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Abstract

Las simulaciones cosmológicas hidrodinámicas, como el proyecto IllustrisTNG, desempeñan un

papel fundamental en el estudio de la formación y evolución de las galaxias, proporcionándonos

un mayor conocimiento sobre el Universo.

Sin embargo, obtener información directa a partir de las observaciones puede resultar difícil,

ya que las propiedades observacionales no dejan trazas de cómo han evolucionado con el tiempo.

Por lo tanto, resulta interesante desarrollar modelos que nos permitan obtener información

acerca de la formación de las galaxias a partir de las observaciones. En la actualidad, se están

llevando a cabo estudios que combinan Machine Learning con las simulaciones cosmológicas

para investigar la historia de fusión de las galaxias. Sin embargo, muchos de estos modelos

carecen de la capacidad de generalizar cuando se aplican a datos observacionales reales.

El estudio realizado por Angeloudi et al. (2023)[1] aborda precisamente este problema

mediante la combinación de simulaciones, como TNG100 e EAGLE, evaluándo cómo las difer-

encias cosmológicas afectan a la determinación de la fracción de masa ex-situ. Los resultados

obtenidos en esta investigación indican que es posible desarrollar modelos robustos y precisos

de Machine Learning utilizando mapas de masa estelar en dos dimensiones que incluyan in-

formación cinemática. Este avance es significativo, ya que permite cuantificar la contribución

de la masa estelar ex-situ en la formación y evolución de las galaxias, la cual se define como

aquella aportación de masa debida a una galaxia externa.

Con el objetivo de mejorar este modelo y evaluar su capacidad de generalización, se propone

mediante el entrenamiento con la simulación TNG100, examinar las predicciones obtenidas de

las simulaciones del proyecto "Cosmology and Astrophysics with Machine Learning Simulation"



(CAMELS). Este proyecto varía diferentes parámetros astrofísicos y cosmológicos en compara-

ción con la simulación con la que hemos entrenado el modelo.

Para hacer este estudio y conseguir la mayor presición posible, previamente analizamos

la correlación entre TNG100 y el Modelo Fiducial proveniente de CAMELS, que tiene las

mismas condiciones iniciales que el primero pero con una menor resolución. Esto nos llevo a la

conclusión de que había que eliminar a la Metalicidad y la Half-Stellar-Mass-Ratio como datos

de entrada en el proceso de entramiento debido a su mala correlación con la fracción de ex-situ.

Posteriormente, mediante una comprobación visual, se verifica que ambas simulaciones tienen

la misma tendencia y que la discrepacia de errores, obtenidos como la diferencia entre el valor

real y el predecido, se debe a la diferencia de resolución que tienen cada una.

Una vez realizado este paso de comprobación, procedimos a tratar los datos procedentes de

CAMELS. Para ello, mostramos gráficamente los errores calculados como se mencionó antes

y la diferencia de desviaciones estándar. Comprobamos que para ciertos parámetros, en su

mayoría los más extremos, adquieren unos valores muy significativos de estas dos magnitudes

estadísticas, en comparación con los otros. Una posible justificación que encontramos fue que

en estas simulaciones existe una mala correlación con la fracción de ex-situ, y es por ello por

lo que la precisión a la hora de obtener las predicciones no sea muy buena. A pesar de todo,

las diferencias obtenidas no son considerablemente grandes, con lo cual se podría afirmar la

generalidad del modelo.

Por otro lado, se propone utilizar la biblioteca de High-Performance Symbolic Regression

(PySR), que permite obtener una expresión analítica para calcular la fracción de ex-situ a partir

de los parámetros observacionales. Para ello, desarrollamos un código mediante los comandos

que nos ofrece, el cual genera diferentes ecuaciones con distintos niveles de complejidad. Eval-

uamos la diferencia entre el valor esperado y el obtenido mediante un visualizado de cajas, en

el que mostramos los errores que se obtienen según distintos porcentajes de datos, dónde se

encuentra la mediana y los valores átipicos. De todas las ecuaciones obtenidas, seleccionamos

como candidata la que aporta menos error al cálculo de la fracción de masa ex-situ. Esta expre-

sión matemática es acorde a lo esperado, ya que depende solo de la masa estelar de la galaxia.



Esto es justificable, ya que cuánto más masiva son las galaxias, mayor es la probabilidad de

que se hayan formado mediante fusiones, contribuyendo a una parte importante de su masa.

Posteriormente, comparamos lo obtenido con PySR con las predicciones obtenidas mediante

Machine Learning de forma visual a través de un gráfico masa estelar - fracción de ex-situ.

Comprobamos que la ecuación no era capaz de representar correctamente la dispersión debido

a su forma lineal, a diferencia del modelo. En cuanto al error, con Machine Leaning se obtienen

valores más cercanos a los que buscamos que con Symbolic Regression, que a pesar de ello no

tiene errores muy significativos.

Como conclusión final, encontramos ciertos valores que presentan una mayor diferencia con

los esperados de fracción de ex-situ, en comparación con los otros parámetros astrofísicos y

cosmológicos. A pesar de ello, estas diferencias no tienen mucho peso, por lo que se puede

asegurar la generalidad del modelo. Además, aunque High-Performance Symbolic Regression

es una herramienta útil que permite encontrar expresiones sencillas que relacionan diferentes

magnitudes, el modelo utilizado mediante Machine Learning es mejor para calcular la fracción

de masa ex-situ. Por otro lado, la expresión obtenida a través de Symbolic Regression no

presenta errores muy significativos, puediendo proporcionar una primera estimación fácil y

sencilla de esta magnitud

Como trabajo futuro, se propone estudiar en detalle el por qué de esta falta de correlación

con algunas simulaciones, con el fin de conseguir la menor diferencia entre las predicciones y

el valor real. Además, se podría combinar Symbolic Regression con este modelo para poder

obtener ecuaciones más complejas y con mayor precisión para el cálculo de la fracción de ex-

situ.
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1 Introduction

Galaxies are gravitationally bound systems composed of stars, interstellar matter, stellar rem-

nants, and large amounts of dark matter. They are various systems with a wide range of

morphologies and properties[2]. Their study is related to cosmology, which is a branch from

which the evolution of the universe is studied.

The Big Bang theory, one of the prominent models explaining the origin and develop-

ment of the universe, receives substantial support from the discovery of the cosmic microwave

background (CMB). This gives rise to a vision of the universe based on this and the ΛCDM

cosmological framework, which is known as the standard model of cosmology. It is based on the

assumption that the universe is homogeneous and isotropic on large scales, made of baryonic

matter, photons, neutrinos, and cold matter, which are composed of non-relativistic massive

particles that interact with each other and with ordinary matter.

A detailed study of galaxies can be useful to test this model because it provides us with

information about how baryonic and dark matter are related as a function of cosmic time. For

this purpose, cosmological hydrodynamical galaxy simulations are valuable tools, which allow

us to simulate the formation and evolution of galaxies on a large scale, taking into account both

gravitational dynamics and hydrodynamic processes involving baryonic gas. These simulations

enable us to accurately reproduce realistic galaxies, from which we can establish the relationship

between their physical and observational properties, thereby enhancing our understanding of

the mechanisms driving their evolution.

In the standard model of cosmology, the mergers of galaxies play a fundamental role to

assemble the galaxies we see today. This model indicates that the growth of the structure occurs

bottom-up. From smaller systems, larger systems are formed through subsequent mergers,

which is known as hierarchical merging. The growth history is characterized by its merger tree,

which is a graph plotting the progenitors in cosmic time[2]. The merger of galaxies provides a

galaxy with new stars. The fraction of stellar mass in a given halo that was formed in another

halo before the merger is referred to as the ex-situ stellar mass or to abbreviate, ex-situ fraction
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(as opposed to in-situ mass which refers to stars formed from gas in the halo).

Having information about these processes can contribute to a better understanding of the

galaxy’s history, particularly in its early stages in the universe. However, obtaining direct

information about the stellar assembly histories from observational data is challenging, because

observations do not provide clear traces of how they have evolved and because we cannot

obviously follow a given halo across cosmic time.

To bridge this gap, cosmological simulations become crucial as they provide distinct snap-

shots of galaxy evolution across cosmic time. Notably, the most recent simulations, like the

IllustrisTNG project, have the capability to generate a diverse and realistic population of

galaxies[3]. These simulations capture both observational aspects and physical processes, en-

abling us to establish connections between different aspects of galaxy evolution.

A concrete example that showcases the potential contributions of simulations is demon-

strated in studies like Oser et al. (2010)[4]. In this research, they employ a technique known

as zoom-in simulations, which focus specifically on regions of interest. Through these targeted

simulations, they unveil a significant finding that the most massive galaxies primarily consist of

ex-situ stars, which are acquired through mergers with satellite galaxies. To complement and

enhance these investigations, additional tools such as neural networks can be employed.

Currently, there are numerous machine learning studies trained on cosmological simulations

aimed at investigating the merging history of galaxies like Lovell C. C.(2019)[5]. However, most

of these studies do not account for the effects of different physics in each simulation, resulting in

models trained with specific sub-grid recipes (baryonic physics) that lack generalization when

applied to real observational data. In this regard, Angeloudi et al. (2023)[1] combines two

cosmological simulations, TNG100 and EAGLE, to assess how differences in cosmology affect

the determination of the ex-situ fraction. Their findings suggest that robust and accurate

models can be achieved when using spatially resolved 2D stellar mass maps with kinematic

information, which provides insights into the motion and kinematics of galaxies. However,

when including age and metallicity maps, the estimation of the ex-situ fraction is affected by a
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phenomenon known as domain drift, which occurs when the accuracy is diminished due to the

use of data from different domains.

The purpose of this Master’s Thesis is to investigate further the robsutness of this estma-

tion by quantifying the impact of changing cosmological or astrophysical parameters on the

calculation of the ex-situ mass fraction of galaxies using neural networks. To accomplish this,

we will employ the model used by Angeloudi et al. (2023)[1], which will be trained with the

TNG100 simulation and attempt to predict the ex-situ stellar mass fraction from simulations

provided by the Cosmology and Astrophysics with Machine Learning Simulation (CAMELS)

project, encompassing various physical and cosmological parameters, along with the fiducial

TNG100 simulation. Additionally, we propose using High-Performance Symbolic Regression in

Python and Julia (PySR), which allows us to obtain a simple analytical equation that relates

the ex-situ fraction to observational parameters. Both calculation methods will be discussed

and compared at the end of this study.
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2 Objectives

The main objective of this work is to study how robust is the estimate of the ex-situ fraction

from a neural network model using only observable information[1] when cosmology and baryonic

physics are changed. In addition, we use High-Performance Symbolic Regression in Python and

Julia (PySR) to obtain an equation that allows us to estimate this parameter in a simple way.

The following objectives were accomplished:

• Obtain the prediction of the ex-situ mass fraction from the neural network model, which

is trained on TNG100 from the IllustrisTNG project.

• Explore the CAMELS dataset to quantify the robustness of the estimator when cosmo-

logical and astrophysical parameters change.

• Use Symbolic Regression to obtain an analytic expression for the ex-situ fraction based

on observational properties.

• Perform a comparison between the results from the Neural Network model and the High-

Performance Symbolic Regression.
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3 Simulations and Data

3.1 TNG100

The IllustrisTNG[6] project performs a series of large, cosmological magnetohydrodynamical

simulations of galaxy formation. Simulations come in three physical box volumes (TNG50,

TNG100 and TNG300) corresponding to comoving volumes of 51.7³, 110³ and 302.6³, and

spatial resolutions around 0.1 kpc. Each TNG simulation starts from a redshift z=127 to

z=0[7]. In this work, we used TNG100, which we used to train the Neural Network model.

Its characteristics are a volume of 110³ Mpc³ which contains 1820³ dark matter particles and

initial gas cells (elements used to represent the gas distribution).[1].

3.2 CAMELS

CAMELS[8] is a comprehensive dataset designed to establish connections between cosmology

and astrophysics through the use of machine learning techniques. It comprises a total of 6325

simulations, including 3049 N-body simulations and 3276 state-of-the-art (magneto) hydrody-

namic simulations within a periodic comoving volume of (25h−1Mpc)³ from redshift z=127 to

z=0[8]. These simulations are categorized into different suites or folders, namely IllustrisTNG,

SIMBA, Astrid, and N-body. Among these, we specifically focus on the IllustrisTNG suite,

which consists of 1092 hydrodynamic simulations. These simulations employ the same subgrid

physics, encompassing identical models and algorithms as the original IllustrisTNG simulations

explained in the Section(3.1). It has a series of sets or collections of simulations and, in our

case, we utilize the 1P set consisting of 61 simulations. Additionally, it includes a simulation

known as the Fiducial Model, which has the same physical parameters as the TNG100 but in

a smaller volume and a spatial resolution roughly two times smaller. In each simulation, the

cosmological and astrophysical parameters listed in Table (1) vary individually. The following

provides a more detailed explanation of the concepts[9]:

• Fraction of energy density in matter: This refers to the ratio between the energy

density of matter (both baryonic and dark matter), which represents the amount of energy

stored in the form of matter within a given volume of space, and the critical energy density.
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The critical energy density is the average density of matter and energy required for the

universe to be spatially flat.

• Variance of the linear field: This concept quantifies the fluctuations or variations in

the density or temperature field of the universe on a specific spatial scale. It measures

the degree of deviation from the average value of the field on that scale.

• Galactic winds: Energy per unit SFR: Galactic winds refer to the outflows of gas and

energy from galaxies, typically driven by supernovae explosions. This concept specifically

represents the amount of energy released by these galactic winds per unit of star formation

rate (SFR) of the galaxy. It indicates how much energy is being expelled relative to the

rate at which new stars are being formed.

• Galactic winds: Wind speed: This term describes the velocity at which galactic winds

travel relative to the galaxy itself. It represents the speed at which the outflowing gas

and energy are moving away from the galaxy due to the influence of processes such as

supernovae.

• Energy per unit Black Hole (BH) accretion rate: This concept refers to the amount

of energy released per unit of time as a black hole accretes matter from its surroundings.

• Ejection speed/burstiness: This term describes the velocity at which material is ex-

pelled or ejected from the vicinity of a black hole.

Parameter Meaning Range
Ωm Fraction of energy density in matter. 0.1-0.5
σs Variance of the linear field on 8h−1 M at z=0. 0.6-0.1

ASN1 Galactic winds: Energy per unit SFR. 0.25-4.0
ASN2 Galactic winds: winds speed. 0.5-2.0

AAGN1 Energy per unit BH accretion rate. 0.25-4.0
AAGN2 Ejection speed/burstiness. 0.5-2.0

Table 1: Summary table with the meanings of the different parameters of CAMELS[8].
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4 Methodology

4.1 Calculation of the ex-situ stellar mass fraction

For the determination of the ex-situ stellar mass fraction, Rodriguez-Gomez et al (2016)[10]

classified all the stellar particles based on their formation and accretion histories. For this

purpose, they use the merger trees calculated with the SubLink algorithm[10], that tracks

individual star particles and star-forming gas elements. In Figure (1), we can see an example

of a merger tree of TNG100.

Figure 1: Merger tree from TNG100. The black dots represent different galaxies that merged
to form larger structures, which are represented by the pink dots. These pink dots located in
the main progenitor branch, in turn, represent the progenitor branch with the most massive
structures in the history, also known as the main progenitors[6].

In cosmological simulations, galaxies form through the gradual accumulation of matter into

larger structures as the universe evolves. These larger structures, known as halos, are high-

density regions composed of dark matter and gas. Within these halos, smaller substructures

can form, referred to as subhalos or galaxies. These structures play a crucial role in the creation

of a merger tree.

For each snapshot, TNG100 identifies halos with the friends-of-friends (FoF) algorithm[11].

Then, the particles are analyzed, and those that are gravitationally bound together form galax-
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ies, identified as subhalos with the Subfind algorithm([12], [13]). Finally, we utilize the algo-

rithm mentioned at the beginning of the section, namely the SubLink algorithm[14], where the

possible descendants are searched in each subhalo for their construction.

The criteria for identifying them rely on the particle coincidence. It is checked whether

there are common particles between the subhalo and the descendant candidates in the next

timestep. The unique descendant is assigned based on the highest number of shared particles

and thus the merger tree is constructed in this manner. The main progenitor, located in the

main branch, is determined as the most massive in the history.

Once this information has been obtained, Rodriguez-Gomez et al. (2016)[10] defined ex-situ

stellar particles as those stellar particles formed outside of the main progenitor branch, while

in-situ stellar particles were defined as those formed through internal star formation. Based on

these definitions, TNG created a catalog containing the amount of ex-situ and in-situ stellar

mass for all subhalos in TNG100, which has been calculated by Rodriguez et al.([14] ,[10],[15])

Finally, we calculated the ex-situ stellar mass fraction as the division of the ex-situ stellar

mass and the total stellar mass of the galaxy. For each CAMELS simulation, we follow the

same procedure for calculating the ex-situ mass fraction. This ensures that both the CAMELS

simulations and the TNG100 simulation adhere to the same definition and calculation of this

quantity.

4.2 The model

A Neural Network is a computational system inspired by the functioning of neurons. It is

based on the connection between input values and output values through a non-linear function

(activation function), which adjusts weights during the learning process. Multiple layers, also

known as hidden layers, can be added, allowing the signal to travel from the first (the input

layer) to the last (the output layer)[16].
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Figure 2: Basic scheme of a Neural Network, where input values are combined with weights
and a bias to perform an operation represented in the large circle. The result of this operation
is then passed through an activation function F, which generates an output.

Through the training process, the model adjusts and improves the weights and biases. As

a result, more accurate predictions are obtained, meaning that the differences between the

input and output are minimized. In our case, the Backpropagation algorithm is utilized, which

operates as follows:

1. Forward propagation: this step consists of randomly initializing the weights (w) and

biases (b). Each input is associated with a weight, and they are multiplied by their

respective weights. The sum over is then calculated and added to the bias as follows

z(x⃗) =
∑

w⃗ · x⃗+ b, (1)

where z(x⃗) is the pre-activation. This result is passed through the activation function as

described below

f(x⃗) = g(z(x⃗)) = g(w⃗ · x⃗+ b), (2)

where f(x⃗) is the output and g(w⃗ · x⃗+ b) the activation function. In Figure(2), a diagram

illustrating this step of the algorithm can be observed. The process is repeated for each
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subsequent layer, with the results flowing to the next layers until reaching the output

layer along the direction shown in Figure(3)[17].

2. Backpropagation: when obtaining the final prediction, the loss function is applied to

evaluate the difference between the obtained and true value. In our case, we assume

a Gaussian posterior distribution for the ex-situ fraction parametrized with the mean

and the standard deviation. Therefore, we maximize the likelihood using the following

equation since our distribution is Gaussian

L(w, gw(xi)
2; y, x) = (2πgw(xi)

2)−N/2exp(− 1

2πgw(xi)2

N∑
i=1

(yi − fw(xi))
2))[17], (3)

where w represents the weights and the biases of the Neural Network which are learned,

and fw and gw design 2 outputs of the Neural Network parametrizing the mean and

standard deviation of the posterior. yi is the true value, xi is the input and N is the

total size of the sample. The objective of the training is to maximize the likelihood (or to

minimize the negative likelihood). In other words, we aim at finding the weights and the

bias that produce the minimum value of the loss function. The minimization is performed

with standard gradient descent

wt+1 = wt − α
∂L

∂wt

, (4)

bt+1 = bt − α
∂L

∂bt
,

where α is the learning rate, which in our case is equal to 10−3, and ∂L
∂

is the derivate of

the loss function with respect the weights or the bias.
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Figure 3: Scheme of the Neural Network training where the different layers are represented
and the arrows indicate the direction followed by the steps of the Backpropagation algorithm.

Hence, the process involves moving backward following the direction indicated in Figure

(3). To achieve this, we start by modifying the weights and the biases of the output layer

using Equation (4). First of all, the algorithm has to calculate the derivatives, and for

this purpose, the chain rule is employed as follows[17],
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∂L

∂wt

=
∂L

∂f(x⃗)
· ∂f(x⃗)
∂z(x)

· ∂z(x)
∂wt

, (5)

∂L

∂bt
=

∂L

∂f(x⃗)
· ∂f(x⃗)
∂z(x)

· ∂z(x)
∂bt

.

Subsequently, by carrying out these operations, the various weights are iteratively ad-

justed in a backward propagation manner, progressing towards the input layer. At the

input layer, the process is reiterated starting anew. This algorithm follows a cyclic pattern

and continues until a certain error criterion is achieved, determined either by convergence

or user-defined threshold, or until a predetermined number of iterations[16].

4.3 Preprocessing

Before conducting any training with the model, we need to perform a series of checks and

adjustments to achieve the highest possible accuracy. The first thing we did was to select the

range of galaxies we were going to work with. As explained in Angeloudi et al. (2023)[1], in the

case of TNG100 at redshift z=0, they found that the galaxy sample is highly unbalanced, with

a large number of galaxies having a low ex-situ mass fraction and very few with high values

of this magnitude (>0.7). To avoid any impact on the predictions, we updated our TNG100

dataset by including galaxies that have an ex-situ fraction value greater than 0.2 at z=0.1 and

z=0.2.

Regarding the case of CAMELS, it also needs to be adjusted for this purpose. Therefore,

we utilize galaxies with redshifts z=0, z=0.05, z=0.1, z=0.15, and z=0.2. Since smaller boxes

generally contain fewer galaxies, we decide to include intermediate range redshifts in this sample.

Additionally, as shown in Figure (4), the mass range of the TNG100 sample is greater than

1010 M⊙, which is why we ensure that CAMELS has the same range.
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Figure 4: Histogram of the stellar mass of TNG100, which contains 10505 galaxies at redshifts
z=0, z=0.1 and z=0.2.

CAMELS offers us, as we mentioned in Section(3.2), a dataset called IllustrisTNG, which

modifies some cosmological and astrophysical parameters from the original . The Fiducial

Model has the same cosmological and astrophysical parameters as TNG100, as we can see in

Table(2). It provides us with a sample of 2175 galaxies in the mass and redshift range that we

defined above. We use this simulation to check that the model trained in TNG100 generalizes

well to CAMELS fiducial with lower spatial resolution, before trying it out with the other data

set[8].

Name Ωm σs ASN1 ASN2 AAGN1 AAGN2

Fiducial Model 0.30000 0.80000 1.00000 1.00000 1.00000 1.00000

Table 2: Values of the parameters for the Fiducial Model.

An important aspect to consider is the values of the ex-situ fraction contained in TNG100

and in the Fiducial Model. This is because if they had a different range, for example, one of

them had higher values and the other lower values, it could affect the predictions. In Figure(5),
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a histogram normalized of the ex-situ stellar mass fractions from these simulations is shown.

As we can see, they have an imbalanced distribution due to the presence of many low ex-situ

values, mainly in the Fiducial Model, and very few high ones in both distributions. In addition,

they cover the same ex-situ fraction range. For this reason no further changes are made.

Figure 5: Histogram normalized representing the distribution of ex-situ mass fraction values
for the galaxy samples used in this work from both simulations, TNG100 (blue) and the Fiducial
Model from CAMELS (orange).

In Table(4) of the Appendix appears the name of the other datasets from CAMELS, which

we use in this work, as well as the values of the parameters.

Observable integral properties

Besides of the ex-situ fraction, these simulations provide physical properties of galaxies as shown

in Table(3), which we can use to estimate the ex-situ fraction.
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Name Unit Description

Stellar Mass (SM) M⊙ Total mass of the stellar particles.

Gass Mass (GM) M⊙ Total mass of the gas particles.

Dark Matter Mass (DM) M⊙ Total mass of the dark matter particles.

Black Hole Mass (BHM) M⊙ Total mass of the black hole particles.

Half Mass Stellar Radius (HMSR) kpc Radius containing half of total stellar mass.

Spin (SP) (kpc/h)(km/s)
Total spin per axis, computed for each
the mass weighted sum of the relative
coordinate times relative velocity of all
member particles/cells.

Metallicity (MT) -
The ratio Mz/Mt where Mz is the total
mass of all metals elements (above He)
and Mt is the total mass of elements.
To convert in solar metallicity, divided
by 0.0127 (the primordial solar metallicity).
This value is used for all stellar particles to
calculate the mass-weighted metallicity of the galaxy.

Age Gyr
Mass-weighted mean age of each galaxy from
the stellar particles contained within two times
the stellar half-mass radius:

< t >m =
∑N

i miti∑N
i mi

where N is the total number of stars, mi and ti
is the mass and the age of each one.

Table 3: Short description of the different observational properties used to calculate the ex-
situ stellar mass fraction[18].

In Figure (6), we illustrate the relationship between the properties shown in Table(3) and

the ex-situ mass fraction. The blue contour represents the Fiducial Model from CAMELS,

while the green contour represents the TNG100 dataset. In the first column, we observe the

correlation between the ex-situ stellar mass fraction and the following properties: stellar mass,

gas mass, dark matter mass, black hole mass, half-mass stellar ratio, spin, metallicity, and age.

We see that the correlations are very similar for both simulations except for metallicity and

HSMR. Consequently, to ensure good generalization, these parameters have not been considered

in the model.
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Figure 6: Correlation between different observational properties for the TNG (green contours)
and Fiducial Model (blue contours). The diagonal shows the distribution of each property for
both simulations.

4.4 High-Performance Symbolic Regression

One of the main issues with Neural Networks is the lack of interpretability. To overcome this

we explore ways to obtain analytic expressions relating the ex-situ fraction to observable prop-
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erties, as an alternative. To accomplish this, we employ High-Performance Symbolic Regression

(PySR), which unlike traditional regression methods, allows us to derive complex non-linear

relationships[19]. PySR is an open-source symbolic regression library, which falls under the

category of machine learning[20], as it seeks to discover mathematical expressions that describe

the relationship between input and output[21].

The following provides a summary of how this algorithm operates, but for more detailed

information, refer to the publication ’Interpretable Machine Learning for Science with PySR

and SymbolicRegression.jl’ by Miles Cranmer[20]:

1. Ingredients of the Symbolic Regression: this library provides us with a set of opera-

tors and functions such as addition, subtraction, exponentiation, logarithmic, etc. Using

these elements, the algorithm generates a set of different random equations[22]. Besides,

it has a fitness function or a function that evaluates how well each equation fits the data,

defined as the difference between the true and the predicted value and a set of mutation

operators or collections of different transformations that can be applied to the equations

in the population (change a constant, function, etc.).

2. Selection of equations: the algorithm selects a small random group from this set, which

competes with each other to determine the best candidate. Typically, this tournament

involves a competition between two individuals.

3. Evaluation of the fitness function: each member of the small subset is evaluated

using the fitness function, as mentioned in step 1, to provide us with information about

how well it fits the data.

4. Winner of the tournament: this algorithm has an assigned probability of about 90

per cent to select the fittest individual. This is because we would otherwise always get

the fittest candidate, and this adds a random factor so that the least qualified individuals

can also be selected. Therefore, when the winner of the tournament is selected, a random

number between 0 and 1 is generated, and if it is less or equal than the previously

probability (in this case 0.9), they are selected as the winner. On the other hand, if this
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number is bigger, the candidate is removed from the subset and it repeats step 3 with the

remaining individuals. If there is only one candidate, it is automatically the winner.

5. Mutation of the equation: once the winner is chosen, a copy of it is created and a

randomly-selected mutation is applied to it. These variations allow for finding better

equations to fit.

6. Replacement of the weakest: the fitness function is applicated in the group of equa-

tions obtained in step 1 and the weakest, in other words, the one with the high score, is

removed and replaced for the mutation equation obtained in step 5.

After this step, the process repeats until a certain number of iterations is reached to

improve the equations of the solution. Then, the best solution is selected within the same

complexity degree and printed in a hall of fame, i.e. the best equations are displayed.

Finally, the best expression from this set is selected by balancing the score and the

complexity. In Figure(7), we can see a summary picture of how this algorithm works. For

more information in detail, see [20].
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Figure 7: Scheme of how High-Performance Symbolic Regression works. It is a cyclical process
that follows the direction of the thick blue arrows. The dashed arrows indicate alternative paths
of the algorithm or an extension of how that step is performed.

5 Results and Discussion

5.1 Predictions Vs True Values

Once the adjustments described in Section(4.3) have been made, we train the model on the

TNG100 training set and obtain the predictions both on the TNG100 and the CAMELS Fiducial

Model test sets. These are plotted alongside the actual values to verify their proximity. This is

demonstrated in Figure(8) for the TNG100 simulations and the Fiducial Model. The Fiducial

simulation from the CAMELS project has been chosen to ensure that the results align with

expectations before proceeding to the remaining datasets.
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Figure 8: Evaluation on the Fiducial Model from CAMELS (blue) and the TNG100 test set
(green). At the top, we show the predictions of the models versus the ground truth of the ex-
situ stellar mass fraction. The black dashed line on the prediction panels marks the 1:1 relation
and serves as a guide to the eye. The objective is to have the prediction points clustered as
closely as possible to this line. At the bottom, the average error appears, where the shaded
region contains the 68% of the data[1].

As shown in Figure (8), both plots follow the same trend, as expected, since the Fidu-

cial Model shares the same cosmological and astrophysical parameters as TNG100 but with a

smaller volume. It proves however that the resolution does not significantly impacts the re-

sults. The bottom panel of the figure shows the average difference between the true values and

those predicted by the model. We notice some differences but both estimates are statistically

compatible.
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5.2 Comparison with the Fiducial Model

Once the baseline accuracy has been verified by predicting the ex-situ fraction using the Fidu-

cial Model, we now explore how the predictions depend on cosmological and astrophyisical

parameters. Figure (9) illustrates the average errors calculated as the differences between the

predictions obtained for the Fiducial Model and for simulations with different cosmological and

astrophysical parameters. Two plots have been generated for each parameter to enhance line

visibility. The legend displays the value of each parameter, with the black line representing the

value of the Fiducial Model.

In Figure (9), it can be observed that, for the majority of cases, the errors fall within the

range of (-0.3, 0.3). However, there are a few instances where the behavior deviates slightly,

such as in the case of Ω = 0.1000 or ASN2 = 0.5000, among others. This indicates that

these particular values may not perform well in the machine learning model being used. In

addition to analyzing the difference in prediction values, a plot has been generated to illustrate

the discrepancy in average standard deviation values. This statistical tool provides us with a

better understanding of the data behavior, as two lines may have similar average values but

different standard deviations. We observe that the standard deviations are essentially consistent

across datasets. Both figures therefore suggest a good generalization of the Neural Network

model, which seems to be able to marginalize over astrophysics and cosmology except for some

extreme cases.
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Figure 9: Error plot obtained as the difference between the prediction of the Fiducial Model
and the other simulations provided by CAMELS. In the legend, the value of the astrophysical or
cosmological parameter is displayed, with the black line corresponding to the Fiducial Model.
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Figure 10: Differences in the standard deviation media of the prediction between the Fiducial
Model and the other datasets provided by CAMELS are depicted. Similar to the previous plot,
the legend provides the values of the different astrophysical or cosmological variables, with the
black line indicating the value of the corresponding constant for the Fiducial Model.
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This might appear surprising in the first place. In order to better understand the behavior,

we explore the correlations between the different galaxy properties used in the model and the

ex-situ stellar mass fraction in thedifferent CAMELS models. To verify this, corner plots are

performed, which allow us to see how properties are related to each other. Figure(11) shows

an example for the case of Ω = 0.1000.

Figure 11: Correlation of the different galaxy properties for the Fiducial Model (blue contour),
TNG (green contour), and the CAMELS simulation where the omega parameter is varied
(orange contour).
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As it can be observed, the relations between the ex-situ stellar mass fraction and the ob-

servable integrated parameters acquired from the CAMELS simulation with Ω = 0.1000 show

differences from the ones acquired from the TNG100 and the CAMELS Fiducial Model. This

behaviour can affect the accuracy of our model’s predictions. Therefore, we consider this to

be one of the reasons why there is such a difference between the estimated prediction for the

Fiducial Model and the predictions obtained for some of the variations of the cosmological and

astrophysical parameters. However, this only happens in some cases and the errors are not very

significant, thus confirming the generality of the model.

5.3 High-Performance Symbolic Regression

As mentioned in Section(4.4), the objective of this library is to derive an equation that enables

the calculation of the ex-situ fraction using observational parameters. In our case, we use

the data from TNG100 to derive an analytical expression, and we obtain the residuals when

applying the resulting equations to the Fiducial CAMELS model. Figure (12) illustrates the

discrepancy between the true value of the Fiducial Model and the value obtained from the

equations generated by this algorithm.
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Figure 12: Difference between the true value of the Fiducial Model and the estimated value
obtained from the equations of the TNG100. The black line dividing the box represents the
median, which indicates the location of the 50% of the data. The lower box or first quartile
represents the 25% of the data, while the upper box or third quartile represents the 75% of the
data. The extreme values are represented by long lines that extend beyond the box and are
commonly referred to as whiskers.

As we can see, this library provides us with different equations, ranging from more to

less levels of complexity. Due to its simplicity and lower error compared to the others, we

selected the Equation 4 as the candidate for calculating the ex-situ fraction using observational

parameters. It is shown as follow

EF = 0.3739 · log10(SM)− 3.7091, (6)

where EF is the ex-situ fraction and SM is the Stellar Mass.

The fact that the equation mainly depends on stellar mass, which is also present in almost

all the analytic expressions obtained, is justified by the fact that more massive galaxies have

generally undergone more mergers with other galaxies, and therefore, a significant portion of

their mass is attributed to these mergers.
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5.4 Comparison between the Neural Network and the Symbolic Re-

gression

Once the equation has been obtained through High-Performance Symbolic Regression, it is com-

pared with the results obtained from the machine learning model. In the top of the Figure(13),

the ex-situ mass fraction is plotted against the stellar mass to visualize the comparison.

Figure 13: Comparison of the results of the ex-situ fraction obtained from the Machine
Learning model (purple) and Symbolic Regression (blue), along with the True Values (reddish
pink), in the upper graph. In the lower graph, the errors are displayed as the average differences
between the true value of the Fiducial Model and the calculated value obtained from both
methods.
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As observed in the upper part of the plot, the predictions generated by the Machine Learning

model effectively capture the scattering of the real values within the simulation, in contrast to

the equation derived from Symbolic Regression. The latter, as it is a linear expression dependent

on mass, is hence represented as a straight line with a distinct slope.

Regarding the lower part, the average error is displayed as the difference between the real

value of the Fiducial Model simulation and the estimated value obtained from the two methods

used to calculate the ex-situ mass fraction. The Neural Network, represented by a purple line, is

closer to the real(black line) value than the equation represented by a blue line, which indicates

that the first is more accurate than the second.

In certain cases, it is indeed possible for a Machine Learning model to make better predic-

tions due to its methodology, which involves learning patterns through training. As a result, it

can adapt better to non-linear behaviours. On the other hand, Symbolic Regression, although

it is a useful tool capable of finding an analytical expression of the data, also has its limitations

when it has to find the most suitable function, especially when the relationships are complex

and non-linear.
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6 Conclusion

This study utilized a machine learning model trained on the TNG100 simulation to assess

its generalization capabilities using simulations provided by CAMELS, specifically the Illus-

trisTNG suite, which alters various astrophysical and cosmological parameters compared to

the training simulation.

To improve prediction accuracy, a corner plot was generated, representing both TNG100 and

the Fiducial Model, which, as mentioned earlier, is a simulation with the same initial conditions

as TNG100 but at a smaller scale. This analysis revealed a poor correlation between the half

mass stellar radius and the metallicity with the ex-situ stellar mass fraction. Consequently,

these variables were not considered during model training to avoid compromising accuracy.

Then, the Neural Network was trained using TNG100, and predictions were calculated

for both TNG100 and the CAMELS Fiducial Model. Subsequently, the predictions of the

simulations were presented based on the real value of the ex-situ fraction. As observed, both

simulations follow the same trend but exhibit different errors, which were calculated as the

difference between the real and the predicted values. This difference in error was justified by

the disparity in resolution between the two simulations..

Furthermore, other simulations from CAMELS were included, varying the cosmological

parameters compared with TNG100. To compare these simulations with the Fiducial Model,

two different plots were generated. The first plot depicted the average error, calculated as

the difference between the predictions of the Fiducial Model and the model’s predictions for

different magnitudes. The second plot considered the mean standard deviation using the same

calculation. It was observed how the model performed well for the majority of cases, and only

in some, mostly those with more extreme values, significant errors were obtained compared

to the overall trend. One possible explanation found was that the correlation between the

observational properties considered during model training, as observed in the corner plot, and

the ex-situ fraction may not be strong, leading to imprecise predictions..

In conclusion, this Neural Network model exhibits errors primarily due to resolution and
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performs well for certain changes in cosmological and astrophysical variables. However, the

errors are not very significant, thus confirming the generality of the model.

To explore alternative methods for calculating this magnitude, High-Performance Symbolic

Regression was employed, allowing the derivation of an analytical expression that relates ob-

servational parameters, such as the age or the stellar mass, with the ex-situ mass fraction.

Using TNG100, a set of equations was derived and represented on a graph, as a function of the

error calculated as the difference between the actual value of the Fiducial Model and the value

obtained from the analytical expression. The equation with the lowest error was selected as

the candidate for calculating the ex-situ fraction using observational parameters. This analysis

revealed a dependence on stellar mass, which can be justified by the fact that a significant

portion of the mass in highly massive galaxies is typically attributed to mergers with other

galaxies.

A comparison was made between the values obtained using Machine Learning and Symbolic

Regression in a plot. The scatter plot demonstrated better representation for the Neural Net-

work compared to the expression, which appeared as a linear relationship with a certain slope.

Additionally, the error was presented, calculated as the average difference between the real and

predicted values using both methods. The results indicate that the model performed better in

calculating the ex-situ fraction compared to Symbolic Regression, although the latter did not

yield significantly larger errors compared to the former. Therefore, it can be concluded that

the model used provides greater precision for calculating this magnitude, while the obtained

expression can provide an initial approximation of its value.

As future work, it would be valuable to further investigate why the model fails for certain

values of cosmological and astrophysical parameters in order to contribute to its improvement.

Additionally, combining this model with High-Performance Symbolic Regression could lead to

the derivation of more complex equations for calculating this magnitude.
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Appendix

Name Ωm σs ASN1 AAGN1 ASN2 AAGN2

1P_1_n5 0.10000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_n4 0.14000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_n3 0.18000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_n2 0.22000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_n1 0.26000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_1 0.34000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_2 0.38000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_3 0.42000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_4 0.46000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_1_5 0.50000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_2_n5 0.30000 0.60000 1.00000 1.00000 1.00000 1.00000
1P_2_n4 0.30000 0.64000 1.00000 1.00000 1.00000 1.00000
1P_2_n3 0.30000 0.68000 1.00000 1.00000 1.00000 1.00000
1P_2_n2 0.30000 0.72000 1.00000 1.00000 1.00000 1.00000
1P_2_n1 0.30000 0.76000 1.00000 1.00000 1.00000 1.00000
1P_2_1 0.30000 0.84000 1.00000 1.00000 1.00000 1.00000
1P_2_2 0.30000 0.88000 1.00000 1.00000 1.00000 1.00000
1P_2_3 0.30000 0.92000 1.00000 1.00000 1.00000 1.00000
1P_2_4 0.30000 0.96000 1.00000 1.00000 1.00000 1.00000
1P_2_5 0.30000 1.00000 1.00000 1.00000 1.00000 1.00000
1P_3_n5 0.30000 0.80000 0.25000 1.00000 1.00000 1.00000
1P_3_n4 0.30000 0.80000 0.32988 1.00000 1.00000 1.00000
1P_3_n3 0.30000 0.80000 0.43528 1.00000 1.00000 1.00000
1P_3_n2 0.30000 0.80000 0.57435 1.00000 1.00000 1.00000
1P_3_n1 0.30000 0.80000 0.75786 1.00000 1.00000 1.00000
1P_3_1 0.30000 0.80000 1.31951 1.00000 1.00000 1.00000
1P_3_2 0.30000 0.80000 1.74110 1.00000 1.00000 1.00000
1P_3_3 0.30000 0.80000 2.29740 1.00000 1.00000 1.00000
1P_3_4 0.30000 0.80000 3.03143 1.00000 1.00000 1.00000
1P_3_5 0.30000 0.80000 4.00000 1.00000 1.00000 1.00000
1P_4_n5 0.30000 0.80000 1.00000 0.25000 1.00000 1.00000
1P_4_n4 0.30000 0.80000 1.00000 0.32988 1.00000 1.00000
1P_4_n3 0.30000 0.80000 1.00000 0.43528 1.00000 1.00000
1P_4_n2 0.30000 0.80000 1.00000 0.57435 1.00000 1.00000
1P_4_n1 0.30000 0.80000 1.00000 0.75786 1.00000 1.00000
1P_4_1 0.30000 0.80000 1.00000 1.31951 1.00000 1.00000
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1P_4_2 0.30000 0.80000 1.00000 1.74110 1.00000 1.00000
1P_4_3 0.30000 0.80000 1.00000 2.29740 1.00000 1.00000
1P_4_4 0.30000 0.80000 1.00000 3.03143 1.00000 1.00000
1P_4_5 0.30000 0.80000 1.00000 4.00000 1.00000 1.00000
1P_5_n5 0.30000 0.80000 1.00000 1.00000 0.50000 1.00000
1P_5_n4 0.30000 0.80000 1.00000 1.00000 0.57435 1.00000
1P_5_n3 0.30000 0.80000 1.00000 1.00000 0.65975 1.00000
1P_5_n2 0.30000 0.80000 1.00000 1.00000 0.75786 1.00000
1P_5_n1 0.30000 0.80000 1.00000 1.00000 0.87055 1.00000
1P_5_0 0.30000 0.80000 1.00000 1.00000 1.00000 1.00000
1P_5_1 0.30000 0.80000 1.00000 1.00000 1.14870 1.00000
1P_5_2 0.30000 0.80000 1.00000 1.00000 1.31951 1.00000
1P_5_3 0.30000 0.80000 1.00000 1.00000 1.51572 1.00000
1P_5_4 0.30000 0.80000 1.00000 1.00000 1.74110 1.00000
1P_5_5 0.30000 0.80000 1.00000 1.00000 2.00000 1.00000
1P_6_n5 0.30000 0.80000 1.00000 1.00000 1.00000 0.50000
1P_6_n4 0.30000 0.80000 1.00000 1.00000 1.00000 0.57435
1P_6_n3 0.30000 0.80000 1.00000 1.00000 1.00000 0.65975
1P_6_n2 0.30000 0.80000 1.00000 1.00000 1.00000 0.75786
1P_6_n1 0.30000 0.80000 1.00000 1.00000 1.00000 0.87055
1P_6_1 0.30000 0.80000 1.00000 1.00000 1.00000 1.14870
1P_6_2 0.30000 0.80000 1.00000 1.00000 1.00000 1.31951
1P_6_3 0.30000 0.80000 1.00000 1.00000 1.00000 1.51572
1P_6_4 0.30000 0.80000 1.00000 1.00000 1.00000 1.74110
1P_6_5 0.30000 0.80000 1.00000 1.00000 1.00000 2.00000

Table 4: Table with the values of the parameters for the 1P CAMELS simulations in the
IllustrisTNG suite.

The names of these simulations follow this format 1P_X_Y, where X varies from 1 to 6

and represents the considered parameter: 1(Ωm), 2(σs), 3(ASN1), 4(AAGN1), 5(ASN2), and

6(AAGN2). In the case of Y, it indicates the values taken from n5 to 5, with the first being the

smallest and the latter being the largest values for the same X parameter [8].

35


	Agradecimientos
	Abstract
	Introduction
	Objectives
	Simulations and Data
	TNG100
	CAMELS

	Methodology
	Calculation of the ex-situ stellar mass fraction
	The model
	Preprocessing
	High-Performance Symbolic Regression

	Results and Discussion
	Predictions Vs True Values
	Comparison with the Fiducial Model
	High-Performance Symbolic Regression
	Comparison between the Neural Network and the Symbolic Regression

	Conclusion

	Bibliography

