
Evolutionary Computation
Methods for Instance Generation

in Optimisation Domains

Alejandro Marrero Díaz

Supervisors: Prof. Eduardo Segredo
Prof. Coromoto León

Departamento de Ingeniería Informática y de Sistemas
Universidad de La Laguna

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2024

The present thesis has been partially supported by Agencia Canaria de Investigación
Innovación y Sociedad de la Información de la Consejería de Economía, Conocimiento
y Empleo y por el Fondo Social Europeo (FSE) Programa Operativo Integrado de
Canarias 2014-2020, Eje 3 Tema Prioritario 74 (85%) - under grant TESIS2020010005.

Acknowledgements

First of all, I would like to thank Eduardo Segredo and Coromoto León for their
support and advice throughout the period which started with my Degree Thesis and
culminated with the present PhD Thesis. Moreover, I would like to especially thank
Emma Hart for her invaluable suggestions and collaboration during my research for
this thesis. Her insights and recommendations have not only improved the overall
quality of this thesis but also helped me to improve as a researcher.

Also, I would like to thank Jennifer Montesdeoca for accompanying me over the
last few years and helping me see what really matters, and to my family, friends and
colleagues for their support.

A very special appreciation goes to my girlfriend, Eva, for her love and encourage-
ment throughout my PhD. Her unconditional support was a fundamental pillar during
the ups and downs of this process.

Las escaleras se suben de frente,
pues hacia atrás o de costado

resultan particularmente incómodas.
(...)

Los primeros peldaños son siempre los más difíciles,
hasta adquirir la coordinación necesaria.

(...)
Cuídese especialmente de no levantar al mismo tiempo

el pie y el pie.
Julio Cortázar

Instrucciones para subir una escalera.

Abstract

The generation of instances of optimisation problems is a very common task in computer
science. Traditionally, researchers apply statistical or pseudo-random methods to create
instances with which to validate their proposals: algorithms or operators. At the same
time, some authors have proposed sets known as benchmarks so that new proposals
can be evaluated in these instances, and thus avoid the task of generating instances
for researchers. However, these sets are often characterised by (1) being designed
to be hard to solve by off-the-shelf, state-of-the-art algorithms at the time of their
creation and (2) by their low diversity, meaning the instances tend to share many
similar characteristics.

However, many of the proposals in the field of optimisation do not seek to evaluate
state-of-the-art algorithms. Therefore, finding a solution to these benchmarks is not
always the final objective in these publications. Hence, there is a need for instances
that exhibit some diversity in their characteristics so that the strengths and weaknesses
of a wider range of solvers can be evaluated. This factor is essential in problems such
as Algorithm Selection; i.e., mapping a portfolio of algorithms to a set of instances.
Since, in practice, there is no algorithm that can be expected to outperform others in
every instance, collecting diverse instances with known best solvers could facilitate the
evaluation of the strengths and weaknesses of the algorithms. Generating instances
that are diverse from one another requires a method that (1) is capable of performing
a space exploration and (2) has a mechanism for measuring diversity with respect to
the rest of the instances encountered earlier in the search.

This thesis examines the problem of generating diverse and performance-biased
instances from a portfolio of algorithms by proposing two major variants of Novelty
Search (NS).The methods apply single- and multi-objective approaches to generate
instances that are diverse and discriminatory, meaning they are designed to be diverse
among themselves and also easy to solve for one target algorithm and not for others
in a portfolio. By doing this, we aim to facilitate the generation of diverse sets of
instances that can be used to fill currently existing gaps, perform algorithm selection
within a portfolio and determine the regions of space where an algorithm excels/fails.

viii

Although the proposals are mainly evaluated using the well-known Knapsack Problem
(KP), experiments with the Travelling Salesman Problem (TSP) show that the methods
can be generalised to other domains of combinatorial optimisation. The results suggest
that both NS methods are able to generate diverse and discriminatory instances in the
KP and TSP domains when using a portfolio of deterministic heuristics. Moreover,
both methods outperformed previous Evolutionary Algorithm (EA) approaches in the
KP domain.

Finally, the methods are integrated into DIGNEA, a Diverse Instance Generator
with Novelty Search and Evolutionary Algorithms, a C++ framework that was de-
veloped during the research for this thesis to facilitate the generation of diverse and
discriminatory instances for optimisation domains for the research community.

Contents

Nomenclature xiii

List of Figures xvii

List of Tables xix

List of Algorithms xix

1 Introduction 1
1.1 Research Questions . 5
1.2 Contributions and Overview . 6

2 Background 9
2.1 Evolutionary Computation . 9
2.2 The Knapsack Problem . 11
2.3 The Algorithm Selection Problem . 13
2.4 Instance Generation Methods . 16

2.4.1 Benchmark Instance Generation 17
2.4.2 Discriminatory Instance Generation 19

2.5 Summary . 23

3 Instance Generation Methods using Novelty Search 25
3.1 The Novelty Search Algorithm . 25

3.1.1 Calculating Novelty . 27
3.1.2 Calculating Performance . 31

3.2 Instance Generation with a Linear-weighted Single-objective NS 32
3.3 Instance Generation with a Multi-objective NS 35
3.4 Summary . 39

x Contents

4 Experimental evaluation 41
4.1 NSls Experiments . 43

4.1.1 NSls and Feature-based Descriptor 43
4.1.2 NSls and Performance-based Descriptor 46
4.1.3 Distribution of NSls in Foreign Spaces 48

4.2 NSmo Experiments . 52
4.2.1 NSmo and Feature-based Descriptor 53
4.2.2 NSmo and Performance-based Descriptor 56
4.2.3 NSmo Distribution in Foreign Spaces 59

4.3 Comparison between NSls and NSmo 63
4.4 Summary . 65

5 Generating instances for the TSP domain 67
5.1 Background . 67

5.1.1 Portfolio of Solvers for the TSP Domain 69
5.1.2 Parameter Tuning . 71

5.2 Generating TSP Instances with NSlsp 72
5.2.1 Impact of ϕ on NSlsp for the TSP Domain 72

5.3 Generating TSP Instances with NSmop 77
5.4 Summary . 80

6 DIGNEA: A Diverse Instance Generator with NS and EAs 83
6.1 Contribution . 83
6.2 Motivation . 84
6.3 Software Description . 85

6.3.1 Software Architecture . 85
6.3.2 Software Functionalities . 87

6.4 Illustrative Example . 90
6.5 Impact . 94
6.6 Conclusions and Future Lines of Work 95

7 Conclusions 97
7.1 Key Results . 98
7.2 Future Work . 102
7.3 Publications Resulting from the Research of this Thesis 103

7.3.1 Journal Articles . 103
7.3.2 International Conferences . 104

Contents xi

7.3.3 Spanish National Conferences 104

Bibliography 105

Appendix A Deterministic KP heuristics 117
A.1 Default KP Heuristic . 117
A.2 Maximum Profit KP Heuristic . 118
A.3 Maximum Profit per Weight KP Heuristic 119
A.4 Minimum Weight KP Heuristic . 120

Appendix B Figures from ϕ Parameter Tuning Experiment for TSP
Domain 121
B.1 Distribution of NSlsp Instances across Performance Space 122
B.2 Performance-gap of NSlsp Instances . 131

Nomenclature

The following list describes various symbols and initialisms that will be used later
within the body of the document

Acronyms / Abbreviations

ASP Algorithm Selection Problem

BP Bin Packing Problem

CI Computational Intelligence

COP Constrained Optimisation Problem

CSP Constraint Satisfaction Problem

DOP Discrete Optimisation Problem

EA Evolutionary Algorithm

EC Evolutionary Computation

EIG Evolutionary Instance Generator

EMO Evolutionary Multi-objective Optimisation

EP Evolutionary Programming

ES Evolution Strategy

FOP Free Optimisation Problem

FSP Flow-shop Scheduling Problem

GA Genetic Algorithm

GP Genetic Programming

xiv Nomenclature

KP 0/1 Knapsack Problem

MDKP Multi-dimensional Knapsack Problem

ME Map-Elites

ML Machine Learning

MOIEG Multi-objective Evolutionary Instance Generator

MOKP Multi-objective Knapsack Problem

MOP Multi-objective Problem

MPP Menu Planning Problem

NKP Nonlinear Knapsack Problem

NN Neural Network

NPC Nondeterministic Polynomial-time Complete Problems (NP-Complete).

NS Novelty Search

NSGA-II Non-Dominated Sorted Genetic Algorithm II

OP Optimisation Problem

QD Quality Diversity

QKP Quadratic Knapsack Problem

SAT Boolean Satisfiability Problems

SOP Single-objective Problem

TSP Travelling Salesman Problem

Algorithm acronyms

NSlsf Linear weighted single-objective Novelty Search Algorithm with feature-based
descriptor

NSlsp Linear weighted single-objective Novelty Search Algorithm with performance-
based descriptor

Nomenclature xv

NSls Linear weighted single-objective Novelty Search Algorithm

NSmof Multi-objective-based Novelty Search Algorithm with feature-based descriptor

NSmop Multi-objective-based Novelty Search Algorithm with performance-based descriptor

NSmo Multi-objective-based Novelty Search Algorithm

Other symbols

A Set of all algorithms available for solving a problem P

c Combination of items that represents a solution for a Knapsack Problem instance

F Features or characteristics obtained from feature extraction techniques from P

m Performance metric to measure the performance of an algorithm with an instance

N Number of items in a Knapsack Problem instance

P Problem space of a potentially infinite set of instances for a problem domain

pi Profit of the ith-item in a Knapsack Problem instance

ps Performance score obtained by an instance in the generation process

Q Capacity of a virtual knapsack in the Knapsack Problem domain

s Novelty score obtained by an instance in the generation process

wi Weight of the ith-item in a Knapsack Problem instance

x Descriptor used by Novelty Search in the generation process

Y Performance space that maps each algorithm on A to an instance from P based
on a performance metric m

List of Figures

1.1 Hiking Planning Problem . 2
1.2 Solutions for a Hiking Planning Problem 3

2.1 Evolutionary Algorithm scheme . 10
2.2 Algorithm Selection Problem Scheme 14

3.1 Novelty Search Scheme . 26
3.2 Novelty Search with Solution Set . 29
3.3 Knapsack Instance Representation in Computer Memory 29
3.4 Computation of KP Instance Descriptors 30
3.5 Computation of Performance-based KP Instance Descriptors 31

4.1 NSlsf Instance Distribution over the Feature Space 44
4.2 NSlsf Performance Diversity . 45
4.3 NSlsf Instance Distribution over Performance Space 47
4.4 NSlsp Performance Diversity . 49
4.5 NSls Instance Distribution across Spaces 50
4.6 NSmof Instance Distribution over the Feature Space 54
4.7 NSmof Performance Diversity . 55
4.8 NSmop Instance Distribution over Performance Space 57
4.9 NSmop Performance Diversity . 58
4.10 NSmo Instance Distribution across Spaces 60
4.11 NSlsf and NSmof Instances over the Feature Space. 64
4.12 NSlsp and NSmop Instances over the Performance Space. 65

5.1 TSP Graph Example . 68
5.2 TSP Instance Representation as Stored in Memory (Genotype). 68
5.3 NSlsp Instance Distribution over Performance Space for the TSP Domain 72
5.4 Relationship between ϕ, U score, and Unique Instances 75

xviii List of Figures

5.5 NSlsp Performance Diversity for the TSP Domain 76
5.6 NSmop Instance Distribution over the Performance Space for the TSP

Domain . 78
5.7 NSmop Performance Diversity for the TSP Domain 79
5.8 Instance Distribution over Performance Space for the TSP Domain . . 80

6.1 DIGNEA Software Diagram . 86
6.2 Program Flowchart of an Instance Generation Process in DIGNEA . . 89
6.3 Parameter Settings for a DIGNEA Run 90
6.4 C++ Source Code Fragment to Generate KP Instances in DIGNEA . . 91
6.5 JSON File with the Results from DIGNEA 93

B.1 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.0 . 122
B.2 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.15 . 123
B.3 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.30 . 124
B.4 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.40 . 125
B.5 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.50 . 126
B.6 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.60 . 127
B.7 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.70 . 128
B.8 NSlsp Instance Distribution over TSP Performance Space for ϕ = 0.85 . 129
B.9 NSlsp Instance Distribution over TSP Performance Space for ϕ = 1.00 . 130
B.10 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.0 . . . 131
B.11 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.15 . . 132
B.12 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.30 . . 133
B.13 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.40 . . 134
B.14 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.50 . . 135
B.15 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.60 . . 136
B.16 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.70 . . 137
B.17 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 0.85 . . 138
B.18 NSlsp Performance Diversity for the TSP Domain Setting ϕ = 1.00 . . 139

List of Tables

4.1 NSls Parameter Configuration . 42
4.2 NSls Space Coverage over each Space 51
4.3 NSls Unique Instances . 52
4.4 NSmo Parameter Configuration . 53
4.5 NSmo Space Coverage over each Space 61
4.6 NSmo Unique Instances . 61

5.1 NSls Parameter Configuration for TSP 71
5.2 NSlsp Space Coverage with Different ϕ Values 74
5.3 NSls Parameter Configuration for TSP 77

List of Algorithms

1 Evaluation Method . 32
2 NSls . 33
3 Evaluation of Instances in NSmo . 36
4 Fast Non-dominated Sorting . 37
5 NSmo . 38

6 Greedy TSP Heuristic . 69
7 2-Opt TSP Heuristic . 70
8 2-Opt Swap Operator . 70

9 Default KP Heuristic . 117
10 Maximum Profit (MaP) KP Heuristic 118
11 Maximum Profit per Weight (MPW) KP Heuristic 119
12 Minimum Weight (MiW) KP Heuristic 120

Chapter 1

Introduction

Humans have a variety of ways of learning how to perform tasks. These include our own
experimentation and learning from the teachings of a peer. In any case, throughout
our lives, we learn that there is a wide spectrum of ways to perform a particular task.
The choice of one method over another is often based on our beliefs, trends in our
surroundings or our own experience. However, to consider only one way of performing
a given task is a source of limitation. Even if we consider our methodology to be
the most appropriate based on our experience, we may find ourselves in situations
where time or resources do not allow us to proceed as we are used to. Therefore, it is
important that we learn different ways of performing the same task that allow us to
‘discriminate’ those contexts or circumstances in which one method is more favourable
than another. However, the lack of diverse scenarios is a problem when evaluating the
different methods we can apply.

We can exemplify this statement in the following way. Suppose we have decided to
go on a hike in the bush with our group of significant others. In this case, we are faced
with the task of planning which items we want to take with us in our knapsack for
this day in the countryside, and we do not have much time to do so. Each item has an
associated weight (in kilograms) and a benefit that we have subjectively assigned to it.
In addition, our knapsack has a capacity limit. Not only because it could break, but
also because we would not be able to carry as much as we wanted on the route. In this
case, our knapsack carries a maximum of 20 kilograms. Our goal is to carry with us the
combination of items that give us the most benefit without exceeding the maximum
capacity of the knapsack. Figure 1.1 shows a concrete example with a 20kg-capacity
knapsack and the list of possible items we want to take with us.

Now we need to decide which items we are going to take and which we are not going
to take. Similarly, let us assume that whenever we are faced with a similar problem,

2 Introduction

Figure 1.1 Hiking Planning Problem

we always choose to plan in the same way; that is, we put the lightest items in the
knapsack until we have filled it to its maximum capacity. And that is what we will do
on this occasion as well, obtaining a total profit of 31.

On the other hand, there are other ways of doing this planning, such as, for example,
considering introducing the most beneficial items first until the entire capacity of the
knapsack is filled. The application of each methodology will give us a different plan
for that day, and therefore a different total benefit. The main difference lies in the
specific case we are ‘solving’, i.e., the different elements and the maximum capacity of
the knapsack. However, if we had chosen the other approach, the beneficial items first
method, we could have obtained a profit of 32. Figure 1.2 shows the possible solutions
for this case.

Analysing the possibilities retrospectively, we see that our planning was not as
good as it could have been given the time available, because we did not consider the
characteristics of the elements involved (items and knapsack). The problem lies in
the fact that we did not consider the possibility that different cases may work better
for some methods than for others, and simply proceeded as we are used to from our
experience. Also, the more experience we have with different cases and the more we can
determine which methods work best for which specific cases, the better our planning

3

(a) Most beneficial items first (b) Lightest items

Figure 1.2 Two different solutions for a Hiking Planning Problem. The efficiency of
the method used to plan the day depends on the information of the instance.

will be. Something similar happens in the field of Optimisation within Computer
Science.

Traditionally, efforts within the field of Optimisation have focused on the develop-
ment of more powerful exact algorithms that yield optimal solutions for academic and
real-world problems [136]. However, in practice, we find that it is not always possible
to apply these methods due to their high demands for resources and computational
time. Therefore, there are many lines of research and proposals to define algorithms
that do not always obtain the optimal solutions to the problems in question, but that
are capable of obtaining high-quality solutions with significantly fewer resources and
time [13, 63].

One shortcoming that we find in the literature when evaluating these proposals is
that the use cases, or ‘instances’, as they are commonly known in the field, have been
created to be considerably hard to solve with the aim of evaluating state-of-the-art
exact algorithms [51, 60, 95, 105, 106]. The main problem with these sets lies in the
low levels of diversity. As a consequence, another problem arises, and that is the lack
of information about which instances work best for the remaining algorithms.

Given a finite set of instances for an optimisation domain and a portfolio of al-
gorithms, we find that the algorithms behave differently in different problem instances;
no single algorithm dominates all others in every instance of the problem (i.e., per-
formance complementary phenomenon). Although intuitively believed in the field
before, this phenomenon was officially proposed in 1995 as the No Free Lunch The-
orem (NFL) [31]. It is the task of the researcher to associate the appropriate algorithm
to each instance of the set such that the total performance with the set is maximal.

4 Introduction

This problem is known as the Algorithm Selection Problem (ASP) and was proposed
by Rice in 1976 [112]. The early stages of the research in this thesis focused on the
creation of a selector that maps each instance to the best-performing algorithm in
order to efficiently solve the ASP in a specific domain. However, we soon realised the
need to obtain information in terms of the performance of each algorithm with a set of
instances. In this situation, we were able to determine that (1) the task of obtaining the
performance of each algorithm with the instances is a very computationally expensive
process and (2) the generation of sets of instances beforehand is absolutely necessary.
Moreover, contrary to the trend in the field, these sets should be as diverse as possible
in order to provide wide coverage of the performance spectrum. We thus find that
within the context of ASP, the generation of instance sets plays a crucial role in the
quality of the final selectors, which is why the efforts were shifted to this task: the
generation of diverse and discriminatory instances.

In order to generate instances that are diverse from each other, a method is needed
that (1) is capable of performing a space exploration and (2) has a mechanism for
measuring diversity or novelty with respect to the rest of the instances previously
seen during the search. The method employed in this thesis to accomplish this task is
known as Novelty Search [79]. Proposed about a decade ago, Novelty Search belongs
to a set of Evolutionary Algorithms called Quality Diversity (QD) approaches, which
have accumulated a significant amount of attention in the fields of robotics, video game
development, etc. To the best of my knowledge, Novelty Search methods have not been
applied before to the generation of instances in optimisation domains. This method is
characterised by focusing its search on novel solutions that have not been previously
discovered and, at the end of its task, returning a set of high-quality solutions in a
single run.

In particular, the present thesis focuses on investigating the problem of generating
diverse and performance-biased instances for a portfolio of algorithms by applying two
major variants of NS. Specifically, we seek to define methods that allow us to generate
instances that are easy to solve for one algorithm and not for others. That is, given
a portfolio of algorithms that we want to evaluate, our goal is to be able to generate
sets of instances that are diverse among them and are defined to be solved by a target
algorithm. In this way, the generation of instances also provides us with performance
indicators for each algorithm in the portfolio. We thus aim to facilitate the generation
of diverse sets of instances to fill currently existing gaps, perform algorithm selection
within a portfolio, and determine the regions of space where an algorithm excels/fails.
We present two variants of NS aimed at performing this task. The methods are fully

1.1 Research Questions 5

generalisable to any combinatorial optimisation domain. The proposals are evaluated
mainly by using the well-known Knapsack Problem, an abstraction of the Hiking
Planning example mentioned earlier. In addition, to illustrate that the methods can
be generalised, they are also evaluated with the Travelling Salesman Problem.

The following section describes the main research questions that have been addressed
during the research conducted in this thesis.

1.1 Research Questions
In this PhD thesis, we aim to explore the following research questions. It is important to
note that the answer to the "to what extent" questions implies using specific qualitative
and quantitative analyses to assess the quality of the final outcomes.

• Question 1: To what extent can a Novelty Search algorithm be used to generate
diverse and discriminatory instances that aim to provide uniform coverage of the
descriptor space for a portfolio of algorithms?

• Question 2: How diverse are the instances evolved for each target with respect to
the performance-gap, i.e. the magnitude of the difference between the performance
of the winning solver and the remaining solvers in the portfolio?

• Question 3: To what extent can a Novelty Search algorithm using either a
feature or performance descriptor provide useful information of the opposite
search space? Are the Novelty Search methods with a performance descriptor
able to uniformly distribute the instances in the feature space and vice versa?

• Question 4: To what extent can the formulation of the instance generation
problem impact the resulting sets of instances? In other words, are there sub-
stantial differences in diversity, space coverage and the total number of instances
in the sets generated per run between a Novelty Search method using a single
objective approach and a Multi-objective-based Novelty Search algorithm?

• Question 5: To what extent can Novelty Search methods be generalisable to
other optimisation domains and portfolios when relying on performance-based
descriptors?

6 Introduction

1.2 Contributions and Overview
The research of this thesis presents two main contributions. Firstly, two NS approaches
that are simultaneously capable of generating a set of instances that are diverse
with respect to different search spaces (instance or performance) and that exhibit
discriminatory but diverse performance with respect to a portfolio of solvers, where
diversity, in this case, refers to variation in the magnitude of the performance gap. The
approach is primarily evaluated in the KP domain to produce diverse and discriminatory
instances for a portfolio of deterministic KP heuristics. Our results show that both
novel approaches succeed not only in providing considerably better coverage for the
instance and performance spaces, but also in obtaining larger sets of diverse and
discriminatory instances in comparison to an approach that does not make use of
novelty. Furthermore, in contrast to previous methods, such as that proposed by
[2], a single run of our method returns a large set of instances that are diverse and
discriminatory with respect to a single-target solver. It, therefore, needs to be run
M times, where M is the number of solvers in the portfolio. In contrast, space-filling
approaches such as those described by [2, 122], tend to converge to a single solution,
meaning in the worst case scenario, they need to be run i × M times to generate i

instances that are discriminatory for each of the M solvers.
The second major contribution is the development of a C++ framework called

DIGNEA which makes it possible for other researchers in the field to apply these
methods. The software is already available through a GitHub repository and contains
a wide variety of solvers and several optimisation domains, such as the Knapsack
Problem, the Travelling Salesman Problem and the Bin-Packing Problem.

The aforementioned research questions and contributions define the structure of the
present thesis. The rest of the document is organised as follows. First, in Chapter 2, the
different topics and areas related to this thesis are presented. Moreover, an overview of
the methods and state-of-the-art for such subjects is given. Then, Chapter 3 is devoted
to describing the proposal of two Novelty Search methods to tackle the problem of
generating diverse and discriminatory instances in optimisation domains. In Chapter 4,
both methods are examined in the KP domain. We perform several experimental
evaluations to answer the majority of the research questions considered in this thesis.
Chapter 5 presents an application of the methods to another optimisation domain: the
Travelling Salesman Problem. The goal of the chapter is to illustrate how the method
can be generalised to other domains with minimum effort by the user. Afterwards, in
Chapter 6, we present DIGNEA, a Diverse Instance Generator with Novelty Search
and Evolutionary Algorithms. This software has been created to allow the research

1.2 Contributions and Overview 7

community to apply the methods described in Chapter 3. Finally, Chapter 7 provides
a summary of the contributions and answers to the research questions, and provides a
list of the publications resulting from the research of this thesis. It also briefly discusses
some of the future lines of work of this research.

Chapter 2

Background

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a research field within Computer Science. As
readers might expect, EC is the idea of applying Darwin’s Theory of Evolution to
problem-solving [34]. Thus, the natural evolution metaphor — that of trial-and-error

— and the survival of the fittest individuals in the population,1 are the fundamental
concepts of the basis of EC. The first reference to a nature-inspired search dates long
before the computer breakthrough. In the 1940s, Alan Turing proposed a ‘genetic or
evolutionary search’ for problem-solving in his famous paper Intelligent Machinery [126].
Almost two decades later, the first implementation and first experiment were successfully
executed using computers [34].

Today, the field of EC is one of the three main branches in the foundations of
Computational Intelligence (CI), the field centred on modelling biological and natural
intelligent systems [35]. Even though the stochastic nature of EC techniques does
not guarantee the optimal solution for the problem at hand, their ability to provide
high-quality solutions in a reasonable time frame makes them highly popular these days
in many different areas. They are applied in a wide range of scenarios where a search for
high-quality solutions is required, such as pure Optimisation domains [21, 33, 89], Neural
Network (NN) design in Machine Learning (ML) [83, 96], Robotics [127, 132] or Planning
and Scheduling [48, 137] to name a few. Besides, there exist four main streams in the EC
field: Evolutionary Programming (EP) [41], Genetic Algorithm (GA) [97], Evolution

1In practice, EC techniques do not always ensure the survival of the fittest individual in the
population (neither does nature). The stochastic nature of algorithms and new techniques could
provide other behaviours such as generational replacement.

10 Background

Strategy (ES) [114], and Genetic Programming (GP) [74]. The term Evolutionary
Algorithm (EA) is used to refer to the algorithms across subareas under the EC
umbrella [34].

Figure 2.1 shows the general scheme of an EA flowchart. In the initialisation
phase of the algorithm, a population of random solutions is created. Then, upon
reaching the termination criteria (usually a number of generations or evaluations to
perform), the algorithm proceeds as follows. First, random individuals are selected to
create a mating pool of parents. Those individuals are mated by means of variation
operators (recombination or crossover and mutation) to create a population of hopefully
better individuals: the offspring. After that, the offspring and parent populations
undergo a survivor selection mechanism to form the population of the next generation.
When terminated, the algorithm usually returns the last population.

Figure 2.1 General scheme of an Evolutionary Algorithm flowchart

Alternatively, recent work reveals a new trend in the EC field: Quality-Diversity (QD)
or illumination algorithms [19, 109]. In 2011, the first notion of QD algorithms was
presented [79]. Lehman et. al questions the effectiveness of the traditional optimisation
paradigm where EA algorithms measure the progress towards an objective function. In
this paradigm, there exist a number of factors that are known to affect the performance
of the algorithms. For instance, deception, such as local optima values, may prevent
the algorithm from reaching the objective. In contrast, they proposed abandoning
such a paradigm by instead rewarding solutions that present novel behaviour rather
than high objectives scores. The authors named their proposal Novelty Search. Since
their introduction around a decade ago, QD algorithms have provided a class of EA

2.2 The Knapsack Problem 11

methods which are now considerably prolific in the field of robotics, since they are
capable of increasing the exploration of the search space at hand while simultaneously
promoting higher quality solutions. Besides, they include the benefit of returning
multiple high-quality solutions in a single run [25, 138].

There are two predominant classes of algorithms in the family of QD: Novelty
Search (NS) [79] and MAP-Elites (ME) [99]. Both methodologies provide mechanisms
for simultaneously enforcing the exploration of a search space while optimising for
quality within each region. Even though most QD research is applied to the robotics
and game development fields,2 recently these algorithms are starting to filter into
other optimisation domains (such as combinatorial optimisation) as a mechanism to
expressly provide diverse solutions [129]. Moreover, the literature in the field suggests
that defining suitable descriptors to depict the search space for both QD methods
is not only critical and problematic, but can also have a significant influence on the
dynamics of the algorithm [110].

In the present thesis, two NS algorithms are presented (see Chapter 3) to solve an
optimisation problem: generating diverse and discriminatory instances for optimisation
domains. Generating or collecting instances is a usual task that most researchers do
when evaluating their algorithmic proposals for any optimisation domain. Even though
the proposed algorithms are generalisable and can be applied to any optimisation
domain, the principal optimisation domain addressed in this thesis is the well-known
0/1 KP.

2.2 The Knapsack Problem

The 0/1 Knapsack Problem (KP) is a well-known NP-Hard combinatorial optim-
isation problem with a broad range of applications in both academics and real-world
situations. Studied since the 1890s, traditional lore suggests that the first reference to
the term ‘knapsack’ was introduced by Tobias Dantzig [27].

Definition 1 Given a virtual knapsack with a maximum capacity, a set of items T

each one with an associated profit and weight values, find the combination c of items to
include in the knapsack such that it maximises the total sum of profits without exceeding
the maximum capacity of the knapsack.

Formally, the KP is defined by Equation 2.1.
2See https://quality-diversity.github.io.

https://quality-diversity.github.io

12 Background

max
N∑

i=1
pici

subject to:
N∑

i=1
wici ⩽ Q

ci ∈ {0, 1}, i ∈ N = {1, . . . , n}

(2.1)

The number of elements that can be introduced in the knapsack is given by N , p and w

are the profits and weights of the items, respectively, and Q is the maximum capacity
of the knapsack. Finally, the decision variables are represented by c.

Over the decades, multiple variants of the core KP have been proposed in academ-
ics [18]. The most relevant variations are:

• Quadratic Knapsack Problem (QKP) [44, 107]: Ever since its original proposal
in 1980 by Gallo et. al [44], this particular variant of the 0/1 KP has garnered
considerable attention within the academic community. Notably, the profitability
of individual items is intricately intertwined with the selection of other items
within a solution vector, denoted as x.

• Multi-objective Knapsack Problem (MOKP) [84]: The MOKP is a KP variant
where more than one objective function is optimised simultaneously. This formu-
lation allows the application of KP solvers and techniques to real-world problems,
where sometimes several conflicting objectives or criteria must be optimised in
parallel.

• Multi-dimensional Knapsack Problem (MDKP) [135]: Also known as the multi-
constraint KP, the MDKP is a particular case of the 0/1 KP where the virtual
knapsack is capable of storing items with two or more dimensions. Therefore, the
capacity Q of the knapsack is defined as an M dimensional space with distinct
capacities in each dimension.

• Nonlinear Knapsack Problem (NKP) [16, 58]: The NKP is a variant that incor-
porates non-linearity either in the objective function or constraints of the KP.
The relevance of NKP derives from the fact that it can be encountered in diverse
domains, either as a standalone problem or as a sub-problem. Additionally, the
existence of non-linearity relations can present complexities and challenges, so
traditional algorithms may not be directly appropriate to this variant.

Furthermore, there exist many real-world problems that derive from one or more KP
variants. For instance, Menu Planning Problems [116], Project Management, Allocation,

2.3 The Algorithm Selection Problem 13

Capital Budgeting, Cutting Stocks and many more problems [135]. Nevertheless, the
focus of the present thesis is on the standard 0/1 KP.

From the algorithmic point of view, a substantial array of solvers for the KP
across various classes have been proposed by the computer science and mathematics
communities, i.e., from exact techniques such as Dynamic Programming [3, 22, 93, 113,
117] to heuristic [4, 14, 94, 135] and meta-heuristic algorithms like EAs [37, 75, 76, 89].
Even though there exist numerous proposals of exact solvers that are qualified to
provide the optimal solution for KP instances, they are not the best option when
solving large instances. As the size of the instances increases, the computational
time required to reach the optimal solution is likely to increase dramatically. As
a consequence, the field has witnessed the increased popularity of heuristics, meta-
heuristics and other non-exact methods to obtain high-quality solutions in reasonable
times [4, 14, 37, 76, 85, 89, 94, 135, 140]. However, different classes of algorithms (or
even different configurations of the same core algorithm) may perform differently in
certain instances. Depending on the resources available and the desired outcome,
researchers must decide which algorithm best suits the particular needs of the instances
at hand. This is not a straightforward task, and in fact, it requires considerable
computation. Researchers have been facing this problem for decades, and the first
formal definition of such a problem dates back to 1976, ‘The Algorithm Selection
Problem’ [112].

2.3 The Algorithm Selection Problem
The No Free Lunch Theorem (NFL) [57, 134] established that the comparative per-
formance of different black-box algorithms (the term black-box algorithm here refers to
those solvers that do not include any problem- or instance-specific knowledge in their
design to enhance the performance) across all possible optimisation problems is the
same. This scenario has been observed for all NP-Hard optimisation problems such as
Free Optimisation Problem (FOP) [39], also known as Unconstrained Optimisation
Problem (UCP), Constraint Satisfaction Problem (CSP) [15] and Constrained Optim-
isation Problem (COP) [59, 72]. However, within every optimisation domain, there
exist algorithms that can produce higher-quality results than others. Hence, it is well
known that no single solver can excellently solve all instances from an optimisation
domain; i.e., different algorithms may perform better than others for certain subsets
of instances, necessitating the use of algorithm-portfolios which collectively provide
high-quality coverage of the instance space of the problem. Thus, there is a practical

14 Background

necessity to select the best-performing algorithm from a portfolio of solvers to solve
instances of optimisation problems. Therefore, this leads to the per-instance Algorithm-
Selection Problem (ASP) proposed by Rice in 1976 [112]. The formal definition of the
per-instance ASP given by Rice is:

Definition 2 Given a set of instances I of an optimisation problem P , a set of k

algorithms A = α1, ..., αk for solving P, and a metric m : α × I → R that measures
the performance of any algorithm αi, i ∈ {1, ..., k} ∈ A on the instance set, construct
a selector S that maps every problem instance x ∈ I to an algorithm αi, i ∈ {1, ..., k}
such that the overall performance of S with I is optimal based on the metric m [112].

Figure 2.2 Scheme of the Algorithm Selection Problem as proposed by Rice in 1976.

Figure 2.2, shows an overview of the ASP as proposed by Rice where:

• P defines the problem space of a potentially infinite set of instances for the
problem domain.

• The feature space F defines the set of features or characteristics obtained from
P using feature-extraction techniques.

2.3 The Algorithm Selection Problem 15

• The algorithm space A represents the set of all algorithms available for solving
P .

• Y describes the performance space which maps each algorithm on A to an instance
from P based on a performance metric m.

However, some observations may be made involving the above definition. First,
the set of available algorithms A, could be replaced by a low-dimensional portfolio of
diverse solvers, even different configurations of the same core solver. Moreover, the
performance metric m can be highly sensitive to the optimisation domain at hand;
i.e., cost functions, number of constraints violated for a solver, running time of the
algorithm, etc. Therefore, a suitable metric m must be provided before addressing the
ASP for a specific optimisation domain [118, 121].

Due to the rise of Machine Learning (ML) techniques and more powerful computa-
tional resources, the ASP has garnered considerable attention over recent years [70],
with substantial work proposing approaches to predict either the performance of a
given algorithm or the label of the best solver using large datasets of instances from
the optimisation domain. For example, many algorithm selection approaches rely on
training a machine learning algorithm to predict either the performance of a given
algorithm or the label of the best solver, using a large set of representative instances
from the domain for training [2, 54]. However, even though nowadays the Selection
Mapping procedure in the ASP framework can be computed relatively straightforwardly
thanks to those advantages, generating, characterising via feature selection, and solving
instances with a portfolio of algorithms requires a significant amount of computational
and research effort.

The present thesis is limited to the process of generating instances from the ASP
framework. The purpose is to generate instances for optimisation domains that are
not only diverse with respect to either the feature-space F or the performance-space
Y instances, but that are also discriminatory with respect to the algorithms in the
portfolio. Thus, the instance generation procedure can also label the instances with
their corresponding best-performing algorithm in the portfolio A.

16 Background

2.4 Instance Generation Methods
Traditionally, the literature related to instance generation in optimisation domains has
mainly focused on generating as difficult as possible sets of instances with the aim of
serving as benchmarks for existing or recently designed algorithmic techniques [26, 50,
51, 62, 65, 106, 130]. As a result, researchers were able to identify the strengths and
weaknesses of algorithms to improve their performance. Such approaches, however,
tend not to deal with the analysis of the instances and their diversity with respect to the
instance-space, performing such an analysis only in terms of their hardness. Moreover,
the degree of hardness or difficulty to solve an instance requires obtaining high-quality
solutions, the optimal solution if possible. Besides, the traditional hardness evaluation
of an instance relies on the elapsed time spent by a state-of-the-art algorithm to obtain
a high-quality solution. However, this evaluation strategy involves heavy computational
loads and long processing times, which would not be feasible to address in some cases.
In fact, it is completely dependent on the algorithm selection, the implementation and
the computational environment used to examine it. Nonetheless, some authors have
proposed alternative metrics to evaluate the hardness of an instance [86].

In 2009, Smith-Miles et al. coined the term instance-space [123] to refer to a
high-dimensional space that condenses a set of instances using a vector containing a
finite list of measured features derived from the instance data. This feature-vector
is commonly known as the descriptor of an instance. Projecting the descriptor onto
a reduced lower-dimensional space (ideally 2D or 3D) provides researchers with an
appropriate visualisation of the instance-space. Moreover, solver-performance metrics
can be also superimposed as an extra indicator on the visualisation to reveal regions of
the instance-space in which a potential algorithm outperforms other candidate solvers
in the portfolio. As a result, instance-space visualisations can be useful in the field to
understand areas in which instances are located based on different descriptors, areas of
the space where solvers exhibit better performance metrics, or to assemble a portfolio
of solvers.

Nevertheless, a vast majority of proposals tend to produce and evaluate benchmark
instances only in terms of their hardness, i.e., how much time it takes for an exact
solver to obtain the optimal solution in a certain computational environment.

2.4 Instance Generation Methods 17

2.4.1 Benchmark Instance Generation

Several authors have proposed a wide variety of methods to generate hard-to-
solve instances in many optimisation domains. A number of studies on instance
generation are based on drawing values from statistical distributions and selecting
the top hardest-to-solve instances from the set [30, 106, 130]. On the other hand, few
proposals are trying to move away from statistical methods to generate hard-to-solve
instances; e.g., van Hemert et. al [131], have tried to harness the strengths of EC to
generate hard-to-solve instances for the TSP domain. Most of the literature is related
to TSP [26, 50, 51, 62] and other optimisation domains with direct application to
real-world logistics and economics, such as Bin Packing (BP) [6, 30, 47, 115], Flow-shop
Scheduling Problem (FSP) [130], Boolean Satisfiability Problems (SAT) [36, 60] or the
KP [26, 65, 67, 106].

An example of the traditional approach based on statistical distributions is the
study by Vallada et. al [130], where a new hard instance benchmark set for permutation
FSP is proposed. The authors generated a total amount of 72,000 FSP instances from
different parameter combinations using almost exclusively uniform random distributions.
From that set, the top hardest-to-solve 240 small and 240 large instances were selected
to create the benchmark set. They state that the experimental procedure took almost
six years of combined CPU time to generate and solve the benchmark.

Other studies have argued that although the vast majority of combinatorial optim-
isation problems are known to be NP-hard, the practical hardness of the instances is
usually not too difficult when created from random distributions. The work of Goerigk
et. al is an example of this [50, 51]. While focusing on robust optimisation, they
propose an optimisation model to generate hard instances for Min-Max optimisation
combinatorial optimisation problems. Nevertheless, the authors claim that their ap-
proach is extendable to any combinatorial problem such as TSP or Selection. The
approach is based on exact and heuristic methods to solve ‘the optimisation problem
of generating hard problem instances’, and the instances generated for problems such
as TSP or Selection are considered to be 500 times harder to solve by state-of-the-art
Mixed-Integer Programming (MIP) solvers. Unfortunately, the authors did not evaluate
the characteristic of the instances and exclusively considered the time-to-solve as the
hardness of the instances.

Cárdenas-Montes [26], offers an alternative method to generate TSP instances that
evaluates their hardness based on a set of metrics inferred from spatial attributes of
previously solved samples. These features were then correlated with the hardness of the

18 Background

instances. The hardness of the instances was deduced from the statistical distribution
of the areas generated from the Delaunay triangulation, Dirichlet tessellation, and the
distances between the cities fitted to a Weibull probability distribution. To harden
the instances, a combination of a Linear Regression Model (LRM) and a Genetic
Algorithm (GA) was created to exploit significant correlations between hardness and
features.

Jooken et. al [65] recently proposed a new class of hard-instance problems for the
0-1 KP domain. They presented a stochastic multi-parameter generator that produces
only one KP instance at a time. To evaluate the method, a dataset containing 3,420
hard-to-solve KP instances was generated to later solve them on a supercomputer
using approximately 810 CPU hours. The instances were solved using state-of-the-art
KP algorithms proposed by Pisinger: Expknap [104] Minknap [105] and Combo [93],
proving that they were considerably harder than the 3,000 most difficult KP instances
of the previous benchmark set [106]. Jooken defines the hardness of the instances
as the required run-time of Combo to obtain the optimal solution. Furthermore, the
authors indeed evaluated the diversity of the dataset and compared the results with
work from in the field [120]. The results showed that, although the set was able to
fill some gaps in the instance space, the instances were located in a small region of
the space presenting low diversity behaviour. Thus, even though the work of Jooken
et. al is primarily concentrated on generating a new state-of-art hard-to-solve KP
benchmark, it differs from previous works in the field by analysing the location of the
instances in a KP instance space.

Overall, it is important to note that centring our attention exclusively on creating
increasingly hard-to-solve instances for exact state-of-the-art solvers may narrow the
evolution of the field. Nowadays there exist many reasons why exact state-of-the-art
solvers cannot be applied in many contexts: (1) it is impossible to afford the required
time to obtain the optimal solution for a problem and it is necessary to obtain the
highest quality possible solutions in a limited time, and (2) the end user may need
more than one high-quality solution (without necessarily being the optimal one). For
that reason, it is crucial to be able to rely on a portfolio of non-exact solvers that
can yield high-quality solutions with reasonable usage of computational resources. As
a result, research in the field might also pay attention to the conditions where such
solvers excel/fail. However, evaluating the strengths and weaknesses of a solver is an
arduous task that is often limited by the reduced diversity of instances that can be
tested. As such, it is paramount to produce diverse sets of problem instances that also

2.4 Instance Generation Methods 19

exhibit some discriminatory behaviour, i.e., instances where a solver excels/fails with
respect to other solvers in a portfolio of interest.

2.4.2 Discriminatory Instance Generation

Prior research in the field of instance-space analysis, which involves generating 2D
visualisations of instance spaces, has shown that spaces constructed using commonly
available benchmarks in the literature of well-known NP-Hard optimisation domains
exhibit regions devoid of instances, and that certain solvers have limited coverage in the
areas where they perform well. This has been demonstrated in studies by Smith-Miles
et. al [119, 120, 122, 123]. Moreover, expanding such benchmark sets with real-world
instances does not solve the problem that real-world instances tend to exhibit high
levels of structure [55], and consequently, they tend to occupy small regions of the
potential feature space.

In response to the aforementioned issue, recent research has focused on applying
EC techniques to generate new instances to cover areas of an instance space currently
lacking in instances [9, 119, 122], to generate instances that are easy or hard to solve
for a particular algorithm, or to produce discriminatory instances with respect to a
portfolio of solvers [11, 45, 46, 108]. Here the term discriminatory instance refers
to an instance designed to be solved best by an algorithm in a portfolio of interest,
providing a significant performance difference compared to said target solver and the
remaining solvers. Overall, these studies allow researchers to provide new insights
into the connections between the algorithm’s performance and instance characteristics,
thus enhancing the development of both better algorithm-selection and algorithm-
configuration techniques. For instance, space-filling techniques, as proposed by Smith-
Miles et al. [119, 122], have been employed to address the gaps in feature space in
domains such as the TSP and Graph Colouring (GC). However, such approaches do
not consider discriminatory behaviour in terms of algorithm performance over the
instances. On the other hand, other research has centred attention on the evolution of
new instances that demonstrate maximum discrimination with respect to a portfolio of
solvers such as [2, 9, 108]. The main objective of those proposals is to maximise the
performance difference between a target solver, i.e., a solver that is expected to obtain
the best performance values, and other solvers in the portfolio in domains such as the
Bin-Packing, TSP, and Knapsack respectively. Nonetheless, these methods tend to
lack explicit mechanisms for generating instances that exhibit diversity with respect to
the instance feature space.

20 Background

In the TSP domain, Smith-Miles et al. [122] define a feature set to characterise
the instances and propose a methodology to evaluate whether said set is sufficient
to discriminate between instances and also between the performance of the different
solvers in the portfolio. For that purpose, they describe an EA to evolve new random
instances into easy (or hard) instances for a particular algorithm in the portfolio using
an objective function that minimises (or maximises) the search effort required by a
solver to produce a tour. The new instances are created to directly fill voids in a
previously constructed instance space using benchmark instances. The benchmark set
of instances is characterised by means of a feature-vector and then projected onto a 2D
plane (e.g. using Principal Component Analysis (PCA) [42]), in which the projection
is optimised to reveal the regions of strengths and weaknesses for several algorithms.
This method is again demonstrated later for the Graph Colouring [119] domain, and
most recently, in the domain of black-box continuous optimisation [101]. However,
there is no guarantee the evolved instances will be discriminatory with respect to the
portfolio.

Moreover, while Smith-Miles et. al focused their work on the TSP domain, Plata
et. al [108] proposes a similar approach for the KP domain. Concretely, an EA method
that generates KP instances which are designed to be easy or hard to solve for a
specific algorithm in a portfolio of deterministic KP heuristics. The method uses a
fitness function that maximises the performance gap between the target algorithm (the
algorithm for which the instances are generated) and the remaining solvers in the
portfolio. They generate two sets of instances for four different heuristics, easy-to-solve
and hard-to-solve instances. After that, the instances are characterised by computing
a 7D feature-vector to then analyse the feature distribution in the instance space.
However, the main limitations of this approach are that: (1) no diversity metrics are
given to quantitatively compare the set of instances, and (2) the representation of the
easy and hard instances in the instance-space does not compare the set of instances
generated for different solvers in the same figure, making it difficult to evaluate the
space coverage and distribution among algorithms and classes of instances.

Alissa et. al [2] follow a similar methodology but applied to the domain of BP,
i.e. a large set of instances are evolved to discriminate between four heuristic solvers.
These approaches require running an EA multiple times to generate instances for a
specific target algorithm. Besides, the number of distinct instances produced per run
might vary, depending on the extent to which the final population has converged. The
process must be repeated per each algorithm in the portfolio. Furthermore, these

2.4 Instance Generation Methods 21

approaches cannot be guaranteed to produce a diverse set of instances, since each run
might converge to similar solutions.

To address the lack of diversity in the instance set, recent work attempts to
introduce mechanisms to explicitly maintain diversity while evolving instances that are
easy/hard for a target algorithm. The work of Gao et. al [45, 46] provides encouraging
results for the TSP domain. The authors introduce a selection method in the EA
evolution cycle designed to favour offspring instances that preserve the diversity in
the population with respect to a desired feature, as long as the offspring instance
presents a performance gap over a given threshold. Nonetheless, the study does not
take into account different algorithms for the portfolio, which is reduced to only one
algorithm: the 2-OPT heuristic [8, 102]. Moreover, even though the authors compared
several Support Vector Machine (SVM) models to support their generation process,
this presents another weakness of the study. In particular, there are two issues with the
classification procedure: (1) the authors do not specify any train-validation-test division
or cross-validation in the set of instances, which is commonly necessary for this kind
of ML task to avoid overfitting3 the data and (2) they only provide accuracy metric
values for each classification task performed, which is not the preferred performance
measure for classifiers [49, 61].

Additionally, Bossek et. al [9], also working on TSP, proposes a method to generate
discriminatory instances that are also diverse with respect to a feature vector. The
approach utilises novel mutation operators to encourage the exploration of the feature
space using a simple iterative algorithm while still optimising for discrimination without
explicitly preserving the diversity. Subsequently, the operators are also integrated
into an EA method to optimise the generation of easy or hard instances for a target
algorithm. Their results show that their method is capable of exposing a large difference
in algorithm performance (easy for one solver and hard for its contender) while covering
a wider spectrum of instance characteristics.

Alternatively, later work reveals there could be some benefits from the application
of QD algorithms. In the field of instance generation, it was recently demonstrated that
MAP-Elites could be utilised to evolve sets of TSP instances that are not only diverse
with respect to a 2D feature vector, but that also exhibit discriminatory behaviour with
respect to a portfolio of two TSP solvers [10]. A dynamically expanding population of
TSP instances is mapped into cells of a 2D space. Each dimension of the 2D space
refers to a user-defined feature derived from an instance, and each cell stores the

3Overfitting happens when the model is too complex relative to the amount of data and noisiness of
the training data, and the model is restricted and does not generalise well with unseen data [49, 125].

22 Background

instance with the best objective value found so far. The approach returns all instances
contained in the map upon termination. Due to the application of MAP-Elites grid
mapping, the method is able to discriminate between solvers and feature space. Bossek
et. al claims that even though its proposal is rather simple, it could be generalisable
to other optimisation domains. Nevertheless, the main drawback of the proposal is
that the method fails to scale well as the number of features increases. Thus, the
authors are constrained to define combinations of 2D feature-vectors to be explored
independently from a set of over 150 potential candidate features to create the archive.
Besides, regarding the objective values, the method is not target-dependent and the
objective function is not explicitly defined, with the authors assuming a monotonically
decreasing minimisation objective function.

In contrast, previous work related to the present thesis has demonstrated the use
of Novelty Search in the KP domain [90]. NS is applied to generate instances that
are not only diverse with respect to an 8D feature-vector, but also discriminatory
to the performance of a portfolio of algorithms. A fixed-size population of instances
is evolved and augmented with a dynamically growing archive. A feature vector is
derived from each instance and used to calculate the novelty with respect to the
current population and the archive. The method selects future generations using
a linear weighted combination of objective fitness and novelty score. The method
returns a set of diverse instances which are biased to the performance of a target
solver. Concretely, the resulting datasets present the following characteristics: (1)
cover a high proportion of the feature space relevant to a domain with quantitative and
qualitative analyses to support the results; (2) contain instances in which the portfolio
of solvers of interest demonstrate discriminatory performance; (3) contain instances
that emphasise diversity in the performance space, i.e., they highlight a wide range
of performance gaps between the target solver and the next best-performing solver in
the portfolio. In fact, the last outcome of this work has rarely been addressed. The
current trend in most studies is to evolve discriminatory instances while attempting
to maximise the difference gap between a specific target solver and the next-best
performing algorithm. Such approaches result in sets of instances which only emphasise
the extremes of the regions of strength and weaknesses of the solvers. Nonetheless,
it is undoubtedly essential to also locate the regions of the space in which one solver
outperforms another, not just the extremes of their performances. Furthermore, the
approach is evaluated in the KP domain using small instances and a portfolio of four
different configurations of a parallel EA [89]. While the works present promising results,
the method relies on calculating novelty as the distance between two feature vectors,

2.5 Summary 23

which is problematic for high dimensional vectors when distances become diminishingly
small (the well-known curse of dimensionality [1, 49]). To the best of our knowledge,
[9] and [90] are the only proposals to apply QD methods to the instance-generation
problem with diversity and discriminatory requirements. It is clear that, although
there is scope for improvement, QD methods are a promising approach to generate the
problem of diverse and discriminatory instance generation.

In Chapter 3 of the present thesis, an in-depth description of two NS approaches (single
and multi-objective variants) to generate instances is provided. There exists a sub-
stantial difference in whether to formulate an optimisation problem as a single-
objective (SOP) or Multi-objective problem (MOP). In an MOP, two or more objectives,
usually in conflict with each other, are optimised at the same time. Hence, a solution
which increases the quality of one of those objectives tends to simultaneously decrease
the quality of the others. Thus, the solution is a set of solutions representing the best
trade-offs among objectives rather than a single optimal solution [33, 68, 69]. However,
when a problem is formulated as an SOP, the goal is to increase the quality of only one
objective. In this context, the solution to an SOP can be defined as a single solution.
Moreover, there exist several strategies that are commonly used in the field to address
an MOP as an SOP; e.g., the aggregation of the two or more objectives in a single
linear-weighted function with a ϕ parameter defining how relevant each objective is in
the evolution of solutions [28, 34].

2.5 Summary
Instance generation refers to the task of creating sets of problem instances that can be
solved by some algorithmic technique. For every novel proposal, computer scientists
are required to collect or generate by themselves problem instances to evaluate the
strengths and weaknesses of their method. Although there exist benchmark sets of
instances, they are designed with the objective of being difficult to solve for the top
state-of-the-art solvers at the moment. They are thus lacking in diversity. Even
though this is indeed an important research line in the computer science field, not all
algorithms are designed to be state-of-the-art. Thus, evaluating a wide range of solvers
with only sets of hard-to-solve and low-diversity instances prevents researchers from
discovering where a solver excels or fails. Consequently, there is a need to generate
diverse instances to complete existing sets and fill the regions of the space that remain
unknown. Moreover, the discriminatory instances in terms of solver performance can

24 Background

potentially help to illuminate which solvers may be preferable for certain areas of the
space. This chapter reviewed the research related to the present thesis.

We will see in the following chapters that the research presented in this thesis differs
from previous approaches in the instance generation field. While traditional approaches
applied statistical and other mathematical methods to generate hard-to-solve instances,
the methods presented here exploit the advantages of EC techniques to provide more
complex generators. In contrast to conventional methods, the research is centred
on the generation of diverse and discriminatory instances in optimisation domains.
Thus, it not only allows researchers to create sets of instances that are biased to the
performance of a target solver in a portfolio of interest, but that are also diverse with
respect to a feature or performance space.

Finally, even though the problem of generating instances is introduced as a part
of the ASP framework for algorithm selection, the work could be applied to pursue
new research questions, for example, involving instance space representation, instance
characterisation via hand-designed features, automated designed features, algorithm
design, or even parameter tuning evaluation for algorithms across domains.

The remainder of this thesis is centred on addressing the research questions outlined
in Chapter 1.

Chapter 3

Instance Generation Methods using
Novelty Search

3.1 The Novelty Search Algorithm
NS is a flavour of EA proposed by Lehman et. al [79] with the aim of mitigating
the problem of finding optimal solutions in deceptive landscapes. The core of NS
is based on the following idea. Instead of seeking a goal by following an objective
function in a standard evolutionary search process, the NS algorithm uses a function
that rewards novel behaviour. Therefore, the candidate solutions are evaluated based
on their diversity with respect to previous solutions rather than their ‘fitness’. Although
NS was proposed in robotics and control problems, such as maze navigation or biped
walking tasks, many examples of the applications of NS now exist across many domains.
Of particular relevance to this thesis is the work described by Buchanan et. al [17],
in which NS is used to create a diverse set of robot morphologies—here there is no
performance objective, the goal is exclusively to create diversity.

The NS algorithm works in a similar manner to a standard EA scheme (see
Figure 2.1). Thus, the creation, selection and mating of individuals are conducted as
we have detailed above in Section 2.1.

Once the offspring is created, NS begins to calculate the novelty for each candidate
solution. Measuring novelty for a candidate solution requires the definition of an
instance descriptor (x). A descriptor x is derived from the instance information and
includes attributes that represent the instance. Then, NS uses the descriptor to calculate
the novelty score or sparseness s for each candidate. The sparseness of a candidate is
calculated using the current population, plus an external archive of previous individuals.
Moreover, the K nearest neighbours and the Euclidean distance are commonly used

26 Instance Generation Methods using Novelty Search

metrics to compare descriptors. The external archive of novel solutions is one of the
fundamental components of NS [32]. Considered an unlimited-size set, it includes
candidate solutions that were previously seen during the evolution. The literature on
NS suggests different approaches on how to manage the external archive [53]; i.e., (a)
include only candidate solutions which were novel at a certain point (s > threshold) [79],
(b) include the most novel candidates at each generation without considering candidates
from the previous generations [82], (c) randomly populate it [78], or even (d) discard
the archive altogether [100]. In the present thesis, the strategy selected is (a), i.e. when
a candidate obtains a sparseness greater than a pre-defined threshold, it is included in
an external archive of novel solutions.

After that, the evolution cycle continues as expected in an EA. The offspring and
parent populations undergo a survivor selection mechanism to form the population of
the next generation. When terminated, the algorithm usually returns the candidate
solutions in the external archive. The general scheme of the NS using strategy (a) to
operate the external archive is shown in Figure 3.1.

Figure 3.1 General scheme of a Novelty Search

In the present thesis, an NS method to discover diverse yet discriminatory instances
in optimisation domains is proposed. The method is designed to create a set of instances
that are diverse with respect to a descriptor and biased to the performance of a target
solver. These instances can then be used to inform other problems such as algorithm-

3.1 The Novelty Search Algorithm 27

selection, and instance space analysis. Whereas a straightforward NS approach would
generate sets of diverse instances, they would not have the mandatory characteristic of
being tailored to the performance of specific algorithms. It is important to note that
to generate discriminatory instances for different solvers, the target algorithm must
differ from one execution to another of the NS. In other words, although the method
produces multiple instances in a single run, it must be run for each target solver in the
portfolio. On the other hand, as mentioned in Section 2.4, pure evolutionary methods
without any explicit diversity management mechanism would tend to generate sets of
almost identical solutions [106, 108]. Hence, the NS presented in this thesis adopts a
trade-off between searching for novel instances while also favouring higher performance
score values. Two approaches are proposed to achieve the desired behaviour: a linear-
weighted method based on that proposed in [24], and a multi-objective NS approach.
To the best of our knowledge, this is the first time that a multi-objective-based NS is
proposed for generating diverse and discriminatory instances in optimisation domains.
Nevertheless, there exist some applications of multi-objective NS in other fields such
as environment systems, evolutionary art and evolutionary robotics [5, 64, 98].

The remainder of this chapter will be devoted to defining how novelty is calculated
with respect to descriptors, and to computing performance scores for the instances
generated. Both NS approaches are defined in detail, and the general concepts of the
methods are described, without any loss of generality, using the KP domain.

3.1.1 Calculating Novelty

The standard NS algorithm replaces the fitness calculation based on objective functions
in a standard evolutionary algorithm with the calculation of a novelty score. To achieve
this, it is necessary to define a descriptor to quantify how novel an individual is when
compared to others in the population.

Given a descriptor x, usually a multi-dimensional vector with pertinent information
on a solution, the most common approach in the field is to quantify the novelty of
an individual by its sparseness. The sparseness of an individual measures the average
distance between the individual’s descriptor and its k-nearest neighbours [38, 52]. The
k nearest-neighbours for an individual are determined by comparing the distance from
the individual’s descriptor to the descriptors of all other members of the population
and to those individuals stored in the external archive of previous novel individuals.
The sparseness s is then defined as shown in Equation 3.1:

28 Instance Generation Methods using Novelty Search

s(x) = 1
k

k∑
i=0

dist(x, µi) (3.1)

where µi is the descriptor of the ith-nearest neighbour of that individual whose
descriptor is x, regarding a user-defined distance metric dist. The NS external archive
is extended in two ways with each generation of the algorithm. On the one hand,
we sample the population by randomly adding to the archive an individual with a
probability of 1% (this is a common practice in the literature [124]). On the other
hand, any individual in the current population with a sparseness s value larger than a
user-pre-defined threshold ta is also inserted into the archive.

Moreover, the NS complements the external archive with a separate list of individuals
known as the solution set. The main difference between the external archive and the
solution set is that the external archive is used to calculate the sparseness metric that
drives evolution, and the solution set constitutes the final set of instances returned
when the algorithm terminates [124]. The solution set is incrementally supplemented
as the algorithm runs. At the end of each generation, each member of the current
population is scored against the solution set by finding the distance to the nearest
neighbour (k = 1) in the solution set. Those individuals that score above a particular
threshold tss are added to the solution set. The solution set forms the output of the
algorithm.

It is important to note that the solution set does not influence the evolutionary
process by any means. On the contrary, this method ensures that each instance in the
final set returned by NS has a descriptor that differs by at least the given threshold tss

from the others. Lastly, there is no limitation in terms of the final size of either the
archive or the solution set. In fact, either one can grow randomly in each generation
depending on the diversity discovered by the current population. Figure 3.2 shows a
flowchart of the NS algorithm which illustrates the difference between the archive and
the solution set during the evolution.

Descriptor Representation for KP Instances

In order to calculate the sparseness (s) of an individual, we must define its descriptor,
i.e. the representative vector of an instance being evolved. Here, the novelty of an
instance can be defined either with respect to a set of pre-defined features of the
instance (feature-based descriptor) or to the performance of the portfolio when solving
that instance (performance-based descriptor).

3.1 The Novelty Search Algorithm 29

Figure 3.2 Novelty Search algorithm which includes a separate archive known as solution
set.

Figure 3.3 Representation of the instances as stored in memory (genotype).

A knapsack instance in NS is described by an array of integer numbers of size N × 2
where N is the dimension (number of items) of the instance of the KP we want to
create (see Figure 3.3), with the weights and profits of the items stored at the even and
odd positions of the array, respectively. In the present thesis, the capacity C of the

30 Instance Generation Methods using Novelty Search

Figure 3.4 Representation of the creation of a feature-based descriptor from a KP
instance genotype.

knapsack is determined for each new individual generated as 80% of the total sum of
weights. Using a fixed capacity would tend to create insolvable instances if the weights
of the instances increase significantly. However, this value could be included in the
genotype so it can be evolved as well.

For the KP domain, the descriptor is built up with a set of eight features. Some
of the features selected are inspired by those used by [108] containing: capacity of
the knapsack; minimum weight and profit; maximum weight and profit; average item
efficiency (also known as correlation); mean distribution of values between profits and
weights (N × 2 integer values representing the instance); the standard deviation of
values between profits and weights. Figure 3.4 details how the feature-based descriptor
is calculated from a KP instance.

On the other hand, a performance-based descriptor is defined as an M -dimensional
vector with the average performance of each solver considered in a portfolio of size M .
Considering a portfolio of M algorithms, then the novelty descriptor for an instance is
calculated as an M -dimensional vector, where each element Vi represents the average

3.1 The Novelty Search Algorithm 31

Figure 3.5 Representation of the creation of a performance-based descriptor from the
performance of the algorithms in the portfolio.

performance over R repetitions of algorithm Ai on the instance. The main motivation
behind the definition of a performance-based descriptor is to avoid defining a set
of problem-dependent feature-based descriptors, which could be tedious to define
and computationally expensive to calculate. Thus, the method could be applied to
other domains where obtaining a feature-based descriptor might be a challenging task.
Similarly, Figure 3.5 illustrates how the performance-based descriptor is derived from
the performance of the algorithms in the portfolio for a specific instance.

Note that NS evaluates novelty with either descriptor given. This means the previous
and following definitions are valid for both feature and performance descriptors. The
main difference relies on the space where the novelty is searched for.

3.1.2 Calculating Performance

Whereas the sparseness (s) represents the novelty of an instance in the population, its
performance score (ps) gives an insight into how well the target solver performs with
this instance compared to the remaining algorithms in the portfolio. The reader should
note the difference between the performance descriptor and ps. The performance
descriptor detailed in the previous section refers to a search space in which NS searches

32 Instance Generation Methods using Novelty Search

Algorithm 1: Evaluation Method
Input : current_pop, portfolio, archive, k, ϕ

1 for instance in current_pop do
2 for algorithm in portfolio do
3 apply algorithm to solve instance R times;
4 calculate mean profit of algorithm

5 end
6 end
7 calculate the novelty score(current_pop, archive, k) (Equation 3.1);
8 calculate the performance score(current_pop) (Equation 3.2);
9 calculate fitness(current_pop) (Equation 3.3);

10 return current_pop

for novelty, while ps is a performance metric used to calculate the fitness of instances.
The performance score ps of an instance is calculated using Equation 3.2. For example,
it can be computed as the difference between the mean profit achieved in R repetitions
by the target solver, denoted as tp, and the maximum of the mean profits achieved in R

repetitions by the remaining approaches of the portfolio, defined as op. The number of
repetitions R to perform depends on the nature of the algorithms in the portfolio; i.e.,
an evolutionary algorithm must perform several repetitions due to its stochastic nature,
while deterministic heuristics only needs to be run once. In the particular case of the
KP, profit is defined as the sum of the profits of the items included in the knapsack.

ps = tp − max(op) (3.2)

3.2 Instance Generation with a Linear-weighted
Single-objective NS

The linear-weighted single-objective NS algorithm (NSls) follows a traditional EA
approach for evolving instances [34]. First, NSls receives several parameters to construct
the environment: D, a domain to create instances for; N , the dimension of the instance
to generate, the number of neighbours k to calculate s for every instance, the value of
ϕ ∈ [0, 1] for the linear-weighted computation of s and ps, the number of generations
to perform and the portfolio of solvers to evaluate the instances. After that, both the
external archive and the solution set, together with an initial population of randomly
generated instances, are created and the algorithm starts the evolutionary process.

3.2 Instance Generation with a Linear-weighted Single-objective NS 33

Algorithm 2: NSls

Input : D, N , k, ϕ, generations, portfolio
1 archive = ∅ ;
2 solution_set = ∅ ;
3 initialise(population, D, N);
4 evaluate(population, portfolio, archive, k, ϕ);
5 for i = 0 to generations do
6 parents = select(population);
7 offspring = reproduce(parents);
8 offspring = evaluate(offspring, portfolio, archive, k, ϕ) (see Algorithm 1);
9 population = update(population, offspring);

10 archive = update_archive(population, archive);
11 solution_set = update_ss(population, solution_set);
12 end
13 return solution_set

Until the maximum number of pre-defined generations is reached, NSls follows the
traditional steps of an EA [34] with a few considerations. First, a mating pool of parent
individuals is created by means of a random selection from the current population. The
procedure defined to select the parents is Binary Tournament Selection [34]. Then, new
individuals, i.e., offspring instances, are created based on individuals from the mating
pool. This is known as reproduction in evolutionary computation. In the reproduction
procedure of NS, two variation operators are applied: recombination (commonly known
as crossover) and mutation [34]. By means of recombination, the information from
two individuals in the mating pool is merged into two offspring individuals. Generally,
recombination is a stochastic operator since the choice of what parts of the parents are
combined involves some sort of randomness. In each generation of NSls, N offspring
individuals are generated, thus ensuring |offspring| = |population| in each generation
of NSls. Mutation operators are applied individually to each new offspring to include a
slight modification. In addition, mutation operators are always stochastic: the offspring
depends on the outcomes of a series of random choices [33, 34]. The NSls algorithm
presented here supports different flavours of mutation and recombination, and it is up
to the researcher to decide which variant works best for each domain. However, in
the present thesis, the choice of operators are Uniform One Mutation and Uniform
Crossover [34]. It is important to note that since the representation of the instances
in NS (see Figure 3.3) is based on the classical vector-of-numbers representation, the
operators work in a similar manner to other optimisation contexts. There are no
unusual cases because we are evolving instances rather than solutions for another
optimisation problem.

34 Instance Generation Methods using Novelty Search

When the variation operators are applied, the offspring instances are evaluated
with the solvers’ portfolio, their novelty s, performance score ps, and fitness f (see
Algorithm 1). It is relevant to remark on the computational cost of the work performed
in the evaluation stage of the instances. Not only must every instance be solved by
each solver in the portfolio (even R > 1 times if the algorithm includes stochastic
components), but s and ps are also calculated here.

The evaluation procedure requires several parameters: the current population of
instances (the current population of instances is defined by the initial population at
the start of the run and the offspring population in the main loop of the algorithm),
the portfolio of solvers, the external archive and value k. As mentioned before, the
evaluation procedure starts by solving every instance in the population with each
algorithm in the portfolio R times. For each pair (instance, solver), the mean profit
of the algorithm over the instance is calculated (see Section 3.1.2). The next stage in
the evaluation requires computing scores s and ps for every instance in the current
population. These values are calculated using Equation 3.1 for s and Equation 3.2
for ps. After that, both s and ps are combined into a fitness value f using a linear-
weighted function where ϕ is the performance/novelty balance weighting factor (see
Equation 3.3) [24]. NSls uses the parameter ϕ in the evolutionary process to obtain
instances with certain trade-offs between their target performance ps and novelty s.

Higher ϕ values will tend to generate less diverse instances with a tight bias to
the performance of the target solver. Note that defining ϕ = 1.0 could lead NSls

to work as a simple EA and converge the entire population of instances to similar
solutions. On the other hand, lower ϕ values will emphasise the diversity aspect of the
instances rather than their performance score. The evaluation procedure is detailed in
Algorithm 1.

f = ϕ ∗ ps + (1 − ϕ) ∗ s (3.3)

After evaluating the offspring, NSls undergoes the population update procedures.
These procedures involve updating the current population, external archive, and
solution set. Updating the population is the most straightforward process of the three.
NSls performs an first-improve generational replacement where each individual in
the population is replaced by its position-wise equivalent individual in the offspring
population only if the fitness f is improved. Otherwise, the “older” individual remains.
Next, NSls updates the external archive and solution set.

The external archive is populated with randomly selected samples of individuals
from the current population and inserted into the archive with a probability of 1%,

3.3 Instance Generation with a Multi-objective NS 35

a common practice in the literature [124]. Then, any individual from the current
generation with a novelty score greater than a pre-defined threshold ta is also included
in the archive. Whereas the external archive can contain randomly selected and
novel individuals, the solution set is populated exclusively with diverse solutions for
which s > ts holds in each generation. The reasoning behind having both archives is
that different levels of thresholds can be applied to each. For instance, having a less
restrictive threshold for the external archive drives the evolution while requiring higher
levels of diversity for the final set of solutions (see Section 3.1.1). Moreover, in NSls

the score ps assigned to each instance is crucial. Thus, ps > 0 must be satisfied for
any individual to be included in both archives. This restriction is only bypassed in the
first generation of NSls to obtain some preliminary information to start the search for
diversity. Finally, NSls returns the solution set. The pseudo-code of NSls is detailed
in Algorithm 2.

3.3 Instance Generation with a Multi-objective NS
NSmo considers the instance generation problem as a MOP. Whereas NSls combines
the performance ps and novelty scores s into a single fitness value f by means of a
linear-weighted function, NSmo treats each objective separately. Thus, NSmo discards
the use of balance parameters, such as ϕ in NSls; instead, both objectives are op-
timised simultaneously. NSmo is inspired by the one of the most successfully applied
Evolutionary Multi-objective Optimisation (EMO) algorithms: the Non-Dominated
Sorted Genetic Algorithm II (NSGA-II) [29]. Although this new evolutionary ap-
proach significantly differs from NSls, it maintains the identical domain representation
presented in Section 3.1.1. Therefore, the same novelty descriptors and instance
representation (genotype) is used for the KP domain in NSmo.

The NSmo algorithm starts in a similar manner to NSls, initialising the external
archive and solution sets and then creating an initial population of random instances.
After that, the initial instances are evaluated. The evaluation procedure for NSmo

is almost unchanged with respect to NSls, with the slight difference of avoiding the
calculation of a fitness f value (see Algorithm 3). Both ps and s are calculated but
not combined.

After the initial evaluation, the algorithm ranks the instances on different fronts
based on non-dominance. The definition of domination considered in this thesis is the
one proposed by Eiben [34]: given two solutions, both of which have scores based on
some set of objective values, one solution is said to dominate the other if its score is at

36 Instance Generation Methods using Novelty Search

Algorithm 3: Evaluation of Instances in NSmo

Input : current_pop, portfolio, archive, k
1 for instance in current_pop do
2 for algorithm in portfolio do
3 apply algorithm to solve instance R times;
4 calculate mean profit of algorithm

5 end
6 end
7 calculate the novelty score(current_pop, archive, k) (Equation 3.1);
8 calculate the performance score(current_pop) (Equation 3.2);
9 return current_pop

least as high for all objectives, and is strictly higher for at least one for a maximisation
problem. The domination is represented with the symbol ≽. Formally, considering a
maximisation problem, A ≽ B (A dominates B) is defined as:

A ≽ B ⇔ ∀i ∈ {1, ..., n} ai ≥ bi, and ∃i ∈ {1, ..., n}, ai > bi (3.4)

In scenarios where conflicting objectives exist, there is no single solution that can
dominate all others, and a solution that is not dominated by any other will be known
as non-dominated [34]. To rank the population on different fronts, NSmo utilises one
of the main components of NSGA-II: a fast non-dominated sorting operator [29]. The
population of instances is classified on different fronts based on the non-dominance
operator (see Equation 3.4); i.e, instances in F1 are non-dominated individuals, F2

includes the instances dominated by those in F1, and so on. The algorithm compares
every individual in the population to every other and for each individual i, it keeps
two values: a dominance counter nj and a set of solutions dominated Sj. The npj

determines the number of individuals that dominate individual j and therefore defines
the front Fi that the individual belongs to; i.e., individuals scoring np = 0 belong to
F1, individuals with np = 1 are stored in F2 and so on. Besides, the number of fronts
Fi that the operator will return is not known beforehand. The fast non-dominated
sorting algorithm is detailed in Algorithm 4.

After ranking the initial population, NSmo begins the evolution of instances. A
mating pool is created by means of random selection from the current population. The
procedure to select the parents used in NSmo is identical to NSls: Binary Tournament
Selection [34]. Next, the individuals in the mating pool mate to create offspring
individuals. While NSls will generate N offspring individuals, NSmo includes twice
as many individuals in the mating pool. Nevertheless, NSmo does follow the same

3.3 Instance Generation with a Multi-objective NS 37

Algorithm 4: Fast Non-dominated Sorting operator extracted from the
original NSGA-II proposal [29]

Input : population
1 F = ∅;
2 for p in population do
3 Sp = ∅;
4 np = 0;
5 for q in population do
6 if q ≽ p then
7 np = np + 1 ; Increment the domination counter of p
8 else
9 if p ≽ q then

10 Sp = Sp ∪ {q} ; Add q to the set of solutions dominated
by p

11 end
12 end
13 end
14 if np = 0 then
15 prank = 1 ; p belongs to the first front F1
16 F1 = F1 ∪ {p}
17 end
18 end
19 i = 1;
20 while Fi ̸= ∅ do
21 Q = ∅;
22 for p in Fi do
23 for q in Sp do
24 nq = nq − 1;
25 if nq = 0 then
26 qrank = i + 1 ; q belongs to the next front Fi+1
27 Q = Q ∪ {q};
28 end
29 end
30 end
31 i = i + 1;
32 Fi = Q;
33 end
34 return F

approach as NSls in the reproduction stage of the evolutionary process. This means
that recombination and mutation operators are applied to each individual offspring.
Moreover, the same operators are used for NSmo; i.e., Uniform One Mutation and
Uniform Mutation [34].

38 Instance Generation Methods using Novelty Search

Algorithm 5: NSmo

Input : D, N , k, generations, portfolio
1 archive = ∅ ;
2 solution_set = ∅ ;
3 initialise(population, D, N);
4 evaluate(population, portfolio, archive, k);
5 rank_population(population);
6 for i = 0 to generations do
7 parents = select(population);
8 offspring = reproduce(parents);
9 offspring = evaluate(offspring, portfolio, archive, k) (see Algorithm 3);

10 populationc = {population ∪ offspring};
11 population = update(populationc);
12 archive = update_archive(population, archive);
13 solution_set = update_ss(population, solution_set);
14 end
15 return solution_set

Furthermore, once the offspring population is created and the variation operators
are applied, the offspring individuals are evaluated using Algorithm 3.

After that, the offspring and current populations are combined into a population
populationc of size |populationc| = 3N . The populationc is then used to update the
current population. Note that the idea behind combining both populations is to
ensure the preservation of elitism during the entire process [29, 34]. In order to
update the population, NSmo begins by applying the non-dominated sorting operator
to classify the individuals in different fronts and prioritise those instances which are
non-dominated (see Algorithm 4). Furthermore, the update procedure involves another
key component of NSGA-II: the Crowding Comparison operator [29]. This operator
is used to estimate the density of neighbour solutions around an individual in the
population [29, 34]. So as to calculate the crowding distance to an individual i, each
front has to be arranged in ascending order for each objective function value. Then, for
each objective function, the distance is assigned as the normalised difference between
the objective values of two adjacent individuals in the front [29]. It is important to
note that individuals in the bounds of each objective function are assigned a distance
value of ∞. For instance, if Fi = x0, x1, ..., xm is a front already sorted in ascending
order based on a certain objective function, x0 and xm will receive a distance value
equal to ∞. Once all the objective functions have been evaluated, the overall crowding
distance results as the sum of the distances for every objective function [29]. Finally,
the front is sorted based on the overall crowding distance value of each individual

3.4 Summary 39

inside. Afterwards, the population is updated with the first N individuals found in F .
Starting with the best non-dominated individuals in F1, if the size of the front is smaller
than N , all individuals are selected as members of the new population. Then, the
population is completed with individuals from subsequent non-dominated fronts (i.e.,
F2, then F3, etc.) based on their crowding distance. NSmo continues the process until
N individuals are filled in the new population.

Next, NSmo updates the external archive and solution set identically as NSls does.
For instance, the external archive is populated with randomly selected samples of
individuals from the current population and inserted in the archive with a probability
of 1%, and any individual from the current generation with a novelty score greater than
a pre-defined threshold ta is also included in the archive. The solution set is populated
only with diverse instances that score s > tss and ps > 0. Finally, although NSmo

works as a multi-objective EA, it does return a solution set, similar to the way NSls

operates, to avoid discarding solutions that are diverse but do not belong to a proper
Pareto Front. In this way, NSmo not only treats the instance generation problem as a
multi-objective problem; it also benefits from the use of archives. The pseudo-code of
NSmo is detailed in Algorithm 5.

3.4 Summary
In this chapter, two main NS methods for generating diverse and discriminatory
instances with respect to a portfolio of solvers in optimisation domains are proposed.

On the one hand, an NS approach based on [90] known as NSls solves the problem of
instance generation by means of a weighted combination of performance and diversity
to drive the evolution of instances. Additionally, a novel NS method where the
performance and diversity are optimised simultaneously is proposed as well: NSmo.
The method is based on the NSls plus the well-known NSGA-II algorithm for multi-
objective optimisation. Moreover, both methods are generalisable in terms of the
space used to seek diversity: a feature space based on domain-dependent descriptors,
or a performance space with respect to the portfolio of interest. Hence, combining
both methods and spaces to search for diversity yields the four different approaches
presented in this chapter. Whereas deriving feature descriptors could lead to a deeper
understanding of the instances, performance-based descriptors do not require the
definition of a feature-based descriptor to characterise instances, which is a clear
advantage in domains where there are no intuitive features, or where calculating
features is computationally expensive. Additionally, it also facilitates the generalisation

40 Instance Generation Methods using Novelty Search

of the method to other domains since it does not require an intensive problem domain
analysis and is a much more straightforward method in comparison to the feature-based
approach. An example of the above is presented for the TSP domain in Chapter 5.

Finally, of the main advantages of the methods proposed is that a set of diverse and
discriminatory instances is returned in a single run. By contrast, existing methods in
the literature, as stated in Chapter 2, such as [2, 108, 122], need to be run repeatedly
to generate multiple instances since the EAs often converge to a single solution;
furthermore, there is no guarantee that repeated runs will deliver unique solutions.

The next chapter presents an in-depth evaluation of the methods in the KP domain.

Chapter 4

Experimental evaluation

Hofstadter’s Law: It always takes
longer than you expect, even when
you take into account Hofstadter’s
Law.

Douglas Hofstadter
‘Gödel, Escher, Bach: An Eternal

Golden Braid’

This chapter details the experimental evaluation performed for the KP domain in
the present thesis. The main motivation for the experimental assessment is to evaluate
the extent to which both novelty search approaches, NSls and NSmo, can be used
to generate diverse but discriminatory instances for the KP problem with respect to
a portfolio of solvers. Moreover, each NS algorithm is evaluated on both previously
detailed descriptors: feature-based and performance-based (see Section 3.1.1). Thus,
we can evaluate the quantitative and qualitative diversity of the instances from the
approaches not only in the traditional instance feature space, but also when disregarding
them.

To this end, both methods are evaluated using a portfolio containing a set of
simple, deterministic, and KP-dependent heuristics [108]. These are well-known solvers
commonly used in the optimisation field, namely: Default (Def), which selects the
first item available to be inserted into the knapsack; Max Profit (MaP), which sorts
the items by profit and selects those items with largest profit first; Max Profit per
Weight (MPW), which sorts the items by their efficiency (ratio between the profit
and weight of each item) and selects those items with the largest ratio first; and
Min Weight (MiW), which selects items with the lowest weight first. Although these

42 Experimental evaluation

algorithms are very straightforward to implement, a pseudo-code is provided for each
one in Appendix A.

This experimental evaluation addresses the first four major research questions of
this thesis from Section 1.1:

The chapter is organised as follows. First, the experiments related to NSls are presen-
ted, where Questions 1, 2, and 3 (see Section 1.1) are answered for both descriptors:
feature- and performance-based. In order to answer Question 3, a traditional evolu-
tionary algorithm is used as a base method to compare against NSls. After that, the
same questions are addressed for NSmo. In this scenario, the well-known NSGA-II
algorithm is used as a base algorithm to answer Question 3. Then, in order to answer
the fourth question of this thesis, an in-depth comparison between NSls and NSmo is
presented. This section compares both methods for each descriptor and emphasises
the possible benefits of an ensemble approach between the two algorithms.

Table 4.1 Parameter settings for NSls, which evolves the diverse population of discrim-
inatory instances.

Parameter Value
Knapsack items (N) 50

Weight and profit upper bound 1,000
Weight and profit lower bound 1

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Generations 1,000

Portfolio Default, MaP, MPW, MiW
Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 3
ϕ 0.85

Thresholds (ta, tss) 3.0

4.1 NSls Experiments 43

4.1 NSls Experiments
First, NSls is run considering a portfolio of deterministic heuristics and both descriptors
(features and performance). Due to the stochastic nature of the algorithm, NSls was
run 30 times for each solver and then the results were combined. The results are two
datasets of instances generated by NSls to favour a specific solver whose diversity is
defined using the descriptors detailed in Section 3.1.1, i.e., a feature-space descriptor
for NSlsf and a performance-space descriptor for the NSlsp approach. The parameter
setting for all experiments involving NSls are detailed in Table 4.1. Moreover, the
values for each parameter are defined after considerable computational work performed
in parameter tuning experiments [90].

4.1.1 NSls and Feature-based Descriptor

We denote NSlsf as the configuration of NSls that is run to generate KP instances
using a feature-based descriptor to search for diversity. The approach is executed 30
times for each of the four targets in the portfolio and then the instances are combined
into a single dataset. After that, the instance information1 plus the feature-descriptor
is reduced to 2D for better visualisation. The procedure of dimensionality reduction
is performed by means of standardisation, followed by the application of Principal
Component Analysis (PCA) [42]. The data are standardised by removing the mean and
scaling to the unit variance. For instance, the standard score of a sample x consisting
of the feature-descriptor and the instance data is calculated as:

z = (x − µ)/s (4.1)

The results are shown in Figure 4.1. It is evident that NSlsf was able to generate
four different clusters of instances, one for each solver in the portfolio. Even though
the number of instances generated per target varies from solver to solver (720 instances
for Default, 220 for MPW, 2260 for MaP, and 2090 MiW), the ratio of unique instances
remains stable at around 30 per cent of the total amount (see Table 4.3 for more details)
after 30 repetitions of the method for each solver. The difference in terms of instances
generated per solver was determined by (1) the stochastic nature of the method, (2)
the idiosyncrasy of each solver (making it easier or harder to generate instances biased
to their performance), (3) the need for specific NS threshold adjustment (tss, ta) when

1The term instance information refers to the attributes that define a KP instance, such as the
capacity (Q), and the profits and weights of each item in the instance.

44 Experimental evaluation

dealing with hard-to-generate-for solvers, or (4) possible limitations related to tackling
the instance generation problem as a single objective problem.

Figure 4.1 PCA is applied to a dataset containing the feature descriptors plus the
instance information of all the instances generated by NSls when using a feature-based
descriptor to search for novelty. Blue points are the instances generated for Default,
orange crosses for MaP, green squares for MiW, and red pluses for MPW.

Moreover, a quantitative evaluation of the space coverage from the generated
instances is provided by means of the exploration uniformity (U) metric [53, 77].
This procedure permits a fair comparison of the distribution of the instances with a
hypothetical Uniform Distribution (UD) in the same feature space. The procedure
starts by dividing the environment into a grid of 25×25 cells, after which the number of
instances in each cell is counted. After that, the Jensen-Shannon divergence (JSD) [43]
is applied to compare the distance of the distribution of instances with the ideal UD.
The U metric is then calculated using Equation 4.2, where δ denotes a 2D-descriptor
associated with an instance. This descriptor is defined as the two principal components
of each solution extracted after applying PCA to the combination of the instance
information plus the feature-descriptor, as detailed above. Moreover, the higher the U
score, the better. Thus, obtaining a score of 1 proves a perfectly uniform distributed
set of instances.

4.1 NSls Experiments 45

(a) Default (b) MaP

(c) MiW (d) MPW

Figure 4.2 Distribution of the performance gap between the Default, MaP, MiW,
and MPW approaches and other solvers in the portfolio by considering the instances
generated for the former when running NSlsf . The X-axis scale varies from one sub-
figure to another to produce better visualisations of the bars in the plots. Therefore,
the differences between algorithms depend on the solver that is taken as a reference.

U(δ) = 1.0 − JSD(Pδ, UD) (4.2)

The set of instances generated by NSlsf scores U = 0.5883. It is crucial to note
that the U score is highly related not only to the number of instances generated, but
also, and even more importantly, to the ϕ factor used in NSls. When generating
instances with NSls, ϕ determines the importance of the performance and novelty
scores in the fitness of the instances (see Section 3.2). Lower ϕ values could tend to
generate datasets of instances considerably more spread out across the space since the
importance of the novelty score will be reinforced (see Equation 3.3). An in-depth
evaluation of the impact of ϕ in NSls is discussed in [90]. Section 5.2.1 replicates the
analysis for the TSP domain.

46 Experimental evaluation

Next, a quantitative analysis of the performance-gap is presented to answer question
number three of this experimental evaluation for NSlsf . This is done by relying on
the instances generated for each solver by NSlsf and the spread in the magnitude of
the performance gap as defined in Equation 3.2. Although NSlsf is not designed to
generate diversity in terms of this metric, the results prove that while a significant
number of instances have a relatively small gap between the performance of their target
and other solvers, it is possible to find instances that exhibit performance diversity as
well. The distributions of performance gap between instances are shown in Figure 4.2.
The x-axis represents the magnitude of the difference between the target solver and the
other (performance-gap), and the y-axis is the frequency with which the value appears;
i.e, the number of instances that exhibit a performance gap.

The distributions for every heuristic exhibit some multi-modal behaviour, and
even though the scores for a few instances reveal a performance-gap that is almost
negligible (close to zero), a large number of other instances obtain much higher
scores (> 6000) for the MaP and MiW solvers. Moreover, even though the low number
of instances obtained for Default and MPW could have affected the distribution when
compared to MaP and MiW, some diversity is evident as well. The fact that there
exists diversity in terms of the performance gap indicates that it is possible to train
ML classifiers to make use of the features of an instance to rank the solver that would
obtain the best performance metrics in a portfolio of interest.

4.1.2 NSls and Performance-based Descriptor

NSlsp is the abbreviation for the configuration of NSls when running to generate KP
instances that are diverse in the performance space, i.e., using a performance-based
descriptor to search for diversity. Similar to the previous evaluation, the method is
run 30 times for each of the four targets in the portfolio and then the instances are
combined into a single dataset. The parameter setting for NSlsp is identical to NSlsf ,
as detailed in Table 4.1.

In addition, once the experiments are completed, an analogous dimensionality
reduction procedure is applied to the resulting dataset. Thus, standardisation and
PCA are applied to the dataset, with the slight difference that, in this scenario, the
feature-based descriptor is exchanged with the performance-based descriptor.

Since NSlsp is designed to search for novelty in the performance space, it is more
convenient to evaluate the results in this space. Figure 4.3 illustrates the results, which
show that NSlsp was also able to generate four different clusters of instances, one
for each solver in the portfolio. Although the instances follow a pattern similar to

4.1 NSls Experiments 47

Figure 4.3 PCA is applied to a dataset containing the performance descriptors plus the
instance information of all the instances generated by NSls when using a performance-
based descriptor to search for novelty. Blue points are the instances generated for
Default, orange crosses for MaP, green squares for MiW, and red pluses MPW.

Figure 4.1, note that in Figure 4.3 the instances are plotted over the performance space
rather than the feature space.

The space coverage was also calculated for NSlsp, yielding a score U = 0.6426. At
this point, the NSlsp U metric is not comparable with previous results from NSlsf since
the values are obtained in different spaces. However, since NSlsf provide diversity in
the performance space without explicitly requiring it, it is rather interesting to evaluate
both approaches, NSlsf and NSlsp, across spaces; i.e., to represent the instances
from each method in their counterpart search space. Section 4.1.3 is devoted to
that comparison. Although NSlsp still produces a different number of instances per
solver (490 instances for Default, 140 for MPW, 2080 for MaP, and 1850 MiW), the
ratio of unique instances is similar to the results from NSlsf at around 30 per cent of
the total amount (see Table 4.3 for more details) after 30 repetitions of the method
for each solver. In fact, NSlsp struggles even more than NSlsf to generate instances
for MPW, with only 140 instances after 30 repetitions. These results could provide
more insights into the limitations discussed above; i.e., the low number of instances

48 Experimental evaluation

for MPW could be related to the solver idiosyncrasy, and more generations of NSls or
even lower thresholds restriction may improve the results.

After that, the performance-gap between solvers is addressed. Designed to generate
instances that are biased to certain solvers, yet diverse in the performance space, NSlsp

is able to generate instances with diverse performance gaps. The results are shown in
Figure 4.4. Note that the distributions exhibit similar behaviour to NSlsf in Figure 4.2;
that is, every heuristic shows multi-modal behaviour and, despite a few instances
yielding an almost negligible performance gap (close to zero), a large number of other
instances obtain much higher scores (> 6000) for the MaP and MiW solvers. Even
though the performance-gaps in Figure 4.4 and Figure 4.2 are considerably similar,
NSlsp present the advantage of not defining and calculating a set of problem-dependent
features for every instance in each generation of the NSls execution. NSlsp only
considers diversity in the performance space and does not require any domain analysis
to extract and define a set of meaningful instance features. It therefore accelerates the
instance generation process.

4.1.3 Distribution of NSls in Foreign Spaces

Although choosing either a feature-based or performance-based descriptor significantly
impacts the design of the NSls, the results prove that NSlsf is able to generate a set
of diverse instances in the performance space, even though it is not designed with this
intention in mind.

As a consequence, it is completely reasonable to wonder to what extent the opposite
behaviour occurs; i.e., is NSlsp able to generate instances that are not only diverse in
the performance space, but in the feature space as well? Additionally, how do these
NSls approaches compare against a pure EA algorithm, such as [108], which only
considers the performance score ps (see Equation 3.2) to guide the search?

In order to address these questions, the opposite descriptor is calculated for each
instance, i.e., the performance descriptor is computed for each instance generated by
NSlsf , and the feature descriptor is calculated for each instance generated by NSlsp.
Thus, for every instance the information of both descriptors is available. Besides, a
base EA [108] is run 30 times to generate instances biased to the performance of each
heuristic in the portfolio. To provide a convenient representation of the instances,
previously created PCA models were applied to reduce the dimensionality and represent
the instances in both spaces. Furthermore, it is important to note that, since the
instances are evaluated in two different spaces, two PCAs were required, one per space:
feature and performance. The PCA models used in this evaluation were trained with

4.1 NSls Experiments 49

(a) Default (b) MaP

(c) MiW (d) MPW

Figure 4.4 Distribution of the performance gap between the Default, MaP, MiW,
and MPW approaches and other solvers in the portfolio by considering the instances
generated for the former when running NSlsp. The x-axis scale varies from one sub-
figure to another to produce better visualisations of the bars in the plots. Therefore,
the differences between algorithms depend on the solver that is taken as a reference.

the data from Sections 4.1.1 and 4.1.2. Hence, the distribution of instances for each
NSls variation is evaluated in both their own and foreign spaces.

Figure 4.5 provides the representation of the instances in both spaces after applying
the different PCAs. Top figure represents the distribution of instances over the feature
space, while the bottom figure shows the distribution of the same instances over the
performance space. The colour and symbol codes used hereafter are blue dots for
NSlsf instances, orange crosses for NSlsp, and green squares for the standard EA.
Notice how the instances cover their own space more uniformly, while, in contrast,
they are grouped in the centre of their foreign space. This is not surprising since
NSls is designed to use each descriptor to find diversity in its own space. However,
this behaviour brings even more to light regarding the importance of the descriptors
in the execution of NSls. Even though the results from Section 4.1.1 indicate that

50 Experimental evaluation

(a) Feature Space

(b) Performance Space

Figure 4.5 Instance representation in a 2D space after applying PCAs to all instances
generated by both NSls approaches. The colours reflect the algorithm for instance
generation.

NSlsf is able to generate diverse instances in terms of performance gap to each other,
Figure 4.5b shows that, as expected, NSlsp still outperforms NSlsf in terms of diversity
in the performance space. Therefore, the descriptor must be selected conscientiously
based on the kind of diversity we want to achieve. Moreover, since the standard EA
algorithm tries to maximise the performance score ps (see Equation 3.2), the instances
generated by this algorithm are located in the centre of both spaces (green squares).

4.1 NSls Experiments 51

Table 4.2 Space coverage using the U metric over the feature and performance spaces
for instances generated by NSls and a standard EA

Method Feature Space Performance Space
NSlsf 0.5883 0.4839
NSlsp 0.49885 0.6426
Standard EA 0.4234 0.3951

The expected behaviour of the standard EA is to converge the population of instances
to those regions that maximise ps regardless of their diversity. As a result, the set
of instances provided by the standard EA is very likely to contain many redundant
instances. This reasoning may explain the poor distribution of instances in the two
spaces.

In order to quantitatively evaluate the distribution of instances in both spaces, the
U metric (see Equation 4.2 is calculated for every method and space. Table 4.2 shows
the results. First, if considering U scores as a percentage of the space covered, note
how Standard EA poorly covers any space, not reaching even 0.50 of the total space.
These U values support the distributions of the standard EA instances in Figure 4.5.

Next, the U values for NSlsf and NSlsp in their respective search spaces corroborate
the distributions in Figure 4.5. NSlsf is able to reach almost 0.6 similarities with a
UD in the feature space while NSlsp reaches 0.6426 of performance space coverage.
Besides, for both methods, the U metric in the corresponding foreign space decreases
drastically, not even achieving 0.50 of coverage.

Table 4.3 details the number of instances generated per solver by NSlsf , NSlsp and
a standard EA [108] in the KP domain. In addition, the ratio of unique instances is
calculated based on non-duplicated 8D feature vectors (Uniques) and non-duplicated
4D performance vectors (Uniquep). Hence, even though NSlsf and NSlsp use different
search spaces, both methods can be compared in terms of unique instances in a fair
and more realistic way. The most interesting finding is that both methods score
similar values for each unique metric in both spaces. This is a completely unexpected
outcome that could probably lead to future lines of research in this work. Another
important finding is that the standard EA approach [108] is able to produce sets with
fewer duplicate instances (in terms of feature and performance descriptors) than NSls.
However, quantitatively (Table 4.2) and qualitatively (Figure 4.5), the results indicate
that the method is not able to cover as much space as NSls.

52 Experimental evaluation

Table 4.3 Summary of the instances generated per solver and the ratio of unique
instances for both NSlsf and NSlsp in the KP domain after 30 repetitions. Combined
refers to all instances generated by a method across all targets. Unique instances are
calculated based on non-duplicated 8D feature vectors (Uniques) and non-duplicated
4D performance vectors (Uniquep).

Method Target Total Uniques Uniquep

NSlsf

Default 720 0.31 0.36
MaP 2260 0.28 0.38
MiW 2090 0.31 0.38
MPW 220 0.40 0.40

Combined 5290 0.28 0.38

NSlsp

Default 490 0.36 0.38
MaP 2080 0.30 0.39
MiW 1850 0.31 0.38
MPW 140 0.56 0.40

Combined 4560 0.29 0.37

standard EA

Default 200 0.42 0.40
MaP 300 0.42 0.39
MiW 280 0.42 0.40
MPW 110 0.50 0.40

Combined 890 0.41 0.40

4.2 NSmo Experiments
NSmo is the multi-objective approach to generate diverse yet biased instances in
optimisation domains. The algorithm is also run to generate KP instances as well
using both previously mentioned descriptors: feature based (NSmof) and performance
based (NSmop). In order to provide a proper comparison between NSls and NSmo,
most parameters remain identical to the NSls configuration provided in Table 4.4. The
only exception in this parameter configuration is the elimination of ϕ, which governs
the importance of ps and s in NSls (see Equation 3.3). It is not necessary for NSmo

since both objectives are optimised (maximised) simultaneously (see Section 3.3).
Due to the stochastic nature of NSmo, each configuration is run 30 times for each

of the four solvers in the portfolio and then the instances are combined in a single
dataset. Additionally, the same aforementioned standardisation and dimensionality
reduction (using PCA) is performed on the resulting dataset.

4.2 NSmo Experiments 53

Table 4.4 Parameter settings for NSmo, which evolves the diverse population of dis-
criminatory instances by means of a multiobjective approach.

Parameter Value
Knapsack items (N) 50

Weight and profit upper bound 1,000
Weight and profit lower bound 1

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Generations 1,000

Portfolio Default, MaP, MPW, MiW
Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 3
Thresholds (ta, tss) 3.0

4.2.1 NSmo and Feature-based Descriptor

We denote NSmof as the novelty search multi-objective generator which uses a feature
descriptor to search for novelty. NSmof is run 30 times to generate KP instances that
are diverse in the feature space and biased to the performance of a specific solver in
the heuristic portfolio (see Table 4.4).

The instance distribution in the feature space after the dimensionality reduction
procedure is shown in Figure 4.6. Although some instances seem to slightly overlap
each other, note how NSmof is also able to generate four different clusters of instances,
one for each solver in the portfolio. In contrast to NSls, NSmo is capable of generating
larger sets of instances per run. After 30 repetitions for each solver in the portfolio,
NSmof generated 8,770 instances, while NSlsf only generated 5,290. Nonetheless, the
number of instances generated per solver seems to follow a similar pattern to the NSlsf

results; that is, NSmof was able to generate 870 instances for Default, 280 for MPW,
3420 for MaP, and 4200 for MiW after 30 repetitions of the method for each solver.
The number of instances for MPW is still considerably low when compared to other
solvers; in fact, NSmof was only able to generate 60 more instances for MPW and
150 for Default than NSlsf . Table 4.6 details the total amount and ratio of unique
instances generated for NSmop.

In light of the results from NSmof , we can reject the assumption that the single-
objective formulation of the instance generation problem may cause a low number
of instances for some solvers. However, it reaffirms how (1) the stochastic nature

54 Experimental evaluation

of the method, (2) the idiosyncrasy of each solver (making it easier or harder to
generate instances biased to their performance), (3) and the need for a specific NS
threshold adjustment (tss, ta) are crucial factors that may be addressed when creating
portfolios of algorithms. For instance, new approaches could consider the inclusion of
more sophisticated stopping criteria, such as the number of instances in the solution
set before ending the execution, rather than a certain amount of generations to be
performed by NSls or NSmo.

Figure 4.6 PCA is applied to a dataset containing the feature descriptors plus the
instance information of all instances generated by NSmo when using a feature-based
descriptor to search for novelty. Blue points are the instances generated for Default,
orange crosses for MaP, green squares for MiW, and red pluses for MPW.

Moreover, a quantitative evaluation of the space coverage is also provided by means
of the exploration uniformity (U) metric [53, 77]. The calculation of U is detailed in
Section 4.1.1.

The set of instances generated by NSmof scores similar space coverage to NSlsf ,
U = 0.5681. Since NSmo abandons the use of ϕ, it is only capable of generating a more
or less spread out set of instances by tuning the thresholds (ta, tss). Larger threshold
ratios will force the algorithm to consider instances with higher s scores, and therefore
a more diverse set of instances.

4.2 NSmo Experiments 55

(a) Default (b) MaP

(c) MiW (d) MPW

Figure 4.7 Distribution of performance gap between the Default, MaP, MiW, and MPW
approaches and other solvers in the portfolio by considering the instances generated for
the former when running NSmof . The x-axis scale varies from one sub-figure to another
to produce better visualisations of the bars in the plots. Therefore, the differences
between algorithms depend on the solver that is taken as a reference.

Then, a quantitative analysis of the performance-gap is also addressed for NSmof .
Figure 4.7 shows the distributions of the performance gap between instances for each
solver. The x-axis represents the magnitude of the difference between the target solver
and the other (performance gap) and the y-axis is the frequency with which the value
appears; i.e., the number of instances that exhibit said performance gap. The results
present similar patterns to the NSlsf results in Figure 4.2. Even though NSmof is not
developed to generate diversity in terms of this metric, the results prove that while a
significant number of instances have a relatively small gap between the performance of
their target and other solvers, it is possible to find instances that exhibit performance
diversity as well. The distributions for every heuristic exhibit similar behaviour to the
performance diversity of NSlsf . Even though a few instances have a performance gap

56 Experimental evaluation

that is almost negligible (close to zero), a large number of other instances obtain much
higher scores (> 6000) for MaP and MiW solvers.

4.2.2 NSmo and Performance-based Descriptor

In a similar manner, NSmop is defined as the multi-objective novelty search generator
using a performance-based descriptor to generate diverse, yet discriminatory, instances.
Moreover, NSmop was run 30 times to generate KP instances that are biased to
the performance of a specific solver in the heuristic portfolio. The same parameter
settings as in Section 4.2.1 were used (see Table 4.4). Figure 4.8 shows the instance
distribution over the performance space. The instances underwent the same procedure
applied in previous sections. To reduce the information to two principal components,
standardisation plus dimensionality reduction by means of PCA were applied to the
performance descriptor and the instance information. It is rather intriguing how NSmo,
and in this particular case NSmop, is able to find instances in several locations of
the space for specific solvers, while NSls was able to generate instances in certain
regions only; i.e., green squares representing instances for MiW in Figure 4.8 are
located in three differentiated clusters. A multi-objective formulation of the instance
generation problem may allow NSmo to discover relationships and instances that NSls

cannot. Apart from that, Figure 4.8 still accentuates the low number of MPW instances
generated. The set of instances generated after 30 repetitions per solver of NSmop

contains 10,460 instances. NSlsp was only able to generate 4,560 instances. Those
10,460 instances are divided into 670 instances for Default, 170 for MPW, 2220 for
MaP, and 7400 MiW. Table 4.6 provides more detail about the number of instances
produced for NSmop.

In order to evaluate the space coverage of NSmop, the U metric [53, 77] is also
calculated. Thus, in the current scenario, δ is defined as the two principal components
extracted from each instance after applying the aforementioned PCA model. NSmop

scores U = 0.5437, rather lower values than obtained by NSlsp with U = 0.6426. These
results may indicate that even though NSmop is able to generate more than twice as
many instances as NSlsp in the same number of executions, the NSlsp configuration
used in Section 4.1.2 is able to generate a set of instances that is more spread out in
the performance space.

The primary goal of using a performance-based descriptor is to generate instances
that are diverse with respect to the performance space. In order to address this, the
performance-gap of the instances generated by NSmop is presented. Figure 4.9 provides
the distributions of performance gap between instances for each solver. As before, the

4.2 NSmo Experiments 57

Figure 4.8 PCA is applied to a dataset containing the feature descriptors plus the
information on all the instances generated by NSmo when using a performance-based
descriptor to search for novelty. Blue points are the instances generated for Default,
orange crosses for MaP, green squares for MiW, and red pluses MPW.

x-axis represents the magnitude of the difference between the target solver and the
other (performance-gap), and the y-axis is the frequency at which the value appears; i.e,
the number of instances that exhibit such a performance gap. Once again, the method
is able to generate diversity with respect to the performance gap between solvers.
The distributions of values seem to follow a multi-modal distribution for each solver,
although it can be seen more clearly for MaP (Figure 4.9b) and MiW (Figure 4.9c).
In fact, NSmop is able to reach higher performance gap values, almost 17,500 for
MiW, than NSlsp, whose highest performance gap was lower than 12,000. In addition
to the higher number of instances generated per experiment, the considerably large
performance gap could be a point in favour of NSmop versus NSlsp.

58 Experimental evaluation

(a) Default (b) MaP

(c) MiW (d) MPW

Figure 4.9 Distribution of performance gap between the Default, MaP, MiW, and MPW
approaches and other solvers in the portfolio by considering the instances generated for
the former when running NSmop. The X-axis scale varies from one sub-figure to another
to produce better visualisations of the bars in the plots. Therefore, the differences
between algorithms depend on the solver that is taken as a reference.

4.2 NSmo Experiments 59

4.2.3 NSmo Distribution in Foreign Spaces

Similar to the analysis conducted in Section 4.1.3 on NSls approaches, this section is
devoted to evaluating NSmo approaches in their respective foreign spaces; i.e., how
well the instances from NSmof are distributed in the performance space and vice-versa.
The main question to answer here is: Can NSmo generate diverse instances in a space
that is not expected to, such as NSls? Moreover, both methods are compared to a
multi-objective EA which solves the instance generation problem as a multi-objective
optimisation problem with ps and s as the objectives to maximise. The algorithm
selected for this comparison is the well-known evolutionary algorithm NSGA-II [29].
NSmo is strongly based on the NSGA-II algorithm plus the addition of novelty search
components and procedures such as the archive of diverse solutions and solution set.

First, a dataset is created to contain all the instances generated by NSmof , NSmop,
and NSGA-II. Then, for each instance, the opposite descriptor is calculated; i.e., a
performance descriptor for the instances generated by NSmof , and a feature descriptor
for those generated by NSmop. Therefore, every instance in the dataset is defined
by both descriptors. For instances generated with NSGA-II, both descriptors are
calculated.

Next, each instance was reduced to two principal components by means of PCA.
Since the instances are evaluated in two spaces (feature and performance), a different
PCA model has to be applied for each space. Therefore, two PCA models are required
for this evaluation. Similar to the analysis performed in Section 4.1.3, we reuse the
PCA models trained in Section 4.2.1 and Section 4.2.2 to transform the instances into
their foreign spaces. For instance, the PCA model trained in Section 4.2.1 using NSmof

instances, is now used to transform instances generated by NSmop by means of the
recently calculated feature descriptor, and vice-versa.

Figure 4.10 presents the instances in both spaces after applying the different PCAs.
The top figure represents the distribution of instances over the feature space, while the
bottom figure shows the distribution of the same instances over the performance space.
The colour and symbol codes used hereafter are blue dots for NSmof instances, orange
crosses for NSmof , and green squares for NSGA-II. The results exhibit similar behaviour
to NSls when compared in foreign spaces; i.e., as expected, NSmof outperforms their
counterpart in terms of instance distribution in their own feature space, while NSmop

does the same in the performance space. In addition, 560 instances generated by
NSGA-II are almost imperceptibly located in the centre of both spaces. As a result
of considering the instance generation problem as a pure multi-objective optimisation
problem, the convergence of the algorithm results in the fact that the instances in

60 Experimental evaluation

(a) Feature Space

(b) Performance Space

Figure 4.10 Instance representation in a 2D space after applying PCAs to all instances
generated by both NSmo approaches. Colours reflect the algorithm for instance
generation.

the dataset are almost identical to one another. These results illustrate that even
though NSmo is able to generate diversity in both spaces (as discussed before in terms
of distribution and performance-gap), deciding which descriptor to use is crucial and
must be done conscientiously based on the expected characteristics of the instances.

Finally, it could be interesting to quantify the benefits of each method in terms
of space coverage. Table 4.5 summarises the U scores for each NSmo and NSGA-II

4.2 NSmo Experiments 61

Table 4.5 Space coverage using the U metric over the feature and performance spaces
for instances generated by NSmo and NSGA-II

Method Feature Space Performance Space
NSmof 0.5681 0.4206
NSmop 0.4541 0.5437
NSGA-II 0.3404 0.3465

algorithm over each space. The results support the conclusions drawn from Figure 4.10b.
NSmo exhibit a similar behaviour as NSls in Section 4.1.3. Interestingly, NSls obtains
higher U scores in every space when compared to its analogue NSmo version. In
addition, it seems that addressing the KP instance generation problem from a single-
objective formulation benefits the space coverage. In fact, the comparison of pure
evolutionary algorithms demonstrates that a standard EA (U = 0.4234 in the feature
space, and U = 0.3951 in the performance space) outperforms NSGA-II (U = 0.3404
in the feature space, and U = 0.3465 in the performance space) in both spaces.

Table 4.6 Summary of the instances generated per solver and the ratio of unique
instances for NSmof , NSmop and NSGA-II in the KP domain after 30 repetitions.
Combined refers to all instances generated by a method across all targets. Unique
instances are calculated based on non-duplicated 8D feature vectors (Uniques) and
non-duplicated 4D performance vectors (Uniquep).

Method Target Total Uniques Uniquep

NSmof

Default 870 0.24 0.17
MaP 3420 0.23 0.31
MiW 4200 0.26 0.35
MPW 280 0.35 0.29

Combined 8770 0.24 0.30

NSmop

Default 670 0.30 0.35
MaP 2220 0.26 0.34
MiW 7400 0.24 0.30
MPW 170 0.35 0.36

Combined 10460 0.23 0.30

NSGA-II

Default 100 0.19 0.14
MaP 210 0.2 0.14
MiW 210 0.2 0.14
MPW 40 0.63 0.4

Combined 560 0.22 0.16

62 Experimental evaluation

Table 4.6 details the number of instances generated per solver by both NSmo variants
in the KP domain. The ratio of unique instances is calculated based on non-duplicated
8D feature vectors (Uniques) and non-duplicated 4D performance vectors (Uniquep).
It seems that the larger sets of instances generated by NSmo variants come at the
cost of more redundant instances (when compared by descriptors). NSGA-II results,
apart from the MPW discriminatory instances, are considerably lower than any NSmo

variant not only in terms of unique ratios but also the total amount of instances.

4.3 Comparison between NSls and NSmo 63

4.3 Comparison between NSls and NSmo

The previous sections were devoted to evaluating each of the methods proposed in
Chapter 3 with different instance descriptors. Now, NSls and NSmo are compared to
each other to evaluate whether one method gives better results in terms of instance
distribution, or if it might be beneficial to construct an ensemble of the two approaches.
In order to evaluate both methods, two datasets are created, one named features dataset,
with instances generated by NSlsf and NSmof , and the other named performance
dataset, with instances from NSlsp and NSmop executions. Afterwards, each dataset was
processed using the standardisation and dimensionality reduction procedure described in
the preceding sections. Similar to Sections 4.1.3 and Section 4.2.3, different PCA models
were applied to each dataset based on the instance descriptor. For instance, the features
dataset was processed using a PCA model to reduce the feature-based descriptor and
the instance information from each instance to two principal components. An analogous
process was used for the performance dataset with a PCA for the performance-based
descriptor plus the instance information. Figure 4.11 shows the distribution of instances
from each method over the feature space. While the left side provides the traditional
representation used in this chapter, the right side shows the representation of instances
in terms of filled cells of the space. The space is divided into a grid of 25 × 25 cells,
as done when calculating the exploration uniformity (U) metric. Next, the number
of cells filled by each method, NSlsf and NSmof , is calculated. For example, a cell is
considered filled by a method if at least one instance is located inside the cell. The
right side of Figure 4.11 provides a graphical representation of this calculation in the
feature space.

Black designates the cells filled only with instances generated by NSlsf , green cells
are those filled only by NSmof , and pink represents the cells that are filled by instances
from both algorithms. The white cells are those which are not filled by any method.
Furthermore, in terms of filled cells, NSlsf was able to fill 69 cells, NSmof 109, and an
ensemble of both methods filled 130 cells. It seems that an ensemble approach could
be slightly beneficial in terms of space coverage. In fact, the filled-cells calculation
procedure reveals that there is only an overlap of 48 cells between NSls and NSmo.

Alternatively, Figure 4.12 provides similar results for the performance dataset.
Following the previous procedure, the performance space was also divided into a grid
of 25 × 25 cells and a similar filled-cells counting procedure was applied. The results
indicate that NSlsp filled 60 cells in a 25x25 performance space, NSmop 98 cells, and
the ensemble of NSlsp and NSmop methods 118 cells. Moreover, the overlap of filled
cells between NSlsp and NSmop is quite similar to before, with 40 cells.

64 Experimental evaluation

(a) Feature space distribution (b) Feature space overlap

Figure 4.11 Instances generated for different NS algorithms represented in the same
feature space. The left-hand side represents the distribution of instances where blue
dots represent the instances from NSlsf and orange squares for NSmof . The right-hand
side represents cells filled by each method in the 25 × 25 grid obtained from all the
information available. Black cells are only filled with instances from NSlsf , green cells
are only filled by NSmof , and pink represents those cells that are filled by instances
from both algorithms. White cells are those which are not filled by any method.

In conclusion, it seems that constructing an ensemble of both algorithms could
reinforce instance generation. On the one hand, NSls provides slightly better results in
terms of U scores and instance distribution across spaces. On the other hand, NSmo

is able to generate larger sets of instances per execution with U scores close to NSls.
For that reason, and considering the low overlap exhibited in Figures 4.11 and 4.12,
balancing the generation of instances for the KP domain between the linear-weighted
NS and the multi-objective NS may improve the results in terms of space coverage,
instance distribution and amount of data.

4.4 Summary 65

(a) Performance space distribution (b) Performance space overlap

Figure 4.12 Instances generated for different NS algorithms represented in the same
performance space. The left side represents the distribution of instances, where blue
dots represent the instances from NSlsp and orange squares for NSmop. The right
side represents cells filled by each method in the 25 × 25 grid obtained from all the
information available. Black cells are only filled with instances from NSlsp, green cells
are only filled by NSmop, and pink represents the cells that are filled by instances from
both algorithms. White cells are those which are not filled by any method.

4.4 Summary
The main objective of this chapter is to assess the extent to which Novelty Search can
be used to generate diverse but discriminatory instances for the KP with respect to a
portfolio of solvers. In particular, two major variants of an NS algorithm were considered:
NSls, which uses a weighted combination of performance and diversity to drive the
evolution of instances, and NSmo, which solves the problem by optimising performance
and diversity simultaneously to drive the evolution of instances. At the same time, each
variant can be used with two instance descriptors: feature-based or performance-based.
The results revealed that both NS methods were able to provide competitive results in
terms of coverage of both spaces. However, as expected, each descriptor was able to
perform better in its own space. Besides, a portfolio of four deterministic heuristics
specially designed for the KP domain was considered for generating instances. However,
previous work has demonstrated the application of an EA-based portfolio for the same
domain [90]. One of the main advantages of the methods proposed is that a set of
diverse and discriminatory instances is returned in a single run. In contrast, existing
methods in the literature, as previously stated [2, 108, 122], need to be run repeatedly
to generate multiple instances, given that the EAs often converge to a single solution;

66 Experimental evaluation

furthermore, there is no guarantee that repeated runs will deliver unique solutions.
To evaluate that, the results from the NS methods were compared with standard EA
approaches, like those proposed by Plata et. al [108] for NSls and NSGA-II for the
multi-objective variant NSmo.

Finally, several experiments were conducted with both NS approaches not to only
provide a quantitative and qualitative evaluation of the diversity of the instances
generated with respect to the feature space of the KP instances and the performance
space of the solvers for the KP, but also to evaluate the potential of constructing an
ensemble of both methods to boost the quality of the results.

Chapter 5

Generating instances for the TSP
domain

5.1 Background
The Travelling Salesman Problem (TSP) is arguably the most well-known NP-hard
combinatorial optimisation problem [40]. The TSP has been studied in depth in
academic and real-world scenarios due to the multiple applications and variants that
can be derived from the core formulation [20, 71, 84]. Some real-world applications
of TSP variants are computer and printed circuit board (PCB) wiring [133], vehicle
routing (such as Garbage Collection or Unmanned Aerial Vehicles) [71, 103], clustering
a data array or job-shop scheduling without intermediate storage [7, 80]. In the present
thesis, the TSP domain evaluated is the Symmetrical Travelling Salesman Problem.

Definition 3 Given a set of N nodes or vertices G and their pairwise distances D to
each other, such as D(i, j) = D(j, i) and D(i, i) = 0, the goal is to find the shortest
tour T that starts and ends at a pre-defined node and visits every other node exactly
once.

D is a distance matrix that stores the distances between each pair of nodes (i, j) ∈ G.
Figure 5.1 shows a real-world example of a TSP instance, where the goal is to travel
across Italy visiting each location once. The right side provides the shortest tour T

that solves the problem.
Switching from one domain to another requires redefining several concepts. For

instance, how the instances are represented in memory, which metric is used to calculate
the performance score ps, or what descriptor the NS should consider to compute the

68 Generating instances for the TSP domain

Figure 5.1 (a) An example of a symmetrical TSP instance with N = 20 nodes on the
map of Italy. The right side (b) provides the optimal solution to the instance. The
graphics are obtained from [56].

sparseness s of a given instance during the evolutionary process. The literature
on feature extraction has proposed several descriptors for a TSP instance [9, 122].
However, the experimental evaluation for the TSP is primarily focused on demonstrating
the domain-switching capabilities of the methods by means of performance-based
descriptors. Therefore, the calculation of s for a TSP instance is similar to the previous
examples for the KP domain when running NSlsp or NSmop (see Sections 4.1.2 and 4.2.2
respectively).

Moreover, although the TSP is a sequence or permutation-based problem, an
instance of the TSP can be stored in memory similarly to a KP instance. Figure 5.2
shows the representation of a TSP instance in memory. Equivalent to Figure 3.3,
the pairs (wi, pi) have been replaced for pairs of (xi, yi) coordinates where each pair i

represents the spatial location of the ith-node of the instance.

Figure 5.2 TSP Instance Representation as Stored in Memory (Genotype).

Computing the performance score ps also requires some adjustments for the new
domain. In the KP domain, ps is calculated by means of Equation 3.2, using a metric
based on the profit obtained by the solvers for a certain instance (see Section 3.1.2).
On the other hand, even though we can reuse the same formulation to calculate ps in

5.1 Background 69

Algorithm 6: Greedy TSP Heuristic
Input : N , M

1 sort_egdes(M);
2 T = ∅; while |tour| ≠ N do
3 e = select_shortest_edge(M);
4 if e is valid then
5 T = T ∪ {e} ;
6 end
7 end
8 return T ;

the TSP domain, defining a new solver-performance metric is necessary. Thus, profit
is replaced by a new metric known as Inverse Tour Length (IL). The IL metric is
calculated as:

IL = 1.0
L

(5.1)

where L is the tour length that a solver obtains for a certain TSP instance.
As a result, ps for the TSP is calculated using Equation 5.2. tIL is the Inverse Tour

Length achieved by the target algorithm while oIL is the set of IL scores obtained by
the remaining solvers in the portfolio.

ps = tIL − max(oIL) (5.2)

5.1.1 Portfolio of Solvers for the TSP Domain

An important difference with respect to the parameter settings for the KP domain
lies in the portfolio of solvers. There is a rich literature of algorithms for the TSP
domain which goes from exact solvers such as Dynamic Programming, to heuristics
and meta-heuristics [8, 33, 102, 111, 139]. However, most of those solvers are more
computationally complex than the KP heuristics in the previous portfolio, resulting in
considerably larger run times when evaluating instances. Hence, to reduce the duration
of the runs, the new portfolio contains three well-known TSP heuristics [8, 102]. First,
we have a Greedy heuristic that constructs a tour for a TSP instance by progressively
selecting the shortest edge and adding it to the tour. However, in order to include a
new edge to the tour, it must not create a cycle with fewer than N edges (where N is
the number of nodes to visit in the instance), visit any node more than once or insert
the same edge twice. Algorithm 6 outlines the Greedy heuristic for the TSP.

70 Generating instances for the TSP domain

Algorithm 7: 2-Opt TSP Heuristic
Input : N , M

1 T = create_initial_tour(M);
2 while improve do
3 for i = 0 to N − 1 do
4 for j = i + 1 to N do
5 T ′ = 2_opt_swap(T , i, j);
6 if T ′ < T then
7 T = T ′;
8 end
9 end

10 end
11 end
12 return T ;

Algorithm 8: 2-Opt Swap Operator
Input : T , i, j

1 T ′ = ∅;
2 T ′[0 : i] = T [0 : i];
3 T ′[i + 1 : j] = reverse(T [i + 1 : j]);
4 T ′[j : N − 1] = T [j : N − 1];
5 return T ′;

We then consider two variants of the 2-Optimal (2-Opt) heuristic [8, 23, 102]: the
standard 2-Opt (2-Opt) and a Nearest-Neighbour 2-Opt (NN2-Opt). 2-Opt is a local
search-based heuristic that attempts to make local improvements to pre-existing tours.
For instance, from a previously created tour T , the 2-Opt heuristic removes two edges
and reconnects the two paths. Note that a new connection would be considered valid if
and only if it does not create two disjoint cycles with fewer than N edges and the new
tour T ′ is shorter than T . The algorithm continues making that modification until no
improvements are found.

Algorithms 7 and 8 outline the 2-Opt heuristics for the TSP and a swap operator
to reconnect the new paths created.

The only difference between 2-Opt and NN2-Opt algorithms lies in the construction
of the initial tour T before running the 2-Opt local search. The standard 2-Opt
algorithm creates an initial tour T by randomly selecting the order of the nodes to visit.
After that, 2-Opt is applied on T . Similarly, NN2-Opt, creates T by running another
TSP heuristic, the Nearest Neighbour (NN) heuristic [8, 102]. NN is a straightforward
heuristic that from the start node, creates a tour T by selecting the nearest not

5.1 Background 71

visited node until |T | = N − 1, then it returns to the starting point. The portfolio
is constructed in such a way that we can evaluate whether the method is able to
differentiate both 2-Opt variants from each other and the Greedy Heuristic. Previous
work in the KP domain using a portfolio of different EA configurations proves that the
method is able to find distinct instances for each configuration [90], even though only
one parameter is changed from one configuration to another. Hence, the question is
whether a different initialisation process in a 2-Opt heuristic is enough to distinguish
between the two solvers.

5.1.2 Parameter Tuning

Table 5.1 Parameter settings for NSls, which evolves the diverse population of discrim-
inatory instances for the TSP.

Parameter Value
Number of nodes (N) 50

(x, y) coordinates minimum values 1
(x, y) coordinates maximum values 100

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Generations 1,000

Portfolio Greedy, 2-Opt, NN2-Opt
Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 5
ϕ 0.0, 0.15, 0.30, 0.40, 0.50, 0.60, 0.70, 0.85, 1.00

Thresholds (ta, tss) 1e-06

In terms of parameter settings, both NS algorithms are configured similarly to those
in previous sections. Table 5.1 summarises the parameter values for both methods.
Note that the threshold values tss and ta are updated to the new domain as well.
New values are necessary since we are using a performance-based descriptor and a
reformulated ps calculation procedure (see Equation 5.2), which results in considerably
lower ps values.

72 Generating instances for the TSP domain

Figure 5.3 Instance representation in a 2D space after applying PCAs to all instances
generated by NSlsp using different ϕ values. Colours and symbols reflect the ‘winning‘
solver for each instance. Blue dots are the instances generated for 2-Opt, orange
crosses represent instances produced for Greedy, and green squares are the instances
for NN-2-Opt.

5.2 Generating TSP Instances with NSlsp

5.2.1 Impact of ϕ on NSlsp for the TSP Domain

Following similar evaluations performed for the KP in previous work [90], let us now
consider the impact of ϕ in the distribution of the instances across the performance
space. A total number of nine different values are selected for ϕ from a wide range
of values, such as ϕ ∈ {0.0, 0.15, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 1.0}. Note that ϕ = 0.0 will
eliminate the ps from the calculation of the fitness in NSlsp (see Equation 3.3), and
ϕ = 1.0 does the same for s. NSlsp was run 30 times for each of the three solvers
and for every different ϕ value. Thus, NSlsp performed 810 independent executions
to generate different sets of TSP instances, and then the results were combined in a
single dataset.

5.2 Generating TSP Instances with NSlsp 73

Figure 5.3 shows the distribution of all instances across the performance space
after applying a dimensionality reduction procedure. Similarly to the KP domain, the
dimensionality reduction procedure consists of standardising the information of the
TSP instances and then reducing them to just two principal components by means of
PCA. It is important to note that, for the TSP domain, PCAs are trained using only the
performance of each solver over the instances. It is rather interesting to see how NSlsp

is able to separate the two main solvers in the portfolio. Although 2-Opt and NN-2-Opt
could be considered the same algorithm at their core (since they actually are), the
initialisation procedure gives them different flavours of the same heuristic and, in fact,
they do perform differently, as we will see. Even though Figure 5.3 shows all ϕ-sets of
TSP instances, Appendix B.1 includes a separate plot for each ϕ-set which illustrates
the same behaviour. Referring back to the question of whether a distinct initialisation
procedure would be enough to differentiate the two 2-Opt methods, the results may
indicate that it is not. Even though the initialisation generates different initial tours
T , it seems that it has not had enough impact on the performance diversity of the
algorithm to generate instances clearly located in different regions of the performance
space, i.e., both approaches provide the same performance when solving instances
located in the same region. However, a more in-depth parameter tuning in NSlsp could
lead to better separation of the instances in diverse clusters.

Figure 5.3 shows how a cluster of instances for 2-Opt flavoured solvers is clearly
differentiated from the instances generated for the Greedy algorithm. Even though
there is no separation between the two, this may be a result of setting considerably low
threshold values tss and ta, which could have included instances in the solution set that
have low novelty values. However, low threshold values such as 1e-06 for NSlsp are
necessary, since it relies on the new ps formulation (see Equation 5.2), which generates
considerably smaller performance scores than the KP domain formulation.

Moreover, to genuinely evaluate the impact of ϕ on the distribution of instances
over the space, we must evaluate the instances based on exploration uniformity (U). To
do this, the dataset is divided into nine subsets, each containing instances generated
with one of the ϕ values tested. Then, the U metric is calculated for every subset.
Similarly to the KP domain, the space defined by the limits of the combined dataset
is divided into a grid of 25 × 25 cells, after which the number of instances in each
cell is counted. The rest is calculated as described before. Table 5.2 summarises the
total number of instances generated after running NSlsp 30 times per solver and the ϕ

value, as well as the U metric for each ϕ value as well as the combined set of instances.
Note how, as expected, there exists an inverse correlation between the performance

74 Generating instances for the TSP domain

Table 5.2 Summary of the instances generated per solver, performance space coverage
in terms of the U metric, the total amount of instances generated and the ratio of
unique instances for NSlsp when setting different values for ϕ.

ϕ 2-Opt Greedy NN-2-Opt Total Uniquep U
0.00 187 196 200 583 0.7975 0.5900
0.15 348 308 290 946 0.8097 0.6147
0.30 624 536 579 1739 0.9465 0.6016
0.40 769 483 783 2035 0.9769 0.5737
0.50 694 426 588 1708 0.9900 0.5397
0.60 511 272 479 1262 1.0000 0.4937
0.70 427 284 499 1210 0.9958 0.4929
0.85 575 407 594 1576 0.9987 0.4738
1.00 339 265 404 1008 0.9970 0.4733
Combined 4474 3177 4416 12067 0.9558 0.5859

space coverage and ϕ. The larger ϕ becomes, the less space is covered by the resulting
set of instances. In fact, Pearson’s Correlation Coefficient [73] (r) between ϕ and U
score is r = −0.9234, an almost perfect negative linear relationship between the two
variables. Moreover, Figure 5.4 not only shows the relationship curve between these
variables, it also illustrates the ratio of unique instances generated between the different
sets of instances. Here, unique instances are calculated based on non-duplicated 3D
performance descriptors (Uniquep). We use the ratio of unique instances rather than
just the total amount of unique instances to fairly compare sets of different sizes. Also
interesting is the behaviour of the unique instances in the TSP domain when evaluated
against ϕ. Although one may intuitively think that higher ϕ values would tend to
produce fewer unique instances per run, r = 0.8313 indicates that there exists a strong
positive correlation between ϕ and the ratio of unique instances that NSlsp produces
for this portfolio in the TSP domain. This metric increases as ϕ does, reaching its
maximum value when ϕ = 0.6 with a set of 1,262 unique instances. From these data,
we can extract the following conclusions for the behaviour of NSlsp in this scenario: (1)
as ϕ increases, NSlsp is prone to produce sets of instances that tend not to uniformly
cover the performance space, (2) counter-intuitively, the results suggest that higher ϕ

values can produce fewer redundant sets based on the genotype of the instances (see
Figure 5.2). Moreover, for this scenario, it seems that ϕ values within the range 0.3 to
0.4 may produce the best sets of instances in terms of a trade-off between U and the
ratio of unique instances. With respect to the number of instances generated, although
there exists a slight variation in the number of instances for different ϕ settings, there

5.2 Generating TSP Instances with NSlsp 75

Figure 5.4 Relationship between ϕ settings for NSlsp and generated TSP instances, the
U scores (blue dots), and the ratio of unique instances (red crosses) generated in the
resulting set of instances.

is no noticeable dissimilarity in the total instances generated for each of the three
solvers in the portfolio, as is the case of MPW in the KP domain.

In terms of performance gap differences, Figure 5.5 presents the distributions
between each solver in the combined dataset. Notice how there do indeed exist
differences in the magnitude of the performance gap among the instances generated for
the 2-Opt solver variants (see Figures 5.5a and 5.5c). Besides, 2-Opt solvers show slight
differences in performance even for Greedy instances (Figure 5.5b). It is important
to note that the performance gap for the TSP domain is based on the IL metric (see
Equation 5.1). Thus, the difference values on the X-axis are rather lower than in the
KP domain. This thus proves that, similar to the previous work in the KP domain [90],
the method is able to generate not only diverse but also biased instances even for
different configurations or variants of the same core solver.

For more detail about the distribution of instances over the performance (such as
Figure 5.3), as well as the performance gap histograms, for every other ϕ-subset of
instances, refer to the Appendix B of this thesis.

76 Generating instances for the TSP domain

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure 5.5 Distribution of performance gap between the 2-Opt, Greedy, and NN-2-Opt
approaches versus other solvers in the portfolio by considering all ϕ-generated instances
for the former when running NSlsp for the TSP domain. The x-axis scale varies
from one sub-figure to another to better display the bars in the plots. Therefore, the
differences between algorithms depend on the solver that is taken as a reference.

5.3 Generating TSP Instances with NSmop 77

5.3 Generating TSP Instances with NSmop

Table 5.3 Parameter settings for NSls, which evolves the diverse population of discrim-
inatory instances for the TSP.

Parameter Value
Number of cities items (N) 50

(x, y) coordinates minimum values 1
(x, y) coordinates maximum values 100

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Generations 1,000

Portfolio Greedy, 2-Opt, NN2-Opt
Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 5
Thresholds (ta, tss) 1e-06

In order to exemplify the domain transition in both methods, NSmop is run 30 times
per solver to generate different subsets of TSP instances. Then, as before, the instances
are combined into a single dataset. The parameter setting for NSmop is summarised in
Table 5.3. Note that the difference with the NSlsp configurations is the removal of ϕ.

Figure 5.6 shows the distribution of the instances over the performance space. In
contrast to the NSlsp results in Figure 5.3 or any other figure in Appendix B, the
distribution of instances from NSmop over the performance space exhibits behaviour
that is difficult to classify properly. Apart from two distinct clusters of NN-2-Opt
instances located in the lower right and upper left corners of the space, most instances
are intermingled within a cluster in the lower left corner. Even though throughout
this thesis we have used the same dimensionality-reduction technique (with the aim
of producing the fairest possible comparison), perhaps more complex techniques may
be more suitable for this scenario. We should also mention that while NSlsp was
only able to generate instances for 2-Opt solvers that are located in the same region
of the space, NSmop was able to find several drastically different instances for both
solvers. In terms of the number of instances generated per method, NSmop produced
487 instances for 2-Opt, 410 for Greedy, and 2,582 for NN-2-Opts after 30 runs of the
method for each solver. NSmop generated more than half of the instances generated by
NSlsp for the NN-2-Opts solver after completing the ϕ parameter tuning evaluation
from Section 5.2.1, while obtaining a similar amount of instances to most ϕ − NSlsp

78 Generating instances for the TSP domain

Figure 5.6 Instance representation in a 2D space after applying PCAs to all the instances
generated by NSmop. The colours and symbols reflect the ‘winning‘ solver for each
instance. Blue dots are the instances generated for 2-Opt, orange crosses Greedy, and
green squares are the instances for NN-2-Opt.

configurations for 2-Opt and Greedy. The U metric is calculated for NSmop following
the same procedure described before in this thesis. NSmop scores U = 0.5702, providing
better results than five out of nine NSlsp configurations from Section 5.2.1, in particular,
those using ϕ values in the range 0.5 to 1. However, NSlsp may still be preferable
based on the better distribution over the performance space.

Finally, Figure 5.7 shows the performance gap distribution between solvers. Note
that despite the poor instance distribution over the performance space, there exists
slight diversity in terms of the performance gap between the instances generated
by NSmop. However, NSlsp seems to obtain more diverse instances based on the
performance gap. Nevertheless, there is one interesting outcome from NSmop results in
the TSP domain: the instances generated for NN-2-Opt. NSmop obtained instances
for NN-2-Opt that are really noteworthy, not only in terms of the large number of
instances generated, but also the particular distribution over the performance space.
While NSlsp grouped the instances from 2-Opt type solvers, NSmop was able to find

5.3 Generating TSP Instances with NSmop 79

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure 5.7 Distribution of performance gap between the 2-Opt, Greedy, and NN-2-Opt
approaches versus other solvers in the portfolio by considering the instances generated
for the former when running NSmop for the TSP domain. The x-axis scale varies
from one sub-figure to another to better display the bars in the plots. Therefore, the
differences between algorithms depend on the solver that is taken as a reference.

distinctive characteristics for instances that are diverse and yet biased to the NN-2-Opt
solver performance. Perhaps a more in-depth parameter tuning evaluation of NSmop

can provide better results in terms of instance distribution and performance diversity
for other solvers as well.

Finally, Figure 5.8 illustrates the overlap between the two methods in a 25 x 25
grid over the performance space. It is also important to note that a combination of
the two methods does not produce better space coverage values (U = 0.5725), with an
unnoticeable difference from NSmop (U = 0.5702).

80 Generating instances for the TSP domain

Figure 5.8 Instances generated by different NS algorithms are represented in the same
performance space. The cells filled by each method in the 25 × 25 grid are obtained
from all the information available. Black cells are only filled with instances from NSlsp,
green cells are only filled by NSmop, and pink represents the cells that are filled by
instances from both algorithms. White cells are those which are not filled by any
method.

5.4 Summary

This chapter demonstrates the generalisation capability of the NSls and NSmo

methods. In particular, the performance-based descriptor approaches of these methods
might allow researchers to easily switch domains.

What emerges from the results reported here is that both methods are able to
generate discriminatory instances for a portfolio of TSP solvers. The results from
experimenting with NSlsp suggest that the method is able to differentiate the two
primary solvers in the portfolio: Greedy and 2-Opt-based solvers. Strong evidence of
that behaviour is presented in Figure 5.3, which provides a representation of multiple
NSlsp runs where the only difference is the value of ϕ to calculate the fitness of
the instances. Although the instances are located very close to each other, two

5.4 Summary 81

well-differentiated clusters appear in the plot: a cluster of Greedy instances and
another with 2-Opt instances. The lack of space between clusters may be indicative of
the adjustments in the ps calculation and lower threshold values required to obtain
discriminatory instances.

Turning now to the space coverage evaluation of the instances, we note some
interesting findings. Previous work on the KP domain [90] suggested that there is a
strong correlation between ϕ and the space coverage regarding U . In fact, the results
from Section 5.2.1 confirm that finding by generalising the above fact to another domain
of application. Table 5.2 and Figure 5.4 show that larger ϕ values tend to generate less
spaced sets of instances for the TSP domain. Interestingly enough, the larger coverage
is obtained when ϕ = 0.15 instead of ϕ = 0.0, as may be expected.

It should be noted that there are significant differences in the location of the instances
over the performance space between NSlsp and NSmop. While NSlsp exhibits a clear
separation between sets of instances, NSmop shows a more disordered representation.
There is a large cluster of instances in the left-hand side of the space which contains
a combination of Greedy and 2-Opt-based-solver instances. However, there are two
well-separated clusters of instances for NN-2-Opt. This means that NSmop is able
to identify other patterns in the performance space that NSlsp cannot. Note how
Figure 5.8 illustrates the overlap and differences between both methods over the
performance space.

Regarding the diversity in terms of the performance gap, the results (see Fig-
ure 5.5 and 5.7) indicate that even with the IL metric, both methods are able to
generate diversity in terms of the performance gap.

Chapter 6

DIGNEA: A Diverse Instance
Generator with NS and EAs

6.1 Contribution
This chapter introduces the DIGNEA framework, a Diverse Instance Generator with
Novelty Search and Evolutionary Algorithms. DIGNEA is a C++ software program that
has been developed to facilitate the generation of diverse and discriminatory instances
for optimisation domains for the research community. The software is a generalisable
C++ framework that is simultaneously capable of generating a set of instances that are
diverse with respect to different search spaces (features or performance descriptors from
Section 3.1.1) and that exhibit discriminatory but diverse performance with respect to
a portfolio of solvers, where diversity, in this case, refers to variation in the magnitude
of the performance gap. To achieve this, DIGNEA utilises NSls and NSmo as its
main components to evolve instances for any optimisation domain. A DIGNEA run
requires specifying a domain, a portfolio of solvers, defining a descriptor, and a target
algorithm belonging to the portfolio for whose performance the instances will be biased.
Thus, a user would typically run DIGNEA once for each target algorithm in their
chosen portfolio. As a result, a single DIGNEA run can potentially generate multiple
instances that are diverse with respect to either features or performance and, at the
same time, better suited to the chosen target in comparison to any other algorithm in
the portfolio. Note that due to the stochastic nature of the methods, it is possible for
some executions to result in an empty set of instances. The software not only has been
used in a previous work [90], but also in [92].

84 DIGNEA: A Diverse Instance Generator with NS and EAs

It is worth mentioning at this point that DIGNEA is offered as a C++ project
to build with CMake 1 from a Github repository. However, in order to facilitate the
user experience, it is also distributed as a Docker image so it can be easily ported
to different platforms. The image contains all the dependencies and source code of
DIGNEA 2.

The remainder of this chapter is divided as follows. First, the motivation behind the
development of DIGNEA is discussed. Then, an in-depth description of the software is
provided by detailing the architecture and functionalities of DIGNEA. After that, an
illustrative example of how to configure, run, and what type of results one can expect
from DIGNEA is provided. Finally, the impact, conclusions, and future lines of work
on the software are discussed.

6.2 Motivation

While most of the work in the field has focused on generating difficult instances in
different domains [95, 106, 120], recent research has focused on generating instances
that are maximally discriminative with respect to a portfolio of solvers proposed for a
specific domain; for instance, maximising the performance gap between a target and
other solvers for the Bin Packing Problem, Travelling Salesman Problem (TSP) and
Knapsack Problem (KP) domains [2, 9, 66, 108]. However, most of these approaches do
not include explicit mechanisms to generate instances that are diverse with respect to
the feature space – they focus only on generating instances that are diverse with respect
to solver performance. The work of Smith-Miles does attempt to generate space-filling
instances, i.e., in unexplored regions of the feature space, but it only generates ten
instances per run and needs to be repeatedly run at each point in the space where an
instance is required. By contrast, alternative proposals intended to generate instances
across domains rely on instances that can be solved by any solver in the portfolio [141],
or even on a completely random generation process by drawing values from statistical
distributions [30, 47, 106, 115, 128, 130].

DIGNEA is a generalisable C++ framework that is capable of either generating
instances that are diverse with respect to a feature-space defined by a user, or of
generating instances that are diverse with respect to a performance vector relating to a
pre-defined portfolio, which implicitly also promotes diversity in the feature space. On

1https://cmake.org/.
2The Docker image can be accessed through: https://hub.docker.com/r/dignea/dignea

https://cmake.org/
https://hub.docker.com/r/dignea/dignea

6.3 Software Description 85

the other hand, generating diverse instances with respect to the performance vector
defines the performance space of the portfolio used. The set of performance values
with respect to a user-pre-defined portfolio is known as its performance descriptor.
Unlike the feature descriptor, the performance descriptor of an instance is completely
dependent on the algorithms that shape the portfolio.

A DIGNEA run requires the specification of a target algorithm belonging to the
portfolio. A single run generates multiple instances that are diverse with respect to
either features or performance and, at the same time, better suited to the chosen target
in comparison to any other algorithm in the portfolio. Therefore, a user would typically
run DIGNEA once for each target algorithm in their chosen portfolio.

6.3 Software Description
DIGNEA is written in modern C++ combining template-based types with creational
design patterns that allow users to extend the framework to their needs.

6.3.1 Software Architecture

Interconnections between DIGNEA types, classes, and modules are defined by in-
heritance, a common approach in optimisation software [81]. AbstractSolver is
the main algorithm interface for defining new algorithms across the entire framework.
Moreover, Problem is a class which collects the necessary information to define any
optimisation problem for which the user may want to generate instances. It allows
users to define different solution representations via template parameters. To solve a
problem, a solution must be defined. Solution is a template class that represents
a typical solution for an optimisation problem. It includes the variables (genotype)
and the objective values (phenotype) of a given solution for a particular problem.
Since DIGNEA covers a range of pre-defined solution types, defining one’s own custom
solution type might be optional.

Search is used to create ad-hoc improvement methods to generate new solutions
from a starting set of solutions. This type gives users the opportunity to create Memetic
Algorithms [34], a category of EAs that includes domain-specific knowledge via custom
operators such as local searches. To improve the user experience in DIGNEA, two
creational design patterns were considered in its design: builders and factories. Builders
are used to instantiate algorithms, experiments, Evolutionary Instance Generator (EIG),
and Multi-objective Evolutionary Instance Generator (MOEIG) algorithms. Note that

86 DIGNEA: A Diverse Instance Generator with NS and EAs

Figure 6.1 Relationship of DIGNEA main components for instance generation. Red
rectangles with dotted lines represent those classes that must be extended to specify
new domains. At the same time, green rectangles with dashed lines refer to the custom
types for the KP or TSP domain. Yellow rectangles with straight lines are the base
types used in DIGNEA that users do not necessarily need to modify.

EIG and MOEIG are the class-name equivalences for NSls and NSmo respectively.
Factories allow variation operators and other components of algorithms to be created
on the fly.

From the previous building blocks, EIG, AbstractDomain, AbstractInstance,
as well as two NS descriptor types, NSFeatures and NSPerformance were written.
EIG, and MOEIG are the main instance generation components of DIGNEA. They
implement different NS approaches to generate sets of diverse and discriminatory in-
stances for any optimisation problem. EIG implements the NSls algorithm described in
Section 3.2, and MOEIG is based on the multi-objective approach NSmo from Section 3.3.
AbstractDomain defines an instance generation domain for both generators, EIG,
and MOEIG. Concretely, it defines a domain to generate instances for an optimisation
problem P that has been previously defined in DIGNEA (an object of class Problem).
Note that to generate instances for a domain, the optimisation problem itself P must
be defined in order to solve the instances during the evolutionary process of EIG and
MOEIG. AbstractInstance is a solution in the AbstractDomain domain, i.e., it
represents an instance for the optimisation problem P . It includes all the information
to construct an actual instance for optimisation problem P .

6.3 Software Description 87

Figure 6.1 shows the relationship among the main instance generation components
in DIGNEA. For example, to instantiate an object of type EIG or MOEIG, users
must specify the following components: an NS descriptor type, such as NSFeatures
or NSPerformance, created through factory NSFactory; a domain to generate
instances for (AbstractDomain), such as KPDomain; the representation of an
instance (AbstractInstance), such as KPInstance; and a portfolio of algorithms
for which instances are going to be produced (AbstractSolver), such as EA or
Simulated Annealing (class SA).

Classes AbstractDomain and AbstractInstance are completely dependent
since they may include ad-hoc operations, specific attributes, and a particular rep-
resentation. Therefore, to specify a new domain in DIGNEA, users must define at
least:

1. An optimisation problem Problem

2. A specific domain AbstractDomain

3. The representation of an instance of the problem AbstractInstance.3

Colour codes and different types of lines in Figure 6.1 reflect the inheritance and
extension needs in DIGNEA. Red rectangles with dotted lines represent the base classes
that must be extended to specify new domains. Those in green with dashed lines are
the custom types for the domains provided with the framework, and yellow rectangles
with straight lines are the base types that users do not necessarily have to modify.

6.3.2 Software Functionalities

The principal contribution of DIGNEA is to offer to researchers fully generalisable
software to generate instances in any optimisation domain. These instances could be
then used for instance space representation, instance characterisation via hand-designed
features, automate designed features, algorithm design and selection, or even parameter
tuning evaluation for algorithms across domains. Moreover, since the generation of
a set of instances involves the resolution of those instances with several algorithms,
DIGNEA could also be used as an optimisation framework to separately validate the
instances generated.

The software is not only extendable from the domain point of view, but also from the
portfolio and novelty search descriptors. From the portfolio perspective, even though

3To see the full documentation and examples of DIGNEA, check the documentation at Github:
https://dignea.github.io/.

https://dignea.github.io/

88 DIGNEA: A Diverse Instance Generator with NS and EAs

the software is mainly conceived to use EAs, any other non-EA algorithms could also
be included. The current version of DIGNEA includes the following components for
instance generation:

• Solvers: Evolutionary Algorithms (EA objects), such as First Improve, Gen-
erational, Steady-State and Parallel Generational [89]; a Simulated Annealing
approach (SA), four deterministic heuristics for the KP (KPHeuristics), as
well as three deterministic heuristics for the TSP (TSPHeuristics).

• Novelty Search descriptor types: Novelty-Search by Features (NSFeatures) and
Novelty-Search by Portfolio Performance (NSPerformance).

• Domains: Knapsack Problem (classes KPDomain, KPInstance and KP), Trav-
elling Salesman Problem (classes TSPDomain, TSPInstance and TSP).

• Builders and Factories: EIGBuilder, a builder of EIG and MOEIG objects to gen-
erate instances; EABuilder, a builder of EA configurations; NSFactory, an NS
descriptor factory; CXFactory, a crossover operator factory; MutFactory, a
mutation operator factory; and a parent selection operator factory SelFactory.

• An instance printer class to generate domain-dependent instance files using the
insertion operator.4 This operator must be defined when creating a new domain
through the extension of class AbstractDomain.

Regarding the NS descriptors, NSFeatures allows searching for diversity in a
pre-defined feature space of the domain. Thus, users must define the set of features
that characterise an instance in the domain and how to compute them inside the
classes extending the AbstractDomain. Alternatively, NSPerformance searches
for diversity in the portfolio performance space. Here, we search for instances that are
diverse with respect to the performance of the solvers without considering any other
information. NSPerformance is a suitable option for domains where the features are
difficult to define or computationally expensive to calculate. It is relevant to remark
that considering the above NS descriptors, diversity can be calculated using three
different distance metrics: Euclidean, Manhattan, and Hamming. For further detail,
refer to the NS proposal [79].

The evolutionary process performed in DIGNEA to generate instances with either
EIG or MOEIG is detailed in Figure 6.2. Once the specific domain and the portfolio of

4C++ documentation: https://en.cppreference.com/w/cpp/io/basic_ostream/
operator_ltlt2

https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt2
https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt2

6.3 Software Description 89

Figure 6.2 Program flowchart of an instance generation process in DIGNEA.

solvers are configured, the evolutionary process begins. First, a random population
of instances is created and evaluated. After that, for G generations, the instances
are evolved by following the classical EA scheme. The variation operators (crossover
and mutation) are applied before evaluating all the instances with each algorithm in
the portfolio. After solving all instances with each algorithm in the portfolio, the
performance score ps, novelty score s, and a fitness value, if necessary, must be assigned
to each instance. For example, when running EIG)Here we use the term fitness from
the evolutionary computation field to define how suitable an instance is at a specific
point during the evolutionary process. Particularly, the fitness is calculated as a linear
weighted combination of two values: the performance score and the novelty score (see
Equation 3.3). However, as described in Section 3.3, MOEIG does not uses a fitness
value to generate diverse and discriminatory instances. Instead, ps and s are treated
as separate objectives to maximise. For more detail about the calculation of ps and s,
refer to Section 3.1.2 and 3.1.1. Also, note that the pseudo-code for the evaluations
and other procedures of EIG and MOEIG are detailed in Chapter 3.

90 DIGNEA: A Diverse Instance Generator with NS and EAs

// Portfolio configuration
auto reps = 1;
vector<unique_ptr<AbstractSolver>> portfolio;
portfolio.push_back(make_unique<Default>());
portfolio.push_back(make_unique<MPW>());
portfolio.push_back(make_unique<MaP>());
portfolio.push_back(make_unique<MiW>());

// KP instances parameters
auto upperBound = 1000;
auto instanceSize = 100;

// EIG Parameters
auto generations = 1000;
auto nInstances = 10;
auto cxRate = 0.8;
auto mutRate = 1.0 / instanceSize;
auto multiobjective = false;
auto phi = 0.85;

// Novelty Search parameters
auto threshold = 3;
auto k = 3;
auto distance = make_unique<Euclidean<float>>();

// Domain
auto domain = make_unique<KPDomain>(instanceSize, 1, nInstances,

1, upperBound, 1, upperBound);

Figure 6.3 Parameter settings for a DIGNEA run

6.4 Illustrative Example
In this section, an example of how DIGNEA can be used to generate instances in the
KP domain is provided. The example illustrates the software configuration, execution
and results to obtain sets of instances similar to those analysed in Chapter 4. To do
so, we only need to define the parameters for the domain, the portfolio of solvers, and
the particular NS descriptor to run the experiment. The documentation available at
the Github repository5 provides complete tutorials tp create new domains, algorithms
and run instance generation experiments.

Notice that to simplify the example, some template parameters and other irrelevant
code have been omitted.

5The Github repository of DIGNEA can be accessed through: https://github.com/DIGNEA/
dignea.

https://github.com/DIGNEA/dignea
https://github.com/DIGNEA/dignea

6.4 Illustrative Example 91

unique_ptr<EIG> generator =
EIGBuilder::create(multiobjective)

.toSolve(move(instKP))

.with()

.weights(phi, 1.0 - phi)

.portfolio(portfolio)

.repeating(reps)

.withSearch(NSType::Features, move(distance), threshold, k)

.with()

.crossover(CXType::Uniform)

.mutation(MutType::UniformOne)

.selection(SelType::Binary)

.withMutRate(mutRate)

.withCrossRate(cxRate)

.populationOf(nInstances)

.runDuring(generations);

generator->run(); // Runs EIG to generate KP instances

auto instances = generator->getResults(); // Collect the results

Figure 6.4 C++ source code fragment to generate KP instances in DIGNEA

In our example, we are using a portfolio of four deterministic KP heuristics [108]
to evolve KP instances based on the performance of those solvers. The portfolio is
defined as a C++ vector of unique pointers to AbstractSolver objects. Note that
the order in which the vector is populated is extremely important. The solver in the
first position, i.e., Default, located at position zero in the vector, will be considered
as the target solver, and therefore the instances generated will be tailored so this
solver outperforms the remaining solvers in the portfolio when solving those particular
instances. Figure 6.3 illustrates the creation of the KP heuristic portfolio and another
parameter setting to run the example. Considering the KP domain, we set the number
of items in the instances to N = 50, and the bounds wi, pi∀i ∈ N to be in the range
[1, 1000]. Note that the size of the instance must be set twice as large as the expected
outcome. For instance, if we want to generate KP instances with N = 50 items, the
instance size defined for EIG or MOEIG must be 100. The reason behind this decision
is based on how the instances are represented in memory when evolved in DIGNEA.
For the KP domain, item i is separated into wi and pi so the recombination and
mutation operators can act on profits or weights independently, instead of modifying
the entire item at the same time. For more detail, refer to Figure 3.3 and Section 3.1.1.
Another important parameter to consider is the multi-objective boolean flag passed
to EIGBuilder. This parameter determines whether EIGBuilder will create an

92 DIGNEA: A Diverse Instance Generator with NS and EAs

instance of EIG or MOEIG. For instance, in this example the value is false, meaning
the algorithm created is an EIG instance. Moreover, the number of objectives for
the domain must be set accordingly. This restriction is related to the inner creation
of objects of type AbstractInstance and how the evaluation process differs from
EIG and MOEIG. For example, when working with EIG, the number of objectives for
domains, such as KPDomain, must be set to one. Each domain may define the different
parameters required for a proper configuration of the environment. However, every
domain must initialise the expected parameters for an AbstractDomain, which are
the following: dimension (N as twice as much of the actual instance size), number of
objectives, and the number of constraints (usually zero). Apart from that, KPDomain
requires the definition of the number of instances to generate (same value as the
population size of EIG), lower and upper bounds for the weights and profits of the
items in the instances. Therefore, Figure 6.3 line 28 defines a KP domain where:

• The dimension of the instances for EIG is set to 100, generating KP instances
with N = 50 items.

• The number of objectives is set to 1. We are using EIG.

• The number of instances to generate is equal to 10.

• The bounds (low, up) for each weight in the resulting instances are: (1, 1000).

• The bounds (low, up) for each profit in the resulting instances are: (1, 1000).

After that, we use EIGBuilder to create a unique pointer to an EIG object with
all the configuration required to generate a set of instances for the KP domain. Notice
that EIGBuilder facilitates the initialisation process by using the necessary factories,
i.e., withSearch uses the NSFactory type to create a new NS descriptor object of
type NSFeatures with the remaining arguments. The above is illustrated in the
fragment of C++ code shown in Figure 6.4. This source code fragment shows that
the builder pattern is used to create a unique pointer to an EIG object. The methods
are self-explanatory. Calling the method run starts the evolutionary process, and the
method getResults provides the set of instances at the end of the execution.

Figure 6.5 shows a Javascript Object Notation (JSON) file generated from the
experiment detailed in this section. The JSON files usually contain all the information
from the algorithm such as EIG, the domain (KPDomain in our example), and a set
of solutions. The set contains the set of diverse instances generated by the EIG. Each
instance contains its novelty score, performance score, fitness, and actual instance
information. It may also contain its feature values if defined.

6.4 Illustrative Example 93

{ "algorithm": {
"portfolio": [
{ "isTarget": true, "name": "Default KP"
},
{ "isTarget": false, "name": "MPW KP"
},
{ "isTarget": false, "name": "MaP KP"
},
{ "isTarget": false, "name": "MiW KP"
}

],
(...) // Other relevant information
"set": {

"0": { // First instance
"novelty": 6938.35498046875,
"features": {

"Q": 23678.0,
"avg_eff": 0.7300000190734863,
"max_p": 991.0,
"max_w": 985.0,
"mean": 538.2100219726563,
"min_p": 8.0,
"min_w": 48.0,
"std": 298.83905029296875

},
"fitness": 116.80326843261719,
"n_vars": 100, // Inst. definition starts here
"capacity": 23678,
"profits": [

// 50 integers, one for each p_i
],
"weights": [

// 50 integers, one for each w_i
]

},
(...) // More instances
,
"n_solutions": 37,

},
}}

Figure 6.5 JSON file with the results from the instance generation experiment. This
type of file is directly provided by DIGNEA.

Applying a simple data analysis procedure of scalarisation and dimensionality
reduction can provide a clear visualisation of the instances produced, as demonstrated
through the entire Chapter 4.

94 DIGNEA: A Diverse Instance Generator with NS and EAs

6.5 Impact
Since the ASP was defined back in 1976, researchers have struggled to address this
computationally expensive problem. Traditionally, solving the ASP for a domain
involves at least a three-step procedure. First, we start by generating and gathering a
large number of instances to generate a dataset. Then, after defining a portfolio of
solvers, a considerably expensive computational experiment is required, i.e., solving
each instance in the dataset with every solver in the portfolio. Thereafter, a selection
mechanism must be applied to associate each instance to the solver that yields the best
performance. This process is very time-consuming and prone to human mistakes when
switching from one step to the next. Besides, in most cases, the instance generation
process is performed randomly and is not guaranteed to be representative of the domain
or emphasise the strengths/weaknesses of the solvers.

DIGNEA was designed to facilitate this process by combining the previous three
steps into one single procedure. The workflow of the software not only ensures that the
instances generated are correctly labelled to the best-performing solver in the portfolio,
but it also allows researchers to define how diverse they want the instances to be with
respect to one another. Moreover, the modular and template-based architecture of
DIGNEA provides researchers a straightforward way to switch domains and include
their own solvers. Although DIGNEA allows the one-step instance generation process
to be simplified, the above is still a computationally expensive task. The solvers in the
portfolio and the number of repetitions to perform on each generation must be selected
carefully. From our own experience, running DIGNEA with EAs and a large number of
evaluations to perform may involve several days, if not weeks, of computational work.
However, the software supports MPI parallelism of the experiments and, as a result,
it can be run in HPC systems to speed-up the process. For instance, DIGNEA has
been deployed and executed correctly in various HPC systems such as Archer26 and
TeideHPC.7

DIGNEA can be of great assistance to gain more insight into problems, their
instances, and how these instances share the feature and performance spaces with
the aim of better designing them. Furthermore, DIGNEA can be applied to pursue
new research questions, for example, about instance space representation, instance
characterisation via hand-designed features, automate designed features, algorithm
design and selection, or even parameter tuning evaluation for algorithms across domains.

6Archer2 website: https://www.archer2.ac.uk/
7TeideHPC website: https://teidehpc.iter.es/

https://www.archer2.ac.uk/
https://teidehpc.iter.es/

6.6 Conclusions and Future Lines of Work 95

6.6 Conclusions and Future Lines of Work
The main objective of this chapter is to present the software DIGNEA, a Diverse
Instance Generator with Novelty Search and Evolutionary Algorithms. DIGNEA is
defined using generic types and a modular architecture to facilitate its extension to
other domains and portfolios. Although the current version of the software contains
the required types for generating instances for the KP and TSP domain, work is in
progress to include more domains, such as Bin-Packing or the Menu Planning Problem.
The functionalities of DIGNEA have been widely proven in the previous chapters of
this thesis. Results have shown that it is able to generate better instances with respect
to space coverage, novelty, and fitness [90] in comparison to previous approaches that
only considered the generation of random instances to maximise the performance gap
among solvers [108, 128]. Furthermore, the software has been released as open source
to the research community [92].

Moreover, future lines of work on DIGNEA may include performance optimisation
to speed-up the generation process, and interfacing the C++ framework with Python
libraries to not only promote the use of other scientific libraries in the process, but
also to reach a wider audience that may not be comfortable with C++ programming.
Moreover, a pure Python re-implementation of DIGNEA could be also considered;
however, the viability of this line in terms of computational performance must be
studied.

Chapter 7

Conclusions

Generating sets of instances is a common task among computer scientists in the
optimisation field. Traditionally, statistical or random methods have been applied
to produce hard-to-solve instances or ‘benchmarks’ that can be used to analyse the
strengths and weaknesses of state-of-the-art algorithms in the field. Recently, numerous
proposals in the field of instance generation have focused on applying evolutionary
methods such as EAs for biased instance generation. However, most do not consider
diversity a relevant factor, thus producing high-redundant sets of instances and poor
coverage of the instance spaces. As discussed in Chapters 1 and 2, producing instance
sets that are as diverse as possible is desirable in many contexts, not only in the
analysis of state-of-the-art algorithms. The early stages of this thesis focused on one of
those contexts, the ASP, and soon realised the importance of the instance generation
process in the optimisation domains.

The aim of this thesis was to investigate the generation of diverse but also discrim-
inatory instances in optimisation domains by means of (1) proposing NS methods to
generate diverse and discriminatory instances with respect to a portfolio of solvers, (2)
evaluating the impact of problem formulation in the resulting set, (3) evaluating its
generalisation across optimisation domains and (4) developing open-source software
in C++ to facilitate the application of the methods to other researchers in the field.
Furthermore, this thesis tried to bring attention to the generation of diverse and dis-
criminatory instances and somehow bridge the gap between the two traditional trends
in the literature: the generation of pure diverse instances without even considering
the performance of different algorithms, and the generation of hard-to-solve instances
for state-of-the-art solvers that tend to produce homogeneous sets of instances. The
methods proposed in this thesis are able to take advantage of the best of both worlds

98 Conclusions

and thus produce diverse sets of instances for which one solver outperforms others in a
portfolio.

7.1 Key Results
This section is devoted to answering the research questions presented in Chapter 1 and
to discussing other important findings from the experimental assessments presented in
Chapters 4 and 5.

• Question 1: To what extent can a Novelty Search algorithm be used
to generate diverse and discriminatory instances that aim to provide
uniform coverage of the descriptor space for a portfolio of algorithms?
The experimental evaluation addressed in this thesis was designed to evaluate the
extent to which NS methods can be applied to generate diverse and discriminatory
instances. Although most of the work is focused on the KP domain, Chapter 5
also provided some insights into the TSP domain. As a result of this research,
two major NS algorithms are proposed: NSls and NSmo. The former uses
a fitness function that drives the evolutionary process, which consists of a
linear combination of novelty s and performance ps scores using a weighted-sum
aggregation, while the latter introduces a multi-objective methodology where each
objective is optimised simultaneously. In addition to the above, a deeper level of
instance evaluation was introduced: the instance descriptors. Two descriptors
are considered: a feature-based and a performance-based descriptor. In the KP
domain, the features descriptor is built with a set of eight features. On the other
hand, the performance-based descriptor is defined as an M -dimensional vector
with the average performance of each solver considered in a portfolio of size M .
Therefore, there are four NS methods in total: NSlsf , NSlsp NSmof , and NSmop.

Throughout Chapters 4 and 5 of this thesis, both NS methods (NSls and NSmo)
and descriptors have been evaluated to generate diverse and discriminatory
instances for KP and TSP domains. The results from this thesis, in conjunction
with previous works [87, 90], suggest that both are able to succeed in this task,
although there are a few limitations. First, both methods contain a significant
number of parameters that can take on a vast range of different values, making
the parameterisation of the algorithms considerably more difficult when switching
domains or descriptors. Another important finding is the unexpectedly low scores
in terms of unique instances in the KP domain (see Tables 4.3 and 4.6). This

7.1 Key Results 99

finding was also reported in previous work [87], where the mean unique instance
ratio remains around 30 per cent. However, for the TSP domain, the analysis
of the impact of ϕ shows that NSlsp is able to produce sets of instances with
extremely low levels of redundancy for ϕ > 0.3. Finally, even though a standard
EA approach (such as [108]) seems to produce sets with higher unique ratios
than NSls variants, both NS variants outperformed these approaches in the
KP domain in terms of space coverage U (covering larger areas of the features
and performance spaces) and performance gap(see Table 4.2). By contrast,
NSmo variants outperformed the NSGA-II algorithm to generate diverse and
discriminatory instances in both unique instances (in terms of Uniques and
Uniquep) and space coverage U (see Table 4.5).

• Question 2: How diverse are the instances evolved for each target with
respect to the performance gap, i.e., the magnitude of the difference
between the performance of the winning solver and the remaining
solvers in the portfolio?
One of the most interesting outcomes from the experimental evaluation of this
thesis is the diversity in terms of the performance gap. The first signs of
diversity with these metrics appeared when evaluating a portfolio of EAs in
the KP domain [90]. Throughout Chapters 4 and 5, several figures provided
a quantitative analysis of the performance gap distribution for each run. It is
important to bear in mind that the distribution of values depends on the portfolio
and the metric used to evaluate it. For instance, KP results from Chapter 4
present significantly larger values than results from the TSP domain, Chapter 5,
due to different metrics; i.e., profit versus IL. Moreover, note that it is much
more difficult to generate discriminatory instances for the two heuristics MPW
and Def than for MaP and MiW in the KP domain. It is not clear whether
this is due to the fact that these heuristics are intrinsically weak compared to
the other two, and hence there are very few cases in which they outperform the
other methods, or whether the algorithm fails to locate them. Even though such
behaviour must be expected in NSlsp and NSmop, results from NSlsf , NSmof

and [90] reveal that the methods are able to generate instances that are diverse
in terms of the performance difference when using a feature-based descriptor as
well. A likely explanation is that searching for diversity in the feature space may
produce different descriptors, and therefore instances, which tend to be easier or
harder to solve for a solver.

100 Conclusions

• Question 3: To what extent can a Novelty Search algorithm using
either feature or performance descriptor provide useful information of
the opposite search space? Are the Novelty Search methods with a
performance descriptor able to uniformly distribute the instances in
the feature space and vice versa?
In sections 4.1.3 and 4.2.3, we evaluated the capabilities of NSls and NSmo to
provide useful information about the foreign space, with respect to the descriptor
utilised in each run. Moreover, each method was compared with a standard
EA method as a base model; i.e., [108] for NSls and an NSGA-II for NSmo.
In addition, we provide qualitative and quantitative results of the distribution
of instances across both spaces for each method. In Section 4.1.3, Figure 4.5
illustrated that while [108] clustered all the instances in the centre of both
spaces, NSlsf and NSlsp were able to better distribute the instances in their
respective spaces. Moreover, Table 4.2 demonstrates that each NSls method
outperforms its opponents in their ‘own’ space with respect to the U metric; i.e.,
NSlsf scored U = 0.5883 in the features space while NSlsp reached U = 0.6426
in the performance space. Besides, [108] obtained significantly lower coverage
values in both spaces. Additionally, Section 4.2.3 presents an identical analysis
for NSmo approaches. Results from Figure 4.10 and Table 4.5 exhibited similar
behaviour to NSls. Interestingly enough, although NSmo was able to generate
larger sets of instances per run, neither method was able to score better coverage
values than NSls. NSmof scored U = 0.5681 and NSmop scored U = 0.5437 in
their respective spaces. This behaviour could be an indication that the NSmo

may require an in-depth parameter tuning evaluation to generate slightly more
spread sets of instances. Furthermore, in this evaluation, NSGA-II scored even
lower coverage values than [108], with U < 0.35 in both spaces.

• Question 4: To what extent can the formulation of the instance gener-
ation problem impact the resulting sets of instances? In other words,
are there substantial differences in diversity, space coverage and the
total number of instances in the sets generated per run between a
Novelty Search method using a single-objective approach and a Multi-
objective-based Novelty Search algorithm?
There are some interesting outcomes that can be drawn from the experimental
evaluation in Chapter 4. First, while the NSls approach was able to generate
more diverse sets of instances in both spaces, NSmo was able to create larger ones.
However, NSmo coverage scores are still competitive when compared with NSls.

7.1 Key Results 101

Section 4.3 provides a direct comparison between NSls and NSmo approaches in
both spaces. The results revealed that each method was able to explore different
regions of the spaces. Thus, even though there exists a slight overlap, they
could be complementary. Figures 4.11 and 4.12 show that an ensemble of both
approaches was able to cover more of the space than any individual method and
that each one contributes towards the final collection. Therefore, there is value
in using an ensemble approach. Finally, we could not conclude that the problem
strongly benefits from one or another approach, but that a combination of both
methods is desirable. However, in light of the results, we may suggest using
NSls when more diverse sets are required, and NSmo when the total amount of
instances is more important. Besides, these results are only applied to the KP
domain and should not be extrapolated to all domains

• Question 5: To what extent can Novelty Search methods be generalised
to other optimisation domains when relying on performance-based
descriptors?
The methods presented here are generalisable to any combinatorial optimisation
domain; particularly, by using NSlsp or NSmop, which does not require an
intensive problem domain analysis and is a much more straightforward method in
comparison to NSlsf and NSmof . To illustrate this, Chapter 5 demonstrated the
application of both NSlsp and NSmop methods in the TSP domain. The TSP is a
well-known domain for which several feature descriptors have been proposed [9, 10,
122]. However, some of these features can be difficult or computationally expensive
to calculate. For this reason, it is a suitable domain to evaluate the ability to
generalise of the NS methods presented here. We evaluated both methods using
a portfolio of three TSP heuristics to create TSP instances with 50 nodes. The
results demonstrated that NSlsp was not only able to proficiently differentiate
the two principal heuristics (Greedy from 2-Opt types) in the portfolio (see
Figure 5.3), but it also obtained similar coverage scores and performance gap
diversity to the KP domain. By contrast, NSmop was not able to group the
instances per solvers like NSlsp. Figure 5.6 shows how most of the instances
are located in the left bottom of the performance space, with small clusters of
NN-2-Opt instances in the right and top areas. Nevertheless, NSmop was able to
obtain competitive results in terms of space coverage U and performance gap
diversity. Furthermore, Figure 5.8 illustrated that, since there exists a clear
difference between both methods, an ensemble could provide some benefits in
terms of space coverage and diversity. In conclusion, the methods proposed here

102 Conclusions

can be applied to more domains than just the KP. The results from Chapter 5
demonstrated that both methods are able to produce high-quality results when
using a performance-based descriptor. Besides, we encourage the application of
these descriptors to facilitate a much more straightforward transition to other
domains. However, if time and computational resources are no object, defining a
feature descriptor could also be desirable.

Another interesting outcome from the research in this thesis is the correlation
between ϕ and the space coverage U in NSlsp. This behaviour was previously invest-
igated in the KP domain with NSlsf and an EA-based portfolio [90]. Section 5.2.1
corroborates the findings from [90], i.e., larger ϕ values tend to create less diverse sets
of instances. In fact, Figure 5.4 shows a strong negative correlation between ϕ and U .
Pearson’s Correlation Coefficient (r) supports that statement with r = −0.9234.

7.2 Future Work
In terms of future work, there are several interesting lines that may be addressed. First,
both NSls and NSmo only consider the performance difference between two solvers
when calculating the performance score ps of an instance, target and the maximum
performance among others. Future work can be directed towards updating the ps

calculation to consider more than one solver, such as [12]. Therefore, the performance
score will reflect the difference between all solvers in the portfolio instead of between
the target solver and the best solver among others. Second, other interesting lines of
research can include evaluating the NS methods with diverse portfolios and generating
larger instances.

We have collected many KP instances as a result of the experimental evaluation
performed over these years. Hence, future work may include the design of Machine
Learning models to solve the ASP in the KP domain. Moreover, this work may
benefit from the previously mentioned lines. Obtaining instances with various sizes and
biased to different solvers, more than just deterministic heuristics and EAs [90], could
potentiate the ability to perform algorithm selection by providing new augmented
datasets to train machine-learning-based classifiers.

Considering the software DIGNEA, future work may be directed to include new
domains such as the BPP and new solvers to existing and new domains. Therefore,
we aim to extend the capabilities of the software to facilitate the application of the
methods to the research community. In addition, performance optimisation to speed
up the generation process, and interfacing the C++ framework with Python libraries

7.3 Publications Resulting from the Research of this Thesis 103

to reach a wider audience that may not be comfortable with C++ programming are
other interesting projects.

Finally, another future line of research is to transfer the methods to a real-world
problem. This thesis started investigating the Menu Planning Problem in school
cafeterias from Tenerife [88, 91]. We considered a novel constrained multi-objective
formulation for the MPP, where the cost of the menus and the level of repetition are
the two objectives that have to be minimised simultaneously. Moreover, some studies
suggest that the MPP can be reduced to a MDKP problem [116]. However, there are
slight differences in terms of the instances between KP and MPP. An instance in the
MPP is represented by a set of meals prepared with one or more ingredients (each
ingredient has a collection of nutritional facts), which has an associated cost. Besides,
the amount of ingredients required to prepare a meal also affects the final cost. Since
it is impossible to create ingredients that do not exist in the real world, there are
fewer options to evolve diverse instances in the MPP domain. The main alternatives
are to (1) initialise the instances with meals from previously collected recipes and
evolve them by changing the amount of each ingredient, and (2) create custom meals
with ingredients extracted from specialised databases such as FoodData 1 or Food
Composition Data 2. Furthermore, the formulation of the MPP domain in DIGNEA
may also introduce a domain-specific set of constraints to avoid undesirable outcomes.

7.3 Publications Resulting from the Research of
this Thesis

The following journal articles and conference papers, listed in chronological order, were
published during the period of study resulting in this thesis.

7.3.1 Journal Articles

• Marrero, A., Segredo, E., León, C. and Hart, E. 2023. DIGNEA: A Tool to
Generate Diverse and Discriminatory Instance Suites for Optimisation Domains.
SoftwareX 22.

• Marrero, A., Segredo, E., León, C. and Segura, C. 2020. A Memetic Decomposition-
Based Multi-Objective Evolutionary Algorithm Applied to a Constrained Menu
Planning Problem. Mathematics 8, 1-18.

1https://fdc.nal.usda.gov/
2https://www.efsa.europa.eu/es/microstrategy/food-composition-data

104 Conclusions

7.3.2 International Conferences

• Marrero, A., Segredo, E., Hart, E., Bossek, J., and Neumann, A. 2023. Generating
diverse and discriminatory knapsack instances by searching for novelty in variable
dimensions of feature-space. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’23). Association for Computing Machinery,
New York, NY, USA, 312–320.

• Marrero, A., Segredo, E., León, C., and Hart, E. 2022. A Novelty-Search Approach
to Filling an Instance-Space with Diverse and Discriminatory Instances for the
Knapsack Problem. In Parallel Problem Solving from Nature – PPSN XVII: 17th
International Conference, PPSN 2022, Dortmund, Germany, September 10–14,
2022, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg, 223–236.

• Marrero, A., Segredo, E., and León, C. 2021. A parallel genetic algorithm to
speed up the resolution of the algorithm selection problem. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion (GECCO
’21). Association for Computing Machinery, New York, NY, USA, 1978–1981.

• Marrero, A., Segredo, E., and León, C. 2019. On the automatic planning of
healthy and balanced menus. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’19). Association for Computing
Machinery, New York, NY, USA, 71–72.

7.3.3 Spanish National Conferences

• Marrero, A., Segredo, E. and León, C. 2018. Combinación De Computación
Evolutiva Y Aprendizaje Automatizado En La Resolución De Problemas De
Optimización. In XVIII Conferencia de la Asociación Española para la Inteligencia
Artificial (CAEPIA 2018): Avances en Inteligencia Artificial. 23-26 de octubre
de 2018 Granada, España, Asociación Española para la Inteligencia Artificial
(AEPIA), 1361-1366.

Bibliography

[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the
Surprising Behavior of Distance Metrics in High Dimensional Space. In Database
Theory — ICDT 2001, Jan den Bussche and Victor Vianu (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 420–434.

[2] Mohamad Alissa, Kevin Sim, and Emma Hart. 2019. Algorithm Selection Using
Deep Learning without Feature Extraction. In Proceedings of the Genetic and
Evolutionary Computation Conference (Prague, Czech Republic) (GECCO ’19).
Association for Computing Machinery, New York, NY, USA, 198–206.

[3] R. Andonov, V. Poirriez, and S. Rajopadhye. 2000. Unbounded knapsack problem:
Dynamic programming revisited. European journal of operational research 123, 2
(2000), 394–407.

[4] Enrico Angelelli, Renata Mansini, and M. Grazia Speranza. 2010. Kernel search:
A general heuristic for the multi-dimensional knapsack problem. Computers &
operations research 37, 11 (2010), 2017–2026.

[5] Federico Antonello, Piero Baraldi, Enrico Zio, and Luigi Serio. 2022. A novelty-
based multi-objective evolutionary algorithm for identifying functional dependen-
cies in complex technical infrastructures from alarm data. Environment systems
& decisions 42, 2 (2022), 177–188.

[6] Tiziano Bacci and Sara Nicoloso. 2021. On the Benchmark Instances for the
Bin Packing Problem with Conflicts. Springer International Publishing, Cham,
171–179.

[7] Tapan P. Bagchi, Jatinder N.D. Gupta, and Chelliah Sriskandarajah. 2006. A
review of TSP based approaches for flowshop scheduling. European Journal of
Operational Research 169, 3 (2006), 816–854.

[8] Jon Bentley. 1992. Fast Algorithms for Geometric Traveling Salesman Problems.
INFORMS J. Comput. 4 (1992), 387–411.

[9] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank
Neumann, and Heike Trautmann. 2019. Evolving Diverse TSP Instances by
Means of Novel and Creative Mutation Operators. In Proceedings of the 15th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms (Potsdam,
Germany) (FOGA ’19). Association for Computing Machinery, New York, NY,
USA, 58–71.

106 Bibliography

[10] Jakob Bossek and Frank Neumann. 2022. Exploring the Feature Space of TSP
Instances Using Quality Diversity. In Proceedings of the Genetic and Evolutionary
Computation Conference (Boston, Massachusetts) (GECCO ’22). Association for
Computing Machinery, New York, NY, USA, 186–194.

[11] Jakob Bossek and Heike Trautmann. 2016. Understanding Characteristics of
Evolved Instances for State-of-the-Art Inexact TSP Solvers with Maximum
Performance Difference. In Proceedings of the XV International Conference of the
Italian Association for Artificial Intelligence on Advances in Artificial Intelligence
- Volume 10037 (AI*IA 2016). Springer-Verlag, Berlin, Heidelberg, 3–12.

[12] Jakob Bossek and Markus Wagner. 2021. Generating Instances with Performance
Differences for More than Just Two Algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (Lille, France) (GECCO
’21). Association for Computing Machinery, New York, NY, USA, 1423–1432.

[13] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. 2013. A survey on optimiz-
ation metaheuristics. Information Sciences 237 (2013), 82–117.

[14] V. Boyer, M. Elkihel, and D. El Baz. 2009. Heuristics for the 0–1 multidimensional
knapsack problem. European journal of operational research 199, 3 (2009), 658–
664.

[15] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. 1999. Constraint
satisfaction problems: Algorithms and applications. Eur. J. Oper. Res. 119, 3
(1999), 557–581.

[16] Kurt M Bretthauer and Bala Shetty. 2002. The nonlinear knapsack problem –
algorithms and applications. European Journal of Operational Research 138, 3
(2002), 459–472.

[17] Edgar Buchanan, Léni K Le Goff, Wei Li, Emma Hart, Agoston E Eiben, Matteo
De Carlo, Alan F Winfield, Matthew F Hale, Robert Woolley, Mike Angus,
et al. 2020. Bootstrapping artificial evolution to design robots for autonomous
fabrication. Robotics 9, 4 (2020), 106.

[18] Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. 2022.
Knapsack problems — An overview of recent advances. Part I: Single knapsack
problems. Computers & operations research 143 (2022), 105692.

[19] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-
Baptiste Mouret. 2021. Quality-Diversity Optimization: A Novel Branch of
Stochastic Optimization. In Black Box Optimization, Machine Learning, and
No-Free Lunch Theorems, Panos M Pardalos, Varvara Rasskazova, and Michael N
Vrahatis (Eds.). Springer International Publishing, Cham, 109–135.

[20] Omar Cheikhrouhou and Ines Khoufi. 2021. A comprehensive survey on the
Multiple Traveling Salesman Problem: Applications, approaches and taxonomy.
Computer science review 40 (2021), 100369.

Bibliography 107

[21] Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. 2019.
A survey on handling computationally expensive multiobjective optimization
problems with evolutionary algorithms. Soft computing (Berlin, Germany) 23, 9
(2019), 3137–3166.

[22] Grit Claßen, Arie M.C.A. Koster, and Anke Schmeink. 2015. The multi-band
robust knapsack problem—A dynamic programming approach. Discrete optimiz-
ation 18 (2015), 123–149.

[23] G. A. Croes. 1958. A Method for Solving Traveling-Salesman Problems. Opera-
tions Research 6, 6 (1958), 791–812.

[24] Giuseppe Cuccu and Faustino Gomez. 2011. When Novelty Is Not Enough. In
Applications of Evolutionary Computation, Cecilia Di Chio, Stefano Cagnoni,
Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna I. Esparcia-Alcázar, Juan J. Merelo,
Ferrante Neri, Mike Preuss, Hendrik Richter, Julian Togelius, and Georgios N.
Yannakakis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 234–243.

[25] Antoine Cully and Jean-Baptiste Mouret. 2013. Behavioral Repertoire Learning
in Robotics. In Proceedings of the 15th Annual Conference on Genetic and Evolu-
tionary Computation (Amsterdam, The Netherlands) (GECCO ’13). Association
for Computing Machinery, New York, NY, USA, 175–182.

[26] Miguel Cárdenas-Montes. 2018. Creating hard-to-solve instances of travelling
salesman problem. Applied soft computing 71 (2018), 268–276.

[27] Tobias (1884-1956) Dantzig. 1954. Number: the language of science (4th ed.,
rev. and augm.. ed.). The Macmillan Limited, New York.

[28] Kalyanmoy Deb and Kalyanmoy Deb. 2014. Multi-objective Optimization.
Springer US, Boston, MA, 403–449.

[29] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation 6 (4 2002), 182–197. Issue 2.

[30] Maxence Delorme, Manuel Iori, and Silvano Martello. 2016. Bin packing and
cutting stock problems: Mathematical models and exact algorithms. European
Journal of Operational Research 255, 1 (2016), 1–20.

[31] Ioannis C. Demetriou and Panos M. Pardalos. 2019. No Free Lunch Theorem: A
Review. Vol. 145. Switzerland: Springer International Publishing AG, Switzerland,
57–82.

[32] Stephane Doncieux, Alban Laflaquière, and Alexandre Coninx. 2019. Novelty
Search: A Theoretical Perspective. In Proceedings of the Genetic and Evolutionary
Computation Conference (Prague, Czech Republic) (GECCO ’19). Association
for Computing Machinery, New York, NY, USA, 99–106.

[33] Ke-Lin Du and M. N. S. Swamy. 2016. Search and Optimization by Metaheuristics:
Techniques and Algorithms Inspired by Nature (1st ed.). Birkhäuser Basel,
Dordrecht. 327–336 pages.

108 Bibliography

[34] Agoston E. Eiben and James E. Smith. 2015. Introduction to Evolutionary
Computing. Springer Berlin, Heidelberg, Heidelberg. 287 pages.

[35] Andries P. Engelbrecht. 2007. Introduction to Computational Intelligence. John
Wiley & Sons, Ltd, California, USA, Chapter 1, 1–13.

[36] Guillaume Escamocher, Barry O’Sullivan, and Steven Prestwich. 2020. Generating
Difficult CNF Instances in Unexplored Constrainedness Regions. The ACM
journal of experimental algorithmics 25, 1 (Jul 04, 2020), 1–12.

[37] Absalom E. Ezugwu, Verosha Pillay, Divyan Hirasen, Kershen Sivanarain, and
Melvin Govender. 2019. A Comparative Study of Meta-Heuristic Optimization
Algorithms for 0 - 1 Knapsack Problem: Some Initial Results. IEEE access 7
(2019), 43979–44001.

[38] Evelyn Fix and J. L. Hodges. 1989. Discriminatory Analysis. Nonparametric
Discrimination: Consistency Properties. International Statistical Review / Revue
Internationale de Statistique 57, 3 (1989), 238–247.

[39] R. Fletcher. 1994. An Overview of Unconstrained Optimization. Springer Nether-
lands, Dordrecht, 109–143.

[40] Merrill M. Flood. 1956. The Traveling-Salesman Problem. Operations research 4,
1 (1956), 61–75. 12.

[41] L. J. Fogel, A. J. Owens, and M. J. Walsh. 1965. Intelligent decision-making
through a simulation of evolution. IEEE transactions on human factors in
electronics HFE-6, 1 (1965), 13–23.

[42] Karl Pearson F.R.S. 1901. LIII. On lines and planes of closest fit to systems of
points in space. Philosophical Magazine Series 1 2 (1901), 559–572.

[43] B. Fuglede and F. Topsoe. 2004. Jensen-Shannon divergence and Hilbert space
embedding. In International Symposium on Information Theory, 2004. ISIT
2004. Proceedings. IEEE, Chicago, IL, USA, 31–.

[44] G. Gallo, P. L. Hammer, and B. Simeone. 1980. Quadratic knapsack problems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 132–149.

[45] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2016. Feature-Based
Diversity Optimization for Problem Instance Classification. In Parallel Problem
Solving from Nature – PPSN XIV, Julia Handl, Emma Hart, Peter R. Lewis,
Manuel López-Ibáñez, Gabriela Ochoa, and Ben Paechter (Eds.). Springer Inter-
national Publishing, Cham, 869–879.

[46] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2021. Feature-based
diversity optimization for problem instance classification. Evolutionary Compu-
tation 29, 1 (2021), 107–128.

[47] T. Gau and G. Wäscher. 1995. CUTGEN1: A problem generator for the standard
one-dimensional cutting stock problem. European Journal of Operational Research
84, 3 (1995), 572–579.

Bibliography 109

[48] Mitsuo Gen and Lin Lin. 2014. Multiobjective evolutionary algorithm for man-
ufacturing scheduling problems: state-of-the-art survey. Journal of intelligent
manufacturing 25, 5 (2014), 849–866.

[49] Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
(2nd ed.). O’Reilly Media, Inc., California 95472.

[50] Marc Goerigk and Mohammad Khosravi. 2022. Benchmarking Problems for
Robust Discrete Optimization. arXiv:2201.04985 [math.OC]

[51] Marc Goerigk and Stephen J. Maher. 2020. Generating hard instances for robust
combinatorial optimization. European Journal of Operational Research 280, 1
(2020), 34–45.

[52] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov.
2004. Neighbourhood Components Analysis. In Advances in Neural Information
Processing Systems, L. Saul, Y. Weiss, and L. Bottou (Eds.), Vol. 17. MIT Press,
London, England.

[53] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. 2015. Devising
Effective Novelty Search Algorithms: A Comprehensive Empirical Study. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation (Madrid, Spain) (GECCO ’15). Association for Computing Machinery,
New York, NY, USA, 943–950.

[54] Haipeng Guo and William H. Hsu. 2007. A machine learning approach to
algorithm selection for NP-hard optimization problems: A case study on the
MPE problem. Annals of operations research 156, 1 (2007), 61–82.

[55] Doug Hains, Darrell Whitley, and Adele Howe. 2012. Improving Lin-Kernighan-
Helsgaun with Crossover on Clustered Instances of the TSP. In Parallel Problem
Solving from Nature - PPSN XII, Carlos A. Coello Coello, Vincenzo Cutello,
Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 388–397.

[56] Melanie Herzog, Sebastian Lotz, and Wolfgang F. Riedl. 2014. The Traveling
Salesman Problem. https://www-m9.ma.tum.de/games/tsp-game/

[57] Y.C. Ho and D.L. Pepyne. 2002. Simple Explanation of the No-Free-Lunch
Theorem and Its Implications. Journal of Optimization Theory and Applications
115 (12 2002), 549–570. Issue 3.

[58] Dorit S. Hochbaum. 1995. A Nonlinear Knapsack Problem. Oper. Res. Lett. 17,
3 (apr 1995), 103–110.

[59] Abdollah Homaifar, Charlene X. Qi, and Steven H. Lai. 1994. Constrained
Optimization Via Genetic Algorithms. SIMULATION 62, 4 (1994), 242–253.

[60] Satoshi Horie and Osamu Watanabe. 1997. Hard instance generation for SAT.
In Algorithms and Computation, Hon Wai Leong, Hiroshi Imai, and Sanjay Jain
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 22–31.

https://www-m9.ma.tum.de/games/tsp-game/

110 Bibliography

[61] Mohammad Hossin and Md Nasir Sulaiman. 2015. A review on evaluation
metrics for data classification evaluations. International journal of data mining
& knowledge management process 5, 2 (2015), 1.

[62] Stefan Hougardy and Xianghui Zhong. 2021. Hard to solve instances of the
Euclidean Traveling Salesman Problem. Mathematical programming computation
13, 1 (2021), 51–74.

[63] Kashif Hussain, Mohd N. Mohd Salleh, Shi Cheng, and Yuhui Shi. 2019. Meta-
heuristic research: a comprehensive survey. The Artificial intelligence review 52,
4 (2019), 2191–2233.

[64] Colin Johnson, Vic Ciesielski, João Correia, and Penousal Machado. 2016. Fitness
and Novelty in Evolutionary Art. Vol. 9596. Switzerland: Springer International
Publishing AG, Switzerland, 225–240.

[65] Jorik Jooken, Pieter Leyman, and Patrick De Causmaecker. 2022. A new class
of hard problem instances for the 0–1 knapsack problem. European Journal of
Operational Research 301, 3 (2022), 841–854.

[66] Bryant Julstrom. Jul 08, 2009. Evolving heuristically difficult instances of
combinatorial problems. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation (GECCO). Association for Computing Machinery
- ACM, New York, NY, USA, 279–286.

[67] Bryant A. Julstrom. 2009. Evolving Heuristically Difficult Instances of Combin-
atorial Problems. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (Montreal, Québec, Canada) (GECCO ’09). Associ-
ation for Computing Machinery, New York, NY, USA, 279–286.

[68] André A. Keller. 2017. Multi-Objective Optimization in Theory and Practice I:
Classical Methods. Bentham eBook, Bentham Science Publishers Executive Suite
Y - 2 Building Y Saif Zone Sharjah, U.A.E. 296 pages.

[69] Andre A. Keller. 2019. Multi-Objective Optimization in Theory and Practice
II: Metaheuristic Algorithms. Bentham Science Publishers, Bentham Science
Publishers Executive Suite Y - 2 Building Y Saif Zone Sharjah, U.A.E. 310
pages.

[70] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. 2019.
Automated algorithm selection: Survey and perspectives. Evolutionary computa-
tion 27, 1 (2019), 3–45.

[71] Ines Khoufi, Anis Laouiti, and Cedric Adjih. 2019. A survey of recent extended
variants of the traveling salesman and vehicle routing problems for unmanned
aerial vehicles. Drones (Basel) 3, 3 (2019), 1–30.

[72] Jong-Hwan Kim and Hyun Myung. 1997. Evolutionary programming techniques
for constrained optimization problems. , 129-140 pages.

[73] Wilhelm Kirch (Ed.). 2008. Pearson’s Correlation Coefficient. Springer Nether-
lands, Dordrecht, 1090–1091.

Bibliography 111

[74] John R. Koza. 1992. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[75] Rajeev Kumar and Nilanjan Banerjee. 2006. Analysis of a Multiobjective Evolu-
tionary Algorithm on the 0–1 knapsack problem. Theoretical computer science
358, 1 (2006), 104–120.

[76] Xiangjing Lai, Jin-Kao Hao, Fred Glover, and Zhipeng Lü. 2018. A two-phase
tabu-evolutionary algorithm for the 0–1 multidimensional knapsack problem.
Information sciences 436-437 (2018), 282–301.

[77] Léni K. Le Goff, Emma Hart, Alexandre Coninx, and Stéphane Doncieux. 2020.
On Pros and Cons of Evolving Topologies with Novelty Search. In Proceeedings
of the ALIFE 2020: The 2020 Conference on Artificial Life (ALIFE 2022: The
2022 Conference on Artificial Life, Vol. ALIFE 2020: The 2020 Conference
on Artificial Life), Josh Bongard, Juniper Lovato, Laurent Hebert-Dufrésne,
Radhakrishna Dasari, and Lisa Soros (Eds.). MIT Press, Montréal, Canada,
423–431.

[78] Joel Lehman and Kenneth O. Stanley. 2010. Efficiently Evolving Programs
through the Search for Novelty. In Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation (Portland, Oregon, USA) (GECCO ’10).
Association for Computing Machinery, New York, NY, USA, 837–844.

[79] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation 19, 2 (2011),
189–222.

[80] J. K. Lenstra and A. H. G. Rinnooy Kan. 1975. Some Simple Applications of
the Travelling Salesman Problem. Operational Research Quarterly (1970-1977)
26, 4 (1975), 717–733.

[81] Coromoto León, Gara Miranda, and Carlos Segura. 2009. METCO: a Parallel
Plugin-Based Framework for Multi-Objective Optimization. International Journal
on Artificial Intelligence Tools 18, 04 (2009), 569–588.

[82] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2015. Constrained
Novelty Search: A Study on Game Content Generation. Evol. Comput. 23, 1
(mar 2015), 101–129.

[83] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: Neural Architecture
Search Using Multi-Objective Genetic Algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (Prague, Czech Republic) (GECCO
’19). Association for Computing Machinery, New York, NY, USA, 419–427.

[84] Thibaut Lust and Jacques Teghem. 2010. The Multiobjective Traveling Salesman
Problem: A Survey and a New Approach. Vol. 272. Berlin, Heidelberg: Springer
Berlin Heidelberg, Berlin, Heidelberg, 119–141.

112 Bibliography

[85] Thibaut Lust and Jacques Teghem. 2012. The multiobjective multidimensional
knapsack problem: a survey and a new approach. International Transactions in
Operational Research 19, 4 (2012), 495–520.

[86] William G. Macready and David H. Wolpert. 1996. What makes an optimization
problem hard? Complexity 1, 5 (1996), 40–46.

[87] Alejandro Marrero, Eduardo Segredo, Emma Hart, Jakob Bossek, and Aneta
Neumann. 2023. Generating Diverse and Discriminatory Knapsack Instances by
Searching for Novelty in Variable Dimensions of Feature-Space. In Proceedings
of the Genetic and Evolutionary Computation Conference (Lisbon, Portugal)
(GECCO ’23). Association for Computing Machinery, New York, NY, USA,
312–320.

[88] Alejandro Marrero, Eduardo Segredo, and Coromoto Leon. 2019. On the auto-
matic planning of healthy and balanced menus. In GECCO 2019 Companion
- Proceedings of the 2019 Genetic and Evolutionary Computation Conference
Companion. Association for Computing Machinery, Inc, Prague, Czech Republic,
71–72.

[89] Alejandro Marrero, Eduardo Segredo, and Coromoto Leon. 2021. A Parallel
Genetic Algorithm to Speed up the Resolution of the Algorithm Selection Prob-
lem. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (Lille, France) (GECCO ’21). Association for Computing Machinery,
New York, NY, USA, 1978–1981.

[90] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2022. A
Novelty-Search Approach to Filling an Instance-Space with Diverse and Discrim-
inatory Instances for the Knapsack Problem. In Parallel Problem Solving from
Nature – PPSN XVII. Springer International Publishing, Cham, 223–236.

[91] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Carlos Segura. 2020. A
Memetic Decomposition-Based Multi-Objective Evolutionary Algorithm Applied
to a Constrained Menu Planning Problem. Mathematics 8, 11 (2020), 18 pages.

[92] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2023.
DIGNEA: A tool to generate diverse and discriminatory instance suites for
optimisation domains. SoftwareX 22 (2023), 101355.

[93] Silvano Martello, David Pisinger, and Paolo Toth. 1999. Dynamic Programming
and Strong Bounds for the 0-1 Knapsack Problem. Management Science 45, 3
(Mar 01, 1999), 414–424.

[94] Radek Matousek. 2018. Stochastic Heuristics for Knapsack Problems. In Advances
in Intelligent Systems and Computing. Advances in Intelligent Systems and
Computing, Vol. 837. Springer International Publishing AG, Switzerland, 157–
166.

[95] Krzysztof Michalak. 2021. Generating hard inventory routing problem instances
using evolutionary algorithms.

Bibliography 113

[96] Seyedali Mirjalili. 2018. Evolutionary Algorithms and Neural Networks: Theory
and Applications. Studies in Computational Intelligence, Vol. 780. Springer
International Publishing AG, Cham.

[97] Melanie Mitchell. 1998. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, USA.

[98] Jean-Baptiste Mouret. 2011. Novelty-Based Multiobjectivization. In New Ho-
rizons in Evolutionary Robotics, Vol. 341. Berlin, Heidelberg: Springer Berlin
Heidelberg, Berlin, Heidelberg, 139–154.

[99] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by
mapping elites.

[100] Jean-Baptiste Mouret and Stéphane Doncieux. 2012. Encouraging Behavioral Di-
versity in Evolutionary Robotics: an Empirical Study. Evolutionary Computation
20, 1 (2012), 91–133.

[101] Mario A Muñoz and Kate Smith-Miles. 2020. Generating new space-filling test
instances for continuous black-box optimization. Evolutionary computation 28, 3
(2020), 379–404.

[102] Christian Nilsson. 2003. Heuristics for the Traveling Salesman Problem. Linkoping
University 38 (2003), 00085–9.

[103] Christos Papalitsas and Theodore Andronikos. 2019. Unconventional GVNS
for Solving the Garbage Collection Problem with Time Windows. Technologies
(Basel) 7, 3 (2019), 61.

[104] David Pisinger. 1995. An expanding-core algorithm for the exact 0–1 knapsack
problem. , 175 pages.

[105] David Pisinger. 2000. A Minimal Algorithm for the Bounded Knapsack Problem.
INFORMS journal on computing 12, 1 (2000), 75–82.

[106] David Pisinger. 2005. Where are the hard knapsack problems? Computers and
Operations Research 32, 9 (2005), 2271–2284.

[107] David Pisinger. 2007. The quadratic knapsack problem—a survey. DISCRETE
APPLIED MATHEMATICS 155, 5 (2007), 623–648.

[108] Luis Fernando Plata-González, Ivan Amaya, José Carlos Ortiz-Bayliss, Santi-
ago Enrique Conant-Pablos, Hugo Terashima-Marín, and Carlos A. Coello Coello.
2019. Evolutionary-based tailoring of synthetic instances for the Knapsack
problem. Soft Computing 23, 23 (2019), 12711–12728.

[109] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity:
A new frontier for evolutionary computation. Frontiers in Robotics and AI 3
(2016), 40.

114 Bibliography

[110] Justin K. Pugh, L. B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. 2015.
Confronting the Challenge of Quality Diversity. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation (Madrid, Spain) (GECCO
’15). Association for Computing Machinery, New York, NY, USA, 967–974.

[111] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. 2011. Traveling
salesman problem heuristics: Leading methods, implementations and latest
advances. European Journal of Operational Research 211, 3 (2011), 427–441.

[112] John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers
15, C (1976), 65–118.

[113] Aiying Rong, José Rui Figueira, and Kathrin Klamroth. 2012. Dynamic pro-
gramming based algorithms for the discounted 0–1 knapsack problem. Applied
mathematics and computation 218, 12 (2012), 6921–6933.

[114] Hans-Paul Paul Schwefel. 1993. Evolution and Optimum Seeking: The Sixth
Generation. John Wiley & Sons, Inc., USA.

[115] P. Schwerin and G. Wäscher. 1997. The Bin-Packing Problem: A Problem
Generator and Some Numerical Experiments with FFD Packing and MTP.
International Transactions in Operational Research 4, 5-6 (1997), 377–389.

[116] Barbara K. Seljak. 2009. Computer-based dietary menu planning. Journal of
food composition and analysis 22, 5 (Aug 01, 2009), 414–420.

[117] David K Smith. 1991. Dynamic programming : a practical introduction (1st pub..
ed.). Ellis Horwood, New York [etc.].

[118] Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. 2014.
Towards objective measures of algorithm performance across instance space.
Computers & Operations Research 45 (2014), 12–24.

[119] Kate Smith-Miles and Simon Bowly. 2015. Generating new test instances by
evolving in instance space. Computers and Operations Research 63 (2015),
102–113.

[120] Kate Smith-Miles, Jeffrey Christiansen, and Mario A. Muñoz. 2021. Revisiting
where are the hard knapsack problems? via Instance Space Analysis. Computers
& Operations Research 128 (2021), 105184.

[121] Kate Smith-Miles and Leo Lopes. 2012. Measuring instance difficulty for com-
binatorial optimization problems. Computers & operations research 39, 5 (May
2012), 875–889.

[122] Kate Smith-Miles, Jano van Hemert, and Xin Yu Lim. 2010. Understanding TSP
Difficulty by Learning from Evolved Instances. In Learning and Intelligent Optim-
ization, Christian Blum and Roberto Battiti (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 266–280.

[123] Kate A. Smith-Miles. 2009. Cross-Disciplinary Perspectives on Meta-Learning for
Algorithm Selection. ACM Comput. Surv. 41, 1, Article 6 (jan 2009), 25 pages.

Bibliography 115

[124] Paul Szerlip, Gregory Morse, Justin Pugh, and Kenneth Stanley. 2015. Unsuper-
vised Feature Learning through Divergent Discriminative Feature Accumulation.
Proceedings of the AAAI Conference on Artificial Intelligence 29, 1 (Feb. 2015),
7 pages.

[125] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. 1995. Neural network
studies. 1. Comparison of overfitting and overtraining. Journal of chemical
information and computer sciences 35, 5 (1995), 826–833.

[126] Alan Turing. 2004. Intelligent Machinery (1948). In The Essential Turing. Oxford
University Press, London, UK.

[127] Levent Türkler, Taner Akkan, and Lütfiye Özlem Akkan. 2022. Usage of Evolu-
tionary Algorithms in Swarm Robotics and Design Problems. Sensors (Basel,
Switzerland) 22, 12 (2022), 4437.

[128] Markus Ullrich, Thomas Weise, Abhishek Awasthi, and Jörg Lässig. 2018. A
generic problem instance generator for discrete optimization problems.

[129] Neil Urquhart and Emma Hart. 2018. Optimisation and Illumination of a Real-
World Workforce Scheduling and Routing Application (WSRP) via Map-Elites.
In Parallel Problem Solving from Nature – PPSN XV, Anne Auger, Carlos M.
Fonseca, Nuno Lourenço, Penousal Machado, Luís Paquete, and Darrell Whitley
(Eds.). Springer International Publishing, Cham, 488–499.

[130] E. Vallada, R. Ruiz, and J. M. Framinan. 2015. New hard benchmark for flowshop
scheduling problems minimising makespan. European Journal of Operational
Research 240, 3 (2015), 666–677.

[131] Jano I. van Hemert. 2006. Evolving Combinatorial Problem Instances That Are
Difficult to Solve. Evol. Comput. 14, 4 (dec 2006), 433–462.

[132] LingFeng Wang, Kay Chen Tan, and Chee Meng Chew. 2006. Evolutionary
robotics: from algorithms to implementations. World Scientific series in robotics
and intelligent systems, Vol. 28. World Scientific Publishing Co. Pte. Ltd,
Singapore.

[133] Shimin Wang. 2022. Optimization and Simulation of Electrical Wiring Path
Based on Ant Colony Parallel Algorithm. In 2021 International Conference
on Big Data Analytics for Cyber-Physical System in Smart City, Mohammed
Atiquzzaman, Neil Yen, and Zheng Xu (Eds.). Springer Singapore, Singapore,
267–272.

[134] Geoffrey I. Webb, Eamonn Keogh, Risto Miikkulainen, Risto Miikkulainen, and
Michele Sebag. 2010. No-Free-Lunch Theorem. Encyclopedia of Machine Learning
1 (2010), 721–721. Issue 1.

[135] Christophe Wilbaut, Said Hanafi, and Said Salhi. 2008. A survey of effective
heuristics and their application to a variety of knapsack problems. IMA journal
of management mathematics 19, 3 (2008), 227–244.

116 Bibliography

[136] Gerhard J. Woeginger. 2003. Exact Algorithms for NP-Hard Problems: A Survey.
Springer Berlin Heidelberg, Berlin, Heidelberg, 185–207.

[137] Yu Wu. 2021. A survey on population-based meta-heuristic algorithms for motion
planning of aircraft. Swarm and evolutionary computation 62 (2021), 100844.

[138] Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, and Dario
Floreano. 2021. Seeking Quality Diversity in Evolutionary Co-Design of Mor-
phology and Control of Soft Tensegrity Modular Robots. In Proceedings of the
Genetic and Evolutionary Computation Conference (Lille, France) (GECCO ’21).
Association for Computing Machinery, New York, NY, USA, 189–197.

[139] Jing Zhang. 2009. Natural Computation for the Traveling Salesman Problem. In
2009 Second International Conference on Intelligent Computation Technology
and Automation, Vol. 1. IEEE, Changsha, China, 366–369.

[140] Ming Zhong and Bo Xu. 2017. A Developmental Evolutionary Algorithm for 0-1
Knapsack Problem. In Cloud Computing and Security, Xingming Sun, Han-Chieh
Chao, Xingang You, and Elisa Bertino (Eds.). Springer International Publishing,
Cham, 849–854.

[141] Özgür Akgün, Nguyen Dang, Ian Miguel, András Z. Salamon, and Christopher
Stone. 2019. Instance Generation via Generator Instances. In Principles and
Practice of Constraint, Thomas Schiex and Simon de Givry (Eds.). Springer
International Publishing, Cham, 3–19.

Appendix A

Deterministic KP heuristics

A.1 Default KP Heuristic

Algorithm 9: Default KP Heuristic
Input : Q, N , X

1 q = 0;
2 p = 0;
3 x = ∅;
4 i = 0;
5 while q ≤ Q and i ≤ N do
6 if Xiw + q ≤ Q then
7 x = x ∪ {i} ;
8 q = q + Xiq ;
9 p = p + Xip ;

10 end
11 i = i + 1;
12 end
13 return x, p, q;

118 Deterministic KP heuristics

A.2 Maximum Profit KP Heuristic

Algorithm 10: Maximum Profit (MaP) KP Heuristic
Input : Q, N , X

1 q = 0;
2 p = 0;
3 x = ∅;
4 X = sort_by_profit_reverse(X);
5 i = 0;
6 while q ≤ Q and i ≤ N do
7 if Xiw + q ≤ Q then
8 x = x ∪ {i} ;
9 q = q + Xiq ;

10 p = p + Xip ;
11 end
12 i = i + 1;
13 end
14 return x, p, q;

A.3 Maximum Profit per Weight KP Heuristic 119

A.3 Maximum Profit per Weight KP Heuristic

Algorithm 11: Maximum Profit per Weight (MPW) KP Heuristic
Input : Q, N , X

1 q = 0;
2 p = 0;
3 x = ∅;
4 X = sort_by_efficiency(X);
5 i = 0;
6 while q ≤ Q and i ≤ N do
7 if Xiw + q ≤ Q then
8 x = x ∪ {i} ;
9 q = q + Xiq ;

10 p = p + Xip ;
11 end
12 i = i + 1;
13 end
14 return x, p, q;

120 Deterministic KP heuristics

A.4 Minimum Weight KP Heuristic

Algorithm 12: Minimum Weight (MiW) KP Heuristic
Input : Q, N , X

1 q = 0;
2 p = 0;
3 x = ∅;
4 X = sort_by_weight(X);
5 i = 0;
6 Done = False;
7 while not Done do
8 if Xiw + q ≤ Q then
9 x = x ∪ {i} ;

10 q = q + Xiq ;
11 p = p + Xip ;
12 i = i + 1;
13 else
14 Done = True;
15 end
16 end
17 return x, p, q;

Appendix B

Figures from ϕ Parameter Tuning
Experiment for TSP Domain

122 Figures from ϕ Parameter Tuning Experiment for TSP Domain

B.1 Distribution of NSlsp Instances across Perform-
ance Space

Figure B.1 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.0. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

B.1 Distribution of NSlsp Instances across Performance Space 123

Figure B.2 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.15. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

124 Figures from ϕ Parameter Tuning Experiment for TSP Domain

Figure B.3 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.30. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

B.1 Distribution of NSlsp Instances across Performance Space 125

Figure B.4 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.40. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

126 Figures from ϕ Parameter Tuning Experiment for TSP Domain

Figure B.5 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.50. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

B.1 Distribution of NSlsp Instances across Performance Space 127

Figure B.6 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.60. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

128 Figures from ϕ Parameter Tuning Experiment for TSP Domain

Figure B.7 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.70. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

B.1 Distribution of NSlsp Instances across Performance Space 129

Figure B.8 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 0.85. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

130 Figures from ϕ Parameter Tuning Experiment for TSP Domain

Figure B.9 Instance representation in a 2D space after applying PCAs to all the
instances generated by NSlsp setting ϕ = 1.00. The colours and symbols reflect the
‘winning‘ solver for each instance. Blue dots are the instances generated for 2-Opt,
orange crosses Greedy, and green squares are the instances for NN-2-Opt.

B.2 Performance-gap of NSlsp Instances 131

B.2 Performance-gap of NSlsp Instances

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.10 Distribution of performance gap between the approaches 2-Opt, Greedy,
and NN-2-Opt against other solvers in the portfolio by considering the instances
generated for the former when running NSlsp for the TSP domain when setting ϕ = 0.0.
The X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

132 Figures from ϕ Parameter Tuning Experiment for TSP Domain

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.11 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.15. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

B.2 Performance-gap of NSlsp Instances 133

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.12 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.30. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

134 Figures from ϕ Parameter Tuning Experiment for TSP Domain

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.13 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.40. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

B.2 Performance-gap of NSlsp Instances 135

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.14 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.50. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

136 Figures from ϕ Parameter Tuning Experiment for TSP Domain

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.15 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.60. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

B.2 Performance-gap of NSlsp Instances 137

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.16 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.70. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

138 Figures from ϕ Parameter Tuning Experiment for TSP Domain

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.17 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 0.85. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

B.2 Performance-gap of NSlsp Instances 139

(a) 2-Opt (b) Greedy

(c) NN-2-Opt

Figure B.18 Distribution of performance gap between the approaches 2-Opt, Greedy, and
NN-2-Opt against other solvers in the portfolio by considering the instances generated
for the former when running NSlsp for the TSP domain when setting ϕ = 1.00. The
X-axis scale varies from one sub-figure to another to better display the bars in the
plots. Therefore, the differences between algorithms depend on the solver that is taken
as a reference.

	Contents
	Nomenclature
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Research Questions
	1.2 Contributions and Overview

	2 Background
	2.1 Evolutionary Computation
	2.2 The Knapsack Problem
	2.3 The Algorithm Selection Problem
	2.4 Instance Generation Methods
	2.4.1 Benchmark Instance Generation
	2.4.2 Discriminatory Instance Generation

	2.5 Summary

	3 Instance Generation Methods using Novelty Search
	3.1 The Novelty Search Algorithm
	3.1.1 Calculating Novelty
	3.1.2 Calculating Performance

	3.2 Instance Generation with a Linear-weighted Single-objective NS
	3.3 Instance Generation with a Multi-objective NS
	3.4 Summary

	4 Experimental evaluation
	4.1 NS_ls Experiments
	4.1.1 NS_ls and Feature-based Descriptor
	4.1.2 NS_ls and Performance-based Descriptor
	4.1.3 Distribution of NS_ls in Foreign Spaces

	4.2 NS_mo Experiments
	4.2.1 NS_mo and Feature-based Descriptor
	4.2.2 NS_mo and Performance-based Descriptor
	4.2.3 NS_mo Distribution in Foreign Spaces

	4.3 Comparison between NS_ls and NS_mo
	4.4 Summary

	5 Generating instances for the TSP domain
	5.1 Background
	5.1.1 Portfolio of Solvers for the TSP Domain
	5.1.2 Parameter Tuning

	5.2 Generating TSP Instances with NS_lsp
	5.2.1 Impact of on NS_lsp for the TSP Domain

	5.3 Generating TSP Instances with NS_mop
	5.4 Summary

	6 DIGNEA: A Diverse Instance Generator with NS and EAs
	6.1 Contribution
	6.2 Motivation
	6.3 Software Description
	6.3.1 Software Architecture
	6.3.2 Software Functionalities

	6.4 Illustrative Example
	6.5 Impact
	6.6 Conclusions and Future Lines of Work

	7 Conclusions
	7.1 Key Results
	7.2 Future Work
	7.3 Publications Resulting from the Research of this Thesis
	7.3.1 Journal Articles
	7.3.2 International Conferences
	7.3.3 Spanish National Conferences

	Bibliography
	Appendix A Deterministic KP heuristics
	A.1 Default KP Heuristic
	A.2 Maximum Profit KP Heuristic
	A.3 Maximum Profit per Weight KP Heuristic
	A.4 Minimum Weight KP Heuristic

	Appendix B Figures from Parameter Tuning Experiment for TSP Domain
	B.1 Distribution of NS_lsp Instances across Performance Space
	B.2 Performance-gap of NS_lsp Instances

