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Abstract 1

Abstract

Comprehending the structure and properties of viral capsids is essential in the

field of virology, as it provides valuable insights into the behaviour and mechanics of

viruses. This research begins with an overview on these infectious agents,

emphasising the significance of capsids as protein-based envelopes that protect the

viral genome. Capsids play a crucial role in viral replication, assembly, and

interactions with host cells. Understanding their structure is key to deciphering the

mechanisms underlying viral infections.

This end-of-degree project focuses on investigating the response of capsids to

external forces and developing a Python code to calculate the potential energy based

on capsid coordinates. We are also going to focus our attention on whether or not

different configurations of a simple virus can affect the outcome of the simulations,

and if those results are fully capable of defining the virus itself, and its properties, or

if more research for other properties is required to make such claims.

Nonetheless, these data provide interesting information about the stability and

energetics of capsids, enabling us to investigate the effects of external forces on viral

structures. By utilising simulations and analyses tailored to the icosahedral structure

commonly observed in viral capsids, this project aims to enhance our understanding

of viral mechanics and which methods are preferable and more accurate to establish

their virtual behaviour to correlate their laboratory-generated counterparts.

The Caspar and Klug models are employed to describe the geometric arrangement

of capsomers, the protein subunits forming the capsids. These models provide a

foundation for studying their assembly and stability in which this project will be

based upon. Therefore, the starting point of this project will consist in a brief

overview of the basics of virology, specifying which tenets we are upholding for this

program to be relevant, and then a review of the previous investigations and results

upon which we are basing this work, whose foundations will be investigated to create

an alternative method of simulation. Finally, according to the results, we will be able

to tell if such changes resulted in a better, worse, or simply different outcome.
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Comprender la estructura y propiedades de las cápsides virales es esencial en el

campo de la virología, ya que proporciona una valiosa perspectiva sobre el

comportamiento y la mecánica de los virus. Este trabajo comenzará con una visión

general de estos agentes infecciosos, haciendo hincapié en la importancia de las

cápsides como envolturas basadas en proteínas que protegen el genoma viral. Éstas

desempeñan un papel crucial en la replicación viral, el ensamblaje y las interacciones

con la célula huésped. Entender su estructura es clave para descifrar los mecanismos

subyacentes a las infecciones virales.

Este proyecto de fin de carrera se centra en investigar la respuesta de las cápsides

a fuerzas externas y en desarrollar un código en Python para calcular la energía

potencial basada en sus coordenadas. También nos centraremos en determinar si

diferentes configuraciones de un virus simple pueden afectar el resultado de las

simulaciones y si esos resultados son completamente capaces de definir el virus en sí

y sus propiedades, o si se requiere más investigación para afirmar tal declaración.

No obstante, estos datos proporcionan información muy interesante sobre la

estabilidad y la energética de las cápsides, lo que nos permite investigar los efectos

de las fuerzas externas en las estructuras virales. Utilizando simulaciones y análisis

adaptados a la estructura icosaédrica comúnmente observada en las cápsides virales,

este proyecto tiene como objetivo mejorar nuestra comprensión de la mecánica viral

y determinar métodos preferibles y más precisos para establecer su comportamiento

virtual y correlacionarlo con sus contrapartes generadas en el laboratorio.

Se emplean los modelos de Caspar y Klug para describir la disposición

geométrica de los capsómeros, las subunidades proteicas que forman las cápsides.

Estos modelos proporcionan una base para estudiar su ensamblaje y estabilidad, en la

cual se basará este proyecto. Por lo tanto, nuestro punto de partida consistirá en una

breve visión general de los fundamentos de la virología, especificando qué principios

estamos sosteniendo para que este programa sea relevante, y luego una revisión de

las investigaciones y resultados anteriores en los que basamos este trabajo, cuyos

fundamentos se investigarán para crear un método alternativo de simulación.

Finalmente, de acuerdo con los resultados, podremos determinar si tales cambios

resultaron en un resultado mejor, peor, o simplemente diferente.
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Introduction

Abstract. Los virus exhiben cautivadores mecanismos de autopreservación

en numerosos ecosistemas del planeta. Aunque han causado innumerables

fatalidades, solo aproximadamente 11,000 de sus millones de especies han sido

estudiadas detenidamente en la ciencia moderna. Todos comparten una

estructura básica con material genético (ARN o ADN) y una cápside formada

por proteínas. Este proyecto indaga en las respuesta de la cápside a fuerzas

externas con simulaciones en Python, explorando configuraciones de virus

simples para entender mejor su mecánica y métodos precisos para definir su

comportamiento virtual.

Infectious agents that need living cells to replicate, viruses are found in almost all

of the ecosystems of our planet [1], being able to spread through a lot of different

organisms and exhibiting interesting mechanisms for their self-preservation. An

incredibly large number of lives have perished at their hands throughout history, yet

to this day modern science has only been able to analyse in detail approximately

14.000 of their millions of species [2].

It was the year 1887 when Dr. John Buist observed for the first time in human

history a virus: a cumulus of vaccinia viruses [3]. It was at that moment that an

important question was answered to the scientists of his time, as the remains of some

formerly infected organisms (such as the tobacco plant) were discovered to be still

infectious, even after being liquefied and filtered through a Chamberland filter

(whose pores are smaller than bacteria) [4].

Viruses can be very different in nature depending on their species, but all of them

share a common structure: at least an ARN or ADN string (simple or double) to store

their genetic information (which can be also circular or segmented), and a capsid

shell, formed by one or more different kinds of proteins, being standart that the

bigger the capsid is, the more types of proteins are found forming it. All capsids are
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formed by a number of subunits, groups of proteins that configure a standard

building unit. A virus can be formed by a single type of subunit, or by combinations

of different ones. They can form a capsid included in one of the three different

categories of shape: icosahedral (the most common ones), helical and complex (for

those which do not fall into the previous categories, e.g.: Bacteriophages). In

addition, an important number of viruses also possess a lipid bilayer gained from

their host cell, an example being the recently pandemic originator: the SARS-CoV-2

(which causes COVID-19) [5].

Figure 1: A visual example of the three categories of shape a virus can be

classified: icosahedral (A), helical (B) and complex, represented by a

bacteriophage (C). Modified from [6].

Simple virus’ capsids tend to adopt shapes that minimise their bonding energy, as

they are easier to both replicate and assemble. But in nature, an immense variety of

shapes and sizes can be found, forming complex and intricate structures that target

specific types of host cells. Being able to replicate effectively, having a stable

composition in the environment they inhabit and creating mechanisms to avoid their

destruction by their host’s immune system (in those cases where they have one) will

translate in a successful replication, hence the efficiency of the virus affects its

survivability.

Poorly constructed viruses that are prone to crumble, or those who do not

replicate fast enough to infect other host cells before ending its life cycle, are bound
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to disappear. For those reasons, a very interesting targeting method to fight against

viral pathogens called Capsid-Targeted Retroviral Inhibition (CTVI) is to inhibit the

formation of its capsid by incorporating an inhibitor protein, which will then mingle

with the capsid proteins, form strong bonds with them, and impede their use as a

capsid protein [7].

In the discrete space, the icosahedral shape is the most symmetrical, being part of

the I group of three-dimensional finite structures along with the dodecahedron

(following Schoenflies notation [8]) and not qualifying to be part of the Ih symmetry

group due to capsid proteins being asymmetric, and therefore icosahedron-shaped

capsids lacking an inversion centre. Those capsids have three possible rotational

symmetries: Of order 2 (180º rotations), around an axis through midpoints of edges

of the icosahedron (2-fold symmetry, or also C2); of order 3 (120º rotations), around

an axis through face centres of the icosahedron (3-fold symmetry, or also C3); and of

order 5 (72º rotations), around an axis through vertices of the icosahedron (5-fold

symmetry, or also C5). These three symmetry configurations will be studied in this

project, as we predict differences between their data output.

Another common method to categorise different kinds of viruses is the Baltimore

classification [9] (named after its creator, Nobel Prize-winning biologist David

Baltimore), which consists in the separation of the pathogens into seven categories

depending on their mechanism of mRNA production. It is usually combined with the

unified taxonomy method of the International Committee on Taxonomy of Viruses

(ICTV) [10], which puts great weight on the viruses' properties to maintain

uniformity in their categories.
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Figure 2: A diagram depicting how each one of the genomes found in a

different category of the Baltimore classification undergoes the process of

transcription. It is interesting to note the difference between Class I and

Class VII viruses: the latter goes through an intermediate state of RNA in

their life cycle. Taken from [11].

The reproductive cycle of a virus initiates when it manages to enter a host cell.

There, the capsid disassembles, and the genetic information inside it unpacks. Each

virus has its own process of replication, being the bigger and more complex ones

able to make it mostly by themselves, only using some resources of the host cell;

unlike simple-structured viruses, where the genetic code has to infiltrate the nucleus

to be replicated there, forcing the cell to create itself new copies of the virus. As for

the capsid formation, it entails a complex process in which the proteins group

themselves into capsomeres, the capsid’s basic unit of construction. From there,

depending on the virus's nature and size, the capsomeres connect into either penton,

hexon or trimer subunits (the latter mostly common in tiny viruses) and then start to

self assemble into the capsid, given that the conditions around them are adequate

(subunit concentration, free energy of the capsid in each stage of its growth, pH of

the surroundings) [12]. This process has also been studied and adapted to computer
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simulations, existing numerous models for a grand variety of viruses [13]. The

possibility of a capsid formed by dimer subunits (subunits formed by two proteins)

exists, but for this project that prospect will not be taken into account, as it happens

in very few cases.

As it has been stated before, we currently hold very little information involving

the composition of most of the existing viruses. That is why numerous studies are

being researched right at this moment, most of them related to the search of a

universal understanding of their microscopic behaviour (which has proven to be

quite difficult and expensive to investigate) related to macroscopic properties easily

measurable. A breakthrough of that nature would surely become one of the most

important discoveries of the century, making the production of vaccines of future

viruses much more simple, and thus, saving a gargantuan amount of lives and

resources. It is an honour to be a microscopic cog on the wheel of change for a

brighter future.
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Mice Minute Virus: Structure and Characteristics

Abstract. El estudio se centra en el Virus Minuto del Ratón (MMV), un

patógeno altamente contagioso en ratones de laboratorio que se propaga a

través de secreciones como la orina y las heces. Está caracterizado por una

cadena simple de ADN y una cápsida icosaédrica con 60 proteínas idénticas.

Explorando variaciones en las configuraciones de las subunidades, el proyecto

aplica el modelo de Caspar y Klug, revelando los diversos diseños posibles

para virus icosaédricos en una cuadrícula hexagonal según su tamaño y

número de proteínas.

The Mice Minute Virus (MMV) is a highly contagious pathogen found commonly

in laboratory mice. It can be transmitted through an infected mouse’s secretions,

especially their urine and faeces, and has two main variant forms in MMVp, a strain

that infects fibroblastic cells, and MMVi, which reproduces through T lymphocytes

[14]. Although their prevalence has declined over the years [15], it can still be found

as a contaminant while other studies of laboratory mice are taking place. Examples

range from tumours or cell mutations to the growth of other pathogens inside the

poor rodent subject. In those cases, the results normally show deviations of the

expected outcomes, and while a simple correction can be made, it is still not the ideal

situation. There are no obvious signs of infection on adult mice, but it can produce

multiple organ damage during their foetal development [16].

The MMV is usually showcased as an example of tiny viruses’ behaviour due to

the fact that it is the smallest virus that can be titrated with ease, which is very

helpful to counter the contamination effect it can have on mice-related experiments

[17]. This virus is also the main focus of this study, being that the calculations have

been made specifically for a capsid of its characteristics.
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Figure 3: A representation of the MMV capsid found in the VIPERdb

website. To help distinguish between different proteins, each of them has

been given a coloured node, whereas every trio of same-coloured proteins

represent the subunit of the capsid: the trimers. An area including five

different-coloured nodes is also marked, as it represents our assumed-to-be

subunit for this project: the pentons. Modified from [18]

It is formed by a single strand of DNA (making it a Class II virus by the standards

of the Baltimore classification), and an icosahedral capsid with an average radius of

138 Å and constituted by 60 identical proteins, called Murine Minute Virus Coat

Protein. This information has been gathered from the Virus Particle Explorer

Database (most known as VIPERdb [18]), where it can also be noted that the method

used to examine the MMV’s properties was the crystallisation and posterior
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diffraction with X-rays [19]. Previous experiments have proven that this certain

virus’ subunits take the form of trimers (three capsid proteins joint in a triangular

formation), creating a 20-piece structure [20]. Even so, for the duration of this

project, we will presume that its subunits are pentons (five capsid proteins joint in a

pentagonal formation), as another of our objectives is to establish if a different initial

assumption of its configuration does change the results of the calculations

significantly, or in the other hand, a similar result is found, having to make extra

experiments to define a certain virus’ subunits.

Figure 4: A visual representation of what a trimer and a penton subunit

represents when discussing capsid self-assembly in a T = 1 virus: three or

five capsomeres, respectively, joint as a subunit which in turn serve as a

middle step for the final capsid configuration. In this particular scenario, as

the viral capsid has only space for 60 proteins, hexons do not have the

possibility of appearing. Taken from [21].

We are also going to utilise Caspar and Klug’s model of icosahedral viruses and

their structure [22], which is a generalised representation of a great variety of virus

sizes and their properties. A two-dimensional hexagonal grid with the 20-faced

icosahedron unfolded in it [Figure 6], aligning each vertex with the centre of a

hexagon, can display how viruses with Caspar and Klug’s capsomere arrangement

are structured. The size of the figure is represented by the “Triangulation number”, or

T, which is calculated by the formula:

 𝑇 = ℎ2 + ℎ𝑘 + 𝑘2
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where h and k are whole numbers which represent the minimum distance path in

between two adjacent vertices counting the two possible movements from hexagon

to hexagon [Figure 5].

Figure 5: A simple diagram to understand the basic foundations of the

Caspar and Klug theorem of icosahedral viruses’ configuration. It is shown

how viruses with a T number different to 1, the basic subunit to form the

capsid are pentons and hexons, instead of trimers. Taken from [23].
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Each sixth of a hexagon represents a capsid protein. By how the T number

operates, an icosahedral virus will have a number of capsid proteins equal to 60*T.

According to its formula, the triangulation number can only take certain values, such:

𝑇(ℎ, 𝑘) =  1(1, 0),  3(1, 1),  4(2, 0),  7(2, 1),  9(3, 0),  12(2, 2),  13(3, 1),

 16(4, 0),  19(3, 2),  21(4, 1),  25 (5, 0),  27(3, 3),  28(4, 2),  31(5, 1)...  

Figure 6: An example of the subunits and the unfolded outline of a T = 7

icosahedral capsid. The illustration accurately depicts the hexagon

displacement of h = 2 and k = 1 discussed before, and a capsid made by

hexons and pentons as its subunits. Taken from [24].

Additionally, if we consider the space between two centres of hexagons a unit of

distance, the value of T is equivalent to the squared length of a side of the triangles.

There are numerous capsids that only fulfil certain properties, and are categorised

with a pseudo-T number. Most of those have a stable structure but have evolved with

asymmetric capsomeres, and thus Caspar and Klug’s model cannot correctly

represent their appearance and characteristics.

By all these terms and definitions, the MMV is a T = 1 icosahedral virus, one of

the simplest to analyse, and our choice for this simulated experiment.
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Starting assumptions and objectives

Abstract. Para facilitar la realización de la simulación en un ordenador

doméstico, simplificamos la estructura de la cápsida del virus. Agrupamos los

capsómeros en pentones, asumiendo simetría axial para facilitar la

simulación. Utilizando una fórmula de potencial de energía, modelamos

interacciones entre pentones, variando parámetros según sea conveniente. El

objetivo es estudiar las variaciones de la energía de enlace en una estructura

icosaédrica bajo fuerzas de hendimiento adiabáticas. El código creado para la

simulación calcula la energía de enlace y la matriz jacobiana para un conjunto

de 60 coordenadas (x, y, z, θ, φ) que representan 12 pentones. Este trabajo

prepara el terreno para la siguiente etapa: simular los pentones en las tres

simetrías rotacionales de los icosaedros.

In order to create a simulation simple enough to be able to get processed in a

common household PC, some concessions and assumptions about the structure of the

capsid of the virus have to be made. Other methods, like the all-atom method (which

consists in the representation of every atom of every amino acid of every protein

forming the viral capsid) have been studied in multiple examples, providing very

useful and specific data about the properties of those concrete structures. It will not

be the one we utilise through this project, not only because the simulation is meant to

be made in a common household PC, but also to achieve our goal of understanding

the general behaviour of every capsid with similar geometrical characteristics, which

is hard to do when so much information is gathered, as it is sometimes hard to

discern the values corresponding to the general structure to those specific of the

proteins of that particular capsid [Figure 7].

It is common to treat groups of objects as one in this kind of experiment, and as

we have stated before, we intend to create a simulation where the capsid subunits are

pentons. For that reason, we will simplify the simulation by applying a
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coarse-grained model, where each penton is treated as a regular cone, assuming then

that all of them have axial symmetry (and therefore a rotational coordinate becomes

irrelevant to the description of the system). That leaves us with 12 rigid units with

five degrees of freedom each: a system described by 60 different coordinates.

Coarse-grained modelling is a widely known and recognized method to simplify

most biomolecular systems [25], as a reduction of independent coordinates always

helps to create swifter models and faster calculations, albeit the simplification has to

be appropriate to truly help the experiment overall. The all-atom method, the

coarse-grained method and the continuum method (which consists on the assumption

that the whole structure is a single sphere with its own singular elastic constant) are

the three main processes of experimental simulations that are used for this kind of

experience.

Figure 7: A diagram comparing a biomolecular representation and its energy

landscape with their corresponding simplification via coarse-grained

modelling. It also serves as an example of how making a coarse-grained



Starting assumptions and objectives 15

model of a system, while removing an important amount of data and

smoothing the results, correctly represents the general features of the

original outcome. As such, it proves ideal to simulations like ours, where

the main objective lies not on local values or energy, but on the overall of

the whole system. Taken from [25].

For this configuration, we will borrow and use an energy potential formula found

in my supervisor’s group paper [26], where a binary interaction between every two

elements (i and j) is calculated, using the minimum multipole expansion interaction

terms needed for the pentons to form an icosahedral structure: monopole-monopole,

monopole-dipole, dipole-dipole and monopole-quadrupole:
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In this equation, rij represents the distance between the centre of the pentons, nij is

the unitary vector of the distance between i and j, the parameter m escales the

magnitude and range of interactions between pentons, and vz is the normalised vector

of the Z axis of either i (vzi) and j (vzj). In other words, where the cone-shaped

structure we have established for the pentons is directed at. F0(r) and Fi(r) are

functions depending on the distance between the pentons, the latter decaying rapidly

while the value of F0(r) becomes its minimum in the instance when r = ren:
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Figure 8: A visual representation of the vectors needed for the

representation of Vij, seen from three different reference systems: two from

each of the pentons i and j, and the third being the standard computer

three-dimensional axis (the Z-axis being featured in the diagram, marking it

as the C2 symmetry representation). Taken from [27].

On the other hand, p0, p1 and p2 are constant values of energy that can be varied to

obtain different results, and ren and θen are the given distance and angle, respectively,

which provide the structure the least potential energy. In this model, we strive to

simulate the twelve pentons of the icosahedral capsid, so θen has a fixed value: the

arctangent of the golden ratio (Φ).

θ
𝑒𝑛

= 𝑎𝑟𝑐𝑡𝑎𝑛(Φ) ≃ 58. 283°;  Φ = (1 + √5)/2 ≃ 1. 618

At the end, the bonding energy stored in the system (V) is calculated by the

summation of every individual term of Vij in half, as every interaction is calculated

twice:
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𝑉 = 1
2

𝑖
∑

𝑗≠𝑖
∑ 𝑉

𝑖𝑗

This value, alongside the terms of its Jacobian matrix, will be extremely useful in the

next stage of the study: the simulation of the pentons in an icosahedral structure.

These data can be more thoroughly researched, as adding more terms of the

multipolar expansion would prove to replicate with more accuracy the capsid’s

behaviour and characteristics.

It is worth noting that, in the case of the project of the La Laguna group [26], the

model investigated the circumstances around a MMV capsid whose subunits were

formed by trimers, and in that assumption, the first six terms of the multipolar

expansion were needed to form the icosahedral shape (each of the 20 rigid units

representing a face of the icosahedron).

The main objective of this project is to study the variations of the bond energy

between the simulated pentons of the capsid (along its three rotational symmetries:

C5, C2 and C3) when subjected to an adiabatic force of indentation, and to compare

the results obtained with the data gathered by the trimer coarse-grained model in the

ULL group [26]. The simulation will attempt to represent a force measurement

experiment with an atomic force microscope (AFM) [Figure 12], which consists in

the usage of the tip of the microscope to generate a piezoelectric force over the

desired material, which will return a force curve that can be analysed to understand

better its characteristics.

Our goal is to study if different capsid models can achieve similar results, thus

proving if both models can be used as a tool to research viruses that are difficult to be

experimented in a laboratory. To achieve that, we created a code that determined the

bond energy of a given set of 60 coordinates (corresponding the x, y, z, θ and φ of

each of the 12 pentons) and the values of the parameters p1, p2, m, and m’; calculating

the Vij between every penton and the energy V of the system. Another function, the

jacobian matrix of the function V (dV), is created as well.
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Indentation simulations

Abstract. Establecemos los parámetros de la función de energía y

analizamos los valores iniciales de las coordenadas para introducirlos al

proceso de la simulación, donde utilizaremos dos algoritmos de la librería de

fuente abierta Scipy. Teniendo en cuenta todos los cálculos previos y tras un

análisis de los elementos necesarios para su correcto funcionamiento, creamos

una rutina de Python donde se simule unas condiciones de hendimiento para la

cápside, donde obtenemos como respuesta sus energías, fuerza de hendimiento

y constante elástica. Éstas son representadas gráficamente en función del

hendimiento, y posteriormente se valora la efectividad de los parámetros

elegidos inicialmente.

In this project, the distance of equilibrium between pentons ren has been

established to be 1, as it can therefore be used as a unit of distance. Moreover, the

twelve pentons are situated as the vertices of an icosahedron. For that to be in

accordance to the coordinates of the pentons (with the origin of the coordinate

system in the centre of the capsid) it has to be taken into account that, for any given

regular icosahedron with an edge length of a, the distance between the centre of the

icosahedron and any of its vertices equals 0.95105652·a.

For scaling purposes and to indicate it as the basic energy unit of the system, the

constant term p0 will be set up as 1. The values of p1, p2, m, and m’ will be fixed for

every symmetry as it follows:

𝑝
1

= 10;   𝑝
2

= 10;   𝑚 = 12;   𝑚' = 1. 5 ⇒ 𝑚·𝑚' = 18

These have been selected after numerous trials and errors with the code, to

accommodate qualitatively the experimental results. Further into the study, the nature

of the code when tweaking these constants will be observed, to further prove their

convenience.
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For starters, an array of 60 elements is created, where every five elements

represent the coordinates of a penton, as stated before. Taking the precautions

mentioned beforehand, this array has the coordinates of a regular icosahedron with

two of its vertices fixed in the Z-axis. As the simulated force will be represented as a

minute downwards displacement in the z-term of the coordinate of the penton or

pentons with higher z value, this arrangement will represent that of the C5 symmetry.

A simple rotational function is all that is needed to generate the other two

configurations needed in the project: the C2 and C3 symmetries.
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Figures 9, 10 and 11: A representation of the initial states of the three

rotational symmetries the simulations will experiment with: C5, C2 and C3,

respectively. The pentons representing the bottommost (which will remain

immobile) and uppermost (which will suffer the indentation) of the capsid

are depicted in blue, indicating clearly which figure corresponds to each

rotational symmetry. A smaller white orb is attached to all pentons,

representing the direction the penton is oriented at. As the simulation allows

every penton to rotate, it is expected to change its position as the

calculations take place. Created with PyMOL, an open source molecular

visualisation system [28].

After that, it is important to establish the bounds of the coordinates. For each

rotational symmetry (C5, C2 and C3) two extremes will be chosen [Figures 9, 10 and

11]. Those pentons will then be constrained to their current coordinates, although

changes in rotation are allowed. For the simulation to replicate an adiabatic force of

indentation, one of the extremes will then be made to approach the other one by a

minute distance, to then calculate the displacement of the other pentons as a result.

Is in this part of the project where the usage of the SciPy open-source library of

scientific computing is key. Specifically, the function of optimize.minimize, as its

objective is to find the minimum value of any scalar function with one or more

variables [29]. For it to work properly, it need certain parameters to be inputted first:

● The function to be minimised. In this case, V.

● An initial set of variables. The coordinates of the twelve pentons.

● All the parameters the function needs: p1, p2, m, and m’.

● The preferred method to solve the minimisation. There are numerous to

choose from, but as advised by the supervisor of this project, the

Limited-memory BFGS with bound constraints (L-BFGS-B) will be the one

used. It utilises both the bounds of the edge pentons’ coordinates and the

jacobian matrix dV, and thus generates a better result in significantly less

time.
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● Either the jacobian matrix of the function, or the preferred method to

calculate it. To save time and reduce the computing load of the data, it is

already calculated in the function dV.

● If the method requires them, the bounds (or lack thereof). The program

needs it as a sequence of n elements, n being the number of variables of the

function. Each element consists of a pair of numbers: (p, q). If no bounds

are needed for a specific variable, both p and q have to be equal to None,

and if there are, p represents the lowest possible value we want it to strive

for, and q the highest one.

● If the preferred method allows it, it is possible to input some options to

control to which extent the algorithm is allowed to proceed, as the

maximum number of interactions or the minimum value the function has to

achieve respecting the prior iteration of the minimiser to allow the

algorithm to take the new value as the new minimum.

At all times, the function will be V with its jacobian dV, and the preferred method

L-BFGS-B and its options will not be tweaked.

The scipy.optimize.minimize will then be used for its first calculation: based on

the initial coordinates we had, and taking the necessary precautions to make sure the

symmetry of every system remains the same (such as, creating functions to recentre

and rotate the system if a displacement from the origin of the coordinate system has

occurred), we obtain the energy configuration of the relaxed regular icosahedron for

C5, C2 and C3, whose energy configuration is slightly lower that the initial value.

This is explained easily, as the distance between each penton has shifted slightly to

adjust the effect created by the interaction of pentons beyond closest neighbours.

Now that an ideal configuration for every symmetry has been generated, the

creation of a Python routine that simulates an indentation process can start. It is built

in a simple while loop, and in each iteration, a downward displacement of a six

thousandth of the distance between two opposing vertices of the relaxed icosahedron

is forced on the uppermost penton or pentons (depending on the symmetry in

question). Then, the scipy.optimize.minimize algorithm utilises this new set of

coordinates, producing as a result another array of coordinates (respecting the bounds
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fixing the position of the uppermost and bottommost pentons) with an energy bond V

which is expected to be marginally higher than in the previous run of the algorithm,

due to the new coordinates being nearly identical to the previous ones. The only

instance when this will not turn out true is when the coordinates of some pentons

abruptly shift their positions, finding a new minimum configuration outside their

vicinity. This happens because the method we have chosen, L-BFGS-B, searches for

the minimum energy configuration in its vicinity, only not doing so if it is not viable

to find one.

As we have settled that this would be an unnatural behaviour for a virus in a

practical experiment and only feasible in the realm of a computer simulation, it is

safe to assume this force would result in the deformation or rupture of the capsid

[30]. Therefore, the algorithm is made to break the loop at that point, having saved

every value of the energy bond and its respective indentation for the next step of the

project: The graphic representation and calculation of the energy bond V, the force of

indentation (the first derivative of V) and the elastic constant of the capsid (the

second derivative of V) over its deformation.

Figure 12: Results acquired from laboratory experiments of virus

indentation. They are A, a diagram of how the indentation takes place,

showing a representation of what happens to the capsid over the gathering

of data of force over z-displacement; B, two images, the before and after of
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a viral capsid of the triatoma virus which underwent the atomic force

microscope (AFM) indentation process, where a penton subunit can be

observed as part of the capsid and as a subunit, respectively; and C, two

graphs representing the results of height of a raster scan made for the states

of the images in B. Taken from [30].

It is possible to do so thanks again to the Scipy open-source library of scientific

computing. This time, we are going to make use of the algorithm known as

scipy.interpolate.InterpolatedUnivariateSpline [29], whose goal is to create a

spline that interpolates a set group of (x, y) data points. Doing so with our array of

capsid displacement as x and their respective energy bond as y might seem

unnecessary at first, as the data could be represented in a graph with not such help,

but one of the submethods of the algorithm, derivative, has the ability to calculate

(as his name states) the derivative of one coordinate imputed. Just a couple of for

loops are required to obtain the first and second derivative of the spline previously

mentioned, effectively creating the simulated curve of force applied to the capsid and

elastic constant of the capsid (respectively). These results are given in the following

figures:
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Figuress 13-15: Potential over indentation representations for symmetries

C5, C2 and C3, respectively. Their indentation values range from zero to

their respective critical indentation, when the capsid ruptures.
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Figures 16-18: Force over indentation representations for symmetries C5,

C2 and C3, respectively. Their indentation values range from zero to their

respective critical indentation, when the capsid ruptures.
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Figures 19-21: Elastic constant over indentation representations for

symmetries C5, C2 and C3, respectively. Their indentation values range

from zero to their respective critical indentation, when the capsid ruptures.

After these results, it is right to ponder how the parameters p1, p2, m and m’ affect

the final representation. For that to be clarified, a total of four extra simulations were

made, following every step as it has been described, except for a considerable change

in one of the parameters. We will now compare the critical indentation (distance of

deformation which causes the simulated rupture of the capsid) and maximum elastic

constant (k) value of the original simulation and the extra four ones, for the three

symmetries of the capsid: C5, C2 and C3. The results are given in the following

tables:
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(p1, p2, m, m’) Maximum k for C5 Critical indentation C5

(10, 10, 12, 1.5) 144.5679792 [p0/re2] 0.3661166832 [re]

(2, 10, 12, 1.5) 102.033926 [p0/re2] 0.3593131211 [re]

(10, 2, 12, 1.5) 109.8612288 [p0/re2] 0.3682359236 [re]

(10, 10, 6, 3) 147.9958576 [p0/re2] 0.3565750764 [re]

(10, 10, 12, 0.75) 130.608214 [p0/re2] 0.4077445134 [re]

Table 1: Maximum k and critical indentation for the system in C5 symmetry.

(p1, p2, m, m’) Maximum k for C2 Critical indentation C2

(10, 10, 12, 1.5) 280.3344078 [p0/re2] 0.3913766825 [re]

(2, 10, 12, 1.5) 212.1968476 [p0/re2] 0.5364247876 [re]

(10, 2, 12, 1.5) 226.2561997 [p0/re2] 0.5161590595 [re]

(10, 10, 6, 3) 228.4942697 [p0/re2] 0.2441625499 [re]

(10, 10, 12, 0.75) 262.7621211 [p0/re2] 0.343951764 [re]

Table 2: Maximum k and critical indentation for the system in C2 symmetry.

(p1, p2, m, m’) Maximum k for C3 Critical indentation C3

(10, 10, 12, 1.5) 461.5460866 [p0/re2] 0.1743590128 [re]

(2, 10, 12, 1.5) 331.456205 [p0/re2] 0.164897671 [re]

(10, 2, 12, 1.5) 346.7161069 [p0/re2] 0.1730041633 [re]

(10, 10, 6, 3) 381.125277 [p0/re2] 0.2676120914 [re]

(10, 10, 12, 0.75) 416.050141 [p0/re2] 0.1870363764 [re]

Table 3: Maximum k and critical indentation for the system in C3 symmetry.
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After a quick glance at the tables it can be noted that, while not always having the

uppermost values, the parameters p1, p2, m and m’ prove to have the most consistent

results of the pack.

In all of the representations, a coefficient rd has been utilised to adjust all values to

those of a similar experiment [27], where the same equations and simulations were

made to a virus with the same characteristics that the MMV, being the only

difference with this project that, instead of pentons, they acknowledged that the

experimental results of the MMV indentation proves that the subunits of its capsid

are formed by trimers, and thus their calculations revolve around that assertion. The

coefficient rd is the result of dividing the distance between two nearest penton

neighbours and the distance between two nearest trimer neighbours.
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Results and conclusion

Abstract. Los gráficos de energía sobre hendimiento muestran diferencias

significativas en sus valores críticos, teniendo la simetría C3 el menor

hendimiento crítico. Esto indica una mayor resistencia a la deformación o

ruptura en comparación con C2 y C5, lo que queda confirmado por los

gráficos de la constante elástica. Aunque los parámetros iniciales afectan los

valores críticos, las constantes elásticas permanecen estables en todas las

simetrías. Los resultados se comparan con un estudio que utiliza trímeros,

mostrando tendencias similares que demuestran que ambos modelos son

válidos para cápsides geométricamente similares. Concluimos que los modelos

de grano grueso ofrecen información general aún necesitando los parámetros

adecuados para mejores resultados. La experimentación práctica aclara la

estructura de la cápside de MMV, resaltando la importancia de ajustar los

parámetros para simulaciones precisas.

The potential energy over indentation charts [Figures 13-15] show significant

differences between them, being one of them their disparity in critical indentation

values. They demonstrate that C3 has, in theory, the lowest of the three (around 16%

of capsid indentation), allowing less than half of the deformation of the capsid that

the C2 or C5 symmetry permit (more than a 35% of capsid indentation) before being

irreversibly deformed or ruptured. This translates accordingly to the force over

indentation charts [Figures 16-18], where it is shown how the effort needed to

damage a capsid in C3 is significantly higher than its counterparts. It can be therefore

argued that C3 has a greater stiffness, which the charted elastic constant over

indentation shows to be the case [Figures 19-21], at least on this experience.

This information raises a question: “Does this apply to every set of initial

parameters?” It can be answered confidently that although some initial values of p1,

p2, m, and m’ allow significant variances in the critical indentation values, the

maximum elasticity constant demonstrates to have a steady value for every
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symmetry configuration: C3 is consistently the hardest to deform, and C5, the

easiest, according to the pentons model.

All along the experiment, another project with similar objectives has been

referenced [27], as its main difference regarding the study of simulated capsid

behaviour regarding an adiabatic indentation from different symmetrical perspectives

lies on the choice of subunit for the MMV capsid structure: trimers. Its results can

therefore be compared to those emerged from these calculations, and used to

demonstrate if a different modelling of the structure translates into similar data.

Remarkably, the average of both the elastic constant and critical indentation are

resemblant. The biggest variance between them lies in the individual values of

critical indentation and elastic constant obtained in each symmetry configuration

(C5, C2 and C3), as in the trimer model the C3 symmetry has instead the highest

critical indentation of the three (24% of capsid indentation). This can be explained by

the different choice of rigid units, as it is logical that the assumption of trimer rigid

units will conclude in penton units being deformed, and vice versa, which translates

to distinct breaking points for each of the symmetries depending on the capsid

subunit model.

Observing their average behaviour we can establish that both capsid models

reproduced similar elastic properties and characteristics in general, meaning that two

separate viruses with geometrically similar capsids share those too, even if the

organisation of its subunits are different; but each model has different specific

symmetry properties that clearly differentiates one model from the other. This

information can be very helpful to discern the kind of subunit the capsid is formed

by. This gives us the conclusion that both methods, albeit different depending on the

initial parameters, portray the general behaviour of the capsid quite notably. The

coarse-grained model works the same way grosso modo, which demonstrates that

these simulations based on the potential energy equation here presented are only

capable of distinguishing between capsids with subunits of different nature when

studied not their average elastic properties, but each symmetry at a time.

For a more minute and exact understanding of the kind of subunits a virus uses to

build its capsid, a better precision method is needed. For example, instead of a
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calculation of parameters p1, p2, m, and m’ made by trial and error, as this project has

done, an exhaustive search of better values can be made with the proper subroutine,

as in my tutor group’s paper [20], where other ways to further expand this

investigation relied on better methods of global optimization (like the Harmony

Search [31]) to adjust the energy function automatically depending on the

experimental data we want to study. While this method doesn’t change the obtained

results, the parameters now are better adjusted to them, easing the simulations to

better recreate the capsid behaviour.

In the end, it was the practical experimentation of virus indentation with AFMs

that clarified once and for all which subunit uses the MMV to create its capsid

(trimers), albeit not an indentation experiment, as the incertitude derived by the error

margin of the measurements makes it so the estimates of force of indentation in

every symmetry are indistinguishable from each other. Only in virtual simulations,

like those found in this project or in those where this hypothesis has been based on

[26, 27], each symmetry can be observed separately. Not only that, but also their

elastic constant and critical indentation values are unique to them, not sharing its

characteristics between models, as it happened in this experience. With a precise

enough laboratory experiment and this theoretical data, it could be established with

certainty which type of subunits form any viral capsid that satisfies the T = 1 Caspar

and Klug theory.

Data recollection in the laboratory proves to work wonders to gather the necessary

information to create accurate simulations, even when using models such as the

Coarse-grained model, which simplifies enormously the intricate structure of even

the most simple viral capsid.
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