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”It from bit symbolizes the idea that every item of the physical world has at
bottom — at a very deep bottom, in most instances — an immaterial source and
explanation; that which we call reality arises in the last analysis from the posing
of yes-no questions and the registering of equipment-evoked responses; in short,
that all things physical are information-theoretic in origin and that this is a

participatory universe.”

–John Archibald Wheeler, ”Information, Physics, Quantum: The Search for Links” in

Complexity, Entropy and the Physics of Information (1990) ed., Wojciech H. Zurek, p.

5.
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Summary

En este proyecto hemos abordado los fundamentos de la definición del trabajo, desde los con-
ceptos fundamentales de la termodinámica elemental hasta su interpretación probabiĺıstica de
mucha utilidad en la termodinámica de no equilibrio. Gracias a esta interpretación estad́ıstica
hemos podido ver que existen una serie de relaciones exactas para el trabajo llamadas teoremas
de fluctuación. Donde hemos presentado una de ellas, en concreto la igualdad de Jarzynzky.
Con espacial relevancia, ya que nos permite relacionar un funcional del trabajo con magni-
tudes asociadas a los estados de equilibrio del sistema, independientemente si el procesos es
no cuasiestático. La igualdad de Jarzynsky nos permite generalizar la segunda ley de la ter-
modinámica para sistemas fluctuantes, donde esta vez la inigualdad es entre los valores medio
del trabajo y la diferencia de enerǵıas libres. Siguiendo por esta ĺınea, se han presentado
los dos esquemas de medición del trabajo en mecánica cuántica, el esquema en dos tiempos
(TTM) y de un tiempo (OTM).

Se ha visto que el esquema TTM consiste en hacer una medida de la enerǵıa al principio de
un protocolo o proceso termodinámico, y otra al final, y definir el trabajo como la diferencia.
Aśı, bajo este marco, se han presentado los conceptos de función caracteŕıstica y función de
distribución de probabilidad del trabajo como transformadas de Fourier una de la otra, que han
sido necesarias para realizar una prueba de la igualdad de Jarzynzky para el caso de un sistema
cuántico cerrado. Posteriormente se han puesto a prueba los conceptos aprendidos para el
experimento de la resonancia magnética, es decir, N espines independientes sujetos a un campo
magnético uniforme muy fuerte y una perturbación dependiente del tiempo perpendicular a
este. Donde se han discutido las violaciones locales al segundo principio de la termodinámica
que se dan para este caso. Que consisten en transiciones de los espines del estado antialineado
al campo, al alineado, causadas por la perturbación.

Por otro lado, se ha presentado el esquema OTM. Donde aqúı el trabajo también se define
como la diferencia de dos medidas de enerǵıa, al inicio y al final de protocolo. Salvo que en la
segunda se mide un Hamiltoniano condicional donde los estados evolucionados son autoestados
de este. Con esto, se consigue que en la segunda medida no se pierdan las coherencias cuánticas
debido al proyectar en la base de autoestados del Hamiltoniano final y, por tanto no se pierda
la información portada por los estos estados, es por esto que la OTM se considera una TTM
no destructiva. Bajo este esquema se ha obtenido una igualdad de Jarzynsky modificada que
da cuenta del coste informacional de la medida, al incluir un término que depende de cuán
diferente es el estado final del estado térmico de equilibrio al que tendeŕıa el sistema después
de relajarse. Solucionando la inconsistencia termodinámica que presenta el paradigma de la
TTM al no incluir la medida como parte del proceso termodinámico.
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SUMMARY

Para finalizar se ha visto que la función caracteŕıstica es el puente que nos permite acceder a
una prueba experimental del teorema de las fluctuaciones en un ordenador cuántico. Donde la
idea fundamental radica en que las operaciones unitarias, es decir, las rotaciones que actuán
sobre los estados térmicos pueden ser recreadas en un ordenador cuántico. Donde hemos
provisto de una prueba algebraica del porqué podemos calcular la función caracteŕıstica con
un circuito cuántico.
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Current Status and Scientific
Framework

This literature review will deal with fundamental concepts framed within non-equilibrium
quantum thermodynamics. Where the results seen are for closed quantum systems and,
therefore, the evolution is unitary. Although they may be true for systems weakly coupled to
thermal baths, much research is currently being done on open systems [1]. General knowledge
about quantum technologies has also been used, such as in one of our reference works [2], as
well as basic knowledge of information theory to understand why the difference in information
lies in entropy differences.

Throughout the work, we have not seen any systems that exhibit energy dissipation, which
is normally the most common except in very controlled environments, and I believe that the
next step in understanding the true nature of the work would be to deal with such systems.
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Introduction

In nature, systems that completely overpass our computational and instrumental power, in
order to get a full physical characterization, are always present. The instrumental errors in
measures on initial conditions could yield, once the system evolves, to very big errors in the
final state. This crucial dependence on the initial condition is expressed mathematically by
Lyapunov exponents and Lyapunov spectra [4]. This is called chaos and represents the moti-
vation for statistical interpretation of physical phenomena.

In this way, regarding systems with many constituents, we do not study the individual
behavior of each component but consider that certain events occur with a given probability.
For example, the number of molecules of a gas, enclosed in a container, that collide with the
walls of this in a given time; or that cross a certain imaginary surface in a fluid resulting
in a net viscous force. This chaotic behavior is modelized by probability densities, thus, all
physical quantities obey probability distributions. Some examples are the Maxwell Boltzmann
distribution for the velocities of molecules in an ideal gas and the Bose-Einstein and Fermi-
Dirac distributions for the occupations of states in bosons and fermions respectively [5]. Then,
associated with each physical quantity we will have a deviation concerning a mean value, this
is called fluctuation.

Statistical mechanics is the branch of physics that connects these fluctuations with the
macroscopic thermodynamic quantities that characterize systems at equilibrium. In such
cases, due to the law of large numbers, the mean values of these quantities coincide with the
observed macroscopic values. However, this is not always the case, especially when our systems
are composed of only a few particles. In other words, there are situations where fluctuations
play a fundamental role in the dynamics of these constituents. How it occurs in the spin
system of the compound NaCaNi2F7 [6]. In addition, these fluctuations could introduce local
violations of the second principle of thermodynamics [1]. As will be discussed in the following
sections for the case of magnetic resonance.

This is why exact relations arise for the work in fast non-equilibrium processes. They are
called fluctuation theorems and were developed by Jarzynski and Crooks in 1997 and 1998
[7, 8, 9, 10]. These relations can be understood as generalizations of the second law for fluc-
tuating systems [1]. And, they have the power to, no matter the non-equilibrium process we
impose on the system, these expressions connect the work on the system with thermodynamic
quantities linked to the equilibrium states as if the process had been completely quasi-static.
Thus, we will see that it is obtained as a version of the second principle but for the mean
values of physical quantities linked to the process. In particular, for work and free energy.
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INTRODUCTION

These results have several applications. Among them, they provide insight into the ther-
modynamic costs of the measurement process in quantum mechanics. In this work, we will
discuss the two most widespread quantum mechanical work measurement protocols. The two-
time measurement (TTM) scheme and the one-time measurement (OTM) scheme with the
particular line of the references [1, 2]. Both are based on the general idea of understanding
work as a random variable. This interpretation is based on the randomness of the quantum
world. Just as when we compress a gas enclosed in a piston, we are faced with pressure and
this pressure is due to the exchange of momentum of the molecules as they collide with the
walls of the container, which is a random process with a certain probability of collisions in a
given time, work will vary from one compression process to another. This difference will be
negligible from one realization to another, the greater the number of particles. However, it
starts to gain strength when the number of constituents is small.

Let us imagine that we have a quantum system described by a Hamiltonian H and we vary
a parameter λ, so we know its dependence on time, i.e. λ(t). This is called a protocol. Hence,
the most natural way to measure the work would be to take two projections of the energy,
one at the beginning and one at the end of the protocol.

The TTM scheme measures two projections of the energy, i.e., the eigenvalues of the Hamil-
tonianH at t = 0 and at time t = τ at the end of the protocol. In the second measurement, this
method destroys the quantum coherences of the system, causing information to be lost, and
is not thermodynamically consistent since it does not take into account the thermodynamic
cost of the measurements [3]. This is something that the OTM scheme solves. It consists of
a non-destructive TTM in which in the second measurement we do not measure the Hamil-
tonian at t = τ but a conditional Hamiltonian defined in the bases of the evolved states. In
this way, quantum coherences are maintained. Furthermore, it will be shown that a modified
version of the Jarzinsky equality accounts for the informational cost of the measurement in
the OTM scheme and solves the thermodynamic inconsistency of the TTM scheme. Finally,
there is a symmetry relation deduced from the fluctuation theorems which can be checked
by a quantum computer. This relationship appears in the quotient between the forward and
backward characteristic functions. Where these characteristic functions can be put as the
trace of operators that may or may not be unitary, in any case, a Pauli string decomposition
will be applied, and computing this trace will be the same as measuring the Pauli matrix X
and Y in a quantum circuit with an ancilla qubit and a thermal target state ρ to which these
operators will be applied. This will serve as an experimental test for the fluctuation theorem.
Like this one, many other experiments have been proposed to test the reliability of fluctuation
theorems, for example, using trapped cold ions [11].
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Chapter 1

Work in non-equilibrium Process and
Jarzynski Equality

Resumen

En este caṕıtulo introductorio al trabajo en procesos de no equilibrio se recordarán las no-
ciones básicas de la termodinámica elemental, conceptos como, el trabajo, el calor, los procesos
isotérmicos y la enerǵıa libre de Hemholtz. Se hará hincapié en la definición de proceso cuasi-
estático. También se utilizará el protocolo de: estado en equilibrio térmico inicial, variación
no cuasiestática de un parámetro de trabajo λ hasta un valor final λf , relajación hacia un
estado de equilibrio cercano y vuelta cuasiestática hasta el estado inicial; para visualizar la
segunda ley de la termodinámica y la igualdad de Jarzynsky. Además de, recalcar la impor-
tancia de ambas en los procesos de no equilibrio, y dar cuenta de que esta segunda, no proh́ıbe
violaciones locales del segundo principio.

Imagine a physical system in contact with a heat source. In this way, the thermal or internal
energy U of the constituents of this system can vary due to the flow of energy between the
source and the system. We call this heat Q, and the changes produced by external agents that
consist in varying certain parameters {λi} that characterize our system are called work, W ,
and the parameters λi are called work parameters. Thus, the conservation of energy implies
that the internal energy can only be varied by heat flow in the system and by the work done

∆U = Q+W. (1.1)

This is the first law of thermodynamics. From this, we will adopt the convention of W < 0
for when the system does work on the surroundings andW > 0 for when it is the surroundings
that do work on the system.

Elementary thermodynamics studies systems in equilibrium undergoing quasi-static pro-
cesses. This means that the changes in the parameters of the Hamiltonian H describing the
dynamics of the system are sufficiently slow that at each stage of the process, the system is in
equilibrium. In other words, it is as if the process we carry out is sufficiently slow compared to
the collisions between constituents or whatever mechanism brings them into contact with each
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CHAPTER 1. WORK IN NON-EQUILIBRIUM PROCESS AND JARZYNSKI
EQUALITY

other, such that the constituents are able to rapidly communicate changes to the other ele-
ments of the system, and organize themselves to establish a global macroscopic temperature,
pressure, and volume.

For the purpose of this work, isothermal processes will always be considered. This means
that during the execution of the protocol, the temperature remains constant. Thus, the
concept of Hemholtz free energy F is of vital importance. ”Free” because in isothermal
processes it is a potential for work in our thermodynamic system. That is,

W = ∆F = ∆U −Q. (1.2)

It is the potential that tells us what part of the energy is free to do work. And later we
will see how in non-equilibrium states and for non-quasi-static processes this free energy is a
lower bound for non-equilibrium work.

To see this, let us consider that we make a variation of a work parameter λ in such a way
that we start from a value λi to a value λf and we do it quasi-statically, that is, at each moment
of the process we have a state of general equilibrium. As we see represented in the figure 1.1
by a dotted line. Thus, the work involved in this process is W = ∆F . Now let’s look at the
case where we quickly change the working parameter. Without allowing time for the system
to adapt to the new conditions. This is represented by a solid line in the figure 1.1. Next, we
allow the system to relax to the nearest equilibrium configuration. This is represented by a
dashed line up to a state F (T, λf ). In conclusion, the work done to go from point F (T, λi) to
point F (T, λf ) is different from ∆F since the process has not been quasi-static. So, all along
the protocol λ(t) energy has been used, for example, in irreversible terms such as those of
internal heat conduction or those produced if our system were fluid, in terms of friction due
to viscosity.

Non-eq. λf

λ(t)

F(T, λi)

F(T, λf)

Figure 1.1: Diagram depicting the variations of the working parameter λ(t). It represents a
protocol that starts with a first step represented by a solid line in which we vary the param-
eter λ non-quasi-statically. We go from an equilibrium state F (T, λi) to a non-equilibrium
state with a value of λ of λf . The next dashed line represents our system relaxing to the
equilibrium condition F (T, λf ). And, the dotted line represents the quasi-static process from
the final equilibrium position to the initial equilibrium position. This diagram is extracted
from reference [1].

This is what the second principle of thermodynamics tells us, that in general for irreversible
processes the work done will be greater than ∆F ,
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1.1. THE JARZYNSKI EQUALITY

W ≥ ∆F. (1.3)

Or what can be interpreted as a result of Kelvin’s statement of the second principle. In that,
we cannot extract work from a system, interacting with a single heat source, without altering
the state of the system. For example, we can use heat to change the crystalline structure of a
material so that it exhibits magnetic properties and we can extract work from that transition,
but ultimately we will have altered its initial state. In other words, by thermally interacting
with a single component, obtaining work cannot be the only goal.

To visualize this, let us focus on the process schematized in the figure 1.1, where we will
call Wirreversible the work done in the first step. Then, in the realignment process, since the
work parameter does not vary, the work done is zero. And, in the last branch, where the
work done is ∆F since it is a quasi-static process. Thus, the balance of the total work done
is Woutward +Wreturn = Woutward −∆F And, as the system returns to the same initial state,
interacting with a single source of energy, this work must not be negative (which would mean
that we would be extracting work). Therefore,Woutward−∆F ≥ 0 which is exactly the relation
1.3.

In the next section, we will see how the fluctuation theorems generalize the second principle.
Relations will emerge that will bring together the average value of work in non-equilibrium
processes with equilibrium quantities.

1.1 The Jarzynski equality

At the beginning of this chapter, we have seen all that elementary thermodynamics under-
stands of this type of non-equilibrium processes, using the inequation 1.3. In this way, we
establish a lower bound for the irreversible work from the second principle. However, it is
possible to find exact relations, i.e. equalities for work in non-equilibrium processes. These
relations are called fluctuation theorems. There is a very powerful result within the fluctuation
theorems known as Jarzinski’s equality, developed in 1997 [7, 8]. Based fundamentally on the
interpretation of work as a random variable.

This interpretation is quite intuitive. Imagine the most typical case in which a gas enclosed
in a piston is compressed, the force needed to do so has to counteract the pressure of the gas,
and this pressure is due to the collision of the particles with the walls of the container, which
is a random process that will differ from one realization to another. So, at each realization,
we would need a different work. Of course, this difference will be very small in systems where
the number of constituents is very large. However, there are systems where these statistical
fluctuations are very important as mentioned in the introduction.

Consider that we can measure these discrepancies from one realization to another. Thus,
if we repeat the same procedure we can construct a probability density P (W ). And we will
be able to calculate some quantities like the average work, as shown below

⟨W ⟩ =
∫ ∞

−∞
WP (W )dW. (1.4)
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CHAPTER 1. WORK IN NON-EQUILIBRIUM PROCESS AND JARZYNSKI
EQUALITY

Or other statistical quantities such as variance.

Then, once this is understood, Jarzynski’s equality expresses a relation between the mean
value of a quantity that is a function of work and another quantity that is a function of the
difference of free energies in the equilibrium states. Much more powerful than the inequalities
provided by basic thermodynamics 〈

e−βW
〉
= e−∆F . (1.5)

Where ∆F = F (T, λf )− F (T, λi) could be the equilibrium states shown in the figure 1.1.
It is possible to see the clear connection made between work in processes arbitrarily far from
equilibrium and quantities linked to equilibrium states. It seems quite similar to the result
followed by the second principle (see equation 1.3). Hence, it can be proven that using Jensen’s
inequality

〈
e−βW

〉
≥ e−β⟨W ⟩, combined with the equation 1.5 that we can obtain

⟨W ⟩ ≥ ∆F. (1.6)

For the first time, a generalization of the second law of thermodynamics appears for the
average value of work. This is the lower bound mentioned in previous sections.

The most relevant implication of this result is precisely that the lower bound is for the
average value of work but tells us nothing, strictly speaking, for the individual values of work
at each realization. In other words, the consequence of this is that there are possibilities of
obtaining values of work below the difference of free energies. What is a cycle like the one
in figure 1.1 would imply obtaining work without altering the state of the system, in thermal
equilibrium with only one source. A local violation of the second principle of thermodynamics
would be obtained. Where this probability can be expressed as:

Prob(W < ∆F ) =

∫ ∆F

−∞
P (W )dW. (1.7)

In the next chapter, we will proceed to show a proof of the theorem for a particular case
in the scheme of two-time measurement protocol in quantum systems.
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Chapter 2

Two-Time Measurement scheme
(TTM) in non-equilibrium unitary
dynamics

Resumen

En el presente caṕıtulo se dará a conocer el marco de la medida de dos tiempos para sis-
temas unitarios y de no equilibrio; esto es, unitarios porque no hay procesos de disipación
de enerǵıa, la entroṕıa se mantiene constate, y de no equilibrios porque el sistema no tran-
scurrirá, necesariamente, por procesos cuasiestáticos. Este esquema consiste en determinar el
trabajo a partir de dos proyecciones de la enerǵıa al inicio y al final del protocolo. También se
demostrará la igualdad de Jarzynski para el caso particular de un estado térmico de Gibbs al
que se somete a un protocolo variando un parámetro de trabajo λ en el Hamiltoniano. Donde
se verá, además, que todo este marco teórico no da cuenta del coste informacional de la me-
dida ya que en la cota inferior que se establece para el valor medio trabajo no aparece reflejada
ninguna magnitud asociada al hecho de medir. A parte de que en la segunda proyección de la
enerǵıa se destruyen las coherencias, y estas poseen información de útilidad práctica.

From now on we will assume a very important simplification for the systems we are study-
ing. We will assume no heat exchange with a thermal bath. Thus any given change in internal
energy will be caused by work done by the environment. This situation is quite common in
laboratory experiments, as stated in our reference literature [1]. This simplification will also
allow us to use the Schrödinger equation to govern the dynamics of the system.

In this way, we will have statistics at two levels when measuring physical observables such
as energy. One is due to thermal fluctuation due to coupling with the bath and the second
is due to quantum fluctuations. Thus, quantum statistical mechanics already understands
physical observables, including work, as random variables.

The two-measurement protocol consists of taking two projections of the energy, one at the
beginning and the other at the end of the protocol. In this way, we will understand the work
as the difference between these values. It corresponds to the most intuitive way of measuring
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CHAPTER 2. TWO-TIME MEASUREMENT SCHEME (TTM) IN NON-EQUILIBRIUM
UNITARY DYNAMICS

work.
Let us consider that we have an initial Hamiltonian H(λi) whose eigenvectors are |n⟩ with

eigenvalues Ei
n. By taking a measure of the energy in the initial state we will have for each

eigenvalue a probability Pn = e−βEi
n/Zi given by the diagonal matrix elements of the Gibbs

matrix ρi =
∑

n e
−β⟨n|H(λi)|n⟩/Zi |n⟩⟨n| . With Zi = tr{−βH(λi)} the number of total states

of the system-thermal bath system for a bath energy much larger than our system. This is no
more than the partition function. β is equal to 1/kbT where kb is Boltzmann constant which
it shall be considered as 1 and T is the temperature of the system.

Once we have collapsed the wave function to the state |n⟩ and started to perform a certain
protocol λ(t) if we assume that the interaction with the thermal bath is very weak, this
means that there is no heat exchange, so there is no dissipation during the execution of the
protocol. Remember that it consists of, only, varying the working parameter. This implies
that the entropy remains constant and it is the unitary operators that conserve this quantity
(see annex A). Therefore, the evolution of the initial state in time |ψ(t)⟩ will be given by the
unitary time evolution operator or driving U(t) of the following form:

|ψ(t)⟩ = U(t)|n⟩. (2.1)

After reaching a certain time t = τ we perform the second energy measurement. Where, in
this case, we will have a HamiltonianH(λτ ) of eigenvalues E

f
m and eigenvectors |m⟩. Therefore,

the probability of obtaining a value of the energy Ef
m will be

|⟨m|U(τ)|n⟩|2. (2.2)

We conclude that for a value of the energy of Ei
n before performing the protocol and at

the end of this Ef
m. The work will finally be the difference between these eigenvalues

W = Ef
m − Ei

n. (2.3)

From all this reasoning we can draw two important conclusions:

� The first energy measurement is entirely due to thermal fluctuations since it starts from
a Gibbs thermal state.

� While the second energy measurement is due to quantum fluctuations. That is, mea-
surements are calculated on the evolved state by the Schrödinger equation.

Below is an outline showing the basic TTM procedure for the case discussed in this chapter.
See figure 2.1.

2.1 Jarzynski equality proof within the TTM protocol

At this point, we can obtain the probability distributions for the work P (W ) and the char-
acteristic function. Consider that the values Ei

n and Ef
m are obtained for the measurements

of the energy, the initial and final state respectively. Well, because the result of the second

8



2.1. JARZYNSKI EQUALITY PROOF WITHIN THE TTM PROTOCOL

|0i⟩, Ei
0 −→ pi0 =

e−βEi
0

Zi

|1i⟩, Ei
1 −→ pi1 =

e−βEi
1

Zi

|n⟩, Ei
n −→ pin = e−βEi

n

Zi

t = 0

H0

|0f⟩, Ef
0 −→ pf0 =

∣∣〈0f |U(τ)|0i〉∣∣2
|1f⟩, Ef

1 −→ pf1 =
∣∣〈1f |U(τ)|1i〉∣∣2

|m⟩, Ef
m −→ pfm = |⟨m|U(τ)|n⟩|2

t = τ

Hτ

U(τ)

Figure 2.1: This figure represents the general scheme of the two-time measurement protocol
(TTM) within this case. At the time t = 0 we have a Hamiltonian H0, due to the contact
with the thermal bath each eigenstate |n⟩ of energy Ei

0 will have a probability given by the

corresponding diagonal element of the Gibbs operator, pn = e−βEi
n

Zi
. While at time t = τ we

will have a Hamiltonian Hτ of eigenstates |m⟩ and energy Ef
m. Here, however, the probability

is completely conditioned on the first measurement we obtain. If for the first measurement,
the value Ei

n of energy is obtained, the wave function will have collapsed to the associated
eigenstate |n⟩. Then, once the protocol has started, the unitary time evolution operator will
take the initial state to the final state |ψ⟩ = U(τ)|n⟩ therefore, the probability of obtaining a
measure of Ef

m for the final energy will be the squared modulus of the amplitudes accompanying
|m⟩ in the evolved state U(τ)|n⟩.

measure, as mentioned at the beginning of this chapter, is strongly conditioned by the value
of the first one. The probability of obtaining the value of Ef

m for the final state and Ei
n for

the initial state is

P (Ef
m ∩ Ei

n) = |⟨m|U(τ)|n⟩|2 Pn, (2.4)

where the elementary probability result for conditional variables has been recovered. That
said if A1 and A2 were random variables, the probability of obtaining the intercept of both is

P (A1 ∩ A2) = P (A1|A2)P (A2). (2.5)

Here, P (Ai), i = 1, 2 represents the probability of the occurrence of the event A1 or A2.
P (A1|A2) expresses the conditional probability, i.e. the probability of the occurrence of A1

having occurred A2. In our case, Pn is the probability of the energy value of the thermal state,
and |⟨m|U(τ)|n⟩|2 is the probability calculated on the amplitudes of the evolved state. That
is, the probability of obtaining an eigenstate |m⟩ having obtained an initial state |n⟩ which is
P (Ef

m|Ei
n).

Therefore, the probability of obtaining a work value W will be given by
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CHAPTER 2. TWO-TIME MEASUREMENT SCHEME (TTM) IN NON-EQUILIBRIUM
UNITARY DYNAMICS

P (W ) =
∑
m,n

|⟨m|U (t) |n⟩|2 Pnδ
[
W −

(
Ef

m − Ei
n

)]
. (2.6)

Where δ[x] is the Dirac delta function. With this relation we sum the conditional prob-
abilities of all possible cases and, thanks to the Dirac delta, we only take into account those
whose difference in energy coincides with the value of the work.

Although this is an exact expression. Handling it directly would result in very complicated
combinatorial formulae. This is why we will present the concept of characteristic function.
That, in addition to providing operational simplicity, will be the bridge between the theory
and the experimental proof of the fluctuation theorem. As we will see in the last chapters of
this project with the quantum circuit. The characteristic function is defined, simply, as the
Fourier transform of the probability distribution as follows

G (r) = ⟨eirW ⟩ =
∫ ∞

−∞
P (W ) eirWdW. (2.7)

Thus, using the expression 2.6 we can calculate the characteristic function as follows

G(r) =

∫ ∞

−∞
dW

[∑
m,n

|⟨m|U(τ)|n⟩|2 Pnδ[W − (Ef
m − Ei

n)]

]
eirW

=
∑
m,n

|⟨m|U(τ)|n⟩|2 Pne
ir(Ef

m−Ei
n)

=
∑
m,n

⟨n|U †(τ)eirE
f
m|m⟩⟨m|U(τ)e−irEi

nPn|n⟩

=
∑
m,n

⟨n|U †(τ)eirHf |m⟩⟨m|U(τ)e−irHiρth|n⟩

=
∑
n

⟨n|U †(τ)eirHf

∑
m

|m⟩⟨m|︸ ︷︷ ︸
1

U(τ)e−irHiρth|n⟩

= Tr{U †(τ)eirHfU(τ)e−irHiρth}.

(2.8)

Where to go from the first to the second equality we have used the Dirac delta property∫∞
−∞ dxf(x)δ(x − a) = f(a). In the third and fourth equalities, we have conveniently accom-
modated these complex phases to change them for the associated operators, which, acting on
their eigenstates, would return the constants back to us. In the fourth equality, the identity
”1” is recognized as the sum of the projectors over all the states. And, finally, we obtain an
expression for the characteristic function set as a trace in Hilbert space.

This form of trace will be of great importance in the later chapters. For the moment, we
can see that from this result we can extract the statistical moments of W by using the Taylor
expansion of the exponential:

10



2.1. JARZYNSKI EQUALITY PROOF WITHIN THE TTM PROTOCOL

G (r) = ⟨eirW ⟩ = 1 + ir⟨W ⟩ − r2

2
⟨W 2⟩ − ir

r3

3!
⟨W 3⟩+ ... (2.9)

From which we can extract a quantum expression for the mean value of work by making
a Taylor’s expansion of eirHf and eirHi in the expression 2.8 to give

⟨W ⟩ = ⟨Hf⟩ − ⟨Hi⟩. (2.10)

See appendix B for more details. Hence, we say that the mean value of the work is nothing
more than the difference between the mean values of the energy at the beginning and the end
of the protocol. Which is very intuitive.

At this point, we can give r a value of iβ in the characteristic function (see equation 2.8)
to prove Jarzynski’s equality. As follows

G(r = iβ) = Tr

{
U †eβHτUeβHi

e−βHi

Zi

}
=

1

Zi

Tr{U †eβHτU}

=
1

Zi

Tr{eβHτ UU †︸︷︷︸
1

} =
Zτ

Zi

,
(2.11)

where the explicit form of the density operator at the beginning of the protocol ρth = e−βHi

Zi
,

the identity relation eβHie−βHi = 1 and the cyclic property of the trace has been used.
Ending, as we know Z = eβF . We can deduce

G(iβ) = ⟨e−βW ⟩ = e∆F , (2.12)

where we have recovered the general result presented in chapter 1. So again, if we use Jensen’s
inequality, we can easily arrive at the generalization of the second law for fluctuating systems
⟨W ⟩ ≥ ∆F .

By quick inspection, we see that we have a lower bound for the average work value that
depends only on the free energy difference. However, we do not see any terms associated with
the measuring process. Somehow this paradigm does not take into account the measurement as
a thermodynamic process. Moreover, when projecting the energy, in the second measurement
by changing from the evolved kets base to the eigenstate of the Hamiltonian at time τ , the
coherences are destroyed. These coherences present information of practical use as in quantum
computers [2]. In later chapters, we will see how the OTM scheme solves this inconsistency
and turns out to be thermodynamically consistent.
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Chapter 3

Application for magnetic resonance
from the reference [1]

Resumen

En este caṕıtulo se aplicarán los conceptos de función caracteŕıstica y distribución de prob-
abilidad del trabajo para el experimento de la resonancia magnética (N espines independientes
sujetos a un campo magnético uniforme y una perturbación dependiente del tiempo perpendicu-
lar a este) bajo el paradigma del esquema de la medida de dos tiempos. Se hará uso de la inter-
action picture para resolver el problema monopart́ıcula anaĺıticamente, bajo una aproximación,
quitándonos la dependencia temporal para comprobar los resultados que predice el teorema de
las fluctuaciones para el valor medio del trabajo. Se verá, a partir del cálculo de la función
distribución del trabajo, que se viola localmente el segundo principio de la termodinámica en
una situación en la que se extrae trabajo de la transición spin antialineado-alineado al campo
magnético sin alterar el estado del sistema. Se extrapolarán estos resultados para el caso de
N part́ıculas, y se verá como la probabilidad de que ocurran violaciones al segundo principio
decae con eN y, es este el motivo por lo que macroscópicamente no detectamos estas viola-
ciones.

Following on from the literature review of [1]. The application of all these concepts, seen
in the previous chapter, to the case of the magnetic resonance experiment, will be discussed.
In addition to the physical implications of these concepts.

From now on, let us consider a system of N non-interacting particles of spin 1/2, which
could be electrons, protons, neutrons, or any other fermionic particle, which we subject to a
very strong magnetic field in the z-axis direction. All are weakly coupled to a thermal bath.
As it is shown in the figure 3.1.

The total Hamiltonian will be the tensor product of the individual. That is, H = H
(1)
0 ⊗

H
(2)
0 ⊗ ...⊗H

(N)
0 . Then the Hamiltonian of one particle will be the Hamiltonian of a particle

with a magnetic moment of spin 1/2 interacting with a magnetic field B. As follows

H0 = −µsB = −gs
µB

ℏ
S ·B = −gs

µB

ℏ
ℏ
2
σzB0, (3.1)

12
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(a) (b)

Figure 3.1: In the figure 3.1(a) we can see a very schematic representation of the problem of
N non-interacting particles with equal spins 1/2 subjected to a magnetic field in the z-axis
direction. Where the particles are represented by the black spheres and the magnetic field is
given in the direction of the black arrows. While in the picture 3.1(b) we can see the schematic
of the microcanonical collective, where the system Σ represents the system of non-interacting
N spins weakly connected to a thermal bath, as we see in the figure, since δQ = 0; which fixes
it at a temperature T .

where µs is the Bhor magnetron and gs the Landau g-factor. If we measure the field in units
of energy, where ℏ = 1 will be taken, the problem would be simplified to

H0 = −B0

2
σz, (3.2)

where B0 corresponds to the characteristic precession frequency. As we see, we have a two-
level Hamiltonian corresponding to spin-up and spin-down configurations of energies of −B0

2

and B0

2
, respectively.

With all of this stated, the thermal density matrix will be given by

ρth =

(
eB0/2T/Z 0

0 e−B0/2T/Z

)
=

(
1
2
(1 + f) 0

0 1
2
(1− f)

)
, (3.3)

with f the equilibrium magnetization of the system, as we see f = ⟨σz⟩th = tanh B0

2T
and Z

the system partition function Z = Tr{e−H0/T} = 2 coshB0/2T . Where we have used natural
units, therefore, kb = 1.

In our case, the protocol will consist of applying a time-dependent magnetic field contained
in the xy plane of the form B1 = (B1 sinωt,B1 cosωt, 0). With B1 several orders of magnitude
below B0 we will take the approximation B0 ≫ B1. Thus the total Hamiltonian would be

H (t) = −B0

2
σz −

B1

2
(σx sinωt+ σy cosωt). (3.4)

This field would play the role of perturbation. In which the time-dependent perturbation
theory tells us that the probability of causing a transition from one state to another |±⟩
will be maximal when the oscillation frequency ω of the field equals the natural oscillation
frequency B0. At this point, we will begin to solve the problem. That is, obtain the probability
distribution function of the work as the difference of the mean values of the energy. All these

13
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relations can be obtained from the time evolution operator U(t). So, as is usual when working
with time-dependent perturbations, we will move to the interaction picture where the problem,
as we will see below, is simplified quite a lot.

We will work with the states |ψ⟩I , where the subscript I reflects that these are the kets of
the interaction picture. And obey the following relation with the kets |ψ⟩S where the subscript
S indicates that these are the kets of the Schrödinger picture

|ψ⟩S = eiω
σzt
2 |ψ⟩I . (3.5)

It follows from this expression that the new time evolution operator Ũ(t) will be given by

U (t) = eiωt
σz
2 Ũ(t). (3.6)

And, of course, it will follow the Schrödinger equation

i∂tŨ = H̃Ũ . (3.7)

Where H̃ takes the form

H̃ = −(B0 − ω)

2
σz −

B1

2
σy. (3.8)

We can see this result in the annex C. Where a very useful relation has been used for a
random matrix such that M2 = 1. Then, if α is an arbitrarily constant, the power series
expansion of e−iαM leads directly to

e−iαM = 1 +
(−iαM)2

2!
+

(−iαM)4

4!
+ . . .

+ (−iαM) +
(−iαM)3

3!
+

(−iαM)5

5!
+ . . .

= 1 +
−α2���*

1

M2

2!
+
α4���*

1

M4

4!
+ . . .

+ (−iαM) +
iα3�

��*
1

M2M
3!

+ . . .

= 1 cosα− iM sinα.

(3.9)

As we can see there is no explicit dependence on time in 3.8. We can simply solve 3.7 to
obtain:

U(t) = eiωtσz/2e−iH̃t. (3.10)

We will again use the relation 3.9 to obtain an expression for 3.8. First we will rewrite the
equation 3.8 as:

H̃ = −Ω

2
(σz cos θ + σy sin θ) , (3.11)
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where Ω =
√

(B0 − ω)2 +B2
1 , and tan θ = B1

B0−ω
. Because σ2

i = 1 and σiσj = iϵijkσk ∀i, j / i ̸=
j, where ϵijk represents the antisymmetric tensor,it follows that (σz cos θ + σy sin θ)

2 = 1.
Therefore, we can apply the equality 3.9. This leaves,

e−iH̄t = I cos
(
Ωt

2

)
+ i (σz cos θ + σy sin θ) sin

(
Ωt

2

)
. (3.12)

From where we can clearly identify M as σz cos θ + σy sin θ and α as −Ωt
2
. Inserting this

result into equation 3.10 finally yields an equality for the time evolution operator of the system

U(t) =

(
u(t) v(t)

−v∗(t) u∗(t)

)
. (3.13)

where,

u(t) = eiωt/2
[
cos

(
Ωt

2

)
+ i cos θ sin

(
Ωt

2

)]
,

v(t) = eiωt/2 sin θ sin

(
Ωt

2

) (3.14)

This would solve the mathematical problem. At this point, it is very important to analyze
the physical meaning of the functions u(t) and v(t). For the moment, let’s think about
calculating the probability that starting from an initial state |+⟩ we end up in a final state |−⟩
at time t. This is the probability of anti-alignment with the magnetic field. This corresponds to
a transition from a state with less energy to a more energetic state. That is, |⟨−|U(t)|+⟩|2. It
is easy to see that this calculation corresponds to the modulus squared of the matrix element
of the second row and first column of the time evolution operator, according to the usual
convention for the basis of states space of spin {|+⟩ = (1, 0), |−⟩ = (0, 1)}. Hence corresponds
to |−v∗(t)|2 = |v|2. So we can conclude that |v|2 represents the probability of a jump occurring
in the spin system. Moreover, thanks to the unitarity condition UU † by introducing it in the
following expression

⟨+|+⟩ = ⟨+|U †U |+⟩ = |U |+⟩|2 = |u(t)|+⟩ − v∗ (t) |−⟩|2 = |u|2 + |v|2 = 1. (3.15)

We arrive at |u|2 + |v|2 = 1. So, |u|2 means the probability that such a transition does not
occur. Furthermore, we can see how in the equation 3.15 appears v ∝ sin θ so we can attribute
to θ a meaning as the transition probability. Since v(t) becomes maximal when sin θ = 1 and
that happens when tan θ = π

2
⇔ ω = B0, see the definition for tan θ to get the equation 3.11.

The fact of ω = B0 is intuitive, what we are saying is that in a two-level quantum system,
the transition probability is maximal when the frequency of the perturbation is the same as
the frequency associated with the energy of separation of the levels. As if it absorbed a pho-
ton of just the right energy to jump levels. This is a consequence of the quantization of energy.

Once the time evolution operator is obtained, we can calculate the mean value of any phys-
ical observable. Uniquely using the relation ⟨A⟩t = Tr

{
U †AUρ0

}
, where A is an observable.
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One of particular interest is the magnetization in the z-direction of the system at time t. We
will use it later when we obtain an expression for the probability distribution

⟨σz⟩t = f
(
1− 2|v|2

)
= f

(
cos2 θ + sin2 θ cosΩt

)
. (3.16)

Where the fact that |v|2 + |u|2 = 1 and the definition of f in equation 3.3 have been used.

3.1 Average work and characteristic function

As we have seen so far, what we have is a two-level system in which the perturbation causes
transitions to be made from one less energetic level to a more energetic level. Let us now
think of the TTM protocol, and calculate the mean value of the work as the difference of the
mean values of the unperturbed Hamiltonian at time 0 and at time t. Taking H0 as repre-
sentative only of the energy is justified since H0 ≫ H1, where H1 represents the Hamiltonian
corresponding to the perturbation. Thus, the mean value of the energy at time 0 is

⟨H0⟩0 = −B0

2
⟨σz⟩0 = −B0

2
f. (3.17)

From where the definition of f has been used as the magnetization of the system in the
initial thermal state ρth. While for the mean value of H0 after a time t we have the following

⟨H0⟩t = −B0

2
⟨σz⟩t = −B0

2
f(1− 2|v|2), (3.18)

where we recover what we have seen previously for the magnetization at the end of the protocol,
see equation 3.16. Taking the difference between the two we obtain the average value of the
work

⟨W ⟩t = fB0|v|2 = fB0
B2

1

Ω2
sin2

(
Ωt

2

)
. (3.19)

Our final result tells us that the average value of work oscillates with a frequency Ω/2 whose

maximum is fB0
B2

1

Ω2 and would be reached at times π
Ω
p , with p and odd integer. It is observed

that the maximum value of work is proportional to fB0, the magnetization of the system and
the characteristic frequency, multiplied by a Lorentzian function since Ω = B2

1/((B
2
0−ω)2+B2

1),
this function becomes maximum at the resonance condition (ω = B0) giving a value for the
work of fB0. Because the evolution of the system is governed by a unitary operator we
arrive at a periodic expression for the work. This is because, as mentioned above, there is
no dissipation. Once a period of the perturbation has elapsed we recover the same system,
so it makes sense that the mean values of physical quantities follow a symmetric behavior
concerning time translations.

Another result we see as a consequence of the second law for fluctuating systems is that as
the free energy is time-independent, since B0 ≫ B1, F (T, Z) = T ln(Z), this implies ∆F = 0,
so from equation 1.6 we finally have ⟨W ⟩ ≥ 0. And we see this perfectly in the expression 3.19.
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Let us go one step further. Consider obtaining the probability distribution function of the
work using the characteristic function. Thus, applying the relation 2.8 we arrive at by simple
matrix multiplication

G(r) = |u(t)|2 + |v(t)|2
{
(1 + f)

2
eiB0r +

(1− f)

2
e−iB0r

}
. (3.20)

Bearing in mind that we have to use H0 as H0 and Hτ in the trace. Then, from this simple
expression, we can obtain the probability function from the inverse Fourier transform. That
is to say,

P (W ) =
1

2π

∫ ∞

−∞
drG(r)e−iWr. (3.21)

If we do this we arrive at

P (W ) = |u|2δ(W ) + |v|21 + f

2
δ (W −B0) + |v|21− f

2
δ (W +B0) . (3.22)

Let us carefully analyze this result to delve deeper into the physical meaning. First, we
see that it is only possible to obtain 3 values for the work, i.e. W = {0,+B0,−B0}, because
of the definition of the Dirac delta. This corresponds to the three possible cases in a two-level
system, see figure 3.2, i.e. we have the possibility that the spin value is not modified in any
case no work is done (P (W = 0)). The next case is that there is a transition from the aligned
to the anti-aligned spin state where the work would be positive since the first is less energetic
than the second P (W = +B0). And the last one, from anti-aligned to aligned where the
system would produce work on the surroundings P (W = −B0) since it is jumping from a
more energetic level to a less energetic level.

However, the equation 3.22 is quite intuitive and can be derived heuristically. Consider the
case of an up-down flip where the value of work is +B0. The probability of this happening is the
probability of, first, obtaining the state |+⟩ in the thermal state, i.e. ⟨+|ρ|+⟩ = (1+f)/2, and,
second, the conditional probability of obtaining the anti-aligned state starting from the aligned
state, i.e. |⟨−|U |+⟩|2, which we saw in the previous section, corresponds to the probability of
a transition occurring, |v|2. As we can see, the term accompanying the delta δ (W −B0) is
recovered. Repeating this reasoning for the other two cases we can arrive at the equation above.

If we look carefully we see that there is a non-zero probability that the system produces
work to the surroundings, for a case of a down-up flip in spin. This corresponds to a local
violation of the second principle. The violation occurs with a probability P (W = −B0) =
|v|2(1−f)/2, beware that it will always be smaller than the probability that it does not occur
since (1 − f)/2 ≤ (1 + f)/2. This makes the final result ⟨W ⟩ ≥ 0 (see equation 3.19) which
indicates that the violation is the exception never the rule.

Thus we have seen how for the case of a single particle a case appears which locally
violates the second principle. If one wishes to check these probabilities experimentally in the
laboratory, it is interesting to express all these probabilities using the magnetization in the
initial state f and at time t, as shown in equation 3.16. Therefore, a couple of manipulations
of equation 2.4 using the definition of magnetization in time t yields the following:
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Remain the same

Up-down flip

Down-up flip

Figure 3.2: In this schematic representation we can see the three possible situations in a
two-level quantum system. To the left of the diagram, the magnetic field along the z-axis is
represented by a black arrow. Then we can see the particles and their spin z-component value
represented with black spheres and purple arrows respectively.

Prob (W = ±B0) =

(
f − ⟨σz⟩t

2f

)
1± f

2
. (3.23)

The significance of this expression is that magnetization is a macroscopic observable that
can be measured in a laboratory.

3.2 Work measurements for a large number of particles.

The above results express the work done by a magnetic field on a particle of spin 1/2. Although
this is an exact result and can be experimentally verified. The most usual is not to have a
single particle but a system of many particles. So suppose we have N particles of spin 1/2
that do not interact with each other otherwise the problem would become quite difficult, one
would have to consider, for example, solving the problem using a DFT (Density Functional
Theory) model. In this way the total work K done by the N particles corresponds to the sum
of the individual works

W = W1 +W3 + ...+WN . (3.24)

The different values of work {Wi}Ni=1 can be treated as identically distributed independent
variables. Therefore, statistical parameters such as the mean of the total work can be put as
the sum of the mean values in this way. And, these, in turn, are all equal, thus, ⟨W⟩ = N ⟨W ⟩.
Then, many quantities like the characteristic function take a very simple form, that is

G(r) =
〈
eirW

〉
=

〈
eirW1

〉
·
〈
eirW2

〉
· ... ·

〈
eirWN

〉
=

〈
eirW

〉N
= G(r)N . (3.25)
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Where in the third equality the fact that all spins are equal has been used. So if we look
closely at the equation we can see that what we are saying is that the characteristic function of
a system of non-interacting particles is the product of their individuals characteristic functions.

Then, the next step would be to obtain the probability distribution function for the system
of particles, in the same way as we did for the case of 1 particle; by taking the inverse Fourier
transform, as indicated in the expression 3.21. But first, as indicated in our reference literature
[1], we will introduce the following changes in the notation, which will help us to deepen our
understanding of the physical meaning of the characteristic function. We will take b0 = |u|2
and b± = |v|2(1±f)/2. Implementing this in equation 3.25, the equation would read as follows

G(r) = (b0 + b+e
iB0r + b−e

−iB0r)N . (3.26)

If we develop the product, when we combine them, we get all the terms from (eiB0r)−N to
(eiB0r)N , so that it can be read as

G(r) =
N∑

k=−N

Γke
iB0rk. (3.27)

Where the coefficients Γk are combinatorial combinations of the b0, b+ and b−, the algebraic
development can be found in annex C. Then, applying the inverse of the Fourier transform to
obtain the work distribution function

P (W) =
1

2π

∫ +∞

−∞
drG (r) e−irW =

1

2π

∫ +∞

−∞
dr

[
N∑

k=−N

Γke
irB0k

]
e−irW

=
N∑

k=−N

Γk

(
1

2π

)∫ +∞

−∞
dre−i(W−B0k)r︸ ︷︷ ︸

δ(W−B0k)

=
N∑

k=−N

Γkδ(W −B0k).
(3.28)

We finally arrived at the desired result. As can be seen, a similar result to the single-
particle case is obtained in equation 3.22. This expression tells us that we can have the 2N+1
values for the work that sweeps all the possibilities from all the spins becoming anti-aligned
with the magnetic field, in which case W = NB0 and the case of all of them becoming aligned,
W = −NB0.

This form for the distribution of work is a consequence of the form of the characteristic
function in 3.25. It can be interpreted as an N-step random walk with three possible steps,
i.e., we can take the step eirB0 , with a probability of b+, we can also move towards e−irB0 with
the respective probability b−, or, simply not move at all, whose probability is b0. Then the
N appearing in the exponent of the equation 3.25 expresses the result of having taken N steps.
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Figure 3.3: The probabilities of the different values of the work of the whole system of the N
non-interacting spins are plotted. Where the values of B0 = 1, ω = 0.8, B1 = 0.1, f = 0.5
and t = π

Ω
have been assigned. For 4 different cases of N = 5, 10, 20 and 100 in figures 3.3(a),

3.3(b), 3.3(c) and 3.3(d) respectively. Here, in addition, the Gaussian of the same mean and
variance of the spin system has been plotted with a red line in figure 3.3(d). This figure is
adapted from our main reference [1].

As a result, we can easily represent the probability distribution given in the equation 3.28.
This is shown in the figure 3.3. Recalling a bit, our system is the one in figure 3.1(b) with
the Σ system corresponds with the non-interacting N spin particles to which we have plugged
a perturbation, where the effect is to interact with the magnetic momentum of the particle
and cause transitions between the aligned and anti-aligned states with the magnetic field in
the z-axes. With probabilities given by the squared modulus of certain matrix elements of the
time evolution operator as mentioned before. Well, in the figures we see how the perturbation
is able to cause transitions between higher and lower energy states resulting in negative work
values. This results in local violations of the second principle. Corresponding to the values to
the left of the grey line. What we see is a situation where the initial thermal state favors an
anti-alignment with the magnetic field and the perturbation is able to cause the transition to
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the aligned state resulting in work being done without altering the state of the system since
B0 ≫ B1.

One thing that catches our attention is that as we increase the number of constituents
the probability of violations of the second principle decreases. And, this probability, as our
reference indicates, goes with decreasing exponential. This is precisely why we do not detect
violations of the second principle at the macroscopic scale. To conclude the discussion of these
results, a Gaussian distribution with the same mean and variance as the distribution of the
particle system is drawn in the figure 3.3(d). This is to keep in mind the central limit theorem,
which tells us that the distribution function of a sum of independent random variables is the
convolution product of the independent distributions and that in the limit where the number
of variables becomes infinite, this distribution is a Gaussian one.
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Chapter 4

One Time Measurement scheme
(OTM) and fluctuation theorem with
experimental verification (Summary of
[2, 3])

Resumen

En el presente caṕıtulo se ha introducido el teorema de las fluctuaciones bajo el esquema
de la medida única (OTM), obteniendo una igualdad de Jarzynsky modificada que da cuenta
del coste informacional de la medida y soluciona el paradigma termodinámico de la TTM que
no da cuenta de este coste. La igualdad de Jarzynsky da lugar a una generalización del se-
gundo principio con una cota inferior mejor establecida que para el caso de la TTM, donde
śı que se incorpora la media como parte del proceso termodinámico. El trabajo, visto desde el
esquema OTM consiste en una primera medida de la enerǵıa inicial donde se proyecta sobre
los autoestados del Hamiltoniano inicial y una segunda donde lo que se mide es un Hamilto-
niano condicional que está definido tal que los vectores evolucionados son estados puntuales
de este, por lo que en esa segunda no se destruyen coherencias, ni se pierde la información
portada por los vectores evolucionados. Se ha hecho hincapié en que el esquema OTM es un
esquema TTM no destructivo debido a que en esa segunda medida no se destruyen los estados
evolucionados. Y, a partir de la expresión para las funciones caracteŕısticas, se ha podido ver
que las rotaciones que actúan sobre los estados térmicos pueden ser recreadas en un ordenador
cuántico. Lo que plantea una prueba experimental para el teorema. Se ha trabajado a fondo
en la conexión entre como puede ser obtenida la función caracteŕıstica y las operaciones nece-
sarias en un ordenador cuántico para acceder a esta cantidad, desarrollando el álgebra que hay
detrás y proveyendo de una explicación a los resultado obtenidos por nuestra referencia para
la OTM [2].

So far we have developed an entire framework around the TTM scheme. And we have
proved Jarzynsky’s equality for a particular case as in chapter 2. So, the next step will be to
present a different scheme for measuring work. The OTM (one-time measurement) scheme.
This scheme has the power that it will preserve the quantum coherences and correlations, very
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importantly, it will solve the thermodynamic inconsistency of the previous paradigm since it
will take into account the informational cost of the measurement [2].

The OTM scheme consists of a TTM scheme in which the second energy measure is re-
placed by a measurement of a conditional Hamiltonian in which the information provided in
the basis of the evolved kets U |n⟩ is not destroyed by being projected into the eigenstates basis
of the final state Hamiltonian. In this way, we will be able to show that Jarzynsky’s equal-
ity will include an extra term related to the relative quantum entropy difference between the
conditional thermal state and the Gibbs thermal state corresponding to the final Hamiltonian.

So, let us return to our closed quantum system described by a thermal Gibbs state of the
form ρeq0 = exp{βH0}/Z0 where Z0 is the partition function and H0 is the initial Hamiltonian.
As we already know from chapter 2 and completed in annex A, the evolution of the states
will be given by a unitary evolution operator U . According to the OTM, if we make a first
measurement of the energy, we define the work as the difference of the corresponding mean
value in the evolved state and this first initial measurement, as follows

W̃ (0+, En) = ⟨Hτ ⟩τ − En. (4.1)

This quantity is also called conditional work since it depends exclusively on the initial
measure of energy. Proceeding as in the case of the TTM scheme, the forward conditional
work distribution will be given by

P̃f (W ) =
d∑

n=1

e−βEn

Z0

δ
(
W − W̃n

)
, (4.2)

with this relation, we express that the probability of obtaining a work value ofW (0+, En) is
simply the probability of obtaining the state |n⟩ in the initial thermal state. So if we calculate
the mean value of

〈
e−βW

〉
P̃f

we obtain Jarzynsky’s equality for the OTM equation as follows

〈
e−βW

〉
P̃
=

∫
dWe−βW P̃f (W ) =

d∑
n=1

∫
dWe−βW e−βEn

Z0

δ
(
W − W̃n

)
=

n∑
n=1

eβ(<n|U†HτU |n⟩−En) e
−βEn

Z0

=

∑n
n=1 e

−β⟨n|U†HτU |n⟩⟩

Z0
�������:1
eβEn · e−βEn =

Z̃τ

Z0

.

(4.3)

Where we have defined Z̃τ =
∑N

n=i e
−β⟨n|U†HτU |n⟩ as the conditional partition function,

which is the normalization factor of the conditional thermal state ρ̃τ =
∑d

n=i e
⟨n|U†HτU |n⟩/Z̃τU

|n⟩⟨n|U †. Where if we use the definition of quantum relative entropy between the final Gibbs
equilibrium state and the final conditional state

S (ρ̃τ∥ρeqτ ) = Tr {ρ̃τ ln ρ̃τ} − Tr {ρ̃τ ln ρeqτ } . (4.4)

Where the first term is called the negentropy of the conditional thermal state ρ̃τ and is
calculated as follows
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Tr {ρ̃τ ln(ρ̃τ )} = Tr

{
ρ̃τ

[
ln(

d∑
n=1

e−β⟨n|U†HτU |n⟩U |n⟩⟨n|U † − ln(Z̃τ )

]}

= −βTr{ρ̃τ
d∑

n=1

〈
n|U †HτU |n

〉
U |n⟩⟨n|U †} − Tr{ρ̃τ ln(Z̃τ )}

= −ln(Z̃τ )− β
1

Z̃τ

N∑
n=1

e−β⟨n|U†HτU |n⟩⟨n|U †HτU |n⟩

= − ln{Z̃τ} − β⟨Hτ ⟩τ ,

(4.5)

while the second term is the cross entropy of both states. Similarly, its final expression is

Tr {ρ̃τ ln (ρeqτ )} = Tr
{
ρ̃τ

[
ln(e−βHτ − ln(Zτ )

]}
= −βTr{ρ̃τHτ} − Tr{ρ̃τ ln(Zτ )}

= −ln(Zτ )− β
1

Z̃τ

Tr

{
d∑

n=1

e−β⟨n|U†HτU |n⟩U |n⟩⟨n|U †Hτ

}
= − ln{Zτ} − β

1

Z̃τ

∑
n,n′

e−β⟨n|U†HτU |n⟩ ⟨n′|U †U |n⟩︸ ︷︷ ︸
δ(n−n′)

⟨n|U †HτU |n′⟩

= −ln{Zτ} − β⟨Hτ ⟩τ .

(4.6)

Therefore, we can express e−S(ρ̃τ ||ρ̃eqτ ) = Z̃τ/Zτ so by adding this definition to equation 4.3
we can conclude that 〈

e−βW
〉
P̃ = e−β∆F e−S(ρ̃τ∥ρeqτ ), (4.7)

where ∆F = −1/β ln(Zτ/Z0). So we arrive at Jarzynsky’s modified equality. If we compare
it with the relation 1.5 we see that a term appears that tells how different the Gibbs thermal
states and the conditional thermal state are. If we use Jensen’s equality:

β⟨W ⟩P̃ ≥ β∆F + S (ρ̃τ∥ρeqτ ) . (4.8)

We obtain a new version of the relation 1.6, i.e. of the second law for fluctuating theorems.
This time there is a lower bound which gives us more information than if we only include
the difference of free energies of the thermal states. We are accounting for the informational
cost of measuring, with the form 4.7 we include the changes in the thermodynamic state
introduced by measuring. The lower bound turns out to be more significant, in one of our
reference works, [3], it shows how for the case of the parametric harmonic oscillator this result
can provide much more information on how much work is available in the system.

4.1 Equivalence between OTM and TTM schemes

Let’s think from the TTM point of view but defining a new physical quantity described by
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Gτ ≡
d∑

n=1

〈
n
∣∣U †HτU

∣∣n〉U |n⟩ ⟨n|U †. (4.9)

Where the |n⟩ corresponds to the eigenstates of the initial Hamiltonian. At time t = 0
of starting the protocol we measure over the eigenenergies of H0 so we will obtain a state
|n⟩. When performing the protocol we will have an evolved state U |n⟩. Subsequently, at time
t = τ if we measure the observable Gτ on the basis of evolved kets we will obtain precisely
the eigenvalue

〈
n|U †HτU |n

〉
. The information carried by U |n⟩ will not be destroyed since the

evolved kets are pointer state of Gτ [12].

Thus we can define work as the difference in energies between the mean value of the energy
in the final state and the energy in the initial state. If we express its probability distribution
function, it would take the form

P̃f (W ) =
d∑

i=1

e−β⟨n|H0|n⟩

Z0

∣∣〈n ∣∣U †U
∣∣n〉∣∣2︸ ︷︷ ︸

1

δ
(
W − W̃i

)
. (4.10)

Here we express, as in chapter 2, the conditional probability that once one state is obtained
in the thermal bath, the state U |n⟩ is obtained whose associated eigenvalue corresponds to〈
n|U †HτU |n

〉
and we see that this expression is precisely the same as 4.2.

So we see that the OTM scheme is really a non-destructive TTM scheme. Since in that
second measurement, the information carried by U |n⟩ is preserved.

4.2 Experimental verification of the fluctuation theo-

rem on a quantum computer

From now on we will use the concept of the backward distribution function to demonstrate a
symmetry that exists with the forward distribution function that can be tested on a quantum
computer, and hence we will have an experimental proof of the fluctuation theorem.

To get the backward distribution function, we now start from the state U |n⟩ , and evolve
the system backward in time with U † in such a way that the final states U †U |n⟩ = |n⟩ are
point states of H0, so that a measurement of the initial energy will not destroy the information
carried by the state |n⟩. So we can deduce:

P̃b(−W ) ≡
d∑

i=1

e−β⟨n|U†HτU|n⟩

Z̃τ

δ
(
−W + W̃i

)
. (4.11)

Where in this case we see that it is the energy of the initial state that is completely
dependent on the final state. And the minus in the argument of the function reminds us that
now time goes backwards, so if we ask ourselves what is the probability of obtaining work
W > 0, from the point of view of the backward process, we are asking the probability that
the system does work on the surroundings.
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Applying the relation 2.8 to express the characteristic function as the trace of operators,
it follows that

C̃f (u) = tr
{
U †eiuGτUe−iuH0ρeq0

}
C̃b(u) = tr

{
UeiuH0U †e−iuGτ ρ̃τ

}
.

(4.12)

And, here comes one of the main results of our reference bibliographies [2]. You can arrive
at the fluctuation theorem and the following symmetry relation just by taking

C̃f (u)

C̃b(−u+ iβ)
=

tr
{
U †eiuGτUe−iuH0ρeq0

}
tr {Uei(−u+iβ)H0U †e−i(−u+iβ)Gτ ρ̃τ}

=
Z̃τ

Z0

tr
{
U †eiuGτUe−iuH0e−βH0

}
tr {Uei(−u+iβ)H0U †e−i(−u+iβ)Gτ e−βGτ}

=
Z̃τ

Z0

��������������������:1
tr
{
U †eiuGτUe−iuH0e−βH0

}
tr{U †eiuGτ eβGτ e−βGτ︸ ︷︷ ︸

1

Ue−iuH0e−βH0}
= e−β∆F−S(ρ̃τ∥ρeqτ ).

(4.13)

This symmetry relation can be verified on a quantum computer because they are able
to obtain the characteristic functions. If we look carefully at how the forward characteristic
function is constructed. We realize that what we have is a thermal state ρeq0 to which a series
of rotations are made, rotations, since all the matrices involved are unitary. Which is precisely
what quantum computers do. They start from a series of states, ‘qubits’, and perform unitary
operations on them, called ‘gates’. Thus a quantum circuit, taken from our reference [2], to
compute the forward characteristic function would be like in the figure 4.1.

|0⟩ H • • X, Y

ρeq0 e−iuH0 U eiuGτ

Figure 4.1: Quantum circuit with an ancilla qubit prepared in a state |0⟩. This is an auxiliary
state that will help us to measure. And, a thermal state ρeq0 , also called target state, on which
the different rotations will act. In this circuit, the following act on the ancilla: a Hadamart

gate, denoted by H = 1√
2

(
1 1
1 −1

)
, and two control gates, denoted by black dots, whose

function is to apply the rotation that appears in the black square in the target state only if
the ancilla turns out to be |1⟩, in the case that it is |0⟩ it will not be applied. And in the
bottom line, we have only the rotations that will act on the target state. And, at the end
of the line above it is represented the measure of the X and Y Pauli matrices. Due to the
following relation ⟨X⟩ = Re{C̃f (u)} and ⟨Y ⟩ = Im{C̃f (u)} are precisely given. This circuit
was taken from the reference [2].

Note that as in the expression 4.12 for the forward characteristic function in the circuit
of figure 4.1 we are applying all rotations. For example, we have that, on the thermal state
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will act the rotation associated with H0, then the driving, and finally, the rotation associated
with Gτ .

As mentioned in the introduction, the characteristic function is very relevant as it provides
the bridge to an experimental proof of the fluctuation theorem in a quantum machine. And
the connection lies precisely in the fact that, if we have a unitary operator V and we want
to calculate its average value in a given thermal state ρ, that is, we want to know the trace
of this operator times one state or, in other words, Tr{V ρ}. It suffices to measure the mean
values of the Pauli matrices X ⊗1 and Y ⊗1 in the total space formed by the tensor product
of the states of the qubit ancilla and the thermal state. Since we can calculate the real and
imaginary part of the c-number C̃f (u) as their mean values .

Let us demonstrate this for a thermal state ρeq =

(
p0 0
0 p1

)
with p0, p1 ∈ R and a

rotation V =

(
v00 v01
v10 v11

)
which would represent the application of all the previous rotations

for calculating the characteristic function. If we calculate the mean value of the operator V for
this state, note that V does not need to be an observable, we obtain Tr{V ρeq} = p0v00+p1v11.
Let us now access this quantity from the quantum circuit shown in figure 4.1 .

First of all let us consider the action of the Hadamard gate on the ancilla |0⟩ = (1, 0)T in
the basis {|0⟩, |1⟩} in the following way

H|0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2
(|0⟩+ |1⟩). (4.14)

We see that we obtain the state |+⟩, one eigenstate of X. The Hadamard gate is a basic
gate in quantum computing that manages to generate precisely the superposition of states
that is so necessary for quantum computing. It is this superposition that makes quantum
computation different from classical.

From now on the state of the total system will be the tensor product of the superposed
state and the thermal state as follows

ρ0 ⊗ ρeq = |+⟩⟨+| ⊗ (p0 |0⟩ ⟨0|+ p1 |1⟩ ⟨1|)

=
1

2
p0 |0, 0⟩ ⟨0, 0|+

1

2
p0 |1, 0⟩ ⟨0, 0|+

1

2
p1 |0, 1⟩ ⟨0, 1|

+
1

2
p1 |1, 1⟩ ⟨0, 1|+

1

2
p0 |0, 0⟩ ⟨1, 0|+

1

2
p0 |1, 0⟩ ⟨1, 0|

+
1

2
p1 |0, 1⟩ ⟨1, 1|+

1

2
p1 |1, 1⟩ ⟨1, 1| .

(4.15)

We will now apply the unitary transformation imposed by V to the total state. In other
words, we will evolve the state according to the quantum circuit. To do so, let us consider the
following matrix expressions in the full space
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V =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

 , V † =


1 0 0 0
0 1 0 0
0 0 u∗00 u∗10
0 0 u∗01 u∗11


with base: {|00⟩, |01⟩, |10⟩, |11⟩}.

(4.16)

See that what we want to recreate is the performance of V in the total space. And, it will
be applied only in the thermal state when the ancilla is not |0⟩, due to the control gate. Here
what we see is a modification of 1⊗ V in which the upper left block has been replaced by the
2 × 2 identity matrix. With this, what we get is precisely that. One way of looking at it is
that the basis vectors in the total space that have the ancilla state |0⟩ associated with them
are eigenstate of extended V with eigenvalue 1. In a way, we are saying that as long as the
ancilla state is zero it does not modify the state and when it is one it will act on the thermal
state.

Continuing, we can evolve the quantum state as in the circuit by applying

V (ρ0 ⊗ ρeq)V † =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11




p0
2

0 p0
2

0
0 p1

2
0 p1

2
p0
2

0 p0
2

0
0 p1

2
0 p1

2




1 0 0 0
0 1 0 0
0 0 u∗00 u∗10
0 0 u∗01 u∗11



=


p0
2

0
p0u∗

00

2

p0u∗
10

2

0 p1
2

p1u∗
01

2

p1u∗
11

2
p0u00

2
p1u01

2
1
2
p0u00u

∗
00 +

1
2
p1u01u

∗
01

1
2
p0u00u

∗
10 +

1
2
p1u01u

∗
11

p0u10

2
p1u11

2
1
2
p0u

∗
00u10 +

1
2
p1u

∗
01u11

1
2
p0u10u

∗
10 +

1
2
p1u11u

∗
11

 .

(4.17)

Finally, by measuring the mean values of the Pauli X ⊗1 and Y ⊗1 matrices as the trace
of the state evolved times these matrices

⟨X⟩ = Tr
{
V (ρ0 ⊗ ρeq)V †X ⊗ 1

}
= Tr

V (ρ0 ⊗ ρeq)V †


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




=
1

2
(p0u00 + p1u11 + p0u

∗
00 + p0u

∗
11) ,

⟨Y ⟩ = Tr
{
V (ρ0 ⊗ ρeq)V †Y ⊗ 1

}
= Tr

V (ρ0 ⊗ ρeq)V †


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0




= −1

2
i (p0u00 + p1u11 − p0u

∗
00 − p1u

∗
11) .

(4.18)

What we obtain is precisely the real and imaginary part of p0u00 + p1u11, so that by
composing them in the following way C̃f (u) = ⟨X⟩ + i⟨Y ⟩ we will obtain what we wanted to
demonstrate.
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The main idea here is that if we have Tr{V ρ} it is possible to access that numerical value
through a circuit like the one in figure 4.2 where the mean values of ⟨X⟩ and ⟨Y ⟩ represent
the real and imaginary parts respectively.

|0⟩ H • X, Y

ρ V ⟨X⟩ = Re(Tr{V ρ}), ⟨Y ⟩ = Im(Tr{V ρ})

Figure 4.2: Schematic circuit to represent the fundamental idea to enable an experimental
proof of the fluctuation theorem. And that is that we can access the quantity Tr{V ρ} by
measuring the mean values of the observables X and Y . Since it was shown that: ⟨X⟩ =
Re(Tr{V ρ}), ⟨Y ⟩ = Im(Tr{V ρ}.

For our particular case V = (1⊗U †)(1⊗ eiuGτ )′(1⊗U)(1⊗ e−iuH0)′ where the apostrophe
indicates that it is a modification of that tensor product, this is to note that it is a gate control
and therefore depends on the state of the ancilla. The driving, on the other hand, is expressed
as a product with identity, as it has no control gate associated with it. And calculating the
mean value of any of the matrices gives that, i.e for X Pauli matrix Tr

{
V ρV †(X ⊗ 1)

}
=

Tr{(1⊗ U †)(1⊗ eiuGτ )′(1⊗ U)(1⊗ e−iuH0)′ρ(1⊗ eiu
∗H0)′(1⊗ U †)(1⊗ e−iu∗Gτ )′(1⊗ U)(X ⊗

1)}. Applying the cyclic propertie for the trace: Tr{(1 ⊗ eiuGτ )′(1 ⊗ U)(1 ⊗ e−iuH0)′ρ(1 ⊗
eiu

∗H0)′(1 ⊗ U †)(1 ⊗ e−iu∗Gτ )′(1 ⊗ U)(X ⊗ 1)(1 ⊗ U †)}. If we operate the last three terms:
Tr{(1⊗ eiuGτ )′(1⊗U)(1⊗ e−iuH0)′ρ(1⊗ eiu∗H0)′(1⊗U †)(1⊗ e−iu∗Gτ )′ (1X1⊗ U1U †)︸ ︷︷ ︸

X⊗1

}. As we

can see, rotation due to one driving has no effect on the mean values. This is why the unitary
rotation associated with U † is not included in the circuit of figure 4.1.

However, in order to prepare the circuit, it must be t aken into account that quantum
computers can only prepare pure states. Therefore, it is interesting to express the characteristic
function as follows

C̃f (u) =
1∑

k=0

pkTr{U †eiuGτUe−iuH0|k⟩⟨k|}. (4.19)

Where the state has been considered to be diagonal in the computational basis {|0⟩, |1⟩}
and then the pk would be the populations of the state. Thus an interesting way to simulate
the thermal state would be to run two circuits each with one ancilla and the corresponding
states |0⟩ and |1⟩. Then the average values of X and Y would be calculated, and finally the
factors pk would be taken into account.

For the backward characteristic function, the procedure is quite similar except that it has
to be taken into account that transformations like e−iuH0 and eiuGτ are not unitary. So to
work with them it is convenient to first make a decomposition with a Pauli String.

The key idea of this is to be able to put any matrix A belonging to the vector space of
matrices of order 2 × 2 of complex coefficients, M2×2(C), as a linear combination of Pauli
matrices: A =

∑3
k=0 = αkσk. Where the coefficients αk can be calculated very easily just by

taking the trace times one Pauli matrix
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Tr {Aσ1} = Tr {α0σ0σ1 + α1σ1σ1 + α2σ2σ1 + α3σ3σ1}

= α1Tr {1}+
3∑

j=1

������:0
Tr{cjσj} = 2α1.

(4.20)

Thus the coefficient αj takes the form αj = 1/2Tr{Aσj}. Where the relationship σiσj =
iϵijkσk and Tr{σk} = 0 has been taken into account. Then, using this feature we can write
the backward characteristic function as follows

C̃b(−u+ iβ) =
∑
k,l

= α
(0)
k α

(τ)
l Fkl. (4.21)

Writing the rotations as, eβH0 =
∑3

k=0 α
(0)
k σk and e

βGτ =
∑3

l=0 α
(τ)
l σl, where the coefficients

α
(0)
k and α

(τ)
l take the following form α

(0)
k = Tr{e−βH0σk}, α(τ)

l = Tr{eβGτσl}. And Fkl would
be

Fkℓ ≡ tr
{
Uσke

−iuH0U †σℓe
iuGτ ρ̃τ

}
. (4.22)

So having access to the coefficients α′s classically the coefficients Fkl could be calculated
with the following quantum circuit (see figure 4.3). Therefore be able to calculate the backward
characteristic function by composing them as in equation 4.21.

|0⟩ H • • • • X, Y

ρ̃τ eiuGτ σl U e−iuH0 σk

Figure 4.3: Quantum circuit for calculating the coefficients Fkl in the backward characteristic
function. Where we can see that all the unitary rotations acting on ρ̃τ are applied except the
one associated with the hermitic conjugate of the time evolution operator for the same reasons
as for the other circuit.

With all these ideas the authors of [2] were able to compute the symmetry relation above,
see equation 4.13. Where for a given initial Hamiltonian and driving the relation became

Rtrue =
C̃f (1)

C̃b(−1 + 0.5i)
= 0.433167. (4.23)

Quantum circuits such as those in figures 4.1 and 4.3 were developed to compute the char-
acteristic functions. Each was run about 20000 times to obtain a value for Rtrue. This process
was performed N times and the average was taken as a good estimator. Thus it was seen that,
as the number of repetitions increased, the relative error decreased. It became 0.12% with
N = 100. This is low enough to consider that the fluctuation theorem of the OTM scheme
could be proved.

Hence the power of the characteristic functions and how they allowed us to access an
experimental proof of the fluctuation theorem under the OTM scheme is evident. The key
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4.2. EXPERIMENTAL VERIFICATION OF THE FLUCTUATION THEOREM ON A
QUANTUM COMPUTER

was to realize that the rotations present in the expression 4.12 could be carried out on a
quantum computer by performing these same operations on qubits.
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Conclusion

In conclusion, the probabilistic interpretation of the work has been evident throughout the
project. Thanks to this, Jarzynsky’s equality has been presented and the importance of having
a series of equalities for work-related quantities in non-equilibrium processes has been ana-
lyzed. We have come to the conclusion that where elementary thermodynamics only yields
inequalities for non-equilibrium processes, this probabilistic interpretation yields equalities in-
dependent of the type of process, i.e. non-quasi-static.

In addition to this, the concepts of the work distribution function and characteristic func-
tion have been presented under the two most common work measurement schemes in quantum
mechanics, the two-time measurement scheme (TTM) and the one-time measurement scheme
(OTM). Including a demonstration of Jarzynsky’s equality for the case of a quantum system
of unitary dynamics under the TTM scheme. And, from this equality, it has been possible to
generalize the second law of thermodynamics for fluctuating systems, where what we obtain
is the same relation but for the mean values. This does not prevent local violations of the
second principle from occurring. These violations have been seen in the magnetic resonance
experiment (N independent spins subject to a uniform magnetic field and a time-dependent
perturbation perpendicular to it) which occurred when the perturbation caused transitions
from the anti-aligned to the aligned spin state to the magnetic field. It has been shown in
figures 3.3 how the probability of these decreases with the number of constituents, which ex-
plains why we do not perceive them on the macroscopic scale.

In relation to the OTM scheme, we have shown that it is indeed a non-destructive TTM
scheme, due to the fact that in the second measure, the coherences are maintained. Also from
this, we have been able to derive a modified Jarzynsky equality in which the informational
cost of the measure is accounted for and we have obtained a second law for the mean value
of work in non-equilibrium processes which has a much better lower bound than in TTM
scheme since it includes the measurement as a thermodynamic process. This is reflected in
the appearance of an extra term in the equality that has to do with how different the state
evolved by the protocol is from the thermal state it would tend to be if we let the system relax.

On the other hand, we have explained the connection between characteristic functions and
the possibility of obtaining an experimental proof of the fluctuation theorem on a quantum
computer. It has been explained how the rotations acting on the thermal states in the ex-
pression of the characteristic function can be operations realizable by a quantum computer
where the quantum circuits for them have been given. And, therefore, obtain the character-
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CONCLUSION

istic function from measuring the Pauli matrices X and Y in the evolved state qubit ancilla
and target state.

Finally, this work has been an introduction to non-equilibrium thermodynamics, which is
an area where much remains to be explored. We have limited ourselves to closed quantum
systems, which, although feasible in many scenarios, the reality is that many resources are
currently being invested in the study of open systems. We also had a brief encounter with
how quantum technologies can serve as experimental tests of certain theories. We worked a
little on how quantum algorithms work.
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Appendix A

Unitary operators lead to entropy
constant

In this appendix it will be shown that unitary operators keep the entropy constant and are
therefore the basis for describing non-dissipative systems.

Proof. Let a quantum state be defined from its density matrix ρ(t) at time t. Let us take as
a reference the Von Neumann entropy at t = 0:

S(0) = −Tr{ρ(0)lnρ(0)}. (A.1)

At time t, taking into account the evolution of the density operator ρ(t) = U(t)ρ(0)U †(t).
We will obtain:

S(t) = −Tr{ρ(t)lnρ(t)} = −Tr{U(t)ρ(0)U †(t)ln(U(t)ρ(0)U †(t))}. (A.2)

Doing a Tylor series expansion:

f(U(t)ρ(0)U †(t)) = f0 + f1 U(t)ρ(0)U
†(t) + f2 U(t)ρ(0)U

†(t) · U(t)︸ ︷︷ ︸
1

ρ(0)U †(t) + ... (A.3)

f(U(t)ρ(0)U †(t)) = f0 + f1 U(t)ρ(0)U
†(t) + f2 U(t)ρ(0) · ρ(0)U †(t) + ... = U(t)f(ρ(0))U †(t).

(A.4)
Inserting the result of equation A.4 in equation A.1 with f(ρ(0)) = ln(ρ(0)):

S(t) = −Tr{U(t)ρ(0)U †(t)U(t)︸ ︷︷ ︸
1

ln(ρ(0))U †(t)}. (A.5)

Finally, using the cyclic trace property, Tr{ABC} = Tr{BCA} = Tr{CAB}, Finally:

S(t) = −Tr{U(t)ρ(0)ln(ρ(0))U †(t)} = −Tr{ρ(0)ln(ρ(0))U †(t)U(t)︸ ︷︷ ︸
1

} = −Tr{ρ(0)lnρ(0)} = S(0).

(A.6)
So it is shown that the unitary operators do not modify the entropy.
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Appendix B

Average value of Work

In this appendix it will be shown that the mean value of the work in the particular protocol
of chapter 2 is the difference of the mean values of the energy at the beginning and at the end
of the protocol.

Proof. Consider the expression obtained in chapter 2 for the characteristic function (see equa-
tion 2.8):

G(r) = ⟨eirW ⟩ = Tr{U †(τ)eirHfU(τ)e−irHiρth}. (B.1)

Doing a Maclaurin expansion in the variable r of the operators eirHf and eirHi :

G(r) = Tr{U †(τ)[1 + irHf +O
(
r2
)
]U(τ)[1− irHi +O

(
r2
)
]ρth}. (B.2)

Comparing with the expansion in equation B.1 at left side of the second equality:

G(r) = ⟨eirW ⟩ = 1 + ir⟨W ⟩+O(r2)

= Tr{U †U︸︷︷︸
1

ρth − ir U †U︸︷︷︸
1

Hiρtau + irU †HτUρth +O
(
r2
)
}. (B.3)

Remaining only to first order in r. We obtain:

⟨W ⟩ = Tr
{
U †HτUρth

}
− Tr{Hiρth}. (B.4)

Now, applying the following relations:

Tr
{
U tHτUρth

}
= Tr

{
HτUρthU

+
}
= Tr{Hτρτ} = ⟨Hτ ⟩τ

Tr{Hiρth} = ⟨Hi⟩0 .
(B.5)

Where in the first equality of the first line the cyclic property of the trace has been used. In
the following equality the evolution of the density operator according to driving ρth = U †ρτU
has been used. And, the expression for the mean value of operators in mixed statistical states:

⟨A⟩t = Tr {Aρ} . (B.6)
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APPENDIX B

Therefore, we can conclude that:

⟨W ⟩ = ⟨Hτ ⟩τ − ⟨H0⟩0. (B.7)
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Appendix C

Calculation of Γk coefficients

Given the expression for the characteristic function of the N-particle system, equation 3.25,

G(r) = (b0 + b+e
iB0r + b−e

−iB0r)N , (C.1)

we can use Newton’s binomial formula to account for the coefficients Γk. That is, we will use

(a+ b)N =
∑N

k=0

(
N
k

)
akbN−k, as follows:

(a+ b+ c)N =
N∑
k=0

(
N
k

)
(a+ b)k cN−k =

N∑
k=0

cN−k

(
N
k

) k∑
l=0

(
k
l

)
albk−l =

=
N∑
k=0

k∑
l=a

(
N
k

)(
k
l

)
cN−kbk−lal.

(C.2)

For our particular case in equation C.1, a = b0, b = b+e
irB0 and b−e

−irB0 , thus, the expres-
sion C.2 would be:

G(r) =
N∑
k=0

k∑
l=0

(
N
k

)(
k
l

)
bN−k
− bk−l

+ bl0 e−i(N−k)B0rei(k−l)B0r︸ ︷︷ ︸
ei(N−k−k+l)B0r=e−i(N+l−2k)B0r

=

N∑
k=0

k∑
l=0

(
N
k

)(
k
l

)
bN−k
− bk−l

+ bl0 e
−i(N+l−2k)B0r.

(C.3)

So once we do the inverse Fourier transform, we arrive at a very simple expression for the
probability distribution of the work:
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P (W) =
1

2π

∫ ∞

−∞
drG(r)e−iWr =

=
N∑
k=0

k∑
l=0

N
k

(
k
l

)
bN−k
− bk−l

+ bl0

(
1

2π

)∫ ∞

−∞
dre−i(W+(N+l−2k)B0r)r︸ ︷︷ ︸

δ(W+(N+l−2k)B0r)

=
N∑
k=0

k∑
l=0

(
N
k

)(
k
l

)
bN−k
− bk−l

+ bl0 δ(W + (N + l − 2k)B0r).

(C.4)

Where to obtain the coefficients in k we would have to change the double summation of
k and l to a single sum in a new variable k which will have the values N + l − 2k and will
go from N to −N . However for our purposes this expression is more than valid to obtain the
results of the figures 3.3.
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Appendix D

Derivation of H̃ for one spin problem

In this appendix we will show that under the interaction picture the interaction Hamiltonian
corresponding to the Schrödinger Hamiltonian of equation 3.4, that is,

H (t) = −B0

2
σz −

B1

2
(σx sinωt+ σy cosωt). (D.1)

It is:

H̃ = −(B0 − ω)

2
σz −

B1

2
σy. (D.2)

To demonstrate this we will follow from the evolution equation of the time evolution
operator, which is written as, i∂tU(t) = H(t)U(t). Then, using the relation U = eiwtσz/2Ũ , in
the evolution equation above:

i∂tU (t) = i
[
i
ωσz
2
ei

ωtσz
2 Ũ (t) + e

iωtσz
2 + Ũ (t)

]
= H (t) ei

ωtoz
2 Ũ . (D.3)

Now let us separate on the left and on the right the parts that depend on the partial of
Ũ and in which a appears only multiplying on the right. This is to put it in the form of the
evolution equation in the Schrödinger picture:

i∂tŨ (t) =
[
e−iωtσz/2H (t) eiωtσz/2 +

ω

2
σz

]
Ũ(t). (D.4)

It follows that Ũ = e−iωtσz/2H (t) eiωtσz/2 + ω
2
σz. Let us then develop this expression to

find a simpler form that will eliminate the time evolution completely, we will call α = ωtσz/2.
Therefore:

H̃ = e−iασzH(t)eiασz +
ω

2
σz =

= e−iασz

[
−B0

2
σz −

B1

2
(σxS + σyC)

]
eiασz +

ω

2
σz

= −B0

2
σz − e−iασz

B1

2
(σxS + σyC)e

iασz +
ω

2
σz.

(D.5)
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Where C and S represent the cosωt and sinωt respectively. At this point we need to see
how it acts eiασz on σx and σy. So, we will start by using the useful relationship from chapter
3, the equation 3.9. So, we can put e−iασz = 1 cosα− iσz sinα. Continuing:

e−iασz
B1

2
(σxS + σyC)e

iασz = (1 cosα− iσz sinα)

{
σx
σy

}
(1 cosα + iσz sinα) . (D.6)

Therefore, by distributing and pooling the terms that remain with σx and σy:

σx : σx cos
2 α + i cosα sinασxσz − i sinα cosασzσx + sin2 ασzσxσz

σy : σy cos
2 x+ i cosα sinασyσz − i sinα cosασzσy + sin2 ασzσyσz.

(D.7)

So taking into account the cyclic relationships for Pauli matrices σiσj = iεijkσk, we can
put the above expression as:

σx : σx cos
2 α + i cosα sinα(−iσy)− i sinα cosα(σy) + sin2 ασx

σy : σy cos
2 x− i cosα sinασx − i sinα cosα(−iσx)− sin2 ασy.

(D.8)

Now let’s do the reverse and call C and S to cosα and sinα. Going back to the equation
D.6 and substituting:

H̃ = −(B0 −W )

2
σz −

B1

2
sinωt(σxC

2 + CSσy + SCσy − S2σx)

− B1

2
cosωt

(
σyC

2 − CSσx − SCσx − S2σy
)
.

=
(B0 −W )

2
σz

− B1

2
sinωt[σx (C(ωt/2)

2 − S(ωt/2)2)︸ ︷︷ ︸
C2(ωt/2)

+2C(ωt/2)S(ωt/2)︸ ︷︷ ︸
S(ωt/2)

σy]

− B1

2
cosωt[σy (C(ωt/2)

2 − S(ωt/2)2)︸ ︷︷ ︸
C2(ωt/2)

− 2C(ωt/2)S(ωt/2)︸ ︷︷ ︸
S(ωt/2)

σx]

=
−(B0 −W )

2
− B1

2
S (σxC + σyS)−

B1

2
C (σyC − σxS)

= −B0 − ω

2
σz −

B1

2

[
����σxSC + S2σy + σyC

2 −����CSσx
]

= −B0 − ω

2
− B1

2
σy.

We finally arrived at a time-independent expression, which is what was intended.
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