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Resumen

En los últimos años, las simulaciones cosmológicas, más concretamente las hidrodinámicas,
se han convertido en una de las grandes bazas de la astrof́ısica y la cosmoloǵıa para
intentar entender los procesos de formación y evolución de las galaxias. Esto se
debe, mayormente, a la accesiblidad temporal que las simulaciones ofrecen, ya que,
en contraposición a las observaciones, las simulaciones permiten tener acceso a todas
las caracteŕısticas que definen al sistema en cualquier momento determinado.

En este contexto, el Grupo de Teoŕıa del Instituto Astrof́ısico de Canarias ha
implementado módulos hidrodinámicos sobre el código de N-cuerpos PKDGRAV3.
Al tratarse de un código para simulaciones cosmológicas, las resoluciones utilizadas
son del orden de millones de masas solares, lo que hace imposible que los procesos
f́ısicos que dan forma a la materia bariónica de la galaxia (formación y feedback
estelar, formación de agujeros negros, etc.) puedan ser simulados. Por ello, es nece-
sario implementar f́ısica de sub-red (sub-grid physics); modelos que proporcionan
los efectos de estos procesos cuando no pueden ser resueltos y, por tanto, simulados.
No obstante, es necesario calibrar la f́ısica de sub-red para que las caracteŕısiticas
de las galaxias simuladas coincidan con nuestras observaciones del universo.

En este estudio, llevamos a cabo la calibración del feedback estelar de PKD-
GRAV3. A pesar de que el modelo implementado dependa de varios parámetros,
el feedback se puede controlar correctamente determinando la eficiencia máxima
(fth,max) de la enerǵıa eyectada por las part́ıculas estelares. Por ello, hemos creado
5 simulaciones con los siguientes valores para el parametro de máxima eficiencia:
fth,max = 0.5, 1, 3, 5 y 10. Estas simulaciones contienen 2003 part́ıculas tanto de
materia oscura como de gas, en un volumen comóvil (13.4 Mpc/h)3. Todas las sim-
ulaciones comienzan con las mismas condiciones iniciales, por lo que las diferencias
entre ellas son debidas, casi por completo, al diferente valor de la eficiencia. No ob-
stante, cabe resaltar que, debido a las restricciones de tiempo de un proyecto como
este, hemos desactivado los agujeros negros, y por tanto el feedback AGN en 4 de las
5 simulaciones. Solo fth = 5 contiene agujeros negros, lo que nos permitirá valorar
cómo afecta la falta de feedback AGN a nuestra calibración.

En este trabajo presentamos el proceso de calibración, empezando por una
introducción donde ponemos de relieve la importancia de las simulaciones hidro-
cosmologicas en la actualidad, además de la necesidad de llevar a cabo calibraciones
rigurosas para la f́ısica de sub-red. A continuación, presentamos la metodoloǵıa
utilizada durante el proceso. Empezamos describiendo el código, centrandonos es-
pecialmente en la implementación de la f́ısica sub-red. Tras describir la formación
estelar y la acreción y feedback de los agujeros negros, desarrollamos en profundidad
cómo se aplica el feedback estelar, además de dotar de sentido f́ısico a los parametros
computacional presentes en el código.

Tras describir el código y las simulaciones que hemos generado, nos centramos en
el post-procesamiento de los datos obtenidos. Para ello, es necesario identificar las



galaxias existentes en cada simulación, utilizando para ello los algoritmos Friends-
Of-Friends y Subfind. Por motivos obvios, una gran parte de los observables que
tenemos en astrof́ısica están relacionados con la luminosidad emitida por los objetos
celestes. Por ello, nos es necesario computar la luminosidad de las galaxias previ-
amente identificadas. Por tanto, generamos espectros de rango amplio utilizando
librerias espectrales. Además, definimos el ĺımite de masa mı́nimo que un halo debe
tener para ser considerado galaxia, y derivamos la luminosidad mı́nima correspon-
diente.

Uno de los observables más importantes a la hora de calibrar son la función
de masas y luminosidades estelares de las galaxias (GSMF y GSLF de sus siglas
en inglés, respectivamente). Llevamos a cabo un ajuste de estos utiliando infer-
encia bayesiana, por lo que presentamos los aspectos teóricos más relevantes de
la estad́ıstica bayesiana y las cadenas de Markov en la última subsección de la
metodoloǵıa.

Para los resultados, tomamos como referencia los datos en z = 0.1, ya que existe
literatura suficiente a este valor del redshift para poder llevar a cabo comparaciones
con estudios observacionales. Nos centramos principalmente en 3 observables: la his-
toria de formación estelar, la relación color-masa estelar y las ya mencionadas GSMF
y GSLF. En la historia de formación estelar, observamos diferencias notables en la
primera mitad del tiempo simulado, donde las eficiencias bajas permiten una for-
mación estelar notablemente mayor. No obstante, encontramos que a partir de z = 1
casi todas las eficiencias convergen a un valor cercano a Ψ ≈ 0.1 [M⊙/yr(Mpc/h)−3].
fth = 5 transforma ligeramente menos gas en estrellas, probablemente debido al
feedback AGN. Comparamos los resultados de nuestras simulaciones con la función
anaĺıtica de Madau. Presentamos también la relación color g− r - masa estelar para
las galaxias simuladas. Además, representamos esta misma relación y la historia de
formación estelar de una galaxia determinada para ilustrar el efecto del feedback en
la extinción de formación estelar. A través de esto obtenemos referencias cualitativas
del funcionamiento de las simulaciones.

Llevamos a cabo dos ajustes para la GSMF y la GSLF; para la GSMF, limita-
mos la probabilidad a priori del parámetro M∗ a 1011.5 M⊙ y 1013 M⊙. El primer
caso limita notablemente el punto de inflexión de la función Schechter, mientras que
el segundo no genera ninguna restricción sobre el ajuste. En el caso de la GSLF,
hemos ajustado una función Schechter única y una doble. Terminamos los resultados
mostrando los ajustes realizados junto con los valores obtenidos para los parámetros
α,M∗ y ϕ, además de sus incertidumbres y las corner plots que muestran su cor-
relación.

En la última sección, presentamos nuestras conclusiones. Encontramos que
fth = 5 es la eficiencia que mejor simula la historia de formación estelar en la
primera mitad del tiempo, pero después se aleja de la función de Madau más que el
resto de eficiencias. Además, comparamos los parametros obtenidos de los ajustes de
GSMF y GSLF con dos trabajos observacionales. Para la GSMF, encontramos que



el valor de referencia para la pendiente (α) se encuentra entre fth = 3 y fth = 5 para
la función limitada en 1011.5, mientras que está muy cerca de fth = 5 para el caso
sin limitar. Para la GSLF, la referencia tambien ofrece un valor intermedio entre
fth = 3 y fth = 5 para el Schechter único, mientras que se encuentra muy cercano a
fth = 1 y fth = 3 cuando el ajuste se hace con un doble Schechter. Para M∗, vemos
que, tanto para masas como para luminosidades, el punto de inflexión se encuentra
en posiciones mucho menos masivas que las que hemos obtenido. Relacionamos esto
con la desactivación de feedback de AGN, como nos indica que M∗ sea notablemente
más cercano al valor de referencia en fth = 5.

Por último, presentamos dos sugerencias para futuras calibraciones. Primero,
creemos que la presencia de agujeros negros haŕıa que el análisis sea más riguroso,
además de permitir analizar la degeneración entre ambos feedbacks. Para acabar,
exponemos un método de inferencia bayesiana para hacer que la calibración sea cual-
itativamente más exacta.



Contents

1 Introduction 1

1.1 Need for calibration . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Methodology 3

2.1 The code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Star formation . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 BHs accretion and AGN feedback . . . . . . . . . 5

2.1.3 Stellar feedback . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Galaxies selection and magnitude genera-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Bayesian mass and luminosity functions . . 10

2.3.1 GSMF and GSLF fits . . . . . . . . . . . . . . . . . . 14

2.4 Fiducial values . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Results 16

3.1 Total Star Formation History . . . . . . . . . . . . 16

3.2 Color-stellar mass relation . . . . . . . . . . . . . . 17

3.2.1 Color-stellar mass for individual galaxies . . . 19

3.2.2 SFH for a single galaxy . . . . . . . . . . . . . . . . . 21

3.3 GSMF and GSLF fit analysis . . . . . . . . . . . . 22

4 Conclusions 30



Master’s Thesis I. Juanikorena

1 Introduction

Cosmological simulations, particularly hydrodynamical simulations, have emerged
as powerful tools in astrophysics for investigating the formation and evolution of
galaxies. These simulations use computational models to recreate the large-scale
structure of the universe and the physical processes that govern the formation and
growth of galaxies.

A crucial aspect of hydrodynamical cosmological simulations is their ability to
simulate the formation and evolution of galaxies in a self-consistent manner. Obser-
vational data provides us with information about a specific moment in the evolution
of a certain galaxy, forcing us to make theoretical assumptions in order to reconstruct
their unfolding throughout the life of the universe. On the other hand, simulations
track the gravitational collapse of Dark Matter (DM) halos, the cooling of gas within
these halos, and the subsequent formation of stars, giving us access to information
of different features in any specific instant. By simulating these processes, we can
study how galaxies grow and develop by tracking their evolution. In a certain way,
we could say that these simulations act as virtual laboratories to explore and test
theoretical models and make predictions for future observations.

Furthermore, hydrodynamical simulations allow us to probe the impact of vari-
ous physical mechanisms on galaxy formation. For instance, we can study the effects
of feedback processes such as stellar winds, supernovae, and Active Galactic Nuclei
(AGN) on galaxy evolution. These simulations provide insights into the regulation
of star formation, the enrichment of galaxies with heavy elements, and the growth
of supermassive black holes at their centers.

1.1 Need for calibration

In the development of cosmological simulations, an essential step is the calibration
of the simulation code to accurately reproduce observed astrophysical phenomena.
Calibration involves fine-tuning the model parameters and incorporating empirical
data to ensure that the simulated universe matches our understanding of the real
universe. This process is crucial because it allows scientists to validate the simula-
tion results and make meaningful comparisons with observational data.

Stellar feedback is a key process in galaxy formation and evolution, and its accu-
rate representation in cosmological simulations is of paramount importance. Stellar
feedback refers to the energy released by stars into their surrounding gas through
various mechanisms, such as stellar winds, supernovae, etc. It plays a vital role
in regulating star formation, shaping the interstellar medium, and driving galactic
outflows. The stellar feedback, as well as other physical processes that baryonic
matter undergo, cannot be resolved, so sub-grid implementations are needed. These
are series of models that provide the effects of certain processes (star formation, BH
formation, stellar feedback, etc.) when it is not possible to simulate them.
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Calibrating the stellar feedback model in simulations involves matching the ob-
served properties of galaxies, such as their Star Formation Rates (SFR), Stellar
Mass and Luminosity Functions (GSMF and GSLF), and color-mass relations. This
requires careful adjustment of feedback parameters to reproduce the desired level
of star formation and gas distribution. The calibration process also relies on com-
parisons with observational data in order to reproduce faithfully our universe. By
refining the feedback model, we can achieve simulations that capture the observed
properties of galaxies across a wide range of time intervals.

Resolution, or the level of detail in a simulation, also plays a crucial role in the
calibration process, particularly for capturing the effects of stellar feedback. Higher
resolution simulations allow for better resolving individual star-forming regions, su-
pernova explosions, and the resulting energy injection into the surrounding gas. This
increased resolution leads to a more accurate representation of feedback processes,
enabling a more realistic reproduction of galaxy properties. However, achieving high
resolution comes at a computational cost; simulating a larger volume with higher
resolution requires significant computational resources, which are out of reach with
current technology if we want to reproduce a significant fraction of the universe.

In summary, calibration of the sub-grid physiscs is a vital step in the development
of cosmological simulations, ensuring that the simulated universe accurately reflects
observational data. Calibration of stellar feedback is of particular importance, as
it influences the regulation of star formation and the overall evolution of galaxies.
Thus, correctly calibrating simulation codes is necessary to achieve accurate and
insightful simulations that deepen our understanding of galaxy formation and the
cosmos in general.

1.2 Aim of the work

The Theory Group of the Instituto Astrof́ısico de Canarias has recently introduced
hydrodynamics (Asensio et al., 2022) on top of the N-Body code PKDGRAV3 cos-
mological code (Potter et al., 2016). In this work, we aim to calibrate the stellar
feedback sub-grid physics.

For this purpose, we run 5 simulations with different stellar feedback efficiency
values in a (13.4 Mpc/h)3 volume, resulting in a resolution around 106 M⊙. Due to
time constrains for this thesis, Black Holes (BH) have been deactivated in order to
speed up the runs and to provide us with enough simulations to accomplish a trust-
ful analysis. Nevertheless, one simulation is performed with full physics, meaning
that BHs are present, resulting in AGN feedback also playing a role alongside stellar
feedback. This will help us understand how the lack of AGN feedback affects our
analysis and calibration.

Throughout the following work, we first introduce the methodology applied
trough the calibration process in section 2. Here, we give some insight of the physics
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on the code (section 2.1), followed by a overview of the post-processing (2.2) and a
introduction to the methods applied in Bayesian fitting (2.3). After, we present our
results in section 3, which are mainly centered around the Star Formation History
(3.1), the color-stellar mass relation (3.2) and the fitting of the GSMF and GSLF
via Markov Chain Monte Carlo (MCMC) methods (3.3). Finally, we draw our con-
clusions in section 4, using the results to assess the pros and cons of each efficiency
value and suggesting improvements for future calibration processes.

2 Methodology

In this section, we will introduce the different algorithms and numerical codes that
have been employed to run and analyse simulations. In particular, we will present
the PKDGRAV3 code to perform hydrodynamical cosmological simulations, as well
as the post-processing, in particular the galaxy selection criteria, the galaxy magni-
tude computation and the building of the mass and luminosity functions.

2.1 The code

The foundations of PKDGRAV were set in the first place in Stadel (2001), where
a new method to run N-body simulations has been described. Potter et al. (2016)
presented a new version of the code, PKDGRAV3, where the computationally expen-
sive parts were ported on GPUs, thus greatly improving the performances. This is
currently one of the most efficient N-body sowftwares available; Potter et al. (2016)
performed the largest simulation (at that time) of 2 trillions of particles, which took
only 80 hours to reach z = 0, later surpassed by the EUCLID Flagship V2 (Euclid
Collaboration et al., 2021) simulation arriving at 4 trillions of particles. One of the
most extensive simulations of the large-scale structure of the universe was carried
out with it (Knabenhans et al., 2019).

The original PKDGRAV3 code is a N-Body code, thus not being suitable to
study galaxy formation and evolution. In this context, the Theory Group in the
Instituto Astrof́ısico de Canarias decided to adopt this code as a base, and imple-
ment hydrodynamics and galaxy formation and evolution physical modules, e.g.,
cooling, star formation, supernova feedback, black hole accretion, etc. To achieve
this, a quasi-Langrangian formulation is used; the gas is discreticed in individual
gas particles, but fluid equations are solved with the meshless finite mass method
(Hopkins & Raives, 2015), based on the work of Lanson & Vila (2008a,b). For a full
description of the hydro solver implemented, see Asensio et al. (2022).

On the first place, there are usually dark matter and gas particles (also called
Smoothed-Particle Hydrodynamics, SPH) with certain initial conditions, which, in
PKDGRAV3, can be introduced as an external file or created at the beginning of
the simulation given a seed. In our case, all the simulations have been created with
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the same amount of particles (information related to this can be seen in table 1)
and the same seed, so the initial conditions are equal for every simulation. They are
created using a second-order Lagrangian perturbation theory following Crocce et al.
(2006).

Once the simulations begin, the dark matter particles interact between them-
selves and with other particles only gravitationally, but the describing parameters
of the gas particles change via hydrodynamic interactions. The typical resolution is
106 M⊙, so small scale physical processes cannot be simulated, e.g., star formation
or stellar feedback. To include it, we need sub-grid physics, which are series of mod-
els that provide the effects of the physical process we cannot simulate, e.g., a gas
particle is transformed in a Single Stellar Population (SSP) of a certain mass. Under
certain density and metallicity conditions, following Schaye & Dalla Vecchia (2008),
these gas particles become stellar particles. Furthermore, black hole particle seeds
are placed in the center of the galaxies when they reach a mass over 1010 M⊙/h, as
done in Springel et al. (2005).

In general, the different sub-grid processes taken into account in the simulations
are: radiative cooling, reionisation, star formation, stellar mass loss and metal en-
richment, energy feedback from star formation, BH formation and accretion and
AGN feedback. For this work, we will be describing the star formation, the AGN
feedback and the stellar feedback, focusing mainly in this last one because the main
objective of this project is calibrating this process. The rest of the processes are
important for the evolution of the simulations, but they are also less linked to the
stellar feedback calibration.

2.1.1 Star formation

In cosmological simulations, a stellar particle does not represent a single star due
to the low mass resolution. Instead, it is represented by a single stellar population,
massive particles that inherit the properties of the parent gas. The formula to
compute star-formation rate (SFR, amount of gas mass that is converted into stars
per unit time), which tries to reproduce the Kennicutt-Schmidt law, can be written
in terms of pressure as

ṁ∗ = mgA
(
1M⊙ pc−2

)−n
( γ

G
fgP

)(n−1)/2

, (1)

where mg is the mass of the gas particle, γ = 5/3 is the adiabatic coefficient,
G is the gravitational constant, fg is the mass fraction of gas and A = 1.515 ×
10−4 M⊙ yr−1 kpc−2 and n = 1.4 are constants set to reproduce a Chabrier Initial
Mass Function (Chabrier, 2003). The conversion of a gas particle in a stellar one is
a stochastic process; a particle has a probability equal to

min

(
ṁ∗∆t

mg

, 1

)
(2)
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to become a SSP, where ṁ∗ is the star formation-rate and ∆t is the time step
of the simulation. Two conditions are set in order to ensure that the features of
the gas are similar to the star-forming interstellar cold molecular gas; a gas particle
must be denser than (Schaye et al., 2010)

∗
nH(Z) = 0.1

(
Z

0.002

)−0.64

cm−3 , (3)

where Z is the gas metallicity (Schaye et al., 2010), and under a temperature

Teos(ρg), set by the equation of state P ∝ ρ
4/3
g and normalized to Teos = 8 × 103 K

at nH = 10−1cm−3 (where nH is the number density of hydrogen and ρg is the mass
density of the gas). Gas particles with densities and temperature corresponding to
log T < log Teos + 0.5 and nH >

∗
nH(Z) will transition with a probability set by

equation (2).

2.1.2 BHs accretion and AGN feedback

Black Holes are widely considered to be one of the main players in galaxy formation
and evolution (Kormendy & Ho, 2013). BH creation and evolution is a multiscale
physical process that cannot be captured at the resolution of hydrodynamical sim-
ulations. Instead, we use sub-grid physics to create a BH, to simulate its accretion
process and the subsequent Active Galactic Nuclei feedback. In hydro cosmological
simulations, BHs are subject to three different processes: seeding, accretion and
feedback.

BH seeding is performed by converting the star forming gas particle with the
lowest potential energy in a galaxy into a BH particle when the halo’s mass exceeds
1010M⊙/h, with an initial mass MBH = 105M⊙/h. Once a BH is seeded, it can start
growing in mass by accreating nearby gas particles, with an accretion rate equal to
min(ṁEdd, ṁB), where ṁEdd = 4πGmBHmp

ϵrσT c
is the Eddington mass acretion rate, and

ṁB is the Bondi accretion rate (Bondi & Hoyle, 1944).

AGN feedback is implemented in a stochastic thermal way, but this method is
conceptually equal to the stellar feedback (explained in section 2.1.3). The energy
injection rate is ϵfϵrṁaccrc

2, where ϵr = 0.1 is the typical value for the radiative
efficiency of BHs and ϵf is the calibration parameter, analogous to fth, which should
be also calibrated.

However, BHs are important for quenching star formation in massive galaxies
and are dominant in galaxy evolution at the massive end of the GSMF (Kormendy
& Ho, 2013). Since the goal of this project is to calibrate the stellar feedback, we
deactivate BH physics in all but a single run, corresponding to fth = 5.

5 ULL, 2022/23



Master’s Thesis I. Juanikorena

2.1.3 Stellar feedback

The main goal of this project is calibrating the stellar feedback in the new PKD-
GRAV3 code; i.e., deriving the correct values for the parameters that control the
energy injected by stellar particles.

Stars are known to have a significant role in the creation of galactic structures via
radiation, stellar-winds and, mainly, type II and type Ia supernovae (SN-II, SN-Ia).
This way, the most massive stars formed in a SSP heat up the ISM and can possibly
drive galactic-outflows of the ISM, thus quenching star formation. Therefore, includ-
ing this effect is vital in order to model galaxy formation and evolution correctly,
specially at low stellar mass, where stellar feedback plays a dominant role. Various
approaches have been made during recent years, but what creates consensus is the
fact that subgrid physics implementations are required to avoid the ”overcooling”
problem.

Historically, simulations have not been able to implement correctly stellar feed-
back; the efficiency of the transmission of energy from stellar to gas particles has
been low, creating issues in energy conservation and preventing simulated galaxies
from correctly achieving observed properties. According to Dalla Vecchia & Schaye
(2012), the fundamental reason behind this is that the energy released is deposited
in too many gas elements. Physically, SNII inject energy mechanically in their
nearby gas (in a mass of few M⊙), which later produces large temperature increases
(∆T ∼ 108 K) around it via thermalization of the ejecta. On the other hand, when,
in a simulation, energy is deposited in neighbour gas particles, the amount of mass
heated is much larger, deriving in much smaller temperature jumps (∆T ). When
each gas particle is heated by ∆T ∼ 105 − 106 K the energy is radiated back very
quickly, often in less than a time-step, producing a big reduction in the efficiency
of the process. Quantitatively, this is usually calculated relating the cooling-time of
the gas particles with their sound-crossing time (the time that takes for a mechan-
ical perturbation to cross the resolution element). In this context, augmenting the
resolution (smaller particles) helps keeping better efficiencies, but does not solve the
problem fundamentally.

In this work, the stellar feedback is implemented in a thermal and stochastic
manner following Dalla Vecchia & Schaye (2012). The general idea is rather sim-
ple: instead of dividing the energy released by the SSP between all the neighbours
(therefore giving each of them a small temperature jump), every neighbour has a
certain probability to be heated up by a fixed amount ∆T .

Assuming that stars in the range 6 − 100 M⊙ explode as SNII events releasing
1051 erg (Chiosi et al., 1992) and a Chabrier IMF, 8.73× 1015 erg g−1 of stellar mass
formed in a SSP should be released as stellar feedback energy to the SPH particles.
This energy, in physical units, is freed 3×107 yr after the creation of the stellar par-
ticles, corresponding to the maximum lifetime of stars that undergo SNII explosion.
Therefore, we can set a ∆T in order to minimize numerical losses due to overcooling,
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and define fth: the fraction of the total amount of energy from SNII per unit stellar
mass that is injected on average in the stochastical process. In the most simple case,
fth = 1, the average energy per unit mass injected will be, as we have previously
noted, 8.73 × 1015 erg g−1. But as this theoretical calculations are not enough to
assure the correct functioning of the simulations, finding the most suitable value for
fth is vital and the main objective in this project.

The detailed implementation of the stochastical feedback is done as follows: when
a star particle is set to free its feedback energy, every neighbour particle is awarded
with a 0 ≤ r ≤ 1 random number. The gas particles will receive the energy, and
therefore get a ∆T temperature jump, if r ≥ p is fulfilled. A formal derivation of
the value of p can be observed in Schaye & Dalla Vecchia (2008), but, in short, this
parameter is set by requiring the mean energy received by SPH particles to be equal
to that liberated by the SSPs. This way,

p = fth
ϵSNII

∆ϵ

m∗∑Nngb

i=1 mi

, (4)

where ϵSNII = m∗ 8.73× 1015 erg g−1 and ∆ϵ are the total available energy in the
SSP and the energy jump in the SPH particles (related to ∆T ), m∗ is the mass of
the star particle, Nngb is the number of neighbours and mi the mass of each of these
ones. Overall, the mean total number of heated gas particles is,

< Nheat >≈ 1.3fth

(
∆T

107.5

)−1

. (5)

In the code, ∆T = 107.5 K is set, which is a suitable value and it simplifies
equation (5) to < Nheat >≈ 1.3fth.

Once all the sub-grid physics depends only on the free parameter fth, there is
one last effect to account for: the dependence of fth on the local conditions. Cooling
functions, and therefore stellar feedback, are dependent on the metallicity, as the
cooling via metal lines are usually larger than pure H and He lines. Nevertheless,
at high redshifts, where galaxies are generally less metallic and densities are high,
feedback seems to be too inefficient (Schaye et al., 2015). Because of that, another
dependence on the local density is added to compensate the initial losses at high
densities, leading to the following expression for the feedback efficiency parameter,

fth = fth,min +
fth,max − fth,min

1 +
(

Z
0.1Z⊙

)nZ
(

nH,Birth

nH,0

)−nn
. (6)

Here, Z and Z⊙ = 0.0127 are the stellar particle’s and solar metallicities re-
spectively, nH,Birth is the gas density at birth and the following values are set:
nH,0 = 0.67 cm−3, nZ = nn = 2/ln10 = 0.87. fth,max and fth,min are the maxi-
mum and minimum efficiency parameters; we will have fth ≈ fth,max when Z ≪
and/or nH,Birth ≫ and fth ≈ fth,min for the contrary. In an ideal situation, every
parameter which is not set by the SSP particles themselves, nH,0, nZ , nn, fth,min and
fth,max, should be calibrated. But obviously, this would generate an unmanageable
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degeneracy that would make the calibration unfeasible. In this context, the previ-
ously mentioned values are fixed, as well as fth,min = 0.5, thus leaving fth,max as the
only free parameter. The rest of values are taken from Schaye et al. (2015), where
they were determined by a set of small tests.

This way, for a given fth,max, the feedback parameter in equation (6) is repre-
sented by a sigmoid as a function of both stellar density (nH,Birth) and metallicity
(Z) parameters. In figure 1, we can see these dependencies for different values of
fth,max. Here, fth,min and fth,max set the minimum and maximum values, while the
rest of assumed parameters control the form of the curve.

-1 0 1 2
log10 Z

0.5
1

3

5

10

f th

nH, birth = 0.67 cm 3

fth, max =  0.5
fth, max =  1
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fth, max =  10
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0.5
1

3

5

10

f th

Z = 0.1 Z
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fth, max =  3
fth, max =  5
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Figure (1) Dependency of the stellar feedback efficiency parameter with respect
to parent gas metallicity (left) and density (right). On the left, density is fixed to
nH,Birth = 0.67 cm−3, on the right, metallicity fixed to Z = 0.1 Z⊙. fth is shown for
5 different values of fth,max, colors indicated in the boxes.

Things like that, we have just set the fundamental pillars of our project; the feed-
back energy from stellar particles is controlled by a single parameter, fth, that itself
depends just on fth,max. Our challenge is now creating simulations with different
values for fth,max and analysing the results in order to find the most suitable choice.
In Schaye et al. (2015), the final value chosen was fth,max,EAGLE = 3, but there is
no reason why that should also be applied to the new hydrodynamic PKDGRAV3
code. Due to time limitations, we have run 5 simulations with the following values:
fth,max = 0.5, 1, 3, 5, 10.

8 ULL, 2022/23



Master’s Thesis I. Juanikorena

2.2 Galaxies selection and magnitude generation

In this section, we introduce the galaxies identification and their selection criteria.
We will also give a general explanation on how the galaxy stellar luminosities in
different bands are computed; we adopted magnitudes instead of flux in order to be
consistent with current literature.

To identify galaxies in a snapshot, we apply the well-known Friends-Of-Friends
(FOF) (Davis et al., 1985) and Subfind algorithms (Springel et al., 2001), incorpo-
rated in Gadget4 (Springel et al., 2021). When identifying individual galaxies, we
impose a minimum of 32 DM particles per subhalo in Subfind. For our studies here
we consider a galaxy subhalo having a total stellar massM∗ > 6.1M⊙, corresponding
to 100 stellar particles. This number, yet arbitrary, sets a reasonable lower limit to
what we consider a galaxy.

We follow Negri et al. (2022) for the magnitude generation process. We post-
processed all stellar particles bound to galaxies in a series of apertures to test the
correctness of the simulation. Nevertheless, the mass of the star particles, when
generated, is similar to that of their parent gas particle, i.e., Mpart,∗ ∼ 106 M⊙. In
low redshifts as z = 0.1, as the SFR is orders of magnitude smaller than in high
redshifts (see figure 4), the low resolution of the SSPs introduces a big stochasticity
in the star formation process. Because of that, all the SSPs with ages < 100Myrs are
transformed back into their parent gas particle, which is then resampled by 104 M⊙
star particles with ages randomly selected in the range 6.3− 100 Myrs. The resam-
pling process reduces the randomness of the star formation, leading to smoother
magnitude computations.

A star particle in the simulation is characterized by its metallicity, age and initial
mass. We adopted the Chabrier initial mass function in the computation, as in the
simulations, and we employed the E-MILES (Vazdekis et al., 2016) stellar spectra li-
brary and Padova isochrones (Girardi et al., 2000) to compute the emitted spectrum
for each stellar particle. This is done in a wide spectral range λ ∼ 1680 Å − 5 µm
(from far UV to mid-IR). Afterwards, the fluxes of every star particle in each galaxy
are summed up to compute the galactic spectra. We then convolve the spectrum
with the response curve of the SDSS (Fukugita et al., 1996) and 2MASS (Cohen
et al., 2003) filters to obtain the galaxy broad band luminosities. More specifically,
we used theKs filter of 2MASS for the limiting magnitude calculations and the g and
r filters for the rest of the analysis (centered in λg,cen ∼ 4770 Å and λr,cen ∼ 6230 Å
respectevely).

For limiting magnitude calculations, we use the total magnitude in the 2MASSKs

band which is centered in the infrared (IR) part of the spectrum (λK,cen ∼ 21600 Å).
After trying some filters in higher energy ranges, we have seen that this election
leads to a relation with smaller dispersion in figure 2. Galaxies, overall, have more
consistent emissions in the IR because this range is less sensitive to younger stellar
populations than the UV or visible bands, thus there is less spread in magnitude
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between young and old galaxies. This way, our discrimination is less subjected to
stellar formation and other processes, and accounts more correctly for the mass of
the galaxy.

We divide the magnitude range (−26.1 ≲ Ks ≲ −13.5 for all efficiencies) of all
the galaxies in 30 bins, and distribute them in a Ks vs M∗ relation. This way, the
lower magnitude limit is set by the faintest bin in which the individual mass of the
95% of galaxies is greater than the 100×Mpart,gas limit previously set. This yields
a result of Ks,lim ≈ 19.15, which we will use as a limit in the analysis over magni-
tudes. Figure 2 shows the Ks vsM∗ relation with the limits in mass and magnitude
superimposed.

However, we will not use the infrared Ks magnitude in our analysis, but the r
band. Because of that, we want to translate Ks,lim ≈ 19.15 into the later, in order
to use it as a lower limit for our GSLF fits. For that, we plot the r magnitude of
each galaxy with respect to Ks and perform a linear fit. This way, the value of
r where the the linear fit and Ks,lim intersect will be our limiting magnitude rlim.
This values are quite different between simulations, so we have decided not to take
the mean and use a different limit for each efficiency. These linear fits are shown in
figure 3.

2.3 Bayesian mass and luminosity functions

Bayesian inference is a statistical framework that allows us to compute parameter
values by combining prior information with actual data. It employs Bayes’ theorem
(Gregory, 2005; van de Schoot et al., 2021) to calculate the posterior distribution,
which represents the updated probability of the parameters. The likelihood repre-
sents the probability of observing the data given specific values of the parameters,
and is commonly defined by previous theoretical knowledge. The evidence is the
probability of observing the data averaged over all possible values of the parameters,
and it serves as a normalization term. Finally, the prior represents our knowledge
on the implemented model, meaning that we specify it independently with respect
to the data in order to set theoretical limits to the parameters. Bayesian inference
provides a way to gather all these to quantify uncertainty and make probabilistic
predictions on the model parameters. Bayes’ theorem is stated as:

f(θ|x) = f(θ)f(x|θ)
f(x)

(7)

where f(θ|x) is the posterior, i.e. the probability of the model and the parameter
θ given the data x, f(x|θ) is the likelihood, which is the probability of the data x
given the model and the parameter θ and f(θ) is the prior. The denominator f(x)
is the evidence, and it is the integral of the nominator over all the parameter space
(in Bayesian terms is marginalized):

f(x) =

∫
f(θ)f(x|θ)dθ . (8)
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Figure (2) Magnitude Ks - stellar mass relation for every simulation at z = 0.1.
The blue horizontal line represents the limiting mass M∗ = 100 · Mpart,gas and the
green vertical line the corresponding magnitude Ks,lim (see section 2.2). The effi-
ciency of each simulation and the limiting values are shown in the boxes. The limit
in mass is the same in every case.
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Figure (3) Ks - r relation for every galaxy and simulation at z = 0.1. The blue
horizontal line represents the limiting magnitude Ks,lim and the green vertical line
the corresponding value of r (see section. The diagonal purple line is represents the
linear fit 2.2). The efficiency of each simulation and the limiting values are shown
in the boxes.
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The evidence is a constant, and it can be neglected when applying bayesian in-
ference, while it is of great importance while doing model selection, which we will
not treat here.

In this section, we give a brief, qualitative explanation on how Markov chain
Monte Carlo fitting works, and how we apply it to compute mass and luminosity
functions. We follow the approach of Andreon et al. (2005) and Negri et al. (2022).
We should also point out that, to fit GSMF and GSLFs, the data is usually binned,
each bin is assigned a Poisson error (i.e.

√
N where N is the number of counts) and

the histogram is then fitted with a Schechter function. With this method, the num-
ber of data points is reduced significantly, leading to biases and loss of information.
In addition, if a bin has a single count, the error in the logarithmic representation
diverges to log(

√
N = 1) = −∞, further complicating the representation of uncer-

tainties. For this reason, we choose to apply bayesian inference in our work.

MCMCs are one of the most commonly used methods in bayesian statistics to
explore the posterior distribution. In our case, we will restrict ourselves to bayesian
inference, where the Bayes theorem is used to infer the best fit parameters of a distri-
bution and their uncertainties. For both the GSMF and the GSLF, we will assume
a Schecter function (we will dig into it in section 2.3.1), which needs 3 parameters
(5 in the case of the double Schecter) to be univocally described.

The main objective now is to determine the posterior distribution function; the
value of the parameters (and their uncertainties) so that the fitted function is most
likely. Following Andreon et al. (2005), we apply the Extended Maximum Likelihood
method here, where the extended likelihood for the Schechter function is defined as,

ln Λ = s+

Ngal∑
i=1

ln p(Mi) ; s = −
∫ Mf

Mb

p(M) dM . (9)

Here, Mi is the luminosity of the ith galaxy, Ngal is the number of galaxies, s
represents the expected number of galaxies given the model, which is calculated in-
tegrating the extended probability p(M) between two limiting magnitudes Mf and
Mb, the faint and bright, respectively. p(Mi) is the extended probability (not nor-
malized to 1) of the ith galaxy of having a magnitude equal to Mi. p(M) = V Φ(M)
with V = (13.4Mpc/h)3 is the simulation volume, and Φ is the distribution function,
in our case a Schechter (section 2.3.1).

Once the likelihood is set, MCMC is applied in the following way: an initial point
in the parameter space is provided, and the MCMC starts to explore the posterior.
In the next iteration, each parameter is awarded a nearby value to the previous one
(θ⃗new) and the new likelihood is computed (Λnew). After this, a random number
(rand) from a flat distribution between 0 and 1 is created, and the chain will take
the new values (Λnew) if,

rand <
Λnew

Λold

. (10)
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Obviously, if the likelihood is bigger with the new parameter values, the chain
will jump to them. Instead, if the likelihood is smaller, the chain will jump or re-
main with a rand probability. This is applied because, at the end of the day, we
want to find the parameter values that set the total maximum likelihood, but local
maximums exist. On the one hand, if the current value is the total maximum, the
parameter will fluctuate around it; but, if it is a local maximum, at some point, the
chain will go far enough so that the tendency in the following iterations will lead to
the total maximum. This can be done with multiple walkers at once.

A prior sets the range of values where each of the parameters can have a non-zero
probability. In our case, we have set flat priors, meaning that, around the current
value, any other number has the same probability of being assigned. Nevertheless,
we have limited the parameter space in some parameters due to physical motivations
(see section 2.3.1).

We employed 30 walkers with 10000 iterations, but the first 1000 are considered
burn-in points and disregarded. This is done to be fairly independent on our first
guess. To finalize, the median value of the parameters through the random walk is
computed, which results in determining the posterior distribution.

2.3.1 GSMF and GSLF fits

First of all, we need to point out that, in all the simulations, we have excluded the
central galaxies; in this case, the 7 most massive ones. These are formed in the
centers of clusters, and their growth and evolution is driven by the immense mass
accretion rates, lead by the fact that they are located in the center of huge gravi-
tational wells. Anyways, central galaxies, being so massive, are barely affected by
stellar feedback, so their role in our calibration can be disregarded.

Historically, the Galactic Stellar Mass Function and Luminosity Functions have
been fit with a Schechter (1976) function. As we have previously indicated, we need
3 parameters to define the Schechter luminosity function, which is given by:

Φ1 = 0.4 log(10)ϕ100.4(α+1)(M∗−M) exp−100.4(M
∗−M) . (11)

Note that, despite calling it luminosity function, we work with magnitudes. This
later expression in terms of magnitudes can be derived from the original luminosity
dependent one. This way, α is the slope at the faint end of the function, where
the small-medium sized galaxies are located. The knee of the luminosity function
is represented by M∗, and it sets the point where the LF transitions from a power
law to an exponential cut-off. Finally, ϕ is just the normalization factor, which we
consider the least interesting parameter in terms of physical consequences. In our
case, we will use the stellar magnitude in the band r.

In the recent years, some observations showed that the steep end of the functions
are not correctly fit by a single Schechter (Baldry et al., 2008; Blanton et al., 2005;
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Li & White, 2009). In this work we also fit a double-Schechter function, assuming
the knee magnitude is the same for the two components. This is given by:

Φ2 = 0.4 log(10) exp−100.4(M
∗
2−M)[

ϕb10
0.4(αb+1)(M∗

2−M) + ϕf10
0.4(αf+1)(M∗

2−M)
]
,

(12)

where the b and f subscripts represent the bright and the faint parts of the data,
respectively. In this case, the fit is usually highly degenerate, and we do not expect
it to be very useful in our conclusions, but it is done for the sake of completeness.

On the other hand, the galactic GSMF is treated in a similar way, also fitted with
the same 3 parameters (α,M∗, ϕ). The Schechter function for masses is the same
as in equation (11), it has the same functional form but the parameter values are
different (M∗ here represents the knee mass instead of the knee magnitude). In this
second fit for galactic masses, we have decided to set 2 different priors. The reason is
the following: our simulations lack AGN feedback, which increases the steepness at
the large mass galaxy range. Thus, we expect the knee to move to brighter values, so
we will analyse how the prior affects it. In this context, we have conducted 2 fits with
a prior for M∗ limited between 108.5 < M∗/M⊙ < 1011.5 and 108.5 < M∗/M⊙ < 1013

to test if the LF knee is dominated by the prior. The later one, taking into account
we limit the minimum mass of galaxies at 6.1×108M⊙ ≈ 108.75M⊙ and that we take
out the central massive galaxies, sets virtually no restriction to M∗.

2.4 Fiducial values

Here we present a table with the different simulation efficiencies, cosmology values,
values for the feedback parameters, etc.
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Simulations

fth,max 0.5 1 3 5 10

BHs
activated

No No No Yes No

ΛCDM

h 0.6711 Ω0 0.3 Ωb 0.049

ΩΛ 0.7 σ8 0.8288 ns 0.9624

Simulation values

Box size 13.4 Mpc/h z range 49− 0 Num.
particles

2003

Stellar feedback

fth,min 0.5 Z⊙ 0.0127 nZ = nn 0.87

nH,0 0.67 cm−3 IMF Chabrier ∆T 107.5 K

Table (1) Table containing a summary of different values fixed for the simulations.

3 Results

We run 5 simulations, with efficiencies fth,max = 0.5, 1, 3, 5 and 10, evolving them
from z = 49 to 0. In order to compare with current literature, we decided to work
with z = 0.1 data, as it is done in the calibration of EAGLE (Crain et al., 2015).
In the following section, we will present the most significant results in the analysis
of the simulations divided by observables. We show first the total Star Formation
History, followed by the color-stellar mass relation and we discuss the effects of fth
on these. Finally, we present the Galactic Stellar Mass and Luminosity Function fits.

3.1 Total Star Formation History

The Star Formation History (SFH) measures the amount of mass converted from gas
to stars per unit of time and volume throughout the evolution of the universe. In
the context of cosmological simulations, this is easily computed by measuring how
many gas particles are transformed into star particles in a time bin, weighted by
their initial masses.

In first place, we calculate the SFH of the whole cosmological volume for each
simulation in terms of redshift (and lookback time). The lookback time is calculated
assuming the results of the Planck collaboration (and N. Aghanim et al., 2020), re-
sulting in an age of the universe of 13.8 Gyrs. We show also the analytic Madau
function (Madau & Dickinson, 2014) in order to compare our results (figure 4).

It is clear that all efficiencies start forming stars at z = 10, and scale in a similar
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Figure (4) SFH for the whole volume for all the runs. The corresponding lookback
time for each redshift is on the top axis. The analytic Madau function is overplotted
in yellow. The box shows the color of the data in each simulation.

way for a short period of time. Afterwards, fth = 0.5 and 1 keep increasing the
SFR rapidly, while fth = 5 and 10 prevent stars from forming, thus moderating the
SFR. All the simulations hit their maximum SFR in the z = 3−1 interval, and later
decrease softly. We can see that the low efficiency ones have a smoother evolution,
while the high ones tend to be more bursty.

The analytic Madau model starts forming stars in higher redshifts, even before
the beginning point of our simulations. In later stages, after z = 1, all the efficien-
cies converge to a value near Ψ ≈ 0.1 [M⊙/yr (Mpc/h)−3]. In the range z = 7 − 3,
efficiency fth = 5 seems to give the closest results to the analytic model, and from
z = 3− 1, before all simulations converge, fth = 10 reproduces it best.

3.2 Color-stellar mass relation

In this section, we present the g− r color - stellar mass relation for each simulation.
The magnitudes in both bands correspond to the total mass. In this case, we will
not exclude galaxies with M∗ < 108.75M⊙, but note that a big fraction of the objects
are below this limit, see figure 5.

All the plots present a recognizable red sequence, but its extension in mass is
shorter for higher efficiencies. The red sequence reaches almost 1010 M⊙ galaxies
for fth = 0.5 and 1, but ends before 109 M⊙ for fth = 5 and 10; in fact, there are
barely any galaxies in the 109− 1010M⊙ range for the high efficiencies, where stellar
feedback is most efficient. This shows how large efficiencies prevent medium sized,

17 ULL, 2022/23



Master’s Thesis I. Juanikorena

108 109 1010 1011 1012

log10 M* [M ]

0.2

0.0

0.2

0.4

0.6

0.8

g
r[

m
ag

]

fth = 0.5

108 109 1010 1011 1012

log10 M* [M ]

0.2

0.0

0.2

0.4

0.6

0.8

g
r[

m
ag

]

fth =  1

108 109 1010 1011 1012

log10 M* [M ]

0.2

0.0

0.2

0.4

0.6

0.8

g
r[

m
ag

]

fth =  3

108 109 1010 1011 1012

log10 M* [M ]

0.2

0.0

0.2

0.4

0.6

0.8

g
r[

m
ag

]

fth =  5

108 109 1010 1011 1012

log10 M* [M ]

0.2

0.0

0.2

0.4

0.6

0.8

g
r[

m
ag

]

fth =  10

Figure (5) g− r color-stellar mass diagram at z = 0.1 for all the galaxies. Galaxies
magnitudes are computed inside an aperture of 2000 kpc. The efficiency of each
simulation is shown in the boxes.
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red galaxies from forming.

Red galaxies are overall older and quiescent, without almost any star formation.
This is because the emission of small sized, long living stars is situated in the red-
der part of the spectrum in comparison to newly formed, massive ones, whose UV
emission dominates their spectra. This is closely related to the SFH in figure 4;
the difference in star formation rates is large in high redshifts, whereas it becomes
negligible in later times. Moreover, the red sequence is not only shorter in mass for
high efficiencies, but also bluer, as it is placed between g − r = 0.4− 0.6 for fth = 5
and 10 and between g − r = 0.5 − 0.8 for fth = 0.5 and 1. fth = 3 is basically a
transition case between both.

On the other hand, there is a visible blue cloud in all the simulations, which
contains star-forming galaxies. The difference in this region is considerably smaller
than in the red sequence, what can also be explained by the similar SFR in the
late universe. Also, the blue cloud in high efficiencies is, although not more popu-
lated, more isolated because the green valley is almost nonexistent for fth = 5 and 10.

3.2.1 Color-stellar mass for individual galaxies

To better illustrate the effect of feedback on the color and stellar mass of red se-
quence galaxies, we have chose to follow 3 individual galaxies: a blue (g− r = 0.15,
M∗ = 5.3 × 109 M⊙), a green (g − r = 0.48, M∗ = 2.8 × 109 M⊙) and a red one
(g − r = 0.75, M∗ = 1.4 × 109 M⊙) in the fth = 0.5 simulation. After identifying
this same galaxies in every simulation, we plot their individual color-stellar mass
relation in figure 6.

In order to find the same galaxies in other simulations, we select the DM particles
bond to the subhaloes and, identifying the particles by their IDs, we verify in which
galaxy they are located in the rest of simulations. In this process, the 80th per-
centile of the particles were contained inside a galaxy with rather similar properties
in the rest of simulations. There is one exception, the blue galaxy in fth = 3; most
of its particles were located inside a massive central galaxy, so we have decided to
disregard this case.

In figure 6 we see the individual transformation in the color of 3 galaxies when
the efficiency is changed. In the red galaxy, we can observe the general behaviour
mentioned earlier; when the efficiency is increased the color and the stellar mass
decreases almost linearly, thus overall creating a shorter and bluer red sequence. On
the other hand, the transformation of the green galaxy is less clear, there is not a
clear relation in the change of color, but the stellar mass tends to decrease with effi-
ciency. Finally, for the blue galaxy, the change seems to be almost random, without
any clear pattern neither for color nor for mass.

The reason behind this can be understood similarly to that on section 6; smaller
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Figure (6) g−r color-stellar mass diagram at z = 0.1 for 3 individual galaxies. The
values in simulation fth = 0.5 for each galaxy are: g − r = 0.15, M∗ = 5.3× 109 M⊙
for the blue, g − r = 0.48, M∗ = 2.8 × 109 M⊙ for the green and g − r = 0.75,
M∗ = 1.4 × 109 M⊙ for the red. Different markers represent different simulation,
shown in the box.
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SFRs in early stages induce old galaxies to form less star particles along larger
periods of time, what turns into less total stellar mass and a bigger massive / non-
massive star relation at z = 0.1. At low redshifts, the SFRs are much more similar
for all the simulations, so the randomness in star formation creates a more chaotic
behaviour in this relation.

3.2.2 SFH for a single galaxy

Here, we present the SFH for the red galaxy analysed in 3.2.1 at redshift z = 0.1.
The graph is visible in 7, and the logarithmic SFR along the evolution of the galaxy
in different simulations is represented in it. Note that this is a histogram, so the
bins tend to make the graph more bumpy than the actual star formation evolution.
Also, the line width increases with efficiency for the sake of visualization, but this
has to be taken into account when analysing the duration of the star forming bursts.
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Figure (7) Individual Stellar Formation History at z = 0.1 for the red galaxy in
figure 6. The color that represents each simulation is in the box alongside the median
of the age of star formation. Note that the line width increases with efficiency and
this can alter the perception of the width of bins.

We observe how, for the lowest efficiency, the star formation is continuous through-
out its history. For fth = 1, the formation is also almost continuous but notably
smaller, thus producing less stars, and the same happens for fth = 3; there exists
star formation along the whole range but it has a more bumpy behaviour than the
previous ones. For fth = 5, the star formation is condensed in temporally separated
bursts that tend to be similar to the fth = 3 case but less frequent in time. Finally,
fth = 10 starts creating stars at the same time as the the rest, but after some bursts,
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the galaxy is kept quenched until after z = 1.

This SFHs fit well with what we observe in figure 6, the integrated SFR, what
basically equals the total stellar mass, is obviously larger for lower efficiencies. On
the other hand, the later bursts in high efficiencies create bigger fractions of the to-
tal mass in later epochs, so the surviving massive stars make the whole galaxy bluer.

Regarding the physics of the system, this graph shows very well the behaviour
of stellar feedback. After forming the first stars at the same time, high efficiencies
displace surrounding gas considerably, quenching the star formation in later stages
until the gas has time to gather and cool again. In fact, the feedback of the first stars
at fth = 10 inhibits formation for almost 6Gyrs. Furthermore, when the efficiency of
the feedback is low, less gas is heated up, cold gas is more abundant and the galaxy
keeps forming stars continuously.

3.3 GSMF and GSLF fit analysis

In this section, we present the results of fitting the Schechter function to the mass
and luminosity distributions for every simulation at z = 0.1. In the first place, we
show two fits for the mass distribution; both are computed with flat priors, but the
first one’s prior is limited at 1011.5M⊙ (narrow-prior) and the second one at 1013M⊙
(large-prior). Afterwards, we present the luminosity functions fits with both a sin-
gle and a double Schechter. As we have previously explained, we fit all the galaxies
using bayesian inference, but the data is binned for representation alongside with
Poissonian error bars. The line in the plot shows the Schechter function with the
best fit parameter values. Also, we show shaded areas around the line delimited by
the uncertainties of the parameter α. This helps visualize the uncertainty of the
slope in each simulation and mass/magnitude range. All the best fit parameters are
shown in table 2.

Concerning the priors, on the one hand, we set −2.5 < α in all cases. The
Λ−Cold Dark Matter model predicts mass function is a power-law with slope −2
(Springel et al., 2008). Since stellar feedback flattens the faint end slope, we limit α
to be larger than −2. On the other hand, we try limiting M∗ = 1011.5 M⊙ because
of the nature of the simulations: as we do not apply AGN feedback, which produces
the exponential cut off at the bright/massive end of the distribution, we expect the
knee of the Schechter function to move towards a more bright/massive position. The
stellar feedback drives the evolution of small galaxies, so in a simulation with AGN
feedback activated, we would expect its inflexion point below 1011.5 M⊙.

Narrow-prior Mass Function
Figure 8 shows the mass function with the narrow prior. As expected, the knee is
very close to the M∗ = 1011.5 M⊙ limit in all the simulations, so we are basically
forcing the fit to change slopes in the same position for all cases. Corner plots for
simulation fth = 0.5 are shown in the left side in figure 10, where we can see the
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Figure (8) GSMF fits with narrow-prior at z = 0.1 for all the simulations. Fit
is done using all data points, but binned for representation. Bars show Poissonian
error for each bin. Shaded area is delimited by the uncertainties of α. Best fit values
for parameters and their uncertainties are shown in the boxes.
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posterior distributions and the crosss-correlations between model parameters. They
clearly show the tendency of M∗ to reach higher values than M∗ = 1011.5 M⊙ what-
ever the values of the rest of parameters are. M∗ shows the same behaviour for the
corner plots of the rest of simulations.

α spans the interval [−1.45,−1.0], becoming flatter as the efficiency is increased.
This is exactly what one should expect; stronger stellar feedback results in more
medium mass galaxies in comparison to dwarfs because the ejected energy from
individual SSPs is more efficient when there is less gas in the galaxy. In fact, for
fth = 10, the LF is almost flat until it reaches the knee, meaning that the amount
of galaxies in all masses is almost equal in this range. The normalization parameter
ϕ fluctuates without showing any clear tendency, as we could expect from its small
physical meaning.

Large-prior Mass Function
In figure 9, we show the mass function fit with its prior limited to M∗ = 1013 M⊙,
meaning that effectively we are not imposing any restrictions. Comparing to fig-
ure 8, we note that the knee has moved to higher mass positions, stabilising at
M∗ ≈ 1012 M⊙ for all the efficiencies apart from fth = 5, since this is the only run
with AGN feedback, which prevents the formation of massive galaxies. The slope α
flattens with bigger efficiencies as in the previous fit, but it is steeper than the pre-
vious one in each individual simulation. One can notice that allowing a larger prior
for the knee magnitude, as well as moving it to more massive positions, increases
the faint end slope. The values for ϕ are now smaller and fluctuate less than in the
previous case, except for fth = 5, where the small change in the knee induces a more
similar value to the previous fit. Moreover, the corner plot for fth = 0.5 is shown
in the right panel of figure 10. Here, we can see thatM∗ is no longer prior dominated.

The luminosity function fitted with a single Schechter can be seen in figure 11.
Here, the behaviour of the distribution is opposite to the mass function due to the
intrinsic negative definition of the magnitudes. The prior limits for α are equal to
the previous case, and the upper limit for M∗ is set at r = −26, again avoiding it to
be prior dominated. On the other hand, the lower limit for magnitudes is different
for each case as it was explained in section 2.2.

In this case, the behaviour of M∗ is similar to the large-prior mass function; all
knees except for fth = 5 have similar values around −24.7, although more scattered
than in masses. For fth = 5, M∗ = −23.35 is much closer to the faint part of the
distribution, agreeing with the mass function that showed a change for the slope in
smaller galaxies. The faint zone slope confirms the previous tendency of flattening
with increasing efficiencies except for fth = 5. This simulation seems to break with
the gradual decline behaviour and shows a much flatter slope than fth = 10, as well
as a much bigger value for ϕ. Superior panel in figure 13 shows the corner plot
for the fth = 0.5 simulation. Here we can see the posterior distributions for each
parameter and their cross-correlations.
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Figure (9) GSMF fits with large-prior at z = 0.1 for all the simulations. Fit is done
using all data points, but binned for representation. Bars show Poissonian error for
each bin. Shaded area is delimited by the uncertainties of α. Best fit values for
parameters and their uncertainties are shown in the boxes.

25 ULL, 2022/23



Master’s Thesis I. Juanikorena

 = 1.44+0.05
0.05

0.5

1.0

1.5

2.0

10
00

×

1000 ×  = 0.78+0.22
0.17

1.6 1.5 1.4 1.3 1.211
.12

11
.20

11
.28

11
.36

11
.44

M

0.5 1.0 1.5 2.0

1000 ×
11

.12
11

.20
11

.28
11

.36
11

.44

M

M  = 11.46+0.03
0.06

 = 1.50+0.05
0.05

0.4

0.8

1.2

10
00

×

1000 ×  = 0.27+0.19
0.13

1.7 1.6 1.5 1.4 1.3
11

.2
11

.6
12

.0
12

.4
12

.8

M

0.4 0.8 1.2

1000 ×
11

.2
11

.6
12

.0
12

.4
12

.8

M

M  = 12.05+0.38
0.28

Figure (10) Corners plots for fth = 0.5. It shows the relation between fitting
parameters in the GSMF, both for the narrow-prior (left) and the large-prior (right).
The best fit values and their uncertainties are shown over the boxes

Finally, figure 12 shows the same distribution as 11, but fitted with a double
Schechter function. Despite displaying the value of the 5 free parameters, we will
focus in the faint ones (represented with the f subscript) because our aim is to anal-
yse the area of the distribution affected by stellar feedback. The values for M∗ are
much more similar than in the single Schechter case, yet again with the exception of
fth = 5. With the increased freedom in the fit, α shows a less clear behaviour with
efficiency. The slope is almost equal for fth = 1 and fth = 3, and despite flattening
in fth = 5, reaches the maximum value for the biggest efficiency. Finally, the fit for
fth = 10 manifests a weird behaviour, with a local peak at r = −24 that indicates a
non-physical tendency probably due to excessive degrees of freedom. The posterior
distributions and the cross-correlations are shown in the inferior panel in the corner
plots in figure 13. Table 2 shows all the best fit parameters, as well as their uncer-
tainties, for each fit and effiency.
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Figure (11) Single Schechter GSLF fits at z = 0.1 for all the simulations. Fit is
done using all data points, but binned for representation. Bars show Poissonian
error for each bin. Shaded area is delimited by the uncertainties of α. Best fit values
for parameters and their uncertainties are shown in the boxes.
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Figure (12) Double Schechter GSLF fits at z = 0.1 for all the simulations. Fit
is done using all data points, but binned for representation. Bars show Poissonian
error for each bin. Shaded area is delimited by the uncertainties of α. Best fit values
for parameters and their uncertainties are shown in the boxes.
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Figure (13) Corners plots for fth = 0.5. It shows the relation between fitting
parameters in the GSLF, both for the single (up) and the double Schechter (down).
The best fit values and their uncertainties are shown over the boxes.
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fth,max 0.5 1 3 5 10

α

MF lim. −1.44± 0.05 −1.41± 0.05 −1.27± 0.06 −1.12± 0.08 −1.02± 0.11

MF unlim. −1.50± 0.05 −1.49± 0.05 −1.37+0.07
−0.06 −1.19± 0.09 −1.15± 0.11

LF single −1.48± 0.09 −1.38± 0.11 −1.37± 0.11 −1.10+0.18
−0.17 −1.26± 0.15

LF double −1.60+0.11
−0.13 −1.50+0.11

−0.14 −1.51+0.11
−0.14 −1.32+0.20

−0.23 −1.77+0.25
−0.16

M∗

MF lim. 11.46+0.03
−0.06 11.46+0.03

−0.06 11.46+0.03
−0.06 11.39+0.07

−0.12 11.43+0.05
−0.09

MF unlim. 12.05+0.38
−0.28 12.12+0.38

−0.30 12.09+0.39
−0.29 11.66+0.33

−0.24 12.00+0.44
−0.32

LF single −24.72+0.64
−0.69 −24.33+0.59

−0.72 −24.59+0.60
−0.70 −23.35+0.52

−0.67 −24.96+0.61
−0.62

LF double −23.41+0.45
−0.63 −23.36+0.45

−0.61 −23.41+0.45
−0.61 −22.77+0.44

−0.54 −23.14+0.58
−0.58

ϕ (×10−4)

MF lim. 7.8+2.2
−1.7 7.3+2.1

−1.7 7.7+2.5
−2.0 9.4+3.6

−2.7 6.1+2.9
−2.1

MF unlim. 2.7+1.9
−1.3 2.3+1.8

−1.1 2.8+2.0
−1.3 6.0+3.7

−2.7 2.7+2.2
−1.4

LF single 4.7+3.9
−2.1 8.3+6.6

−4.0 6.5+4.9
−3.0 14.7+9.7

−7.0 4.1+3.4
−2.0

LF double 5.4+3.6
−2.8 7.6+4.6

−4.1 6.3+3.7
−3.2 6.8+5.2

−4.3 2.2+3.2
−1.1

αb LF double 0.22+0.73
−0.70 0.09+0.70

−0.83 0.33+0.70
−0.80 −0.27+0.73

−0.57 0.83+0.86
−1.21

ϕb (×10−4) LF double 13.9+7.8
−5.5 15.7+7.9

−6.1 13.9+6.9
−5.2 17.7+9.5

−6.6 11.4+10.6
−5.1

Table (2) Table containing best fit parameter values for each simulation and func-
tion fit at z = 0.1. First row show simulation by its efficiency. First column shows
fitted parameter. Second row shows function and fit type: MF lim. (Mass Function
fit with Schechter limitting M∗ = 1011.5 M⊙), MF unlim. (Mass Function fit with
flat prior Schechter), LF single (Luminosity Function fit with single Schechter) and
LF double (Luminosity Function fit with double Schechter).

4 Conclusions

When a hydro-cosmological simulation code is developed, the sub-grid physics need
to be calibrated to ensure a trustful functioning of the code. In this work, we aim
to calibrate the stellar feedback efficiency. For this purpose, we have run and anal-
ysed 5 simulations with different stellar feedback efficiencies using the PKDGRAV3
code presented in Asensio et al. (2022). The simulations initially contained 2003

dark matter and gas particles in a (13.4 Mpc/h)3 = 203 Mpc3 volume and were
evolved from z = 49 to z = 0. The efficiency has been set to the following values:
fth,max = 0.5, 1, 3, 5, 10. The post-processing included running the FOF and Subfind
algorithms to identify galaxies, and computing their magnitudes (section 2.2). The
analysis is done using simulation data at z = 0.1 for a comparison with observables.
The main observables analysed are the star formation history (3.1), the color-stellar
mass relation (3.2) and the galactic stellar mass and luminosity functions (3.3). We
sum up the general analysis with the following points.

■ The full volume SFH shows that (figure 4) the main difference in total star
formation happens during the first half of the cosmic time. After z = 1, all
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the simulations, including the extreme efficiencies (fth = 0.5 and 10), converge
to a value near Ψ = 0.1 M⊙/yr (Mpc/h)−3. The only simulation that has a
slightly lower star formation in this range is fth = 5, probably due to the AGN
feedback that is only implemented in this run.

■ Before z = 2, all the simulations except for fth = 10 have a larger SFR than
the Madau analytic function (Madau & Dickinson, 2014) used for comparison;
fth = 5 seems to create the closest total star formation in the first half of
the simulated time, but departs most in the second. The rest of the models
without AGN feedback seem to agree very well with the comparison function
in later times.

■ The g − r color-stellar mass relation in figure 5 depicts a lack of red sequence
in galaxies with masses over 108.5M⊙ for high efficiencies. We set a lower limit
for galactic data to be reliable at 108.75 M⊙, so this indicates that efficiencies
fth = 5 and 10 are not creating enough quenched galaxies in the 109−1010M⊙
range. This feature is related to the low SFR of high efficiencies before z = 1.

■ We notice that stellar feedback is able to quench star formation in galaxies.
The increase in feedback power is directly related to the gap in time between
star forming bursts. Low efficiencies, mainly fth = 0.5, have a nearly contin-
uous star formation, whereas increasing efficiencies translate into increasingly
isolated bursts in the SFH (figure 7).

■ The median ages of the red galaxy in figure 7 relate directly with their color
in 6. Increasing efficiency traduces into lower medians in the lookback time,
which also implies bluer galaxies. Furthermore, we notice the effect of AGN
feedback in the color and the median age of simulation fth = 5 being lower
than in fth = 3.

Besides the rather qualitative conclusions just presented, we have some quantita-
tive comparisons with existing literature on the Schechter parameter values derived
from the GSMF and GSLF at z = 0.1. We use table 1 at Moffett et al. (2016) and
table 3 at Loveday et al. (2011) as reference values.

■ Concerning the slope of the GSMF, i.e. α, Moffett et al. (2016) yields a value
of αref = −1.20 ± 0.016. For both fits, the narrow- and large-prior ones, the
fth that reproduces the observations is between fth = 3 and fth = 5. For the
fit limited at M∗ = 1011.5 M⊙, fth = 3 results in α3,NP = −1.27 ± 0.06 and
fth = 5 in α5,NP = −1.12±0.08. Assuming a linear relation between slope and
efficiency in this efficiency range this would result in fth ≈ 4 being the most
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suitable value.

On the other hand, for the large-prior case, fth = 5 yields α5,LP = −1.19±0.09,
a very close value to the reference. Nevertheless, the fact that fth = 5 is the
only simulation with AGN feedback activated cannot be ignored. In fact, this
favours fth = 5, as it is the most complete simulation and reaches a very sim-
ilar value to Moffett et al. (2016) when no restriction in the fit of the knee is
imposed.

■ The value for the normalization parameter in Moffett et al. (2016) is ϕref =
1.72 ± 0.12. This is a value lower than any obtained in both the limited and
unlimited case. However, the large-prior fit overall yields smaller values for ϕ,
so this could indicate that not limiting the knee is a correct approach in the
analysis.

■ For the knee magnitude, we have a reference value of M∗
ref = 1010.73±0.033 M⊙

(Moffett et al., 2016). The narrow-prior fit results in a knee value of M∗
NP ≈

1011.5M⊙ for every case, and in the large-prior this increases toM∗
LP ≈ 1012M⊙.

The only exception is fth = 5, where the AGN feedback helps to move the knee
to lower masses. This brings to light the need to run simulations with AGN
feedback on for a more complete analysis.

■ Loveday et al. (2011) found αref,sing = −1.26±0.02 in the r band for the GSLF.
This again falls in the interval between fth = 3 (α3,sing = −1.37 ± 0.11) and
fth = 5 (α5,sing = −1.10+0.18

−0.17), this time closer to the lower efficiency. Focusing
in the double Schechter fit, αref,doub = −1.47 ± 0.09 falls very close to both,
fth = 1 (α1,doub = −1.50+0.11

−0.14) and fth = 3 (α3,doub = −1.51+0.11
−0.14). Nevertheless,

the effect of AGN feedback over this fit cannot be ignored, as fth = 5 yields a
bright end slope of α5,b = −0.27 while the rest of simulations create a positive
slope. However, the uncertainties in this last parameter are huge for all the
runs.

■ The knee magnitude of our data falls in much larger galaxies than the refer-
ence, that yields M∗

ref,sing = −20.73 ± 0.03 and M∗
ref,doub = −19.92 ± 0.010.

None of our values are located under M∗ = −22.5, highlighting once again the
need for AGN feedback. Even so, fth = 5 results in M∗

5,doub = −22.77+0.44
−0.54,

meaning that even with AGNs, the gap is considerable.

Finally, we present 2 methods regarding future calibrations. We believe that
this project, despite resulting in interesting conclusions and giving qualitative and
quantitative considerations, can be further improved in the future.
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■ We have remarked various times in the conclusions, activating AGN feedback
in the simulations would help to create a more general picture of the cali-
bration. The lower and higher mass ranges of the GSMF are supposed to be
guided by stellar and AGN feedback respectively, but the effect of one on the
other cannot be fully disentangled. Relations as the color-stellar mass and the
best fit parameter values clearly show that the fth = 5 simulation has traits
that are directly related to the existence of AGN feedback.

However, AGN feedback is also controlled by a efficiency parameter (see section
2.1.2), and thus needs to be calibrated. This way, introducing an uncalibrated
AGN feedback will result in a degeneracy between both processes, so this will
have to be taken into account.

■ During the process of calibration, we have considered applying a Bayesian in-
ference method to determine an exact efficiency rather than selecting one of
the arbitrary values we chose at the beginning of the process. The main idea
is to select an observable that can be represented with a likelihood, e.g. the
bayesian fit of the mass function, and compute its posterior for every sim-
ulation. Then, extend the hyperspace of the fit parameters by adding the
parameter that one wants to calibrate, in our case fth, thus effectively increas-
ing the dimension of the hyperspace. The resulting posterior would be the
sum of the posteriors of the different simulations, each one with its own fth.
The full posterior (depending on the parameters of the fit and the fth) is then
sampled with an MCMC, where the gaps between the different simulations are
filled by linearly interpolating between the different runs.

These considerations could not be implemented due to time limitations, but are
meant to be useful in the future.
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