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Resumen

Los modelos climáticos globales (MCGs) son herramientas fundamentales en la predicción
de los cambios climáticos. Sin embargo, la resolución espacial de los MCGs es limitada,
por lo que no son de utilidad en terrenos abruptos o zonas costeras, al no considerar sus
características propias. Para solucionar este problema, se utilizan modelos climáticos
regionales (MCRs) que permiten obtener información más detallada sobre el clima en una
región específica. Sin embargo, los MCRs son computacionalmente costosos.

En este trabajo se propone una metodología para realizar una regionalización climática,
utilizando técnicas de aprendizaje automático (método estadístico), que permita la mejora
de la regionalización en áreas de orografía compleja. El objetivo será emular la salida de
diversas simulaciones dinámicas realizadas por el Grupo de Observación de la Tierra y la
Atmósfera de la Universidad de La Laguna con el modelo WRF.

Para ello, se entrenarán dos redes neuronales convolucionales, una para la temperatura
y otra para la precipitación, utilizando como predictores datos de reanálisis de ERA-5. Las
predicciones de los modelos estadísticos con datos de ERA-5 y de tres modelos globales,
para periodos pasados y futuros, se compararán con los resultados de las simulaciones
dinámicas de WRF que usan esos mismos datos como entrada.

Los resultados obtenidos muestran que la red neuronal convolucional para la tem-
peratura tiene un buen rendimiento, muy superior al obtenido para las precipitaciones.
Además, tomando en cuenta las proyecciones con los modelos globales, se ve reflejada la
tendencia esperada siguiendo el escenario RCP 8.5.
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Abstract

Global climate models (GCMs) are essential tools for predicting climate change. However,
the spatial resolution of GCMs is low, so they are not useful in complex orography or
coastal areas, as they do not consider their own features. To overcome this problem,
regional climate models (RCMs) are used to obtain more detailed information about the
climate in a specific region. However, RCMs are computationally expensive.

In this project we propose a methodology to perform climate regionalisation, using
machine learning techniques (statistical method), which allows the improvement of
regionalisation in areas of complex orography. The goal will be to emulate the output of
several dynamic simulations carried out by the Grupo de Observación de la Tierra y la
Atmósfera of the University of La Laguna with the WRF model.

For this purpose, two convolutional neural networks will be trained, one for temperature
and one for precipitation, using ERA-5 reanalysis data as predictors. The predictions of
the statistical models with ERA-5 data and three global models, for past and future periods,
will be compared with the results of WRF dynamic simulations using the same data as input.

The results obtained show that the convolutional neural network for temperature
performs much better than the one obtained for precipitation. Furthermore, taking into
account the projections with the global models, the expected trend following the RCP 8.5
scenario is reflected.
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1 Introduction and study objectives

Resumen
En este capítulo se hará una introducción a los conceptos principales usados en el
proyecto. Se plantean los distintos métodos de regionalización, dinámicos y estadísticos.
La implementación de redes neuronales en estos métodos es un tema novedoso que
presenta buenos resultados en muchos de los contextos en los que ha sido probado. Se
profundizará en el concepto de downscaling estadístico, así como sus condiciones ideales
de aplicabilidad. Además, se hará una introducción al deep learning y un repaso de varios
tipos de redes neuronales, centrándonos en las redes convolucionales usadas en este trabajo.

1.1 Basic concepts
This work aims to obtain climate predictions for temperature and precipitation in the

Canary Islands using statistical methods. These methods enhance the spatial resolution of
Global Climate Models and reduce the computational cost of both Global and Regional
Climate Models (GCMs and RCMs).

GCMs are numerical models that simulate the interactions between the main climate
components, namely atmosphere, ocean, earth surface and ice, providing predictions for
different variables like temperature, precipitation, wind speed, etc. These are computa-
tionally expensive models, thus they have a coarse spatial resolution. To overcome this
problem, downscaling techniques are used to improve the resolution.

1.1.1 Downscaling. Statistical and dynamic
Climate downscaling refers to a set of methods that improve the spatial resolution

given by GCMs for a certain area. Two different techniques are mainly used: statistical
and dynamic. The latter develop a higher resolution model using GCMs data as initial
and boundary conditions for the region of interest. Analogous to the GCMs, interactions
between the main climate components are simulated, preserving their physical principles.
As these methods follow the same approach of GCMs, they are computationally expensive.
The models thus developed are often called Regional Climate Models. More information
about climate downscaling can be found in Ekström et al., 2015.

In contrast, statistical methods aim to establish statistical relationships between a
large-scale and coarse resolution dataset of meteorological variables (predictors), and
historical records of local observations (predictand), such as temperature and/or precipi-
tation. Specifically, empirical relations linking atmospheric synoptic situations with the
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local variables of interest are sought. Once these relationships are established, making
predictions on those variables is direct. These methods are less computationally demanding
and, despite overlooking the underlying physics of the problem, they have shown a great
performance under some assumptions that will be presented below. See Wilby et al., 2014
for more information on statistical downscaling.

On predictors selection, reanalysis data is commonly used, while both high-resolution
observation grids and meteorological records on local stations are taken as predictands.
Reanalysis data is a blend of observations with past short-range weather forecasts rerun
with modern weather forecasting models, and provides the most complete picture currently
possible of past weather and climate. Statistical models, as exposed on Baño Medina,
2021, are built on three facts the model’s quality will depend:

• Predictors must be informative enough to describe the local variability of the
predictand of interest.

• Predictors must be realistically simulated by GCMs. A minimum requirement would
be to assure that GCM predictors present no biases with respect to their corresponding
reanalysis data for the calibration period, otherwise, the high-resolution products
will inherit the biases.

• The model has to show a certain extrapolation capacity with respect to the calibration
conditions.

There are three different approaches to predict weather variables (Maraun and Wid-
mann, 2018): Perfect-Prognosis (PP), Model Output Statistic (MOS), and Weather Genera-
tors (WG). The last of them pretends to learn the distributional moments of the variable
of interest at a particular point from observational records. To make predictions, the
parameters are perturbed consistently with the climatic change given by GCM/RCM.
MOSs try to find a statistical relation between the predictand simulated by a climate
model (either GCM or RCM) with its corresponding observational data. This method
is mainly used in bias adjustment techniques1. The PP approach is based on learning a
predictor-predictand relation using a particular method, for example, generalised linear
models (GLMs), taking datasets of observational data for both predictor and predictand.

To assess the performance of the model, a cross-validation scheme is followed, with
the most simple approach being the hold-out method. This approach is widely used in the
supervised training of any machine learning model, and involves dividing the entire dataset
into train and test sets which should be disjoint subsets. The former is used to calibrate
the model (i.e., train it), while the latter performs duties as checking the extrapolation
capacities of the model. Another approach arises if we add a validation set to the ones
already presented. This set is usually taken as approximately 10% of the train set and
helps to periodically evaluate the results during the training process. This set allows for
easier detection of over and underfitting. Berrar, 2018 gives a brief introduction to the
most common types of cross-validation and their related data resampling methods.

1Biases can arise due to multiple factors such as limited spatial resolution, simplified processes, and/or
incomplete understanding of the global climate system.
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One of the most important tasks for the hold-out cross-validation involves how to
split the data, because this choice has a major role in the quality of the model’s results,
as they have to present a low bias and variance. Different ways to do that are tested by
Reitermanová, 2010 and Medar et al., 2017. The former is a more general approach, while
the latter shows the impact of this data split on time series forecasting.

Many statistical methods, including those based on generalised linear regression and
analog techniques, need an overfitting to handle the high dimensionality of predictor data,
which can lead to a loss of information. To overcome this problem, deep neural networks
have recently been implemented in contrast to classical PP statistical downscaling methods.
In this framework, convolutional neural networks (CNNs) have shown an exceptional
capacity to manage the high dimensional data for a wide variety of purposes, just as for
learning predictor-predictand non-linear relations, as shown on Ashraf et al., 2020 and Li
et al., 2023.

1.1.2 Deep Learning. Convolutional Neural Networks
At first, conventional machine learning techniques had a poor ability to process raw

data. To overcome this problem, representation learning emerged as a set of methods that
enable machines to process this kind of information. Along this line, deep-learning (DL)
is a group of techniques or methods of representation learning with multiple representation
levels from the simple but non-linear composition of modules. Each of them transforms a
certain representation level to a higher level of abstraction. The composition of enough
transformations allows the machine to learn quite complex functions. Hereafter, just some
of the key concepts for this project will be covered. For a better understanding on deep
learning, see Goodfellow et al., 2016.

Before delving into Convolutional Neural Networks (CNNs), let’s review the basic
structure of a neural network (NN). A basic NN is composed of its fundamental unit, a
neuron2. Neurons are fed with some input data, each one of them with a certain weight
(associated with the input importance) and a bias, used to offset the result and help the
model to shift the activation function towards the positive or negative side, thus increasing
the level of flexibility in the activation process. To introduce non-linearity to the model
and determine if a neuron has a non-zero value, an activation function is needed. Applying
the activation function to the weighted sum of inputs plus the bias gives the output of the
neuron. Depending on the network’s goal, there are different common choices of this
particular function, such as hyperbolic tangent or sigmoidal functions for classification,
since their values are bounded, or ReLU (Rectified Linear Unit) for linear regression.

Regardless of the activation function used, single neurons cannot achieve a non-linearity
degree that allows them to learn complex patterns. Therefore, neurons are bundled into
layers. Through this arrangement, complex structures can be achieved, thereby defining the
topology of the network; we will further explore this topic later. There are three different
types of layers: the input layer takes the input data and passes it to the hidden layers, which

2They are called artificial neurons because of its similarities with a real neuron, but they are denoted as
neurons for simplicity.
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extract and transform the data, learning from it. Finally, the output layer produces the
network’s output. It can have as many hidden layers as it is required. The NN aims to learn
a non-linear relationship between predictor variables, x, and predictand, y, parameterised
by a set of coefficients ω that explains the predictand variable,

y = f ω(x) (1.1)

The process described earlier, where data flows from the input to the output layer, is
called feedforward propagation, and it is the very first step on most network’s training.
The set of coefficients is updated to fit the data according to a loss function that measures
the difference between the output and the expected value for that input data, seeking to
minimise the loss. Then, the gradients of the loss with respect to the weights and biases is
calculated and propagated backwards to adjust these parameters. This process is called
backpropagation, and the method used to adjust parameters is typically a gradient descent
method, but it can also be a stochastic gradient descent (SGD) or Adam optimisation, for
example. To end up with, the model’s outputs must be tested on some data to assess its
performance and extrapolation capabilities. It is important to note that the output is strictly
related to the chosen loss function.

Considering the network topology, there are multiple types of neural networks. The
most common topology is the feedforward neural network, in which neurons are disposed
in layers connected sequentially. Convolutional neural networks are a type of feedforward
neural network that use convolution kernels to extract higher-level features and avoid
vanishing or exploding gradients, seen during backpropagation in some topologies. Convo-
lution allows the network to be deeper by reducing the number of free parameters.

A CNN expects the input as a tensor of shape

number of inputs×height×weights× channels

These networks can typically have three different types of layers: convolutional layer,
a pooling layer, and a fully connected layer. The first of them performs a convolution
over the input data and passes it to the next layer. This is, essentially, the dot product
between a matrix of learnable parameters, also known as kernel, and a matrix representing
a restricted portion of the data. The kernel is smaller than the data in width and height, but
it is deeper so it extends over the channels. Through movements over the height and width
of the image, the kernel is able to produce a two-dimensional (spatial) representation of the
features learned by the kernel, called filter map. This mechanism resembles the response
of visual cortex neurons to a stimulus.

Pooling layers reduce the dimension of the data by clustering the outputs of multiple
neurons in a layer into a single neuron of the next layer. The most common ways of
pooling are max, where the maximum value of each cluster is taken, and average, where
the average value is used. Fully connected layers, as their name suggests, connect every
neuron from one layer to every neuron in the next layer. That way, it can be computed as
in typical neural networks to give the output data.
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Because of its ability to extract complex patterns from a big dataset, and the fact
that they are able to avoid overfitting, CNNs arise as a particularly suitable approach for
statistical downscaling (Baño Medina et al., 2020).

1.2 Study goals
The Canary Islands, as many other regions, have a complex orography to deal with. In

addition, in GCMs, due to its coarse spatial resolution, small territories are contained in
one or a few grid cells, thus they cannot adequately simulate climatic changes. For the
Canary Islands, for example, a unique grid cell can contain two or more islands. In this
case, the value shown on this cell will be the mean of all values inside them and, since
weather may be completely different on the two islands (even inside the same island), the
reflected value will show an accurate prediction for neither island. For this kind of regions,
downscaling is a necessary technique to make predictions on climate-related variables.

As exposed earlier, deep learning has been proven to be a useful technique for statistical
downscaling. Because of its exceptional way of handling data, convolutional neural
networks are a convenient choice for this task.

This project aims to implement two different CNNs to apply a statistical downscaling
in a region centered on the Canary Islands. This method is based on the approach exposed
in Baño Medina et al., 2020, who applied it to the European continent. The results of
temperature and precipitation predictions will be compared with the ones from a dynamic
downscaling simulation done by the Grupo de Observación de la Tierra y la Atmósfera,
(GOTA) of the University of La Laguna for the same region. Due to the extreme difference
of computational expense, close results in a certain variable will show that, with the
available predictor’s data, a reliable prediction can be made from a model overlooking the
underlying physics of the problem.

The code used to obtain these results is available at the following GitHub reposi-
tory https://github.com/uisitoam/Climate-Regionalisation, along with all the
results presented during this project.

https://github.com/uisitoam/Climate-Regionalisation
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2 Data and methods

Resumen
En este capítulo se introducirán las características de los datos usados en las simulaciones,
tanto predictores como predictandos, así como el área que comprenden y una breve
descripción de la misma. Además, se especifican las métricas usadas para validar y
comparar los resultados obtenidos que se presentarán en el próximo capítulo, junto con
el método de validación cruzada usado durante el entrenamiento de las redes. Por último,
se exponen los modelos de redes neuronales convolucionales usados para temperatura y
precipitación. Se verá que los modelos son muy similares, diferenciándose principalmente
en el número de filtros convolucionales, salidas de la red y función de pérdida, esta última
seleccionada acorde a la distribución que siguen los datos de temperatura y precipitación.

2.1 Area of study and data
The Canary Islands have a complex terrain which diverges between islands. A common

geographic feature is the coastal influence; western islands present mountain-valley
systems and are usually more mountainous than eastern islands, thus coexisting numerous
microclimates. This orography, along with the reduced size of the territory, hinders
specially the precipitation forecasting. Another reason for this is the influence on the
predictands by local phenomena which are not captured by the predictors.

The VALUE COST Action (2012-2015) is an European project developed by several
research centers with the aim of setting "standards" in downscaling methods to ease the
comparison of results between the different groups (Maraun et al., 2015). Following the
suggestions of this project, 20 standard predictors from the ERA-5 reanalysis are used. 1

In particular, the data used as a predictor will have four dimensions, namely time, level,
latitude and longitude. Latitude data is comprehend between 22 and 40 degrees-North,
increasing by two degrees each time, and so does longitude, although this one spans from
-32 to 0 degrees-East. This way, a 10 × 17 grid is used as spatial data, while the covered
area is shown in Figure I. Additionally, the level variable adds a “height” dimension; the
spatial grid mentioned before has values at three different air pressure levels: 500, 700 and
850 mbar.

The variables used as predictors are the geopotential z, given in [m2/s2], specific
humidity q in water kilograms per air kilograms, [kg/kg], the air temperature t in Kelvin

1ERA-5 data was downloaded from the Copernicus Climate Change Service (2022), DOI:
10.24381/cds.e2161bac
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and the u and v components of the wind, measured in [m/s]. All this data is available each
day from the very start of 1982 to the end of 2019. Thus, the predictor available will have
dimension

(time, level, latitude, longitude) = (13392,15,10,17)

FIGURE I: Area covered by the predictors data.

FIGURE II: Area covered by the predictands data.

The predictands here considered are daily mean temperature and accumulated precip-
itation. The data used correspond to a climate regionalisation simulation performed by
the WRF (Hersbach et al., 2020) mesoscale model (Skamarock et al., 2019) using ERA-5
reanalysis data as initial and boundary conditions. These regionalised data were obtained
by the Grupo de Observación de la Tierra y la Atmósfera (GOTA) at ULL, using the WRF
configuration defined in previous works (Pérez et al., 2014; Expósito et al., 2015). This
data defines a grid over the Canary Islands, ranging from 27.5 to 29.3 degrees-North in
latitude and from −18.2 to −13.4 degrees-East in longitude. This coordinates gives a grid
of dimension (latitude, longitude) = (68, 158), and the covered area is shown in Figure
II. Although different configurations were used throughout the work, finally only values
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corresponding to land grid points were considered as predictands. The available data have
a value for this grid each day since 5th of January of 1982 until the end of 2019. Altogether,
the predicted variables will have a time dimension of 13392.

Once the networks have been trained using data corresponding to the recent past (from
1982 to 2006 as train set and from 2006 to 2009 as validation set), the ability of the obtained
systems to emulate the behaviour of other climate simulations is analysed. Thus, the results
of other climate regionalisations carried out by GOTA and driven by three GCMs belonging
to CMIP5 (Coupled Model Intercomparison Project, phase 5) were considered. Specifically,
results of r1i1p1 simulations of GFDL-ESM2M, IPSL-CM5A-MR and MIROC-ESM
were used as initial and boundary conditions for WRF simulations (Perez et al., 2022).
They correspond to three 30-year periods (1980-2009, 2030-2059, 2070-2099) and were
performed with the results of the GCMs using the Representative Concentration Pathway
(RPC) 8.5 (Taylor et al., 2012).

2.1.1 Evaluation indices and cross-validation

Metrics Variable Units
Bias (for the mean) temp., precip. ◦C, %
Bias (for the 2nd percentile, P2) temp. ◦C
Bias (for the 98th percentile, P98) temp., precip. ◦C, %
Root mean square error (RMSE) temp., precip. ◦C, mm/day
Ratio of standard deviations temp. ad
Pearson correlation temp. ad
Spearman correlation precip. ad
Bias (warm annual max spell, WAMS) temp. day
Bias (cold annual max spell, CAMS) temp. day
Bias (wet annual max spell, WetAMS) precip. day
Bias (dry annual max spell, DryAMS) precip. day

TABLE 2.1: VALUE metrics used to validate downscaling methods
considered (see Table 2). “ad” denotes adimensionality.

In this work, a subset of VALUE metrics is considered to assess the performance of the
implemented models, as it is done by Baño Medina et al., 2020 (summarised in Table 2.1).

All in all, biases in seven different metrics are computed: five for temperature and
four for precipitation. The bias in the mean, the most common of them, is evaluated
for both variables, together with the bias in the 98th percentile (P98). Additionally, the
bias in the 2nd percentile (P2) is used for temperature. These three biases are given as
absolute differences for temperature, in ◦C, and as relative differences for precipitation (in
%). Biases for four temporal indices are also calculated, two of them for each predictand.
For temperature, the median warm (WAMS) and cold (CAMS) annual maximum spells
are used, while for precipitation the median wet (WetAMS) and dry (DryAMS) annual
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maximum spells are useful for this task.

A convenient measure to look at is the differences between predicted and predictand
values, consequently, the root mean square error (RMSE) is evaluated for both temperature
and precipitation. For the latter, just the observed wet days (rainfall > 1 mm) are used.
The ratio of standard deviations is computed just for temperature. Correlation is also a
metric to be considered; two different correlation coefficients have been calculated: the
Pearson coefficient for temperature and the Spearman rank one for precipitation, due to its
non-Gaussian nature.

A cross-validation scheme must be followed to assess the performance of the models.
A hold-out method is used for both temperature and precipitation models. As pointed in
subsection 1.1.1, there are different methods to split the data for a hold-out cross-validation.
Convenience sampling is the approach taken in this work, due to its suitability and efficiency
when dealing with time series. Systematic sampling could be another approach, however,
it is hard to find an appropriate ordering for most datasets. In the method here considered,
the dataset is split into discrete blocks of time intervals. Specifically, the data is divided in
three subsets: the period between 1982 and 2006 is considered as the train set, the data
from 2007 to 2010 is taken as the validation set, and the test set is composed of the period
between 2011 to 2019. This sampling is chosen on account of the warmer conditions
shown in these last years: a critical feature of the models developed is their extrapolation
capabilities, thus a time spell with slightly different conditions is selected as a test set.

2.2 Methodology
As it was advanced in section 1.2, two different CNNs will be implemented to develop

a statistical downscaling method for each of the predictands. As the predictors used come
from the GOTA simulations using the WRF mesoscale model, the main purpose will be
to emulate these results. Both CNNs are similar, but the layers, along with the output
values, have differences. This section aims to shed light into the structure and behaviour
of these neural networks. For the CNN models used in this work, the best-performing
topology developed in Baño Medina et al., 2020 is implemented for precipitation, while
for temperature the considered model is exposed in Baño Medina et al., 2022.

Neural networks are a stochastic machine learning algorithm, as the initial weights
are random, thus the model will learn from a different starting point each time. Due to
this fact, training a model will lead to different results each time, even with the same train
and test datasets. In order to account this variability and obtain solid results, the networks
presented afterwards will be trained with the predictors five times, and the results given in
the next chapter will show the median results. The appendix B shows the numerical results
for the median and the mean along with the standard deviation of the five runs.
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2.2.1 Temperature model

Layer (type) Output Shape Param # Connected to
input_layer (InputLayer) (None, 10, 17, 15) 0 -
conv2d (Conv2D) (None, 8, 15, 50) 6800 input_layer[0][0]
conv2d_1 (Conv2D) (None, 6, 13, 25) 11275 conv2d[0][0]
conv2d_2 (Conv2D) (None, 4, 11, 10) 2260 conv2d_1[0][0]
flatten (Flatten) (None, 440) 0 conv2d_2[0][0]
dense (Dense) (None, 1059) 467019 flatten[0][0]
dense_1 (Dense) (None, 1059) 467019 flatten[0][0]
concatenate (Concatenate) (None, 2118) 0 dense[0][0],

dense_1[0][0]
Total params: 954373

Trainable params: 954373
Non-trainable params: 0

TABLE 2.2: Detailed architecture of the Convolutional Autoencoder of the
temperature model.

This model is mainly composed of three convolutional layers (with 50, 25 and 10
filters/kernels respectively) and two concatenated dense layers which behave as the output
layer. The former layers use 3D kernels of shape 3×3 to convolute the raw data provided
by the input layer. These layers have a ‘valid’ padding, thus the output feature map of each
one of them is smaller than the input feature map and its spatial resolution is reduced.

A flatten layer to reshape the data-driven spatial feature in order to feed the dense
layers is also required. Dense layers have a number of neurons equal to the dimension of
the predicted data; in short, each land grid box uses two output neurons, as the output layer
comprises two dense layers. The explicit model is shown in Table 2.2.

Loss function presents a major role in the output values. Training aims to optimise
the negative log-likelihood of a Gaussian distribution, since the predictand is assumed to
follow this distribution. Therefore, the output of the network corresponds to the mean and
variance of the distribution, i.e., the distributional parameters.

Any loss consisting of a negative log-likelihood is a cross-entropy between the empirical
distribution defined by the training set and the probability distribution defined by model.
It is proved in Goodfellow et al., 2016 and shown in Appendix A that the approach here
chosen is equivalent to use the mean square error (MSE) as loss function, since MSE is the
cross-entropy between the empirical distribution and a Gaussian model.
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2.2.2 Precipitation model

Layer (type) Output Shape Param # Connected to
input_layer (InputLayer) (None, 10, 17, 15) 0 -
conv2d (Conv2D) (None, 10, 17, 50) 6800 input_layer[0][0]
conv2d_1 (Conv2D) (None, 10, 17, 25) 11275 conv2d[0][0]
conv2d_2 (Conv2D) (None, 10, 17, 1) 226 conv2d_1[0][0]
flatten (Flatten) (None, 170) 0 conv2d_2[0][0]
dense (Dense) (None, 1059) 181089 flatten[0][0]
dense_1 (Dense) (None, 1059) 181089 flatten[0][0]
dense_2 (Dense) (None, 1059) 181089 flatten[0][0]
concatenate (Concatenate) (None, 3177) 0 dense[0][0],

dense_1[0][0],
dense_2[0][0]

Total params: 561568
Trainable params: 561568
Non-trainable params: 0

TABLE 2.3: Detailed architecture of the Convolutional Autoencoder of the
precipitation model.

This model is composed of three convolutional layers (with 50, 25 and 1 filters/kernels
respectively) and three concatenated dense layers which behave as the output layer. The
former layers use 3D kernels of shape 3×3 to convolute the raw data provided by the input
layer. A flatten layer to reshape the data-driven spatial feature in order to feed the dense
layers is also required. Each land grid box uses three output neurons, as the output layer
comprises three dense layers. The explicit structure of this model is shown in Table 2.3.

Thus far, the only differences between temperature and precipitation model are the
number of filters of the third convolutional layer (10 for temperature vs 1 for precipitation)
and the number of dense layers building the output layer. Furthermore, these convolutional
layers have a ‘same’ padding, so there is no reduction in the spatial resolution of the feature
maps.

An appropriate probability density function must be selected to represent the dis-
tribution of precipitation. Williams, 1997 suggested using a mixed Bernoulli-Gamma
distribution for describing precipitation series that include both days with no precipitation
and days with precipitation. This leads to an additional distinction: the loss function.
Training this model optimises the negative log-likelihood of a Bernouilli-Gamma dis-
tribution, following the approach previously introduced by Cannon, 2008, who showed
that Bernouilli-Gamma and Poisson-Gamma distributions can fit precipitation series that
include both dry and wet days. As a result, the output of the network corresponds to the
probability of rain, shape and scale factors (p,α,β ).
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Let’s delve into how the precipitation amount is obtained with this model. The
Bernouilli-Gamma probability density function is given by

f (y; p,α,β ) =


1− p for y = 0

pyα−1e−y/β

β αΓ(α)
for y > 0

(2.1)

where 0 ≤ p ≤ 1, α > 0 and β > 0 are the distributional parameters mentioned before and
y is the precipitation amount. The mean value of the distribution is µ = α ·β .

The amount of rainfall in a certain day, i, is the mean of its distribution, ri = αi ·βi, and
then by probability of occurrence, values where there is no rainfall at all (under a given
value) are cut down to zero. To fix this threshold for the rain occurrence one must calculate
the non-rainy days percentage from the predictand data. Out of the training outputs of
the network, the value of probability p for which the same number of non-rainy days are
obtained, i.e., a quantile, is the desired threshold.

While this method gives a deterministic value, it can also provide stochastic predictions
by simulating a random value from the distribution.



13

3 Results

Resumen
En este capítulo se presentan los resultados obtenidos con las redes convolucionales
expuestas para temperatura y precipitación. Se analiza cada uno por separado, realizando
una discusión detallada de los resultados arrojados haciendo uso de los datos de los tres
modelos climáticos globales, así como de los datos de reanálisis de ERA-5. Para esto,
se usan las métricas de VALUE expuestas en la tabla 2.1. Además, se comparan las
predicciones de temperatura media y cantidad de precipitación con la de WRF para todo el
conjunto de datos (MCGs y ERA-5) considerado. Esta comparación se acompaña de una
discusión de la validez de los resultados en el contexto del escenario RCP 8.5.

3.1 Temperature model
From a general point of view, the temperature prediction model emulates the results

given by the WRF model in a similar way in all the time ranges considered, together
with the data from the three global models and ERA-5. The further out the time period
considered, however, the more deviant the projections become.

Figure III contains the predictions used to evaluate the model’s performance along
with the projections using GCMs. As the goal is to emulate the outputs of WRF, the CNN
results using a given model (either ERA-5 or GCMs) are compared with WRF predictions
using the same data of the same model. For the sake of brevity and conciseness, hereafter,
the predictions made with CNN or WRF model, using GCM (or ERA-5) data, will be
referred to by the name of the corresponding GCM.

The boxplots displayed in Figure III show the evaluated metrics for all prognoses using
the CNN-temperature model. First, the given metric for each land point is obtained. Then,
the median and statistics presented on the boxplot consider all land points over the grid.

3.1.1 Performance
In order to evaluate the performance of the model, reanalysis data from ERA-5 is used.

As it was stated in the methodology, the models are trained with ERA-5 data from 1982 to
2009 (train and validation sets). The performance of the model will be tested with ERA-5
data from 2010 to 2019. These results will be contrasted with the ones shown on Baño
Medina et al., 2020 for Europe (from now on, CNN10 model) and on Guinea et al., 2023
for the Canary Islands (from now on, AEMET model).
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Generally speaking, a salient feature of the predictions from ERA-5 reanalysis data
is the low dispersion shown by the values between the 25th and 75th percentiles in all
considered metrics, as well as the whiskers’ extension, which is also lower than that of the
other models presented on the same plot.

The bias with respect to the mean stands at less than 1◦C, while the bias with respect
to the 2nd percentile is slightly higher than 1 degree and the one with respect to the 98th
percentile is just under 0◦C (Figure IIIA, IIIB and IIIC, respectively). This means that the
predictions are overestimating the mean and the lower temperatures, while underestimating
the higher ones. This behaviour is the same as temperature results of CNN10, but the
values presented there are lower than the CNN results for these metrics. However, the
dispersion of the data is approximately the same. AEMET model shows an underestimation
of both extremes, worse than the results displayed on the analysed figures.

The prognoses with ERA-5 are able to maintain a linear correlation between the results
with an R of more than 0.9 (Figure IIID), while clearly reducing the scatter of the data
with respect to those predicted by WRF (Figure IIIE). Both metrics are higher in CNN10,
showing a similar data dispersion to the one with the CNN model. AEMET presents a
similar value for the Pearson correlation coefficient to the one shown by the CNN, but
the standard deviation ratio is not calculated. RMSE is akin in all models under review:
CNN10 was able to reach values under one degree, whereas the CNN model and AEMET
stands at 1.5◦C (Figure IIIF).

The predictions of cold and warm spells accomplished by CNN10 are impressive, with
a median bias of zero days and a scatter of ±1 day. The CNN model performs similarly in
terms of scatter, but the median here is found to be 1.4 days for both of them (Figure IIIG
and IIIH, respectively). AEMET does not evaluate these metrics.

Overall, CNN predictions with ERA-5 are able to emulate WRF predictions adequately
with the same data. The results obtained with CNN are worse than those shown by CNN10,
although it must be mentioned that the latter gives an output grid with a resolution of
0.5 degrees (pixels of approximately 55× 55 km), while CNN gives a grid with pixels
of approximately 3×3 km. On top of that, the data used by CNN10 is averaged, which
makes the values much smoother, simplifying the work of the network.

Comparisons with point observations in the Canary Islands can be done with the results
of AEMET. These, however, are not arranged in a grid and, moreover, are obtained from
different methods, including non-convolutional neural networks. The results obtained
with the CNN model outperforms those of AEMET in terms of biases with respect to the
extremes, 2nd and 98th percentile. Despite this, some values are found to be similar, and
the dispersion of the data is not shown better in any of them.



3.1. Temperature model 15

GFD
L

IPS
L

MIROC
Era

5
GFD

L
IPS

L
MIROC

GFD
L

IPS
L

MIROC
4
3
2
1
0
1
2
3

1980-2099 Mean Bias

1980-2009
2010-2019
2030-2059
2070-2099

(A) Bias with respect to the mean (◦C).

GFD
L

IPS
L

MIROC
Era

5
GFD

L
IPS

L
MIROC

GFD
L

IPS
L

MIROC
4

2

0

2

4
1980-2099 P2 Bias

1980-2009
2010-2019
2030-2059
2070-2099
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FIGURE III: Metrics comparison between each model used to make predictions on temperature
with the CNN 2.2 with respect to WRF. Four time periods are considered: 1980-2009, 2010-2019,
2030-2059 and 2070-2099. The time period between 2010-2019 is only predicted with ERA-5 data,
while the others are obtained from the GCMs models. Values inside the boxes comprise the 25th
(Q1) to 75th percentile (Q3). Inside each box, the median is shown as a line, while the notches
represent the confidence interval around the median. The lower whisker extends to Q1−1.5 · IQR
and the upper whiskers to Q3+1.5 · IQR, where IQR=Q3−Q1. The points outside these whiskers

are considered outliers.
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3.1.2 Projections
The bias with respect to the mean is displayed in Figure IIIA. In the period from

1980 to 2009, the best value is the one obtained from predictions made with MIROC data.
Nevertheless, the projections with these data deviate significantly from the results of WRF
in future periods. For these time spans, the prognoses with the GFDL model, GFDL,
become more accurate. The use of these two models leads to an underestimation of this
magnitude: the deviation with the MIROC model is just over 0 degrees in the earlier period,
and rises in future periods up to almost two degrees, whereas with the GFDL model it
remains slightly under one degree in the three time intervals. Although the predictions with
the IPSL model are not the most accurate ones, they maintain similar values (approximately
1 degree of overestimation) in the three periods considered.

An analogous behaviour is observed for the bias with respect to the 2nd percentile
(Figure IIIB): the predictions with the data from the GFDL and IPSL models are fairly
constant throughout the three time spans, while the projections with the MIROC model
tend to deviate over time. Here, the GFDL model is the best in all time periods considered,
underestimating the WRF results within one degree, whilst the one giving the furthest
values from those predicted by WRF is the IPSL model, drifting almost two degrees above.
Under the MIROC model, yields are more variable: it overestimates the lowest outputs
by about one degree in the foregone period, whereas over future periods it underestimates
them by more than one degree.

Notwithstanding the poor emulation of the results for the lowest temperatures, the
IPSL model outperforms the two others in terms of predicting the highest values (Figure
IIIC). Regarding the bias with respect to the 98th percentile, the projections with the IPSL
model are the closest to those given by WRF in the three time periods considered, while
the MIROC model is the worst performer. In this case, the use of all the models leads to an
underestimation of the predictions given by WRF in the three time spans.

In spite of this comparison, the projections with the three models for the three time
periods considered are reasonably close to expectations, both for the mean and the extremes.
For all cases, the maximum deviation is found to be of 2◦C. The IPSL model overestimates
both the mean and the lower end, while the GFDL and MIROC models underestimate
these magnitudes (excluding MIROC in the period from 1980 to 2009). All models
underestimate the upper end, ranging from 0.1 to almost three degrees Celsius. This entails
a problem for the prediction of extreme events and hazardous to the population, such as
heat waves.

Pearson correlation is shown in Figure IIID. The MIROC model is the one that
best correlates between the projections, hovering around a linear correlation coefficient
(Pearson) of 0.9 in the three time periods considered. This metric does not decrease with
time, as happens with biases of the MIROC model. The correlation with the other two
models is gradually lost over time reaching values of 0.3 in the interval from 2070 to 2099.
It is worth noting that, for GFDL and IPSL, the correlation is relatively low from the first
period to the last.
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Something that should be expected when predicting with the here developed convolu-
tional models is a reduction (or at least a maintenance) of the dispersion of the results, so
that the ratio between the dispersion of these predictions with respect to those given by
WRF is less than 1 (Figure IIIE). This is fulfilled by using all models in all time periods
considered. Under the IPSL model, the networks are able to reduce the dispersion to a
greater extent than with the other two models. This reduction is smaller in future time
spans with the MIROC model, while in the period from 1980 to 2009, the GFDL model is
the worst performer.

The root mean square error (RMSE), shown in Figure IIIF, turns out to be lower with
the projections using the MIROC model data, remaining between two and three degrees in
all three time intervals considered. The RMSE becomes higher with the other two models,
ranging between three and five degrees. While both present a significant difference with
the results relying on the MIROC model, those using the IPSL model ranked the worst
over the three periods.

The use of the MIROC model is the most suitable over the whole range from 1980 to
2099 as a means to predict the annual maximum warm spell. Projections with this model
overestimate the duration of these events by less than a day. This is clearly seen in Figure
IIIG. The other two models also yields to an overestimation of the length of these warm
spells: whilst the IPSL model predicts a duration of almost two more days, the prognoses
with the GFDL model depend on the time period considered; from 1980 to 2009, there is
an underestimation of just over four days, in the near future this deviation is greater than
two days, and in the far future the overestimation is reduced to just over one day.

Conversely, the prediction of annual maximum cold spells is more accurate than that
of the warm spells, maintaining all biases below a single day (both overestimation and
underestimation), as displayed in Figure IIIH. For this metric, the use of the GFDL model
becomes the best option, leaving the MIROC model behind. The former is only biased
in the more distant future, from 2070 to 2099, underestimating the WRF prediction by
less than 0.2 days, while the MIROC model has a bias of just under half a day in each
of the periods, overestimating the WRF projections in the near future (2030-2059) and
underestimating them in the other two. The worst predictions are obtained with the IPSL
model, which underestimates in all the periods considered, ranging from just under half a
day in the past to almost a day in the far future.

It should be noted that the cold period prognosis is in agreement with those of the bias
with respect to the second percentile, where GFDL model usage outperforms the other two
models. In stark contrast to this, it is remarkable that this behaviour does not prevail in the
results of the warm periods and the bias with respect to the 98th percentile. In the latter,
the use of the MIROC model was the worst option due to an underestimation of between 2
and 3 degrees in all time intervals, while with the IPSL model, the predictions emulated
the WRF projections better, as the bias approached zero over time. In contrast the use of
the MIROC model allows for better predictions of warm spells, as it overestimates the
duration of these events by less than a day, as opposed to the IPSL model, which leads to
an overestimation of approximately two days in all periods considered.
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ERA-5 results can be qualitative compared with GCMs results. The biases with
respect to the mean and the 98th percentile are less than 1◦C, the former resulting in an
overestimation whilst the latter in an underestimation. At the lower end (2nd percentile),
this deviation results in an overestimation of just over one degree. The predictions with
this data are able to maintain a linear correlation between the results with an R of more
than 0.9, while clearly reducing the scatter of the data with respect to those predicted by
WRF. RMSE is found to be less than two degrees. The projections of cold and warm spells
are consistent and present the same value for both, being the worst for cold spells.

Based on the values of the eight metrics considered, the use of the MIROC model is the
one that gives the best results in predicting the past period, with the GFDL model showing
shortcomings with respect to the other two. On the contrary, in future periods, the use of the
latter becomes the best option, improving its performance the further ahead it is predicted.
The MIROC model significantly worsens its performance in these periods, while the IPSL
model maintains similar values in the three time spans considered. Nonetheless, the use of
the MIROC model in the interval from 1980 to 2009 results in very close predictions to
those sought. The values obtained with ERA-5 reanalysis data are fairly good and reflect
the good performance of the model.
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FIGURE IV: Predictions on mean temperature for each model considered in this work. Results
for CNN and WRF models are shown for four time periods: 1980-2009, 2010-2019, 2030-2059
and 2070-2099. The time period between 2010-2019 is only predicted with ERA-5 data, while the

others are obtained from the GCMs models considered.

Global climate models data in the RCP 8.5 scenario is being used. This scenario
envisages an increase in greenhouse gas emissions throughout the 21st century. Under
these conditions, an increase of approximately 3.7 degrees is expected by the end of
the century. Therefore, it would be desirable that this trend would be mirrored in the
predictions made by the statistical model developed in this work with the data from the
global models (Figure IV). See Riahi et al., 2011 for more information on this scenario.
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An average temperature between 16 and 18 degrees is observed (depending on the
model considered for prediction) in the period from 1980 to 2009, which, considering the
bias of the WRF model with respect to the observations, and the bias of the CNN model
with respect to WRF, is consistent with the historical data (Perez et al., 2022). Furthermore,
the predictions given by CNN are comparable to those given by the WRF model, both in
terms of mean and variability. However, the values of the CNN are slightly higher than
those of WRF when the IPSL model is used (the same is true for ERA-5), and slightly
lower when the other two models are used. This trend is preserved over the three periods
considered.

An important point to note is the difference between the results of WRF and CNN:
for the GFDL and IPSL models, this difference remains almost constant over time, while
with the MIROC model the difference between both predictions increases over time. This
behaviour is consistent with that observed for the biases of these three models.

Also noteworthy is the increase in the average temperature over time depicted in Figure
IV. While this was to be expected, as discussed above, the temperature increase assumed
by the RCP 8.5 scenario is clearly reflected in the predictions, both from WRF and CNN
(the one we are most interested in). In the period from 2030 to 2059, the projections of
each model are almost 2 degrees higher than in the past period, whilst the increase in the
period from 2070 to 2099 is almost 4 degrees with respect to the period from 1980 to 2009.
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FIGURE V: Temperature dependence on elevation. The difference between the period 2070 to 2099
and 1980 to 2009 is shown.
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Future projections for Canary Islands, based on dynamic regionalisations, predict a
greater temperature increase at higher elevations (Expósito et al., 2015, Perez et al., 2022).
This is in agreement with the so-called elevation-dependent warming, which is typical of
tropical and subtropical regions, and consistent with wet adiabatic stratification in these
areas, resulting in a reduced lapse rate in the future (Bony et al., 2006). This has mainly
biological and ecological implications, but it is of interest to find out whether the developed
model is able to replicate this behaviour.

Figure V shows the difference between the results for the period 2070 to 2099 minus
1980 to 2009. In this case, the GFDL model is used, although the use of the three
GCMs shows the sought-after behaviour. It can be seen that the distributions predicted
by WRF (Figure VA) and CNN (Figure VB) are similar, both depicting a greater increase
in temperature with altitude. However, this increase is more sharp in the CNN results.
The most remarkable facts are the difference at Teide, where values closer to those given
by WRF would be expected, and the large difference in the central area of Gran Canaria,
which show higher values than the expected ones. Despite the differences between the two
models, it appears that, overall, the CNN model is able to replicate the WRF outcome.

3.2 Precipitation model
Just as in the case of the temperature results, the precipitation prediction model emulates

the results given by the WRF model in a similar way in all the time spans, although they
deviate more the further the time period considered. However, in this case, the results are
not emulated adequately, and variability is lost. In Figure VI all these results are shown.
For precipitation, the bias with respect to the mean (Figure VIA) and with respect to the
98th percentile (Figure VIB) is calculated as a percentage, relative to WRF results,

Bias =
CNN prediction−WRF prediction

WRF prediction
·100 (3.1)

A drawback arising from this definition is that, due to the low precipitation amount
in the Canary Islands, the 98th percentile of the predictions turns out to be close to zero
on several occasions, so the bias with respect to this percentile is extremely large. This is
clearly reflected in Figure VIB, so this metric will not be considered in GCMs results.

3.2.1 Performance
Figure VI contains the predictions used to evaluate the model’s performance along with

the projections using GCMs. For this predictand, the same scheme as for temperature is
followed, and the same statements stands for the boxplots displayed in Figure VI.

ERA-5 results allow us to evaluate the performance of this model. The low dispersion
shown by the values between the 25th and 75th percentiles in temperature is not as salient
for precipitation. Both biases with respect to the mean and the 98nd percentile encompass
a broad set of values.
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The bias with respect to the mean stands at 50%, while the bias with respect to the 98th
percentile is slightly higher than 70% (Figure VIA and VIB, respectively). This means that
the predictions are overestimating the mean and the heavier precipitations. Despite that
high values, the underlying cause of them comes from an overestimation of precipitation
on the driest regions, as a little deviation in absolute value will suppose a high one in
percentage. This behaviour is the contrary to results on Baño Medina et al., 2020, which
underestimate the predictions in a very low percentage. Guinea et al., 2023 do not show
the extreme, but show a similar bias with respect to the mean as the one given by the CNN.

The prognoses with ERA-5 are able to maintain a certain correlation between the
results with an Spearman coefficient of more than 0.45 (Figure VIC). This metric is higher
in Baño Medina et al., 2020, showing a similar data distribution to the CNN model. A
virtually zero Spearman correlation is shown in Guinea et al., 2023, which means the
models there developed do not have the ability to maintain the correlation between results.
RMSE in wet days is akin in Baño Medina et al., 2020 and CNN models: the former
reaches values of 5 mm/day whilst the latter is just under 3 mm/day (Figure VID).

The predictions of wet and dry spells accomplished by Baño Medina et al., 2020 are
quite accurate, with a median bias of 0.5 days and a scatter of ±1 day for the former, and
a bias of 2 days with a scatter of ±2 days for the latter. While predicting wet spells, the
CNN model performs better in terms of scatter, but the median here is found to be 3.5
days. With this model, dry spells are underestimated by approximately 10 days, which
makes it the worst performer (Figure VIE and VIF, respectively). Guinea et al., 2023 do
not evaluate these metrics.

In some ways, the worse performance of the CNN compared to the Baño Medina et al.,
2020 can be explained in the same way as in the case of temperature. A further reason
could be the large variability of this predictand in the area under study. Guinea et al., 2023
do not evaluate most of the metrics used in this work, but they show a behaviour similar to
the CNN model in terms of biases with respect to the mean, while showing not correlation
at all between results, unlike the CNN ones.

3.2.2 Projections
The bias with respect to the mean (Figure VIA) obtained with the IPSL model is by

far the best in the three periods. Nevertheless, the standard deviation considering the 5
trainings of this model is the highest, standing at 186%, which detracts from the validity of
this value (exact values are shown in Appendix B, tables B.6, B.7 and B.8). The GFDL
model leads to consistent results in the three periods (there is a slight increase over time),
underestimating precipitation by 50% to 70%. The MIROC model, on the other hand,
underestimates precipitation by 30% in the interval from 1980 to 2009, but in the future
it shows a similar behaviour to that exhibited with temperature, diverging more from the
results of WRF the further the period considered. However, now the difference in values is
not as pronounced.
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FIGURE VI: Metrics comparison between each model used to make predictions on precipitation
with the CNN 2.2. Four time periods are considered: 1980-2009, 2010-2019, 2030-2059 and
2070-2099. The time period between 2010-2019 is only predicted with ERA-5 data, while the
others are obtained from the GCM models. Predictions on precipitation are so low that, usually the
98th percentile is zero, so the relative P98 Bias is undefined. Boxplots’ range of values is defined

as in the case of temperature.

Predictions with global models underestimate WRF results to a greater or lesser extent,
whereas if ERA-5 data is used, predictions are overestimated by 50%.

Spearman correlation coefficient (Figure VIC) has virtually zero values when using the
GFDL and IPSL models. As this coefficient measures how well a relationship between two
variables can be described using a monotonic function, this fact implies non-correlation
(but not independence) between the variables in the three periods considered. Conversely,
this coefficient ranges between 0.35 and 0.2 over time when using the MIROC model,
from the highest value for the past period to the lowest for the farthest future. In this case,
a slight positive correlation or association between the variables is demonstrated.
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The root mean square error shown in Figure VID, considering only days with precipita-
tion greater than 1 mm/day (that is what is called a wet day), displays very low values in
the predictions obtained with the IPSL and MIROC models. The former is the best, with
values around 1.5 mm/day in the three periods, while the latter is a step behind with values
between 3 and 4 mm/day. In the interval from 2070 to 2099, the results with MIROC
increase slightly compared to the other two periods with this model. The results using the
GFDL model are, by far, the worst: from 1980 to 2009, it presents a value slightly above 5
mm/day, whereas in future time spans this value soars to approximately 10 mm/day. This
indicates the magnitude of the error in the prediction with each model. The results using
ERA-5 data present an RMSE as low as those with the IPSL model.

Wet annual maximum spells (Figure VIE) are predicted almost perfectly with all
three models in the three periods considered, with the greatest deviation being a one day
overestimation with the MIROC model in the interval from 1980 to 2009. With the IPSL
model, the bias is null in all periods, as with the MIROC model in the two future periods.
The GFDL model, on the contrary, underestimates by less than half a day in the past and
near future, while in the distant future this bias becomes an underestimation.

Dry annual maximum spells, as shown in Figure VIF, are a major concern: the three
models greatly overestimate WRF results. In this case, the “best” model to use is the
IPSL one, which underestimates this annual period by just over a month. This value is
maintained in the three time periods. The GFDL model shows a similar behaviour to this
one, but with a deviation of two months. The worst option for this metric is the use of the
MIROC model, which from 1980 to 2009 presents a deviation of one and a half months,
while in future periods this deviation soars to almost 3 months (80 days). This can be
translated into a prediction of longer and drier summers.

Now, going back to ERA-5 results with the CNN model, the wet spells are overesti-
mated by almost 3 days, whilst the dry ones are underestimated by almost a week. The
difference with the values mentioned in the previous paragraph is clear: compared to the
global models, the use of reanalysis data causes more difficulties in predicting wet spells,
whereas it is, by far, more accurate in predicting dry ones.

Taking into account the values of the 5 metrics considered (the bias with respect to
the 98th percentile was disregarded), the use of the IPSL model is the one that gives the
best results (numerically speaking) in the three periods considered. However, due to the
standard deviation of the predictions with this model, it is the least stable of the three with
respect to the bias of the mean. However, it presents very good results if the RMSE of the
wet days and the prediction of the maximum annual wet period are taken into account, and
in spite of the not so favourable results, it is the best option for obtaining the maximum
annual dry period. In the past and near future, the GFDL model is the worst overall
performer, but in the far future, despite having very close values, this position is covered
by the MIROC model.
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As mentioned in the discussion of temperature results, global models data in the RCP
8.5 scenario is being used. Under these conditions, a decrease in precipitation is expected
in the Canary Islands region, so it would be desirable that this trend would be mirrored in
the predictions made by the statistical models developed in this work with the data from
the global models. This is depicted in Figure VII.
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FIGURE VII: Predictions on precipitation amount for each model considered in this work. Results
for CNN and WRF models are shown for four time periods: 1980-2009, 2010-2019, 2030-2059
and 2070-2099. The time period between 2010-2019 is only predicted with ERA-5 data, while the

others are obtained from the GCMs models considered.

The first point to highlight is the range of values in which the plot moves: in the
Canary Islands, currently (and in the near past) a mean precipitation of less than 1 mm/day
is expected (De Luque Söllheim et al., 2023), thus the values obtained with the global
models for the period from 1980 to 2009 are consistent with this known data. Due to these
values, the downward trend in precipitation is not as clear as in the case of temperatures,
but it is noticeable how each model predicts a lower value as time goes on. Under the
RCP 8.5 scenario, a decrease in precipitation of about 20% is expected. GFDL results, as
displayed in Figure VII, show a slight decrease over the years. The downward trend is
better exposed by the MIROC model, but IPSL results are also consistent with the expected
drop in precipitation.

The difference between the results of WRF and CNN is evident in Figure VII: those
of the latter are always lower. The greatest difference is with the GFDL model, while
the closest predictions are obtained using the IPSL model. Nonetheless, to a greater or
lesser extent, all CNN results show a lower variability over the three periods considered.
This is a problem in the predictions of extreme phenomena, and also leads to a general
underestimation of precipitation.
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FIGURE VIII: Predictions on daily mean precipitation amount on the Canary Islands over 1980-
2009 period. Comparison between WRF and CNN models.

Another noteworthy point is that the areas of the Canary Islands where it rains regularly
and abundantly are limited: this includes La Palma (especially La Caldera), high elevation
areas and the north of Tenerife, including the rural park of Anaga and the Teide National
Park, and the area of the Garajonay National Park, in La Gomera. Areas such as the
summits of El Hierro and Gran Canaria show less regularity and abundance, and the rest
of the archipelago shows very scarce and infrequent precipitation. Due to this fact and the
low overall precipitation amount, it is logical to think that the decrease in this magnitude
will come hand in hand with a decrease in the abundance and/or frequency of precipitation
in the aforementioned regions.

The Figure VIII displays the mean precipitation amount predictions in the Canary
Islands for the period from 1980 to 2009. The problem commented above is evidenced
here. The possible underlying reasons for the underestimation of precipitation by the CNN
model are explored below, by comparing the intensity of precipitation on wet days and the
number of wet days predicted by WRF and CNN. To this end, the results using the MIROC
model will be used, as it is the closest to observations according to WRF predictions.
However, these findings can be replicated for any model and period considered, as the
underestimation of precipitation is a common problem for all of them.
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FIGURE IX: Predictions on the amount of wet days on the Canary Islands over 1980-2009 period.
Comparison between WRF and CNN models.
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FIGURE X: Rain intensity predictions on the Canary Islands over 1980-2009 period (days above 1
mm/day). Comparison between WRF and CNN models.
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When looking at the number of wet days (that is to say, days with a precipitation
greater than 1 mm/day), it is striking to see in the Figure IX that the CNN (Figure IXB)
predicts a higher number than WRF (Figure IXA) during the same time. The CNN shows
a higher number of wet days with respect to WRF mainly in the north of the islands,
with La Gomera and Lanzarote being particularly affected. These results suggest that the
underestimation of precipitation is due to a much lower intensity of rain on wet days, as
there is a difference of more than twice the amount of wet days.

In Figure X the intensity of precipitation on wet days is shown. Here, the shortcomings
of the CNN with respect to WRF are evident. Furthermore, as seen due to the scarce
variability of the CNN results in Figure VII, extreme precipitation events are also underes-
timated: this can be seen by comparing La Palma in both predictions (Figures XA and XB).
Thus, according to the predictions of the CNN with MIROC in the period from 1980 to
2009, it rains less in the wettest areas of the Canary Islands: mainly La Palma, La Gomera
and the north of Tenerife.
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4 Conclusion

Resumen
Este último capítulo pone de manifiesto las conclusiones que se obtienen con base en los
resultados previamente justificados.

The aim of this project was to develop two statistical downscaling CNN models for
the Canary Islands, one for temperature and one for precipitation, capable of emulating the
results of a dynamic downscaling, namely that of the GOTA WRF model. Let’s review the
suitability of these models in terms of the results obtained.

Regarding the results of mean temperature, the model developed performed well overall.
Each dataset of each global model used had certain strengths and weaknesses: with the
GFDL model, very low biases were obtained, as well as a reliable prediction of cold spells,
while with the MIROC model, a good correlation between the variables was preserved,
along with a low RMSE and dispersion, combined with a high accuracy in the duration of
warm spells.

The precipitation model gives somewhat inadequate results, but similar to previous
studies for the Canary Islands. The biases with respect to the mean are relatively large:
as they are calculated as a percentage, this problem is caused by the driest areas, where a
slight variation in the amount of precipitation results in a high percentage bias. This fact is
in consonance with the high bias with respect to the annual maximum dry spells.

Overall, the problem with this model, derived from the analysis of the VALUE metrics
and the predicted rainfall amount, is that the variability of precipitation is significantly
reduced. It was concluded that this problem came from a poor prediction of intensity
(lower than it should be) rather than an underestimation in the number of wet days.

The unsuitability of this CNN model structure for a statistical downscaling in the
Canary Islands, training the network with ERA-5 reanalysis data, may suggest that some
of the conditions described in section 1.1.1, on which the quality of the model is said to
depend on, are not met. It is likely that the predictors used in this work are not sufficiently
informative to describe the local variability of precipitations. In the wettest areas of
the archipelago, this predictand shows an extremely high variability, both spatial and
temporally. This hinders the prediction of precipitation both in dynamic and statistical
models.
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Another potential reason for this unsuitability could be that the meteorological pro-
cesses considered require the underlying physical processes to be accurately predicted.
This could explain why the results of the statistical model for precipitation is not as close
to the dynamic model as the ones with the temperature model.

A potential improvement would be to train the models with past and present data. This
could provide the models with more data variability and give them the possibility to better
learn the patterns in the synoptic situation that lead to the generation of precipitation. In
this framework, another cross-validation strategy, such as k-fold, could be implemented to
better picture how the model will perform with new data.
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A Cross-Entropy and Mean Square
Error

A.1 Maximum Likelihood Estimation
The most common principle from which specific functions that are good estimators for
different models can be derived is the maximum likelihood principle. Let be a set of n
examples, X= {x(1), . . . ,x(n)}. This set must be independent from the true data-generating
distribution pdata(x), which is unknown.

Now, let be pmodel(x;θ) a parametric family of probability distributions over the same
space, indexed by θ . This family maps any configuration x to a real number, estimating
the true probability pdata(x).

Under these conditions, the maximum likelihood estimator for θ is defined as

θ ML = argmax
θ

pmodel(X;θ) = argmax
θ

n

∏
i=1

pmodel(x(i);θ) (A.1)

Taking the logarithm of the likelihood does not change its argmax, but gives a more
convenient optimization problem:

θ ML = argmax
θ

n

Σ
i=1

log pmodel(x(i);θ) (A.2)

Maximum likelihood estimation can be interpreted as minimizing the dissimilarity
between the empirical distribution of the training set, p̂data, and the model distribution. The
degree of dissimilarity between the two is measured by the Kullback-Leibler divergence,
also called relative entropy. This divergence is a type of statistical distance that measures
how one probability distribution diverges from a second one. The KL divergence is defined
as

DKL(p̂data||pmodel) = Ex∼p̂data[log p̂data(x)− log pmodel(x)] (A.3)

That way, when the two distributions are completely similar, the KL divergence will be
zero. When training the neural network, the goal is to minimize this expression. As the
logarithm of p̂data cannot be changed, because it is only function of the data-generating
process, the only thing that can be modified is the pmodel. Therefore, the logarithm of
the likelihood of the model is minimized. This means that when training the model, the
only thing that is minimized is the cross-entropy between the two distributions. The
cross-entropy is defined as

−Ex∼p̂data [log p̂data(x)] (A.4)
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“Any loss function that can be written as the negative log-likelihood of the model
is a cross-entropy between the empirical distribution defined by the training set and the
probability distribution defined by the model”, Goodfellow et al., 2016.

A.2 Mean Square Error as a Cross-Entropy
To show how the mean square error (MSE) relates to cross-entropy, linear regression from
the maximum likelihood estimation point of view will be considered. Let be a model that
produces a conditional distribution p(y| x). Let be a learning algorithm with the goal of
fitting the distribution p(y|x) to all different values of y compatible with x. Being this a
linear regression problem, and because of the central limit theorem, it can be assumed that
the distribution to be found is a Gaussian (its parameters: mean and variance). It is then
defined

p(y|x) = N (y; ŷ(x;w),σ2) (A.5)

where the variance is fixed to σ2 and the function ŷ(x;w) gives the predictions on the
mean of the Gaussian by taking the input variable x and the weights w learned during the
training. N is just showing that this is a Gaussian distribution. It can be demonstrated
that the conditional log-likelihood is given by

n

Σ
i=1

log p(y(i)|x(i);θ) =−n logσ − n
2

log2π −
n

Σ
i=1

||ŷ(i)− y(i)||2

2σ2 (A.6)

where ŷ(i) is the output of the linear regression on the i-th input x(i) and n is the number of
training samples. The MSE is defined as

MSEtrain =
1
m

m

Σ
i=1

||ŷ(i)− y(i)||2 (A.7)

Comparing this with the log-likelihood, it can be seen that maximizing the latter with
respect to w is equivalent to minimizing the MSE, both yield to the same estimate of the
parameter w. While the two criteria have different values, they have the same location of
the optimum, so the use of MSE as a maximum likelihood estimation is justified.
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B Data tables

This appendix contains some tables with the numerical results of the statistical downscaling
models, shown on figures III and VI.

B.1 Temperature

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −0.9393 −0.7294±1.0187 0.7387 0.6810±0.8011 −0.1083 0.0082±0.8521

P2 Bias −0.6001 −0.7958±1.1360 1.6698 1.4055±1.2286 0.6262 0.3964±1.1018
P98 Bias −1.3622 −0.9827±1.9888 −0.8765 −0.8192±1.7700 −2.1761 −2.1575±2.3219

R (Pearson) 0.6121 0.6053±0.0555 0.4777 0.4786±0.0841 0.8956 0.8797±0.0535
std Ratio 0.9636 0.9979±0.1802 0.8226 0.8414±0.1473 0.8616 0.8721±0.1723
RMSE 3.3805 3.5239±0.7306 3.5241 3.5880±0.8207 2.0778 2.1269±0.3736

WAMS Bias 4.2000 4.2036±1.2442 2.2000 2.1199±1.0966 0.6000 0.5203±1.2075
CAMS Bias 0.0000 0.0988±1.1024 0.4000 0.4519±0.7345 −0.4000 −0.4757±0.7771

TABLE B.1: Temperature results from 1980 to 2009.

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −0.7941 −0.5684±1.1199 1.2175 1.1806±0.7915 −1.6549 −1.3997±1.1815

P2 Bias −0.4079 −0.5774±1.0396 1.9438 1.7278±1.1510 −1.3668 −1.4736±1.0057
P98 Bias −1.0248 −0.6102±2.0495 −0.4906 −0.4609±1.7969 −2.8238 −2.6266±2.4110

R (Pearson) 0.4972 0.4913±0.0630 0.3555 0.3548±0.0822 0.8557 0.8481±0.0399
std Ratio 0.9791 1.0054±0.1617 0.7165 0.7528±0.1470 0.9905 1.0020±0.1785
RMSE 3.9147 4.0717±0.8049 4.4672 4.5486±0.8080 2.7996 2.8036±0.4778

WAMS Bias 2.6000 2.5275±1.1000 1.8000 1.9014±1.2435 0.4000 0.3390±0.9946
CAMS Bias 0.0000 −0.2614±1.0490 0.6000 0.7388±0.8298 0.2000 0.3381±0.6898

TABLE B.2: Temperature results from 2030 to 2059.

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −0.7584 −0.5183±1.1708 1.1135 1.0638±0.7920 −2.0206 −1.7482±1.2449

P2 Bias −0.2460 −0.3914±1.0083 1.8156 1.6048±1.1142 −1.6046 1.6086±1.0914
P98 Bias −1.6199 −1.3116±2.0512 −0.1458 −0.1361±1.5341 −2.8974 −2.9301±2.2210

R (Pearson) 0.4135 0.4078±0.0596 0.2900 0.2904±0.0819 0.9111 0.8963±0.0494
std Ratio 0.9639 0.9757±0.1381 0.7591 0.7858±0.1297 0.9849 0.9760±0.1441
RMSE 4.4705 4.6219±0.9138 4.5873 4.7069±0.8868 2.7612 2.8003±0.6538

WAMS Bias 1.0000 0.9333±1.2471 1.6000 1.5016±1.2271 0.8000 0.9122±1.0406
CAMS Bias −0.2000 −0.2276±1.3091 0.8000 0.8251±0.7988 −0.4000 −0.4693±0.8828

TABLE B.3: Temperature results from 2070 to 2099.
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B.2 ERA-5
Temperature

Median Mean ± std
Mean Bias 0.8217 0.8225±0.0765

P2 Bias 1.1757 1.1934±0.2866
P98 Bias −0.2968 −0.3281±0.5781

R (Pearson) 0.9048 0.8963±0.0544
std Ratio 0.9199 0.9137±0.0458
RMSE 1.6333 1.6538±0.1505

WAMS Bias 1.4000 1.5401±1.2392
CAMS Bias 1.4000 1.3866±1.8709

TABLE B.4: Temperature results from 2010
to 2019 (ERA-5 data).

Precipitation

Median Mean ± std
Mean Bias 49.9561 54.6117±36.2191
P98 Bias 81.3842 -

R (Spearman) 0.4664 0.4677±0.0982
RMSE (Wet Days) 2.2590 2.7074±1.4598

Wet AMS Bias 2.6 3.5615±4.4052
Dry AMS Bias −6.8 −10.6999±21.6964

TABLE B.5: Precipitation results from 2010
to 2019 (ERA-5 data).

B.3 Precipitation

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −57.6576 −50.1047±36.64 −10.5072 17.5285±186.6801 −32.4197 −18.3049±74.7331
P98 Bias −44.8874 - - - - -

R (Spearman) 0.0044 0.0055 ±0.01390 0.0111 0.01490±0.02640 0.3564 0.3445±0.07220
RMSE (wet days) 5.2756 6.9683±4.2819 1.7815 2.4974±1.7275 3.0861 4.1364±2.6067

Wet AMS Bias 0.4000 1.0956±3.2181 0.0000 1.0990±5.7995 1.0000 1.9836±4.4420
Dry AMS Bias 66.2000 60.9284±38.3877 35.2000 41.4699±53.2004 44.4000 36.5749±42.6571

TABLE B.6: Precipitation results from 1980 to 2009.

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −68.3302 −61.0311±30.4247 −5.8424 41.5628±370.6872 −64.54 −51.0909±70.5689
P98 Bias - - - - - -

R (Spearman) 0.01350 0.01560±0.01820 0.01340 0.01720±0.02450 0.2478 0.2495±0.06630
RMSE (wet days) 10.0435 10.9919±4.4610 1.4840 1.9874±1.4319 3.0772 3.7460±2.0674

Wet AMS Bias 0.2000 1.0130±3.9940 0.0000 1.8402±8.8521 0.0000 1.3432±6.2422
Dry AMS Bias 69.4000 60.2240±41.7419 34.0000 39.7841±54.9484 80.6000 68.7603±51.9128

TABLE B.7: Precipitation results from 2030 to 2059.

GFDL IPSL MIROC

Median Mean ± std Median Mean ± std Median Mean ± std
Mean Bias −72.6201 −64.4522±33.8718 −19.4288 110.2007±1571.1628 −69.0458 −45.8048±93.7937
P98 Bias - - - - - -

R (Spearman) 0.0123 0.0116±0.0132 0.0019 0.0056±0.0196 0.1931 0.2007±0.0612
RMSE (wet days) 10.2717 11.1503±4.2548 1.0937 1.4941±1.1650 4.3645 5.1262±2.5213

Wet AMS Bias −0.2000 1.1228±5.2282 0.0000 2.7116±12.2501 0.0000 1.6149±7.4986
Dry AMS Bias 70.4000 59.5994±43.8780 33.0000 42.7534±59.6124 81.8000 69.4948±62.0040

TABLE B.8: Precipitation results from 2070-2099.



34

References

Ashraf, Rehan, Muhammad Asif Habib, Muhammad Akram, Muhammad Ahsan Latif,
Muhammad Sheraz Arshad Malik, Muhammad Awais, Saadat Hanif Dar, Toqeer
Mahmood, Muhammad Yasir, and Zahoor Abbas (2020). “Deep Convolution Neural
Network for Big Data Medical Image Classification”. In: IEEE Access 8, pp. 105659–
105670. ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2998808.

Baño Medina, Jorge (2021). “Deep Convolutional neural networks for statistical downscal-
ing of climate change projections”. In: PhD Thesis. Universidad de Cantabria.

Baño Medina, Jorge, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesus Fernandez, Jose
Gonzalez-Abad, Antonio S. Cofinõ, and Jose Manuel Gutierrez (Sept. 2022). “Down-
scaling multi-model climate projection ensembles with deep learning (DeepESD):
Contribution to CORDEX EUR-44”. In: Geoscientific Model Development 15 (17),
pp. 6747–6758. ISSN: 19919603. DOI: 10.5194/gmd-15-6747-2022.

Baño Medina, Jorge, Rodrigo Manzanas, and José Manuel Gutiérrez (Apr. 2020). “Configu-
ration and intercomparison of deep learning neural models for statistical downscaling”.
In: Geoscientific Model Development 13 (4), pp. 2109–2124. ISSN: 19919603. DOI:
10.5194/gmd-13-2109-2020.

Berrar, Daniel (Jan. 2018). “Cross-validation”. In: vol. 1-3. Elsevier, pp. 542–545. ISBN:
9780128114322. DOI: 10.1016/B978-0-12-809633-8.20349-X.

Bony, Robert Colman, Vladimir M. Kattsov, Richard P. Allan, Christopher S. Bretherton,
Jean-Louis Dufresne, Alex Hall, Stephane Hallegatte, Marika M. Holland, William
Ingram, David A. Randall, Brian J. Soden, George Tselioudis, and Mark J. Webb (2006).
“How Well Do We Understand and Evaluate Climate Change Feedback Processes?” In:
Journal of Climate 19.15, pp. 3445 –3482. DOI: 10.1175/JCLI3819.1. URL: https:
//journals.ametsoc.org/view/journals/clim/19/15/jcli3819.1.xml.

Cannon, Alex J. (2008). “Probabilistic multisite precipitation downscaling by an expanded
Bernoulli-gamma density network”. In: Journal of Hydrometeorology 9 (6). ISSN:
1525755X. DOI: 10.1175/2008JHM960.1.

De Luque Söllheim, Angel Luis, Fabian García Hernández, and Pablo Lucas Mayer Suarez
(2023). “The Digital Climate Atlas of the Canary Islands: a Tool to Improve Knowledge
of Climate and Climate Change in the Canary Islands”. In: Available at SSRN 4470014.
DOI: https://dx.doi.org/10.2139/ssrn.4470014.

Ekström, Marie, Michael R Grose, and Penny H Whetton (2015). “An appraisal of
downscaling methods used in climate change research”. In: WIREs Climate Change
6.3, pp. 301–319. DOI: https://doi.org/10.1002/wcc.339.

https://doi.org/10.1109/ACCESS.2020.2998808
https://doi.org/10.5194/gmd-15-6747-2022
https://doi.org/10.5194/gmd-13-2109-2020
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1175/JCLI3819.1
https://journals.ametsoc.org/view/journals/clim/19/15/jcli3819.1.xml
https://journals.ametsoc.org/view/journals/clim/19/15/jcli3819.1.xml
https://doi.org/10.1175/2008JHM960.1
https://doi.org/https://dx.doi.org/10.2139/ssrn.4470014
https://doi.org/https://doi.org/10.1002/wcc.339


References 35

Expósito, Francisco J, Albano González, Juan C Pérez, Juan P Díaz, and David Taima
(2015). “High-resolution future projections of temperature and precipitation in the
Canary Islands”. In: Journal of Climate 28.19, pp. 7846–7856. DOI: https://doi.
org/10.1175/JCLI-D-15-0030.1.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Guinea, Carlos Correa, Alfonso Hernanz Lázaro, and Esteban Rodríguez Guisado (2023).
Evaluación de métodos de regionalización estadística para la generación de proyec-
ciones climáticas en el marco del PNACC-2 2021-2030. Agencia Estatal de Meteo-
rología. DOI: 10.31978/666-23-009-0.

Hersbach, Hans et al. (2020). “The ERA5 global reanalysis”. In: Quarterly Journal of the
Royal Meteorological Society 146.730, pp. 1999–2049. DOI: https://doi.org/10.
1002/qj.3803.

Li, Kexuan, Fangfang Wang, Lingli Yang, and Ruiqi Liu (June 2023). “Deep feature
screening: Feature selection for ultra high-dimensional data via deep neural networks”.
In: Neurocomputing 538. ISSN: 18728286. DOI: 10.1016/j.neucom.2023.03.047.

Maraun, Douglas and Martin Widmann (Jan. 2018). Statistical Downscaling and Bias
Correction for Climate Research. Cambridge University Press, pp. 133–224. ISBN:
9781107066052. DOI: 10.1017/9781107588783.

Maraun, Douglas, Martin Widmann, José M. Gutiérrez, Sven Kotlarski, Richard E. Chan-
dler, Elke Hertig, Joanna Wibig, Radan Huth, and Renate A.I. Wilcke (2015). “VALUE:
A framework to validate downscaling approaches for climate change studies”. In:
Earth’s Future 3.1, pp. 1–14. DOI: https://doi.org/10.1002/2014EF000259.

Medar, Ramesh, Vijay S. Rajpurohit, and B. Rashmi (2017). “Impact of Training and
Testing Data Splits on Accuracy of Time Series Forecasting in Machine Learning”. In:
pp. 1–6. DOI: 10.1109/ICCUBEA.2017.8463779.

Pérez, JC, JP Díaz, A González, J Expósito, F Rivera-López, and D Taima (2014).
“Evaluation of WRF parameterizations for dynamical downscaling in the Canary
Islands”. In: Journal of climate 27.14, pp. 5611–5631. DOI: https://doi.org/10.
1175/JCLI-D-13-00458.1.

Perez, Juan C, Francisco J Exposito, Albano Gonzalez, and Juan P Diaz (2022). “Climate
projections at a convection-permitting scale of extreme temperature indices for an
archipelago with a complex microclimate structure”. In: Weather and Climate Extremes
36, p. 100459. DOI: https://doi.org/10.1016/j.wace.2022.100459.

Reitermanová, Z. (2010). Data Splitting. ISBN: 9788073781392.

Riahi, Keywan, Shilpa Rao, Volker Krey, Cheolhung Cho, Vadim Chirkov, Guenther
Fischer, Georg Kindermann, Nebojsa Nakicenovic, and Peter Rafaj (Nov. 2011). “RCP
8.5-A scenario of comparatively high greenhouse gas emissions”. In: Climatic Change
109 (1), pp. 33–57. ISSN: 01650009. DOI: 10.1007/s10584-011-0149-y.

https://doi.org/https://doi.org/10.1175/JCLI-D-15-0030.1
https://doi.org/https://doi.org/10.1175/JCLI-D-15-0030.1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.31978/666-23-009-0
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.neucom.2023.03.047
https://doi.org/10.1017/9781107588783
https://doi.org/https://doi.org/10.1002/2014EF000259
https://doi.org/10.1109/ICCUBEA.2017.8463779
https://doi.org/https://doi.org/10.1175/JCLI-D-13-00458.1
https://doi.org/https://doi.org/10.1175/JCLI-D-13-00458.1
https://doi.org/https://doi.org/10.1016/j.wace.2022.100459
https://doi.org/10.1007/s10584-011-0149-y


36 References

Skamarock, C., Bogumiła Klemp, Jimy Dudhia, O. Gill, Zhiquan Liu, Judith Berner,
Wei Wang, G. Powers, Greg Duda, Dale Melvyn Barker, and Xiangyu Huang (2019).
“A Description of the Advanced Research WRF Model Version 4”. In: URL: https:
//api.semanticscholar.org/CorpusID:196211930.

Taylor, Karl E, Ronald J Stouffer, and Gerald A Meehl (2012). “An overview of CMIP5
and the experiment design”. In: B. Am. Meteorol. Soc. 93.4, pp. 485–498.

Wilby, Robert, Christian Dawson, Conor Murphy, P. O’Connor, and E. Hawkins (Jan. 2014).
“The Statistical Downscaling Model - Decision Centric (SDSM-DC): conceptual basis
and applications”. In.

Williams, Peter (Jan. 1997). “Modelling Seasonality and Trends in Daily Rainfall Data.”
In.

https://api.semanticscholar.org/CorpusID:196211930
https://api.semanticscholar.org/CorpusID:196211930

	Resumen
	Abstract
	Contents
	Introduction and study objectives
	Basic concepts
	Downscaling. Statistical and dynamic
	Deep Learning. Convolutional Neural Networks

	Study goals

	Data and methods
	Area of study and data
	Evaluation indices and cross-validation

	Methodology
	Temperature model
	Precipitation model


	Results
	Temperature model
	Performance
	Projections

	Precipitation model
	Performance
	Projections


	Conclusion
	Cross-Entropy and Mean Square Error
	Maximum Likelihood Estimation
	Mean Square Error as a Cross-Entropy

	Data tables
	Temperature
	ERA-5
	Precipitation 

	References

