1) The necessary information is passed to it through a configuration file, such as the directories
where the images to be analyzed are located, the file with the PSF information for each
image, the PSF and surface brightness models to be used, etc.

2) The program reads the configuration file and reads the image files (FITS files), then proceeds
to perform the photometric fit following a bulge or a bulge-disc model, as indicated. This
generated model is then convolved with the PSF through the Fast Fourier Transform (FFT).

3) Once the model has been created, the likelihood and the posterior functions are calculated
through the given Bayesian inference method that has been used, inferring all the parameters
of the model that are available. Once this is done, the information of all the parameter space
sampling carried out by the method is saved in a FITS file for each galaxy.

4) If it is set as an option, the program will make the plots where the galaxy can be seen
together with the created model and its residuals, as well as the triangular diagrams for the
posteriors of the free parameters.

3.1 Photometric decomposition models

To model the different components of a galaxy, via photometric decompositions, there are a great
variety of functional shapes. In this work two functional shapes has been used, the Sérsic profile and
the exponential profile, which give a good account of the bulge of a galaxy and its disc, respectively.
However, the program is designed so that other components can be easily incorporated in the future.
The Sérsic profile (Sérsic 1963), as it has been incorporated into this work, has the following form

I(r) = Ie 10

−bn

( r

Re

)n−1

−1


; bn = (0.868 · n)− 0.142, (4)

being Ie the intensity at radius Re, which encloses half of the total intensity of the model, bn
is a function that ensures that Re contains half of the light and depends on n, which is the Sérsic
index, which accounts for how concentrated is the profile.

On the other hand, the exponential profile (Freeman 1970) is such that

I(r) = I0 exp
(
− r

h

)
, (5)
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3.1: Photometric decomposition models

beeing I0 the central intensity and h the disc scale lenght of the profile.

Apart from all the free parameters that both profiles have, another two parameters must also
be taken into account for each model: the ellipticity ε and the angle PA. These two parameters are
introduced because the intensity profile is characterized by elliptical concentric isophotes, where
the ellipticity is defined as ε = 1− (b/a), beeing b and a the semi-minor and semi-major axis of the
ellipse, just like in Fig. 3. But here the angle, PA, is measured in degrees and counter-clockwise
from the vertical axis of the image of the galaxy, unlike in the figure cited.

With these definitions, the expression for the radius can then be written, based on Argyle
et al. (2018). First, the reference system is redefined, so that it is centered in the center of the
object (x0,y0). The angle is also taken as the one between the ordinate axis of the image and the
semi-major axis of the analyzed object, as can be seen in Fig. 5.

Fig. 5: Illustration of the reference frame centered on the center of the object (x0,y0).

Therefore, the coordinates xp and yp of the new reference system can be defined as

xp = −(x− x0)sin(PA) + (y − y0)cos(PA)

yp = −(x− x0)cos(PA)− (y − y0)sin(PA).
(6)

Then, the projected radius is such that

r =

√
x2
p +

(
yp

1− ε

)2

. (7)

So, with all this information, the functional forms that have been used in this work are
constructed to fit the different types of objects.
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3.2 Oversampling around the central zone

When using a model such as the Sérsic profile on a pixel mesh, it must be taken into account that
the values obtained for each pixel are referenced to its center. Due to this, when there is a Sérsic
profile with a very pronounced profile, that is, one that varies very quickly as we move away from
the center, it is possible that the function varies from one extreme of the pixel to the other, so
that the central value is not representative of the real value of the profile in the environment of
that pixel. These pronounced profiles could appear, for example, for Sérsic index values of n > 6,
approximately.

To illustrate this more clearly, let’s imagine that we have a grid mesh with a size of (50,50)
pixels, and our object is in the center, at 25. If we simulate here a Sérsic model with a Sérsic index
n = 8, we will have, for example, around pixel 26, the graph that can be seen in Fig. 6. The value
of the profile in the center of pixel 26 differs from the mean value of the profile within the pixel.
To solve this consistency problem, oversampling is used.

The idea is to oversample each pixel by a predefined factor. In this work each pixel is divided
into another 10 pixels in a mesh of (20,20) pixels around the center of the model. In this way, the
values of the model are evaluated in these new pixels, and then it is rebinned to the original size,
but saving, as the new value of the pixel, the mean of the subgrid created with the oversampling.

Fig. 6: Illustration of a Sérsic profile in one pixel with an index of n = 8.

3.3 Convolution with the PSF

Once a model has been generated, it must be convolved with the PSF. This is required to take
into account the atmospheric contribution and compare the model with the observed data on an
equal footing. A PSF model is created from a Moffat function, like the one seen in section. 2.2, in
a mesh of a certain size. The number of pixels on each side must be an odd number, so that the
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center of the PSF is in the central pixel of the mesh.

To carry out the convolution between the PSF and the created model, since the images can be
considered periodic, the Fast Fourier Transform (FFT) has been used. The FFT is an algorithm
that performs the Discrete Fourier Transform (DFT) for a sequence (Cooley & Tukey 1965).
Specifically, in this work the FFT in two dimensions has been used, so as the DFT, which has an
expression such that, being X a matrix of size (m,n)

DFT(X[m,n]) =
N−1∑
k=0

N−1∑
l=0

A[k, l] · exp (i2πmk/N) exp (i2πnl/N) , (8)

where A[k, l] are complex coefficients such that

A[k, l] =
1

N2

N−1∑
m=0

N−1∑
n=0

X[m,n]exp (−i2πmk/N) exp (−i2πnl/N) . (9)

Then, once it is clear how the FFT is defined, it is known that, by the convolution theorem,
and having the image model, F and the PSF it can be written that

F⊛ PSF = FFT−1 {FFT(F ) · FFT(PSF)} . (10)

But, when using these definitions in Python, one detail must be taken into account, and is that
the FFT has the first element of the image as the origin of its calculation, that is, the pixel in the
upper left corner of the image. And the PSF that has been created has as its center at the center of
the image. Then, it is necessary to “shift” the PSF before passing it through the FFT mechanism.
The center of the PSF must be in the upper left corner, and it is required to do a zero padding
of the PSF until it has the same dimensions as the image of the model before doing the padding.
Now, it is possible to convolve the model with the PSF using Eq. (10), although only the real part
of this result is retained. Once the convolution with the PSF is finished, a model is available that
can be compared with the real image to be adjusted, now it is the turn of the Bayesian statistics.

3.4 Bayesian framework

The cornerstone of ANDURYL is based on how to build a model that can correctly reproduce
the observation, based on the methods and profiles previously described. This is where Bayesian
statistics comes in. The Bayesian inference is a statistical approach, based on Bayes Theorem
(Bayes & Price 1763), that updates our knowledge about an observation as new information is
acquired. This gives a probabilistic description from Bayes Theorem, as can be seen in Argyle
et al. (2018)

p(x⃗|d) = L(d|x⃗) p(x⃗)∫
dx⃗ L(d|x⃗) p(x⃗)

, (11)

where p(x⃗|d) is the posterior probability distribution of the set of the model parameters that has
been defined as x⃗. This is the result of the combination of other concepts, as the likelihood function,
L(d|x⃗), which is a joint probability density of the data as a function of the model parameters, that
is, it measures the probability of obtaining the observed data given a specific model. The other
term, p(x⃗), is the prior function of the vector of parameters x⃗, that represents the knowledge that
we have a priori about each parameter.

Therefore, the objective is to calculate the posterior probability distribution and, based on it,
calculate the marginal posterior distribution for each parameter, which is defined as
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p(xi|d) =
∫

dx1, ..., dxi−1, dxi+1, ..., dxn p(x⃗|d). (12)

The marginal posterior is the probability distribution of a subset of the model parameters, after
having integrated with respect to the rest of the parameters. In this way, inferences can be made
from individual parameters.

3.4.1 Likelihood

In the astrophysical context in which this work is framed, in general, it can be assumed that
the number of photons detected in each pixel of the image is high enough so that the Poisson
distribution approaches a Gaussian distribution. Then, according to this, the expression for the
individual per-pixel likelihood can be written as

pi(di|mi) =
1√
2πσi

exp

[
−(di −mi)

2

2σ2
i

]
, (13)

where di are the pixels of the galaxy image, and mi are the pixels of the generated model. The
expression for the noise, that is a combination of different factors, is given by σi =

√
di + S + σ2

RN;
being S the sky background noise and σRN the readout noise related to the amplification of the
chip’s charge into an analogue voltage. From here, an expression for the likelihood can be obtained,
summing over all N pixels

−lnL = −
N∑
i=1

ln pi ⇒ −lnL =
χ2
unnorm

2
=

Nχ2

2
=

1

2

N∑
i=1

(di −mi)
2

2σ2
i

. (14)

3.4.2 Priors

When doing Bayesian inference, it is extremely important to use all the physical information that
is available a priori, in order to constrain the parameter space and that the results produced by
the model are valid. That is, one can impose a constraint on the values of the parameters and,
in turn, add a probability distribution to indicate which values are most likely to be obtained.
However, this must be done with caution and noting that results might be biased for some a-priori
information.

In this work, the studies given in Argyle et al. (2018) have been followed, using uniform priors
for most of the adjusted parameters. Details about all the parameters that can be adjusted with
ANDURYL and the priors used for each of them can be seen in the Table. 2. Apart from the
parameters introduced by the photometric models, the parameters corresponding to the Moffatian
PSF are incorporated as part of the model, which are the FWHM and β. The parameter σadd is
also added to the generated model, so it gives information of how well the background sky noise
has been extracted from the image. The combined parameter Re/h is also included, which serves
to guarantee that there are no component inversion problems, that is, so that the program does
not try to adjust the disc with a Sérsic profile or the bulge with a Sérsic+exponential profile.
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Table 2: Free parameters that are adjusted by ANDURYL together with the different priors and ranges for each
of them. Nx and Ny are the number of pixels on each side of the image.

Sérsic parameters
Parameter Prior Parameter space
Effective intensity, Ie [e

−] Uniform in log (Ie) [0,6]
Effective radius, Re [px] Uniform in log(Re ) [0,6]
Sérsic index, n Uniform in n [0.5,10]
Ellipticity, εser Uniform in εser [0,0.8]
Angle, PAser [

◦] Uniform in PAser [0,180]
Exponential parameters
Central intensity, I0 [e−] Uniform in log(I0) [0,6]
Scale length, h [px] Uniform in log(h) [0,6]
Ellipticity, εexp Uniform in εexp [0,0.8]
Angle, PAexp [◦] Uniform in PAexp [0,180]
Common parameters
Central coordinates, x0, y0 [px] Uniform in (x0/ Nx) &(y0/ Ny) [0.1,0.9]
FWHM Moffat, FWHM Uniform in FWHM [0,10]
β Moffat, β Uniform in β [0.5,12]
Noise, σadd Uniform in σadd [0,10]
Combined parameter Re/h Uniform in Re/h [0,1.678]

3.5 Bayesian engine

When evaluating the posterior marginal distribution, the equation Eq. (12), in general, an analytical
solution will not be available. It is necessary to approximate the integral. There are many options
to carry out this operation, and in this work two of them have been explored: Hamiltonian Monte
Carlo and Nested Sampling.

3.5.1 Hamiltonian Monte Carlo

The most traditional methods for sampling posterior distributions are based on performing a
random walk over the parameter space, which has been defined as x⃗ previously. The Hamiltonian
Monte Carlo (HMC) (Duane et al. 1987) is an algorithm that is based on the analogies of the
trajectories of a physical system and the probability distributions. Specifically, it uses Hamiltonian
dynamics to generate new samples of the probability distribution, using Hamilton’s equations
to infer how positions and momentums evolve over time in the parameter space. All this is
combined with a Monte Carlo sampling, which accepts only proposals that improve the probability
distribution.

In this method, a new variable is introduced in the denominator of Eq. (11) (henceforth denoted
as f(x⃗) ), the momentum p⃗ ∈ RD. So it can be written that

f(x⃗) = p(x⃗)L(d|x⃗) ⇒ f(x⃗)p(p⃗) = p(x⃗)L(d|x⃗)p(p⃗). (15)

This momentum increases the space and leads to defining a joint probability f(x⃗)p(p⃗). Therefore,
being D the dimensions of the space of parameters analyzed, with this a negative log joint
probability is defined as

H(x⃗, p⃗) = −log(f(x⃗)) +
1

2
log

[
(2π)D|M⃗ |

]
+

1

2
p⃗ TM⃗−1p⃗, (16)

beeing M⃗ the mass matrix. This matrix is used to control the relations between positions and
momentums, influencing how the HMC explores the parameter space. In other words, it is used to
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adjust the scale of the momentums in the parameter space. In practice this matrix can be chosen,
some of the available options being the identity matrix (assumes a unitary mass for all dimensions
of the parameter space) or a diagonal matrix, with different masses to adapt to the different scales
of the parameters. The last member of Eq. (16) is a kinetic energy term and the first term is
associated with potential energy. Trajectories moving in this parameter space follow each other
along constant energy levels. Then, to move through this parameter space preserving the total
energy and volume, the following information is required

dx⃗

dτ
=

∂H

∂p⃗
;
dp⃗

dτ
= −∂H

∂x⃗
, (17)

being τ the step iteration. Therefore, the sampling process basically consists of drawing the
momentum. Then, a new set of parameters x⃗∗ is defined, through for example a leapfrog algorithm,
and repeating this process until sampling the set of parameters of interest.

There are several methods that are derived from the HMC, but the one that has been used in
this work is the HMC-NUTS (No-U-Turn Sampler; Hoffman & Gelman 2011; Cobb et al. 2019). It
uses a recursive algorithm to construct a collection of probable candidate points that covers a broad
range of the target distribution. The algorithm automatically halts when it detects backtracking
and retracing of steps. It also has the ability to adapt its step size, τ , to a more suitable one.

All of this Bayesian method was implemented within the ANDURYL core via the “hamiltorch”1

package (Cobb et al. 2023), a Python package built on top of PyTorch2 that works with tensors.
PyTorch is a Python-based framework that offers tools for model optimization, performance
evaluation, etc. “hamiltorch” takes advantage of the automatic gradient calculation and optimization
capabilities of PyTorch to perform efficient calculation of the gradients needed in the HMC method.
It allows Bayesian inference on models with continuous, discrete and mixed parameters. It is for
this reason that, within the program, the modules are also built using PyTorch.

3.5.2 Nested Sampling

The second sampling method that has been used in this work is called Nested Sampling (Skilling
2004). Nested Sampling employs a different method than other Bayesian inference methods. Here,
the key idea is to enclose regions of the parameter space that have a higher probability than the
regions of the previous iteration. To describe how this method works, we also start from the
denominator of Bayes’ Theorem, which is called the marginal likelihood

Z =

∫
dx⃗ L(d|x⃗) p(x⃗). (18)

The objective of Nested Sampling is to calculate Z, generating samples of x⃗ according to the
posterior distribution. To deal with this integral, Nested Sampling employs an alternative, where
a variable change is applied such that dθ⃗(x⃗) = p(x⃗)dx⃗. In this way Z is redefined as a sum over
prior mass and it is expressed as the area under a monotonic one-dimensional curve. The mass
represents the fraction of total probability of the prior that is contained within said curve, therefore

Z =

1∫
0

dθ⃗ L(x⃗(θ⃗)), (19)

each volume element of the original prior in its parent parameter space is now mapped to a
one-dimensional scalar element. So, given a number of points, the area under the curve can be

1https://github.com/AdamCobb/hamiltorch
2https://pytorch.org/

Carlos Marrero de la Rosa 17

https://github.com/AdamCobb/hamiltorch
https://pytorch.org/


3.5: Bayesian engine

Fig. 7: Illustration of the iso-contours on which Nested Sampling is based to integrate the likelihood. Taken from
Mukherjee et al. (2006).

approximated. These points are generated from the known p(θ⃗) distribution (Murray et al. 2005).
Then, Nested Sampling integrates the likelihood over the volume of the prior into iso-contours of
equal likelihood, as can be seen in Fig. 7.

Nevertheless, this methodology describes the simplest method of Nested Sampling. There may
be occasions in which the characteristics of the problem studied require another type of approach,
as is the case in this work.

Ellipsoidal Nested Sampling

Drawing samples from the prior is a complicated step. To try to solve this drawback, ellipsoidal
sampling tries to approximate the contours that have the same likelihood through a D-dimensional
ellipsoid, using the covariance matrix of the points that are active in the iteration. And the new
sets of points are selected from those that are inside this same ellipsoid, not as in the previous case
where the selection could result in a decrease in the volume of the prior (Feroz et al. 2009).

The new points that are selected through ellipsoidal sampling guarantee that the new enclosed
volume has a better likelihood than in the previous volume, that is, an ellipsoid is sought that
encloses a number of points such that this condition is met.

Although even this method is not without drawbacks, drawing a single ellipsoid may not work
well for distributions where the posterior is multimodal, as can be seen in Fig. 8. To solve this
problem of high degeneration, the number of active points can be divided into different sub-ellipses,
so that the degeneration can be followed more easily. The volume of these ellipses can be arbitrarily
increased or decreased in order to find the solution more quickly.

When implementing these Nested Sampling methods, the multi-ellipse method has been chosen,
through the Python package “nestle” from MIT (Barbary et al. 2023). This package allows high
flexibility by allowing the choice of the number of active points, as well as a multiplicative factor of
the volume of the drawn ellipses. For practical reasons, in this work the original code of “nestle”
has been modified by adding a watchdog; this means that an element has been added that allows
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3.6: Obtaining and visualizing the results

Fig. 8: Illustration of how ellipsoidal nested sampling works, for a simple bimodal distribution. From figure (a)
to (d) we can see how with a single ellipse it is not possible to characterize the two regions well. While in figure (e)
it can be seen that both regions can be characterized if a multi-ellipsoidal model is used.

choosing how much time can be invested in the fit. If the method takes too long to converge, it
can skip it and go to the next one, if there is one.

3.6 Obtaining and visualizing the results

Once the posterior sampling process is finished, a vector of parameters is obtained with a size
equal to the number of iterations that have been necessary to sample the posterior distribution.
In this way, the result is summarized taking the mean marginal value for each parameter.

When the optimal values for each parameter are obtained, the final model can be built, using a
Sérsic profile or a combination of Sérsic+exponential, depending on the model that has been used.
Now the residuals can be calculated, which are nothing more than subtracting the model from the
data. The residuals provide information about the unadjusted components of the galaxy, that is,
if the galaxy has, for example, a bulge, a disc and a bar and the model only include the bulge and
the disc, the bar will appear in the residuals.

The posterior distribution of the analysis produced by ANDURYL can also be displayed, where
the marginal distributions of the parameters can be seen together with the correlations that may
exist between them. These diagrams are known as triangular plots, and an example of one of them
can be seen in Fig. 9. The shape of the marginal distributions of pairs of parameters gives an
indication of the covariance between those parameters. Thus, for example, if there is a gaussian
form of it, it seems to indicate that there is no direct correlation between them; but if the shape
of the plot has, for example, the shape of a straight line, it would indicate a linear correlation
between both parameters.

With the mean of the marginal distributions of each parameter, the final model can then be
generated. In this way it can be compared with the observation and represent the residuals, which
account for those components not resolved by the model. An example can be seen in Fig. 10.
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3.6: Obtaining and visualizing the results

Fig. 9: Example of a triangular diagram showing the posterior marginal distributions for a Sérsic fit of a galaxy.
The marginal distribution of each parameter can be seen in the upper diagonal. While in the rest of the panels the
joint marginal distribution of pairs of parameters is shown. The grayscale contours are shown at 0.5, 1, 1.5, and 2
σ. And the green solid line indicates the mean value of the posterior distribution.

Fig. 10: Example of a photometric decomposition using ANDURYL. The observed galaxy can be seen on the
upper left, the generated model in the upper right, and the residuals on the bottom.
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Chapter 4

Calibration and test using mock galaxies

4.1 Comparing HMC and Nested Sampling

To test which one of the Bayesian methods was more appropriate for carrying out this work, a
preliminary test was carried out with the galaxy NGC0155. This have been proved to be adequately
fitted using only a Sérsic profile, as demonstrated in Méndez-Abreu et al. (2017). As can be seen
from the results in the Table. 3, the values obtained by GASP2D and by ANDURYL using both
methods are certainly similar, this could lead us to think that both methods, HMC and Nested
Sampling are equally valid.

Table 3: Comparison between the values obtained by the GASP2D program and the values obtained by
ANDURYL using HMC and Nested Sampling for the galaxy NGC0155 using a Sérsic profile.

Method/Program Ie [Counts] Re [px] n εser PAser[
◦] x0 [px] y0 [px]

GASP2D 24.51 80.05 5.10 0.23 84.68 182.67 154.95
HMC 21.23 86.80 5.33 0.24 95.39 182.68 154.95
Nested Sampling 26.30 76.74 5.01 0.23 95.36 182.67 154.95

Fig. 11: In the left part the triangular plot associated with the fit of the galaxy NGC0155 with the HMC method
can be seen and in the right part with the Nested Sampling method, both from the ANDURYL code.
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4.2: Mock galaxies sample

However, if triangular plots are displayed for both cases (see Fig. 11), the figure corresponding
to the HMC seems to indicate that it has not converged. This can be deduced from the form of
the marginal distributions that have non-Gaussian forms. In contrast the marginal distributions
given by Nested Sampling have Gaussian shapes and the correlations have shapes that are more
in line with what is expected, keeping a Gaussian shape in the case of being random correlations.

The reason why HMC sampling seems not to converge can be deduced from Figure 3 of Cobb
et al. (2019). In the present work HMC-NUTS was used, and it can be seen that by adapting
the step-size this makes the algorithm incapable of explore the narrowest areas of the model’s
geometry. And, precisely, the likelihood that is analyzed in this work seems to have a very narrow
shape, given the sampling that the Nested Sampling method shows. This does not mean that
HMC is not a valid method, but rather that it would be necessary to explore what mechanisms
would be necessary to achieve proper functioning.

After detecting the better reliability of Nested Sampling, this was implemented in the code and
it was parallelized using the Python “joblib” package 1. This way, different cores of the computer
system processor can be used. In order to reduce the computational time necessary for the analysis
of large data sets.

4.2 Mock galaxies sample

After choosing the Bayesian sampling engine, the analysis of the mock galaxy samples was carried
out, comparing the values of the parameters with used to create the mock models with those
obtained using ANDURYL. This step aims to test the reliability of the code, look for possible
systematic errors and correct them and work on optimizing it.

4.2.1 Inference of the bulge mock galaxy sample

It can be seen in the results of Fig. 12 that the inferred parameters shown with quartiles of the
marginal posteriors, for the bulge mock galaxy sample (with a Sérsic profile) are quite consistent
with the input parameters given by GASP2D. Although the relative errors are small, being in most
cases a maximum of 2 ∼ 6 %, some slight systematic errors can be seen in the effective intensity
and effective radius plots. In the case of effective intensity, it is seen as an upward trend as the
value of the effective intensity increases, and in the case of effective radius, the values seems to
present a certain offset between 0 ∼ 1 %. Given the dimension of this error, it could be associated
with a multitude of variables; from a numerical difference in the precision with which mock galaxies
have been made (since they have been made in IDL) and with which they have been analyzed in
Python, to a difference due to the way in which oversampling is done (explained in section. 3.2).
This is important, since oversampling significantly affects the values obtained for these quantities.
In the rest of the parameters, there do not seem to be appreciable trends.

For the case of the angle PA, it can be seen that, at low values, the difference extends to
higher errors than for the higher values of the angle. The PA has two extremes in which singular
behaviors appear. One happens close to 0 degrees, since this angle is equivalent to 180 degrees,
and the posterior is bimodal. The other one is in the case of low ellipticity, for which the PA is
not well defined.

1https://joblib.readthedocs.io/en/stable/
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4.2: Mock galaxies sample

Fig. 12: Different box plots for the parameters resulting from fitting the sample of bulge mocks with a Sérsic
profile. The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a black line at the
median. The whiskers extend from the box by a factor of 1.5 the inter-quartile range (IQR, between Q1 and Q3).
The red dotted lines represent the mean of the error, given by ANDURYL, of all the points that are inside each
box.
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4.2: Mock galaxies sample

Similarly, when inferred the sample of bulge mock galaxies with a Sérsic+Exponential profile, it
is found, as can be seen in Fig. A.1, that the relative error of all the parameters is also very small
compared to the typical values of each parameter. In addition, they are consistent with the error
provided by ANDURYL. The objective of fitting bulge mock galaxies with a profile that can model
a bulge and a disc is to check that ANDURYL can correctly model the bulge, minimizing as much
as possible (within the limits imposed by the priors) the contribution of the disc. Analogously
to the previous case, a certain trend can be seen in the calculations of the parameters Ie and Re

which, again, might be a precision difference. It has not been possible to carry out this type of
plots for the parameters given for the disc since the disc does not exist.

It has been possible to verify that the mean values of the marginal distributions tended towards
the lower limits of the priors, for the parameters related to the disc. In this way, the influence of
the disc in the model is minimal, affecting in a negligible way the inference of the bulge parameters.
This can be verified by seeing that the relative errors obtained in this case are quite similar to
those when only a Sérsic profile was used.

Fig. 13: Distribution of the values of χ2 for the bulge mock samples, the samples in the upper panel being those
created with a Sérsic profile and those in the lower panel with a Sérsic+Exponential profile.

Fig. 13 shows the distribution of the values of χ2 obtained from the inference of the parameters
of bulge mock galaxies. It can be seen that, being analyzed with any of the two models, either
Sérsic or Sérsic+exponential, acceptable results are obtained. It is considered that a value of χ2

is acceptable when it is around the unit, lower values could indicate an overestimation of the
weights/noise, and higher values could indicate an underestimation of the same, or that the fit has
been unsuccessful. Here, in both cases, the values are consistent with a successful inference.

4.2.2 Inference of the bulge-disc mock sample

In the case of the bulge-disc mock samples, when analyzed only with a Sérsic profile, the values
obtained for the different bulge parameters do not coincide with those used to create the models (see
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4.2: Mock galaxies sample

Fig. A.2). It can be clearly seen that the relative errors are around two orders of magnitude higher
than those obtained in previous cases. This does not mean that the program is malfunctioning,
but rather it is a consequence of trying to adjust two components using only one. Depending on
how the characteristics of the discs are, sometimes a successful inference can be achieved. However,
it provides an erroneous value of the parameters that would be expected to be obtained from the
Sérsic profile, since it is have been readjusted to try to follow the profile of the disc.

However, if these mocks galaxies are inferred with a Sérsic+Exponential profile, a good agreement
is obtained between the input values and those obtained by ANDURYL (see Fig. A.3). Although
keep in mind that when adjusting two components it is essential to use combined parameters to,
among other things, avoid the component inversion problem. The imposition of more priors that
provide physical limits to the adjusted quantities is essential to achieve a correct fit. Relative
errors are slightly higher than the cases of the bulge mock galaxy samples, but even so, they are
within a reasonable range, which is sometimes compatible with the statistical dispersion provided
by ANDURYL.

Fig. 14: Distribution of the values of χ2 for the bulge-disc mock samples, the samples in the upper panel being
those created with a Sérsic profile and those in the lower panel with a Sérsic+Exponential profile.

Fig. 14 shows the distribution of the values of χ2 obtained for the bulge-disc mock galaxies. It
can be seen that, when they are analyzed with a Sérsic profile, there is a part, around tens, that
exceeds the value of the unity in settings; while when they are analyzed with a Sérsic+exponential
profile, values around unity are obtained. This is again consistent with the values obtained for the
relative error plots, which indicated anomalies in the analysis with the Sérsic profile. However,
it is observed that even so there is a reasonable number of galaxies that have a χ2 around unity,
despite the fact that it has been seen that the parameter settings differed greatly with the input
parameters. This can be a problem when analyzing real galaxies, since it is possible that the χ2

criterion is not sufficient to differentiate a good fit from one that is not, and for this reason it is
necessary another more robust criteria.

Carlos Marrero de la Rosa 25



4.3: Selection criteria

4.3 Selection criteria

Once the sample of mock galaxies have been analyzed, we ask ourselves how to distinguish which
of the models is the most appropriate to adjust a galaxy.

The usual criterion that has been used to carry out this separation is the Bayesian Information
Criterion (BIC; Schwarz 1978)). This criterion uses the χ2

unnorm (Eq. (14)) that is inferred from
each fit made, and it adds a penalty for the number of parameters used in the fit proportional to
the number of adjusted points. So, the equation is

BIC = χ2
unnorm + kln(m), (20)

being k the number of free parameters used in the fit and m the number of adjusted points, that
is, the number of points that remain in the image once the mask has been applied. However, as
noted in Simard et al. (2011) and Méndez-Abreu et al. (2018), the pixels of the analyzed image are
not independent, since when convolved with the PSF, information from different pixels is mixed.
Therefore, following the steps given in the literature, the number of pixels has been replaced by the
number of resolution elements mres = m/APSF, where APSF is the area of the PSF at Full Width
Half Maximum (FWHM). Therefore, the expression for the BIC is finally given by

BIC =
χ2
unnorm

APSF

+ kln

(
m

APSF

)
. (21)

If a fit is made to a galaxy with a Sérsic profile and a Sérsic+Exponential profile, the BIC
given for each fit can be calculated, and from them the ∆ BIC quantity can be calculated, which
is nothing more than ∆ BIC = BIC (Sérsic)-BIC(Sérsic+Exponential).

Then, from this amount, it follows that if ∆ BIC < 0 then the most appropriate BIC would
be the fit with the Sérsic profile, and otherwise the Sérsic+Exponential profile. But this number,
∆ BIC < 0, is arbitrary and it is necessary to calibrate it using mock galaxies. This step must be
done, since the separation criteria between components are not unique. Being a complex case, it
is necessary to do this calibration to know in what order of ∆ BIC the program can distinguish
between one type of galaxies or another. In the paper of Méndez-Abreu et al. (2018) it can be seen
that the separation value obtained is around ∆ BIC=-18, slightly higher than the one obtained in
this work, thus showing the need for calibration. To do this, histograms of this quantity are made
for the mock galaxies samples, for the bulge samples analyzed with Sérsic and Sérsic+Exponential
profiles and for the bulge+disc sample analyzed with the same profiles. In this way, a logical limit
can be inferred for the value of ∆ BIC that allows the separation between both profiles. Once
this threshold is obtained from the sample of mock galaxies, it can be used as a criterion for real
galaxies, allowing the selection of the most appropriate model for each one.
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4.4 Separation of components in mock galaxies

Through the process described in section. 4.3, the BIC has been calculated for the four sets of
mock galaxies analyzed with the different photometric profiles. The results for ∆ BIC can be seen
in Fig. 15. In these results, except for some outlayer galaxy, it can be seen that the sample of
mock galaxies created with a Sérsic profile form a narrow distribution below a certain value of ∆
BIC=-24.2, and that the sample of mock galaxies created with a Sérsic+Exponential profile are
mostly grouped above this value. Since the sample of mock galaxies created gives a good account
of the behavior of real galaxies, this criterion is considered as the separation criterion between
elliptical and disc galaxies. In this work only two components have been adjusted, so really all
those real galaxies that could have some more components are classified as a disc galaxy.

Fig. 15: Distribution of the values of the ∆ BIC for the mock galaxies samples, the samples in the upper panel
being those created with a Sérsic profile and those in the lower panel with a Sérsic+Exponential profile. The vertical
dotted lines symbolize the limit that has been considered ∆ BIC = -24.2 as best fit separator.
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Chapter 5

Results and discussion

Once the code has been assembled, and it has been calibrated with the use of mock galaxy samples,
we apply ANDURYL to real galaxies. For this a bulge fit and a bulge-disc fit have been performed
on the sample of real galaxies from the cluster A2142. Of the 234 galaxies that were originally
taken from the A2142 sample, 175 galaxies have finally been successfully fitted. The reason for
discarding the rest of the galaxies is based on convergence problems, since the program did not
converge within the imposed time limit of 80 minutes, and automatically proceeded to another
galaxy. A measurement of scaling relations such as Faber-Jackson and mass-size has been made;
in order to verify that our photometric-decomposition results follow these relations and discuss it.

5.1 Separation of components in real galaxies

If the same treatment as in section. 4.4 is carried out for for the sample of real galaxies, the results
shown in Fig. 16 are found. It can be seen that the majority of the real galaxies analyzed have
been catalogued, according to the previous criteria, as elliptical galaxies, around 141; while 34
have been classified as disc galaxies. Galaxies classified as disc galaxies may have some other
components that have not been adjusted. It would not be correct to say that they are purely disc
galaxies, simply that they have a bulge and a disc. These may also have some other unresolved
component, which should be detected when calculating the residuals.

The fractions of galaxies obtained for each case hide something more than just a number, ∼
80 % of elliptical galaxies and ∼ 20 % of galaxies that have at least one disc have been obtained.
It is necessary to highlight again the galaxy sample in which the study is being carried out, which
is in a cluster of galaxies located in the local Universe; where the late-type galaxies are the least
representative morphologically (less than 20% of mass; Vulcani et al. 2011). ANDURYL is not yet
equipped with the necessary tools to automatically distinguish galaxies with spiral arms or other
components beyond the bulge and disc, but the numbers obtained seem to indicate that most of
the galaxies in our study are of early type, which is compatible with the literature. It should
also be taken into account that there is still a number of galaxies to analyze, which could play a
significant change in these numbers.

5.2 Distribution of galaxy parameters

Now that the models that best fit for each galaxy are available, the distribution of parameters
of all of them can be analyzed, separating between the Sérsic profiles and the Sérsic+exponential
profiles. Parameters such as the center, ellipticity or position angles have not been represented in
this case, for the sake of clarity. Thus, the effective intensity, the effective radius, and the Sérsic
index have been represented for the case of the Sérsic profiles; while for the Sérsic+Exponential
profile, the central intensity and the scale length of the disc are also added. Both intensities have
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5.2: Distribution of galaxy parameters

Fig. 16: Distribution of the values of the ∆ BIC for the real galaxies. The vertical dotted lines symbolize the
limit that has been considered ∆ BIC = -24.2 as a separator for a galaxy to be considered suitable to be represented
only with a Sérsic profile.

been transformed to surface brightness, measured in [mag/arcsec2] :

µe/0 = −2.5log(Ie/0) + zcal, (22)

where zcal is a calibration value that depends on the scale of the CCD plate.

Fig. 17 shows the histograms obtained for the parameters of the galaxies fitted with a Sérsic
profile. It can be seen that there are of the order of 9 galaxies, either with a low effective brightness
around µe = 24 ∼ 26 mag/arcsec2. And some 15 galaxies with an anomalously high Sérsic indices,
around n = 8 ∼10. After analyzing the triangular plots of these galaxies, we found that the
marginal posterior distribution of the Sérsic index does not converge properly, but rather collapsed
towards the upper edge of the prior. This indicates that the fit is highly likely not to have converged
for these galaxies. But, apart from that small percentage of galaxies, the rest seem to group around
an average value, which in a way justifies having used uniform priors for these parameters.

For those galaxies analyzed with a Sérsic+exponential profile Fig. B.1 shows the histograms
of the parameters. In this case, it can be seen that there are a number of galaxies with a fairly
low central surface brightness, around µe = 24 ∼ 25 mag/arcsec2. The value of ∆ BIC for these
galaxies has been analyzed and they were close to the value of cut of ∆ BIC= -24.2; with which it
is highly probable that these galaxies could be galaxies of the elliptical type. In addition, in this
case the trend around the mean seems to fade with respect to the previous case, although it is
true that the sample of galaxies is much smaller. And similarly to the previous case, some Sérsic
indices are also observed in the limits of the associated prior, for the same reason.
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5.3: Scaling relations and magnitudes

Fig. 17: Distribution of the parameters of the galaxies fitted with a Sérsic profile. In order from left to right,
effective surface brightness µe, effective radius Re, and Sérsic index n. The magenta vertical lines represent the
mean of the distribution, and the black vertical lines the Q1 and Q3 quartiles.

5.3 Scaling relations and magnitudes

The Faber-Jackson relation (Faber & Jackson 1976), as seen in section. 1.3, connect the luminosity,
or magnitude of a galaxy, with the velocity dispersion. This follows from the virial theorem as

L ∝ σ4 ⇒ M i
B ∝ σ4, (23)

where the superscript “i” refers to the “i” band of the SDSS filters. The magnitudes can be
measured through the Sérsic profile equation, integrating it following Graham & Driver (2005),
over an area such that A = πr2, so the following integral can be written

F =

R∫
0

I(r)2πr dr, (24)

where the intensity term is given by the Sérsic profile, redefined in exponential form to make
its integration easier, also redefining the term of bn

I(r) = Ie exp

{
−bn

[(
r

Re

)n−1

− 1

]}
; bn = (2 · n)− 0.327. (25)

By making the change of variable x = bn(r/Re)
n−1

in Eq. (24), it yields the following result

F = 2πn q IeR
2
e

ebn

(bn)2n
Γ(2n), (26)

where q = 1 − ε. It is important to note that the units of Ie in this process have to be in
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Fig. 18: Color-magnitude diagram for the analyzed galaxies of the cluster A2142.

nanomaggy to be consistent with the next step. According to the SDSS photometric system, the
apparent magnitudes can be obtained from the following expression

mi
B = 22.5 [mag]− 2.5log10(F ). (27)

So, the absolute magnitude can be obtained from

M i
B = mi

B + 5− 5log10(d). (28)

Where d are the distances of the galaxies. They can be easily calculated from the Hubble-Lemâıtre
law, since these galaxies are in a cluster found in the local universe and the dominant metric allows
us to ignore the contributions of the cosmological parameters, so

d[Mpc] =
c

H0

z, (29)

where c = 3 ·105 km/s is the speed of light in a vacuum, H0 = 71.39 (km/s)/Mpc is the Hubble
constant and z is the redshift of the cluster. We point out that we use a common redshift for all
galaxies, in order to minimize the peculiar velocity effects of each one of them.

To calculate the masses of the galaxies, the work of Costantin et al. (2020) is followed, taking
into account the empirical relation between the color (g− i), the luminosity of the band-i and the
stellar mass

log10(M∗/M⊙) = −0.68 + 0.7(g − i)− 0.4(M i
B − 4.58). (30)

The SDSS model magnitude is obtained by comparing two two-dimensional models, a de
Vaucouleurs model, defined as

I(r) = I0exp
{
−7.67[(r/Re)

1/4]
}
, (31)

and an exponential profile, and it is compared between both models and they are left with the
most suitable one.

Considering the results obtained in Fig. 18 it can be seen that most of the galaxies, by
the definition of the selected sample, are red. Therefore, in addition to morphology (as seen
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Fig. 19: On the left, comparison between the apparent magnitudes adjusted with ANDURYL vs the apparent
model magnitudes given by SDSS, in the “i” filter for real galaxies. On the right the dispersion of these same
magnitudes can be seen. The lavender shade indicates the range of the standard deviation.

in section. 5.1), the colors also support that most of the galaxies in our study are of early type.
Fig. 19 compares the magnitudes obtained through the models with the SDSS model magnitudes,
and it can be seen that the magnitudes that have been obtained are in good agreement with those
of the SDSS, within the range of the standard deviation. However, it seems that for some galaxies
fitted with a Sérsic+exponential profile, these turn out to be less bright than they should; while
for some galaxies fitted with the Sérsic profile they are brighter than they should be. The galaxies
that are within the standard deviation range can be understood to have different values because
the calculation of the magnitudes has been carried out in different ways, with different profiles,
and also applying different PSFs, so it is reasonable to think that these factors may lead to a
slight deviation from the values. However, for those galaxies that deviate beyond the range of the
standard deviation, it must be remembered that there are a number of galaxies whose posterior
on some parameters, such as the Sérsic index, is very close to the limits of the established priors,
making the inference dubious. These galaxies therefore have a greater dispersion when compared
to the SDSS values.

With this result it seems appropriate to carry out the conversion to absolute magnitudes,
and from there to masses, following the procedure previously explained. Once this is done, the
Faber-Jackson relation, using the mass of the bulges of the fitted components, obtained in this
work can be shown together with the one obtained in Costantin et al. (2020) in Fig. 20. The data
provided by this article ranges from globular clusters and nuclear stellar clusters, compact early
type galaxies and ultra compact dwarfs to ellipticals and large bulges. We have chosen to represent
all the data together to have a wide range of masses in which to represent the Faber-Jackson
relation, and to see if the results we have obtained in this work agree with what would be expected
from this relation. Fig. 20 shows that the galaxies studied in cluster A2142 are mostly massive
galaxies, with ranges between 1010 and 1012 solar masses, which is compatible with the sample
selection, since SDSS and Liu et al. (2018) selected only the brightest galaxies, and with the fact
that most of the galaxies analyzed have been classified as ellipticals, which are the most massive
type of galaxies. Some points, marked in red in the figure, fall outside the ranges of standard
deviations provided, and generally outside the different groups of galaxies. These points show
velocity dispersions below the spectral resolution limit of SDSS (∼ 70 km/s). It is probable that
this has biased the information of these galaxies and we considered appropriate not to include
them in the treatment or in the analysis.
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Fig. 20: Representation of the Faber-Jackson relation. The solid black line represents the relation M ∝ σ4

and the red dotted line the best fit for all the data taken together. The velocity dispersion resolution limit of
SDSS is also indicated, which is 70 km/s and the mass of a galaxy with apparent magnitude 20 is represented in
a vertical line, which will be the lower limit of WEAVE Cluster Survey exploration. The round blue dots indicate
the Faber-Jackson of Costantin et al. (2020) work, the black star-shaped dots are the galaxies fitted with a Sérsic
profile and the green square-shaped dots are the galaxies fitted with a Sérsic+exponential profile. Red dots indicate
those that were hearing below the SDSS resolution limit. The red shadows around the best fit indicate the errors
for each point, corresponding to σerr and 2σerr.

By fitting all the points, a straight line has been obtained whose slope is m = 0.243 ± 0.03,
which is in good agreement with what is expected, which is a slope of 0.25 (σ ∝ M1/4). Therefore,
our inferences follow the Faber-Jackson relation with good agreement, so that that they represent
virialized systems. Since this work also represent a preparatory analysis for the forthcoming
WEAVE Cluster Survey, the lower limit in mass for WEAVE, which correspond to an apparent
magnitude of 20 in the “i” band (this has been chosen as an estimate of the limit in magnitude
of WEAVE) obtaining that MWEAVE

low,lim = 1.7 · 109 M⊙. As a consequence, WEAVE is in position to
be able to observe the lowest mass galaxies. In order to calculate the mass limit, a color (g − i)
representative of the entire sample has been chosen. It must be taken into account that this limit
may vary according to the redshift in which the studied cluster is located.

Using the inferred mass of the bulges, Fig. 21 shows the mass-size relation. First of all, it
can be seen that the points analyzed with ANDURYL follow the proper trend observed in the
Méndez-Abreu et al. (2021) data. It must be taken into account that the study in Méndez-Abreu
et al. (2021) used galaxies from the CALIFA survey that were field galaxies, and not cluster galaxies,
so they are galaxies with different morphological types. Even with this difference, it is seen that
the galaxies studied for cluster A2142 follow the same scale relationship as the field galaxies.
However, it can be seen that there is a slight offset and that the points fitted with ANDURYL are
slightly deviated from the mass-size relation, although within the deviation ranges of the fits. If the
parameters of the obtained fit lines are analyzed, and they are compared with the results obtained
in Méndez-Abreu et al. (2021) (see Table. 4) it can be seen that reasonably similar numbers are
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5.3: Scaling relations and magnitudes

Fig. 21: Representation of the mass-size relation. It has been decided to divide the analysis into two mass bins,
taken from Méndez-Abreu et al. (2021), that are 8 < log10(M∗/M⊙) < 10.5 and 10.5 < log10(M∗/M⊙) < 12, so that
the changes in the slope can be appreciated. The solid red line represents the best fit for the first mass bin, and the
dotted green line the best fit for the second bin. The mass of a galaxy of apparent magnitude 20 is represented in
a vertical magenta line in the “i” filter, which will be the lower limit of WEAVE exploration. The round blue dots
indicate the galaxies from Méndez-Abreu et al. (2021) work, the black star-shaped dots are the galaxies fitted with
a Sérsic profile and the green square-shaped dots are the galaxies fitted with a Sérsic+exponential profile. Red dots
indicate those that were hearing below the SDSS resolution limit of 70 km/s. The red and green shadows around
the best fits indicate the errors for each point, corresponding to σerr and 2σerr.

obtained between both works, within the margins of error. From this mass-size relation it can
be inferred that early-type galaxies, generally more massive, have larger bulges; although a study
at lower masses would be needed to be able to detect if there is another change in slope in the
environment of dwarf galaxies. This change in slope is the reason why it was decided to have split
the data into two mass bins, since a full fit would be unsuccessful.

Table 4: Comparison of best fit values for the mass-size relation between ANDURYL and Méndez-Abreu et al.

(2021)1. a and b are the coefficients of the fits log10(Re) = a+ blog10(M∗/M⊙).

log10(M∗/M⊙) a b
8-10.5 1.88 ±0.27 0.10 ±0.03
10.5-12 -7.06 ±0.78 0.95 ±0.08

log10(M∗/M⊙)
1 a b

8.0 - 10.5 0.88±0.48 0.20±0.05
10.5 - 12.0 -6.2±0.39 0.87±0.04

Another analysis that can be carried out is how the morphological fractions are distributed
along the clustercentric radius, that is, the distance of the galaxies with respect to the center
of the cluster, which is taken as the place where the Brightest Cluster Galaxy (BCG) is located
(Dressler 1979). This analysis can be seen in Fig. 22. Despite the fact that there are several
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5.3: Scaling relations and magnitudes

Fig. 22: Representation of the morphological fractions obtained for the galaxy cluster A2142 versus the quotient
between the clustercentric distance and the virial radius of the cluster, Rvir = 0.9 Mpc h−1. In black stars the
galaxies adjusted with a Sérsic profile are represented, and in blue squares those adjusted with a Sersic + exponential
profile are shown.

caveats due to the selection made, a certain tendency can be seen in which the fraction of elliptical
galaxies decreases with respect to the disc galaxies as the distance is greater with respect to the
center of the cluster. This study has focused, on radial scales, within the virial radius of the
cluster, which is Rvir = 0.9 Mpc h−1 (Einasto et al. 2018), since this is the densest region, and it
is not expected to find galaxies further away, results are expected mainly in this range of radius.
Moreover, the physical mechanisms that could explain this trend seem to require this density to
take place (Vulcani et al. 2023).

The results that have been obtained are consistent with the literature, since it is seen that at
distances closer to the center, that is, in the densest regions, elliptical galaxies dominate (Dressler
1980). Even with a majority of red galaxies, the separation between disc and elliptical galaxies
still allows us to observe some differences.
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Chapter 6

Conclusions and future work

In this work we have developed from scratch a new photometric decomposition method based
on Bayesian statistics. This is a major step forward in this kind of analysis since it overcomes a
number of problems inherent to least squares fitting codes. Some of the most notable improvements
are:

• We have now access to the full posterior distribution. This translates into a better understanding
and quantification of the uncertainties. There is a high degree of adaptability to new
information, and inferences can be made flexibly. The errors on each parameter have been
calculated from the sampling of the posterior distribution using a Bayesian method, and
therefore they fully include covariances.

• It includes all the observational effects necessary for a photometric decomposition: convolution
of the PSF, oversampling of the grid, inclusion of noise in the fit, etc.

• It has been possible to eliminate the need to provide initial conditions to the fitting. Therefore,
it is less dependent on the user and, in addition, this results in a release of the workload of
carrying out a previous analysis of each galaxy in order to estimate an initial value close to
the solution.

• The problems related to the inversion of components has been minimized, thanks to the use of
combined (bulge and disc) parameters in the priors, therefore avoiding unrealistic solutions.

Therefore, the work has fulfilled the objective of creating a code that could face the usual
problems of a least squares fitting code. The computational time takes around 2-5 minutes to fit
a Sérsic profile and around 15 minutes to fit a Sérsic+exponential profile, analyzing a galaxy in
each processor core, although this also depends on the particular case of each galaxy. The code is
already available on GitHub1, having a modular structure that facilitates the integration of other
photometric components.

The code has been solidly tested using mock galaxies, having a set of mock galaxies for each
photometric profile that can be adjusted with ANDURYL. It was found that the code can fit
models practically identical to the mock galaxies, while it was verified that the BIC separation
criterion can distinguish the components correctly, indicating in which cases a galaxy can be better
modeled with one model or another. The first science results derived with ANDURYL have also
been satisfactory. It has been possible to carry out a preliminary study of the galaxies in the A2142
cluster and calculate the WEAVE Cluster Survey limit mass for this case. Our conclusions are:

• Most of the galaxies analyzed in cluster A2142 are massive galaxies with masses greater than
1010 solar masses. This is related to the sample selection, based on spectroscopically selected

1https://github.com/CarlosMDLR/ANDURYL
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galaxies, in relatively shallow clusters. The WEAVE Cluster Survey will allow to explore
the low mass galaxies in clusters, therefore extending the sample up to the regime of dwarf
galaxies.

• Of the 175 galaxies successfully fitted, approximately 80% fit with a Sérsic profile and 20%
with an Sérsic+exponential profile, indicating that most of the population of this cluster are
early-type galaxies, which is in good agreement with literature.

• The magnitudes derived from the fitting coincided quite well with those given by SDSS,
which represent another test that probes that our new method is robust.

• The Faber-Jackson and the mass-size relations have been derived, finding that the galaxies
analyzed with ANDURYL follow the general trends also find in the literature.

• The morphological fractions of the cluster have also been calculated, finding that the elliptical-type
galaxies decreased as we moved away from the center of the cluster, that is, from the densest
areas. This is in good agreement with the predictions from the morphology-density relation.

The future prospects of this work come in different ways: firstly, add more stuctural components
to the code, such as a Ferrers profile to be able to fit bars. We will also test different priors
and physical limits that make the model more in accordance with observations, investigate other
possible sampling methods beyond Nested Sampling and improve the computation time by adapting
the code to work in supercomputer environments. The implementation of a Hierarchical Bayesian
method is also proposed to derive the scaling relations in a self-consistent manner with the fit
of each individual galaxy. The analysis of larger samples of galaxies (∼ 1000) of a larger sample
of clusters (∼ 50) reaching the regime of dwarf galaxies, using the WEAVE Cluster Survey, is
proposed.

On a personal level, doing this work has meant an improvement in my knowledge of Bayesian
statistics, in how to program more optimally in Python, and in how to deal with code bugs. And
it has improved my knowledge about the morphological analysis of galaxies.
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Appendix A: Box plots of mock galaxy samples

Appendix A: Box plots of mock galaxy samples

Fig. A.1: Different box plots for the parameters resulting from fitting the sample of bulge mocks with a
Sérsic+Exponential profile. The box extends from the first quartile (Q1) to the third quartile (Q3) of the data,
with a black line at the median. The whiskers extend from the box by a factor of 1.5 the inter-quartile range (IQR,
between Q1 and Q3). The red dotted lines represent the mean of the error, given by ANDURYL, of all the points
that are inside each box.

Carlos Marrero de la Rosa ii



Appendix A: Box plots of mock galaxy samples

Fig. A.2: Different box plots for the parameters resulting from fitting the sample of bulge-disc mocks with a
Sérsic profile. The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a black line
at the median. The whiskers extend from the box by a factor of 1.5 the inter-quartile range (IQR, between Q1 and
Q3). The red dotted lines represent the mean of the error, given by ANDURYL, of all the points that are inside
each box.
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Fig. A.3: Different box plots for the parameters resulting from fitting the sample of bulge-disc mocks with a Sérsic+Exponential profile. The box extends from the
first quartile (Q1) to the third quartile (Q3) of the data, with a black line at the median. The whiskers extend from the box by a factor of 1.5 the inter-quartile range
(IQR, between Q1 and Q3). The red dotted lines represent the mean of the error, given by ANDURYL, of all the points that are inside each box.
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Appendix B: Histograms of the parameters

Appendix B: Histograms of the parameters

Fig. B.1: Distribution of the parameters of the galaxies fitted with a Sérsic+exponential profile. In order from
left to right, effective surface brightness µe, effective radius Re, and Sérsic index n. The magenta vertical lines
represent the mean of the distribution, and the black vertical lines the Q1 and Q3 quartiles.
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