
Anatomı́a magnética de las estructuras
de la cromosfera del Sol

Trabajo de Fin de Grado

Grado de F́ısica

Mayo, 2024

Alumno:
José Jaime Mart́ın Acevedo

Tutores:
Andrés Asensio Ramos

Maŕıa Jesús Mart́ınez González

Abstract

The anatomy of the magnetic field in the outer layer of the Sun is a key component
for understanding the movements of the plasma, including the formation and behavior of
plasma structures that emerge from the surface. In this project, I explore the link between
the polarimetric profile of atoms and the magnetic field they are under, and the potential of
this as a diagnostic tool for the solar magnetic field.

For this, I cover the Zeeman effect, which not only shifts energy levels but also pro-
duces polarization in the light emitted during transitions; the Hanle effect, which alters the
polarization axis through rotation and reduces its amplitude; and the mechanism of scatter-
ing polarization, a complex phenomenon where atomic level populations are affected by an
anisotropic environment, leading to unbalanced populations that influence the polarization
of scattered light. Special emphasis is placed on the problem of

To this end, I will also learn and employ HAZEL, the global reference code for interpreting
these spectral lines, to produce visual content to accompany the theoretical concepts.

Resumen general en español: La anatomı́a del campo magnético en la capa exterior
del Sol es un componente clave para entender los movimientos del plasma, incluida
la formación y el comportamiento de las estructuras de plasma que emergen de la
superficie. En este proyecto, exploro la relación entre el perfil polarimétrico de los
átomos y el campo magnético al que están sometidos, y el potencial de esto como una
herramienta de diagnóstico para el campo magnético solar.

Para esto, cubro el efecto Zeeman, que no solo desplaza los niveles de enerǵıa, sino
que también produce polarización en la luz emitida durante las transiciones; el efecto
Hanle, que altera el eje de polarización mediante rotación y reduce su amplitud; y
el mecanismo de polarización por dispersión, un fenómeno complejo donde las pobla-
ciones de niveles atómicos son afectadas por un entorno anisotrópico, lo que lleva a
poblaciones desbalanceadas que influyen en la polarización de la luz dispersada. Se
hace especial énfasis en el problema de determinar la configuración exacta del campo
magnético a partir de los datos polarimétricos observados.

Para este fin, también aprenderé y emplearé HAZEL, el código de referencia global
para interpretar estas ĺıneas espectrales, para producir contenido visual que acompañe
los conceptos teóricos. español.

Acknowledgments

I would like to acknowledge the use of OpenAI’s ChatGPT in assisting with the drafting and
editing of this project. I have also used ChatGPT to help me learn and write python code.
However, I have not used ChatGPT to produce new content; all original ideas and writing are my
own.

1

Contents

1 Introduction 3

2 Objectives 3

3 Theoretical background 4
3.0.1 The Zeeman Effect . 4
3.0.2 The Hanle Effect . 7
3.0.3 Scattering polarization . 9

4 Methodology 11
4.1 The ambiguities . 11
4.2 The HAZEL code . 12

4.2.1 The Heat Maps . 13

5 Result discussion: 14
5.1 Evolution of ambiguities with φB . 14
5.2 Evolution of ambiguities with θB . 15
5.3 Evolution of ambiguities with magnetic field strength B 17
5.4 Evolution of solution for increased error in field strength B 17
5.5 Dependence of ambiguities on line of sight . 19
5.6 Example of ambiguity equation solutions for simple case 19

6 Conclusions: 20

7 Appendices: 23
7.1 Appendix 1. Heat maps . 23
7.2 Appendix 2. Sculptures . 30
7.3 Appendix 3. Video generator . 36
7.4 Appendix 4. Ambiguities . 37

2

1 Introduction

Resumen: La luz es uno de los medios más importantes por el cuál adquirir conocimiento
sobre los sistemas f́ısicos, y la información que porta esta codificada en diferentes car-
acteŕısticas: dirección de propagación, frecuencia y amplitud, y polarización. En este
projecto exploraré la información contenida en la polarización de la luz utilizando el
código HAZEL como un medio.

In physics, one of the most critical means of information retrieval is light. Light allows us to
deduce the transition states of electrons, construct surface topologies using LIDAR, analyze the
microstructure of materials, measure gravitational waves, and peer inside a patient’s body with
computerized tomography, among other applications. Its importance is particularly pronounced
in fields like astronomy, where in situ measurements are largely impractical beyond our immediate
vicinity. Even for our closest star, the Sun, direct measurements are essentially impossible without
relying on the information carried by light. Light conveys information through various forms: its
propagation direction reveals the location of stellar objects, frequency and amplitude indicate
their composition or relative velocities, and polarization (discussed here) also provides insights
into the states of the system it traversed.

In the topic of stellar physics, the systems are so extreme that we have not arrived into an
agreed explanation for some of its activities yet. One example is the behavior of solar plasma
over its surface, like the formation of filaments and protuberances against the gravity of the star.
But what has been clear is that the magnetic field plays a fundamental role in this formations.
Understanding this connection is vital for solar physics. This project initially aimed to explore the
intricate relationship between the magnetic field in the Sun’s chromosphere and the polarimetric
signatures of the light recieved from it, utilizing the HAZEL code.

However, as the research progressed, it becaim evident that the original objective was more
challenging than anticipated due to the complexity of the theoretical models and the programming
skills required (or my lack thereof). In response to these challenges, the focus was shifted to a more
manageable scope that still offers significant insights into real solar physics. The new objective
became to understand the fundamental principles underlying HAZEL code and to apply it to
simpler, yet meaningful, scenarios. This adjustment allowed for a more though exploration of the
code’s capabilities and provided valuable learning opportunities.

This project now aims to present these finding, offering new insights into solar magnetic fields
and their influence on polarimentric signatures through a more visual representation.

2 Objectives

Resumen: Los objetivos originales del proyecto para la introducción a la diagnosis
del campo magnético incluian aplicación a un caso real. Esto no se pudo realizar y
en su lugar me concentré en entender la f́ısica detrás de HAZEL y aplicarlo a casos
sencillos.

The original objective of this project was to introduce the student to the diagnosis of the
magnetic field of the Sun, using inference techniques applied to the polarized spectra of the solar
light. For this, the study of real solar structures was proposed. However, the understanding of the
theoretical models and the use of the HAZEL code proved to be more challenging than expected.

Therefore the objectives were revised as follows:

� To understand the fundamental principles underlying the HAZEL code: this
involves studying the theoretical background and the functionalities of the HAZEL code,
developed by Andrés Asensio Ramos. This will be done mainly through theory texts about

3

the Zeeman effect, Hanle effect and the mechanisms of scattering polarization by Trujillo
Bueno Landi Degl’innocenti and Andrés Asensio Ramos.

� To apply the HAZEL code to simpler scenarios: This focuses mainly on the use
of the synthesis function to simulate a measurement of a polarimetric signature, to then
compare this to the polarimetric signatures produced under many different conditions to
compare them, and see how this affect the signatures and how the ambiguities in the possible
solutions appear.

3 Theoretical background

Resumen: En esta sección explico, en diferentes grados de rigor, los fenómenos f́ısicos
implicados en la polarización de la luz solar. Desarrollo las consecuencias del efecto
Zeeman, no solo en los cambios energéticos de los niveles atómicos, sino también en la
polarización de la luz emitida o absorbida en transiciones. Expongo una explicación
clásica del efecto Hanle, el cual depolariza la luz y rota el eje de polarización lineal en
presencia de un campo magnético. Y doy una presentación cualitativa del fenómeno
de polarización por dispersión.

The phenomena that dictate the behavior of the plasma at the surface of the Sun are many
and complex. In the following sections I will discuss about the ones that I have learned about
and are most relevant for the HAZEL code.

I will also cite here the book by Egidio Landi Degl’Innocenti and Marco Landolfi [3], as it
provides a comprehensive explanation of the mechanisms for polarization in spectral lines. I will
only cover the concepts superficially, given the complexity and depth of the topic.

3.0.1 The Zeeman Effect

During the Physics Degree, we have studied the Zeeman effect in the Quantum Mechanics II
course, following the book by Cohen-Tannoudji et al. [1], but not to the full extent relevant for
this project. I will not explain the effect to its entirety, but I will talk about what I have learned
and the basic ideas that are relevant for the effects at play. For this I will follow the explanation
from the book.

The Hamiltonian for the hydrogen atom is:

H0 =
P2

2µ
+ V (R) (1)

where V (R) is the coulomb potential and µ the reduced mass of electron and proton. After
some work and physical considerations we arrived at the eigenstates |φn,l,m⟩ and eigenvalues

En = −EI

n2
where EI =

µe4

2ℏ2
is the energy to free the electron. The wave functions that we find

are of the form:

φn,l,m(r) = Rn,l(r)Y
m
l (θ, φ) (2)

The exact definitions of the functionsRn,l(r) and Y
m
l (θ, φ) are not as important as the following

property:

Y m
l (−r) = (−1)lY m

l (r) (3)

Which mean that the parity of the wave function is determined by the quantum number l.

4

B = 0 B ̸= 0
E

1s

2p

m = +1

m = 0

m = -1

m = 0

Figure 1: Diagram of the splitting of the energy levels of the first two energy levels of the hydrogen
atom due to the Zeeman Effect (not to scale).

Under a magnetic field two new terms appear on the Hamiltonian:

H1 = −µB

ℏ
L ·B (4)

H2 =
q2B2

8me

R2 (5)

H2 is the diamagnetic term and, for magnetic field in astrophysics, except for maybe white
dwarfs and compact bodies, can be safely ignored (pag 74 [3]).

For the sake of simplicity I will ignore the contribution of the fine and hyperfine structures.
H1 is sufficient to show the effects that I am looking for.

With that said, if we choose the magnetic field B to be parallel to the Z axis the eigenvalue
equation becomes:

(H0 +H1) |φn,l,m⟩ = (H0 −
µB

ℏ
BLz) |φn,l,m⟩

= (En −mµBB) |φn,l,m⟩
(6)

For the levels under consideration:

(H0 +H1) |φ1,0,0⟩ = (EI) |φ1,0,0⟩
(H0 +H1) |φ2,1,m⟩ = [−EI − ℏ(Ω +mωL)] |φn,l,m⟩

(7)

where:

Ω =
3EI

4ℏ
(8)

ωL = −µBB

ℏ
(9)

The originally degenerate 2p level splits into three different levels (m = +1, 0,−1). The ground
state remains unaltered (Figure 1).

The second part is the effect of the magnetic field on the polarization of the light, a topic
which I do not recall being covered during the course.

If we consider the electric dipole operator of the form:

D = qR (10)

5

and try to find its mean value ⟨D⟩, will see that the operator is odd, since R is an odd operator.
This means that it will not “connect” states of the same parity, and we know that the parity of
the states depends only on the azimuthal quantum number l, therefore:{

⟨φ1,0,0|D |φ1,0,0⟩ = 0

⟨φ2,l,m|D |φ2,l,m′⟩ = 0 ; ∀m,m′ (11)

Using the representations of the spherical harmonics in equations (12) and the spherical transfor-
mation for the cartesian coordinates, we can easily see that equations (13) are true.

Y −1
1 (θ, φ) =

1

2

√
3

2π
sin θe−iφ

Y 0
1 (θ, φ) =

1

2

√
3

π
cos θ

Y 1
1 (θ, φ) =

−1

2

√
3

2π
sin θeiφ

(12)

x =

√
2π

3
r
[
Y −1
1 (θ, φ)− Y 1

1 (θ, φ)
]

y = i

√
2π

3
r
[
Y −1
1 (θ, φ) + Y 1

1 (θ, φ)
]

z =

√
4π

3
rY 0

1 (θ, φ)

(13)

We can use this to calculate the matrix elements exploiting the orthogonality properties of the
spherical harmonics and setting the radial integral equal to some value χ:

⟨φ2,1,±1|Dx |φ1,0,0⟩ = ∓ qχ√
6

⟨φ2,1,0|Dx |φ1,0,0⟩ = 0

⟨φ2,1,1|Dy |φ1,0,0⟩ = ⟨φ2,1,−1|Dy |φ1,0,0⟩ =
iqχ√
6

⟨φ2,1,0|Dy |φ1,0,0⟩ = 0

⟨φ2,1,±1|Dz |φ1,0,0⟩ = 0

⟨φ2,1,0|Dz |φ1,0,0⟩ =
qχ√
3

(14)

With the previous results, we know that if the system is in a stationary state the mean value
of D is zero, but if we consider a superposition of the ground sate with any of the upper three
levels we have:

|ψm(0)⟩ = cosα |φ1,0,0⟩+ sinα |φ2,1,m⟩ ; α ∈ R (15)

|ψm(t)⟩ = cosα |φ1,0,0⟩+ sinαe−i(Ω+mωL)t |φ2,1,m⟩ (16)

⟨D⟩m (t) = ⟨ψm(t)|D |ψm(t)⟩ (17)

6

For m = +1:

⟨Dx⟩1 = − qχ√
6
sin 2α cos [(Ω + ωL)t]

⟨Dx⟩1 = − qχ√
6
sin 2α sin [(Ω + ωL)t]

⟨Dz⟩1 = 0

(18)

Here ⟨D⟩1 (t) rotates around the z axis counterclockwise with a frequency Ω+ωL, this produces
and emission of light, circularly polarized in the direction of z, linearly polarized if observed
perpendicular to the z axis, and ellipticaly polarized in other directions. This is usually called
the σ+ polarization.

For m = 0:
⟨Dx⟩0 = ⟨Dy⟩0 = 0

⟨Dz⟩0 =
qχ√
3
sin 2α cosΩt

(19)

Now ⟨D⟩0 (t) oscillates along the z axis with frequency Ω, producing no light if observed in the
direction of the z axis, and linearly polarized light in any other direction. This is usually called
the π polarization.

For m = −1:

⟨Dx⟩−1 = − qχ√
6
sin 2α cos [(Ω + ωL)t]

⟨Dx⟩−1 = − qχ√
6
sin 2α sin [(Ω + ωL)t]

⟨Dz⟩−1 = 0

(20)

In contrast to the first case, here ⟨D⟩−1 (t) rotates around the z axis clockwise with a frequency
Ω − ωL, the types of polarization observed are the same as the first case, except for the named
differences. This is usually called the σ− polarization.

In summary, the Zeeman effect does not only shift the energy levels of the atom (which I
already new from the quantum mechanics course), but also produce the light emitted during
transitions to be polarized, depending on the change in the magnetic quantum number. While
this description is not exhaustive and ignores many aspects of the quantum system, the main
ideas derived (frequency split and polarization) still stand under a more elaborate description.

3.0.2 The Hanle Effect

The Hanle Effect alters the polarization of the light emitted by an atom under a magnetic field.
To illustrate this I will use the classical explanation for transitions between states of total angular
momentum Jl = 0 (lower level) and Ju = 1 (upper level) as explained by Trujillo Bueno in [6].
This explanation helped me understand what the effect does to the polarization.

In this model the atom is treated as an oscillating charge with angular frequency Ω and

damping constant γ =
1

tlife
, with tlife the life time of the excited state.

7

B = 0 B ̸= 0
E

1s

2p

m = +1 ; (Ω + ωL)

m = 0 ; (Ω)

m = −1 ; (Ω− ωL)

m = 0

σ+ π σ−

Figure 2: Zeeman splitting diagram with the transitions, the frequency of their emission and their
polarization types.

x

y

z

B⃗

x

y

z

Figure 3: Excited modes due to the interaction with unpolarized light. To the left: no magnetic
field case. To the right: magnetic field along the y axis.

8

In the absence of a magnetic field the atom can be treated as three independent linear oscil-
lators with frequency Ω along each axes of the reference system. When unpolarized light coming
parallel to the z direction is absorbed by the atom, only the x and y modes are exited. When this
oscillators emit light, it is seen as unpolarized in the z direction or as linearly polarized in the x
or y direction. This corresponds to the left diagram of Figure 3.

On the other hand, in the presence of a magnetic field, we no longer can interpret the atom
as three independent linear oscillators due to the Lorentz force, but as a linear oscillator along
the magnetic field with frequency (unaffected by the field) Ω; and two counter-rotating circular
oscillators around the magnetic field vector, with frequencies Ω + ωL and Ω− ωL. The resulting
trajectory of the electron in the x− z plane is:

x(t) = Ae−
γt
2 cos (ωLt) cos (Ωt) (21)

z(t) = Ae−
γt
2 sin (ωLt) cos (Ωt) (22)

z

x

z

x

Figure 4: To the left: the oscillation of the negative charge under a magnetic field with ωL ≫ 1/tlife.
To the right: the oscillation of the negative charge under a magnetic field with ωL ≈ 1/tlife.

These describe the oscillation along an axis that, simultaneously, rotates around the y axis.
The resulting trajectory is showed in Figure 4. Depending on the strength of the field the Larmor
frequency ωL can be bigger or similar to the damping constant γ. If it is much greater then the
axis oscillates many times before the amplitude is significantly diminished, leading to a patter
similar to that of the left one of Figure 4. In the case where ωL ≈ γ the amplitude is much smaller
at about one turn of the axis, resulting in the left patter of Figure 4.

In the first case, with the symmetrical pattern, we would see unpolarized light in the y di-
rection. In the second case the patter is no longer symmetrical, and the measured polarization
would be the average of the pattern, resulting in some weaker linear polarization with some angle
α, this is a depolarization and rotation of the polarization plane.

3.0.3 Scattering polarization

Another contribution to the polarization of light from the chromosphere is scattering polarization.
An introduction to the mechanisms can be found in [6]. While the scattering polarization is also
an important phenomenon, its intricate mathematical descriptions and the time constraints of
this study have precluded a detailed exploration. Therefore, I will not be expanding on this topic
here, but I will try to give a qualitative explanation. For a comprehensive treatment of scattering
polarization, readers are referred to the work of Landi Degl’innocenti [3].

9

z

1
2

1
3

1
3

1
2

1
3

Mu = −1 Mu = 0 Mu = 1

Ju = 1

Jl = 0

Figure 5: Example of scattering polarization though a unpolarized one directional radiation field.
The red sphere represents a group of atoms, the squiggly lines the radiation and the blue spheres
the level populations.

The gas at the chromosphere lives within an anisotropic environment, also called an “ordered”
environment, in the sense that not everything is the same in every direction, but maybe illumi-
nation is stronger from a given direction, or there is a magnetic field in some direction. In the
same way, atomic polarization can also be called “ordered”, again, in the sense that some levels
are more likely to be populated than others, so the distribution is not “the same everywhere”.

This “order” from the environment can be transmitted to the “order” of the atom. For
example, like we saw in the Hanle effect section (Figure 3), an unpolarized light beam illuminating
an atom with Jl = 0 (lower level) and Ju = 1 (upper level), will only have transitions with
∆M = ±1, and no transitions occur to the M = 0 sublevel. With uniform relaxations the
M = ±1 sublevels will be more populated than the M = 0 sublevel (see Figure 5). This is what
Trujillo Bueno calls a transmission of “order” from the radiation field to the atom polarization.

This is represented by a connection between the evolution of the density matrix (ρKQ in the
spherical statistical tensor representation), that encodes the information of the quantum system,
and the radiation field tensors (J̄K

Q), that encodes the information regarding the radiation field,
and therefore the possible degrees of anisotropy in it.

In the case of the Sun, even if there is no anisotropy in the polarization of the light (this
may be that all light is unpolarized, for example), there is still anisotropy in the intensity of the
radiation, since, in the outermost layers of the Sun, most of the radiation comes from the center,
parallel to the normal of the surface, as showed in Figure 6.

Trujillo Bueno in [6] emphasizes that this contribution can not be ignored in order to un-
derstand the second solar spectrum (referring to the polarization signals of the light normally
measured close to the solar limb, where these signals are larger).

In [7] Trujillo Bueno explains how the combination of this effects can be used as a diagnostic
tool for understanding the electromagnetic structure of the solar atmosphere. And thus, codes
like HAZEL are born, to try to construct a numerical tool to solve the corresponding equations.

10

Figure 6: The anisotropic illumination in a stellar atmosphere. Figure from [6].

4 Methodology

Resumen: La metodoloǵıa consiste principalmente en la aplicación del codigo HAZEL
para estudiar el comportamiento de las soluciones en función de distintas variables, ya
que la principal problemática con la inversión son las ambigüedades. Explico cuales
son las ambiguedades y cuántas pueden aparecer. Explico el funcionamiento general
del código HAZEL y la aplicación que le he dado yo personalmente generando mapas
de calor, videos y esculturas del espacio de fases.

The methodology of the study consists, mainly, in simulating a measurement of polarized
light from the Sun using the HAZEL synthesis function, and trying to compare the finding to the
theoretical concepts related to the system, but mainly the ambiguities, which represent the main
obstacle with this approach for studying the plasma structures.

4.1 The ambiguities

Since deriving the magnetic field at the solar atmosphere from the polarimetric signatures consists
in an inversion problem, there will be, in general, ambiguous solutions. These ambiguities rise
in two levels. The first is the ambiguities due to the theory itself, there exists more than one
magnetic field that leads to the measured polarization. The second is due to lack of information.
Since the polarity of the field is decided by the V signal, if the signal is comparable to the noise,
then one can not decide the polarity and new solutions appear.

In the first case, there are two distinct ambiguities, the first is the Hanle ambiguity, that
appears at φ′

B = φB + 180◦; and the second is the Van Vleck ambiguity, that appears at φ′
B =

φB ± 90◦. The Hanle ambiguity is due to the fact that the effect seen by a field with azimuth
angle φ in the plane of the sky, and another with azimuth angle φ + 180◦ is the same; think of
Figure 3, an observer in the z direction will see the same polarization even if the magnetic field
was pointing in the opposite direction because the rotation of the polarization happens in the zx
plane. The Van Vleck ambiguity is more complex, since it may or may not appear depending on

11

x

y

z

x

y

x

z

y

z

Figure 7: An example of all possible ambiguities in the inversion process for the saturated regime.
On the bottom are the flat projections on different planes for better understanding. In this
representation the z axis is parallel to the normal of the sun surface and the measurement is done
on disk center.

the combination of angles of the solutions. I did not dive into the theory behind the Van Vleck
ambiguity. The combination of this two imply that one has two or four possible solutions.

A calculation of the expressions for the ambiguities for a case of: two level atom with Jl = 0
and Ju = 1, optically thin limit and saturation regime for the Hanle effect; can be found in [2].
There, starting from the equations for Q and U polarization, arrives at a group of 4th degree
equations, one for each ambiguity in the azimuth angle, that returns the polar angle that keeps
the polarization unchanged. This also returns mathematical solutions that are not physically
valid. I will also show that this equations correctly approximate the positions of the ambiguities.

So, in worst case scenario, there might be up to eight possible solutions (combination of Hanle
ambiguity, Van Vleck ambiguity and lack of V signal ambiguity combined) and, at best, one can
have two possible solutions (Hanle ambiguity).

My tutor, Andrés Asensio Ramos, explained to me that at best one can only choose a solution
based on if it produces a smooth field with the surroundings. There are methods to try and
find the best fitting solution, but they are not easy to execute (may need a great number of
measurements) and may not be definitive.

4.2 The HAZEL code

Before continuing with the code, I would like to point out that, for the physical system, one
has to choose a frame of reference. There are, of course, better and worse choices depending on
the objective. HAZEL takes the local vertical as the z axis for it’s own convenience (see Figure 8).

The HAZEL code is pretty straightforward in the functionality. It has two modes, synthesis
and inversion. Synthesis produces a polarimetric signature from a set of variables, and inversion
produces a set of variables from the polarimetric signature. This set of variables that affect
are, among other, the magnetic field strength and its direction; they are many and make up a
multidimensional phase space where the program looks for an optimal fit to the signature by
finding minima in the χ2 function. An explanation about the inner workings of the HAZEL code
can be found in [4].

12

Figure 8: The scattering geometry as showed in the HAZEL documentation [5]. Ω denotes the
line of sight vector (LOS), e1 and e2 are the axes for polarization (the angle γ can be freely chosen
to decide what line corresponds to Q polarization). The dashed square represent the plane of the
sky. The z axis is parallel to the local vertical of the Sun.

The full documentation of the HAZEL code can be found in [5]. The “complexity” for the
user (it is probably very user friendly for people with knowledge in Python and on the theoretical
background) resides in the configuration within the code. This configuration files are the ones
where the user specifies what the physical system is. This is done though the definition of
the atmospheres involved, these can be photospheres, chromospheres, parametric atmospheres
(telluric lines, fringes, smooth continua) and straylight components. The user can define in
the configuration file the topology of the atmospheres by layering them or combining different
atmospheres of the same type onto one layer. This atmospheres have specific configurations of
their own, with the relevant physical data.

One also needs to set configurations for the inversion process, and the results heavily depend
on this inputs. It is explicitly said in the documentation itself, that the Stokes weights (one
of the variables that the user defines for the inversion) require some trial and error to find a
reliable solution. All of this adds to many parameters within the configuration that one needs
to get acquainted with. Another important aspect of the inversion function, is that the program
consists in iterations, trying to improve the merit function, so a stop must be set. This can be
by number of iteration or by variance of the merit function. The point is that the stop may be
reached before the fitting is done.

I will not delve on all this configurations, I think is a better use of time to directly show what
one can do and see with the code.

Note: from now on I will use φB as the azimuthal angle, intead of the χB shown in
Figure 8. The letter χ will be used instead for the merit function of HAZEL (Section
4.2.1).

4.2.1 The Heat Maps

During my time practicing with the HAZEL code I tried the functionalities of the code and how
the configurations affect the results. This is a very important part for those trying to infer the
magnetic field of the solar atmosphere though measurements, but, in my case, I would like to
develop a more visual tool, since I believe that visualization is a very helpful way of developing
intuition.

13

The idea came from the article [4]. The Figure 13 of the article showed slices of the phase
space where only the angles of the magnetic field are free. This produces a heat map in which
one can see where the better fits (what would be considered the solutions) of observed profile
are. I became curious of how the ambiguities appear or move as the field intensifies or the angles
change.

Of course, this are not the only variables that effect the map, but there are too many of them
for me to talk about it all, so I chose to simplify the approach by: working with the magnetic
field angle phase space and using in the configuration of the atmosphere only one chromosphere,
focusing only on the wavelength region around the 10830 Å where the HeI triplet transitions
occur.

The code that I wrote could be separated in 3 functionalities:

� The heat map generator: this is done by first making a polarization profile, then adding
noise to simulate a measurement , and then generate all possible profiles (given some phase
space resolution) and compare them with the original one via the merit function used by
HAZEL, generating a grid of dots that can be draw into a heat map. The merit function is:

χ2 =
1

4Nλ

4∑
i=1

Nλ∑
j=1

[
Ssyn
i (λj)− Sobs

i (λj)
]2

σ2
i (λj)

(23)

where Nλ is the number of wavelength pints, Sobs is the observed stokes signal, in this
case simulated by making a profile with HAZEL and adding noise, Ssyn is the signals it is
comparing to, and σ2

i (λj) is the variance associated to the j-th wavelength point of the i-th
Stoke profile. The sum is done over all wavelength and all signals.

� Video generator: in combination with the previous function, it takes the generated heat
maps and joins them into a video. The heat map is prepared to receive the value of some
variables by name, this way a set of values can be given to generate the video.

� Volume generator: the last function is due to the fact that video can not be showed here,
so I though that another way of showing the change of the heat map, is by plotting the dots
that have χ2 smaller than some selected value. This way one can see the movement of the
solution though 3D space. This is done by reusing the results from the heat map, since it
consists in a grid of values, this function just filters them by the χ2 condition and plots them
using the plotly library, since there are so many points that other options are too slow.

5 Result discussion:

Resumen: Relaciono los comportamientos de las ambiguedades en fuención de dis-
tintas variables con la teoŕıa, y utilizando las representaciones gráficas como apoyo.

The result is that the figures that I will show now, can demonstrate some of the properties of
the ambiguities discussed earlier in a very engaging and easy-to-understand way.

5.1 Evolution of ambiguities with φB

In Figure 9, the white color represents where the merit function takes the lowest value (and
therefor, where the best fitting profiles are). Because this is a simulation with a known field,
the exact value of the merit function is not relevant (we know that the solutions that we see are
correct). In a real experiment, where we do not know if the found solution is correct or not, we

14

Figure 9: Possible solutions to the inversion problem (white represents the better fit), for an
on-disk (θLOS = 0) measurement, for φB values ok 45◦, 90◦ and 135◦. The red dot represents the
position of the real field. The letters I, Q, U and V indicate what Stokes signals of the profile
were used for the calculation of the merit function.

would need to take into account the merit function value to decide if the found solutions are good
or not. This is because the number of variables that HAZEL is trying to fit are many more than
shown here, and therefore it might get stuck in a χ2 minimum somewhere else in phase space.

We can see that the shape of the distribution does not change with φB, all the ambiguities
move uniformly up or down in the phase space. Note also that for the figures with the I, Q and
U signals there are a total of 8 ambiguities, like explained in Section 4.1, corresponding to the
combination of the Hanle, Van Vleck and V noise ambiguities. For the maps calculated with the
V signal we see that the right solutions are no longer as good as the left ones, leaving 4 solutions
instead.

5.2 Evolution of ambiguities with θB

In Figure 10 we have the same situation, but changing the magnetic field polar angle θB. Here
we can see that the distribution of the ambiguities does change. Note how ambiguities appear

15

Figure 10: Same conditions as Figure 9, but the changing angles is θB instead.

16

Figure 11: Sculpture showing a more smooth evolution for the maps at Figure 10. The magnetic
field moves from θB = 0 to θB = 90. The red line denotes the evolution of the real field. The dots
shown are those for which logχ2 < 0.5. The blue line is the Van Vleck ambiguity movement.

and disappear depending on the value of θB. For the first and third row we can only see four
solutions, corresponding to the Hanle and V noise ambiguities. But in the middle row we see
again the eight ambiguities because the Van Vleck ambiguity has appeared. Therefore, we can
see the behavior of the Van Vleck ambiguity explained in Section 4.1. The Van Vleck ambiguities
only appear under certain conditions of the magnetic field and the line of sight.

A smoother evolution can be seen in the sculpture shown in Figure 11. We can see that, as the
θB goes from 0◦ to 90◦, how the new Van Vleck ambiguities appear (blue line). The white stripe
that appear approximately at the middle of the evolution is the consequence of the alignment of
the Van Vleck ambiguity with the Hanle ambiguity, forming a kind of valley in the phase space.

5.3 Evolution of ambiguities with magnetic field strength B

Figure 12 shows the evolution of the ambiguity distribution when the magnetic field strength
changes from 1G to 10G. We can see that for low strengths there are only four solutions, but
as the field intensifies a new branch emerges from every solution, making the eight ambiguities.
When they reach the top (10G) we regain the same distribution that we saw in Figure 9 (compare
the right side view of Figure 12 with the first row of Figure 9). This were calculated using all the
Stokes signals, so we can see that when reaching the saturation regime the V noise ambiguities
start to worsen, eventually not being able to stay under logχ2 < 0.4.

5.4 Evolution of solution for increased error in field strength B

Sculpture in Figure 13 simulates what happens when we make a mistake when trying to identify
the field strength. Like I said in Section 4.2, there are a considerable number of variables that
compose the hyper volume of phase space. It is very possible for HAZEL to find a wrong answer
that seems like a good fit. For simulating that I, instead of changing the field of the actual solu-
tion and compared profiles, changed the field of the compared profiles alone, so that we see other

17

Figure 12: Evolution of ambiguity distribution with magnetic field strength.

Figure 13: Evolution of the ambiguities as we commit an increasing mistake in the field strength.
B all indicates the field strength of the compared profiles.

18

Figure 14: Evolution of ambiguities as θLOS evolves from 0◦ to 90◦.

points in phase space that would give a good fit still. The bottom of the sculpture corresponds
to the real solution, so the base of the columns are the real ambiguities of the correct solution.
As we go up the arms these displace, changing the angles of the four solutions trying to keep the
fit good. So, by making a mistake in the field strength one gets a different set of angles as the
solution. We can also see that as the strength keeps increasing the code is having a harder time
finding a good fit. They stop changing when approaching saturation. The same thing could be
done with other variables, so we can imagine the complexity of finding a solution.

5.5 Dependence of ambiguities on line of sight

Another interesting demonstration is what happens when we observe the same spot (under the
same conditions) while changing the LOS angle θLOS (Figure 14), or in other words, when we
look at a spot as we let it move from disk-center to the border of the sun (off-limb) if it did not
evolve over time. We see that there are only two columns connecting bottom to top, this means
that only two ambiguities persist as we look from many directions. Of course, this can not be
done just from one point of view, since the spot will not remain in the same condition as times
passes, but we could try to set observations simultaneously from different angles to try to get rid
of some of the ambiguities. This is obviously harder than it sounds, because looking at a spot at
the sun from a sufficiently different angle requires measurement from great distances apart.

5.6 Example of ambiguity equation solutions for simple case

Here we can see that the solutions to the polynomial equations mentioned section 4.1 (red dots)
obtained in [2] (can also be found in the HAZEL documentation [5]) pretty closely follow the
ambiguities that HAZEL obtains. In all of them we can see that the red dots are not perfectly

19

Figure 15: Solutions to the ambiguity equations displayed over the heat maps.

placed, this is because to obtain the solutions an approximate model was used. We can also
see that many of the dots plotted are mathematical artifacts that do not match with any of the
ambiguities. If any solution to the equations is complex, the real part was plotted.

6 Conclusions:

Resumen: En este proyecto, hemos explorado los efectos fundamentales que influyen
en la polarización de la luz solar en la superficie. Observamos cómo el efecto Zeeman
desplaza los niveles de enerǵıa, resultando en luz polarizada durante transiciones es-
pećıficas. Además, estudiamos el efecto Hanle, que causa despolarización y rotación del
eje de polarización. También investigamos cómo un campo de radiación anisotrópico
puede inducir polarización atómica. Estos hallazgos subrayan la complejidad de la
teoŕıa de polarización solar, abordada principalmente mediante simulaciones numéricas
con HAZEL. Mejorar la precisión polarimétrica es crucial para resolver ambigüedades
observacionales, y discutimos el potencial de mediciones simultáneas desde múltiples
ángulos para mejorar la técnica de medición y la comprensión general del fenómeno.

In this project, we have explored the fundamental mechanisms influencing the polarization of
solar light at the surface.

The Zeeman effect induces shifts in energy levels, which we observed lead to polarized light
emission in two-level systems during top-to-bottom transitions. The degree of polarization hinges

20

on the difference in magnetic quantum numbers between these levels. For more complex level
structures, we anticipate a more intricate polarization pattern in transitions.

We have demonstrated that the Hanle effect can be effectively elucidated using a classical
electromagnetic model. This effect predominantly results in depolarization of light and rotation
of the polarization axis.

Additionally, we explored how an anisotropic radiation field can induce atomic polarization.
This phenomenon is primarily governed by the interplay between the system’s density matrix and
the radiation field tensors. We also examined a simpler scenario where unidirectional unpolarized
light selectively promotes energy levels, leading to unbalanced population distributions.

These findings underscore the complexity of developing a comprehensive theory of light po-
larization in solar atmospheres, often necessitating numerical solutions. In this context, HAZEL
stands out as a robust program capable of quantitative solar studies. Its versatility allows for
simulations across varied atmospheric conditions, making it invaluable not only for advanced re-
search but also as an educational tool for newcomers to stellar physics.

Understanding the theory purely through polarimetric signals can be challenging. Therefore,
we utilized visual representations to enhance comprehension of theoretical concepts and solution
behaviors in phase space. Our exploration revealed that the Van Vleck ambiguity is dependent on
the polar angle rather than the azimuthal angle in on-disk measurements. Moreover, we observed
distinct regimes: weak magnetic fields (around B < 1G) exhibit four solutions, while saturation
at stronger fields (B > 10G) results in eight solutions.

We also addressed the issue of the weakness of the V signal, where noise can lead to duplicated
solutions due to ambiguity in determining field polarity. Improvements in polarimetric precision
are crucial and expected to advance with evolving measurement technologies.

To mitigate these ambiguities, we discussed the potential of simultaneous measurements from
multiple angles at a single point. This approach, while complex and currently feasible primarily
through satellite observations or distant terrestrial measurements, holds promise in resolving am-
biguities.

Looking forward, we anticipate that advancements in dedicated tools and measurement tech-
niques will strengthen the methodologies discussed here over time. Finally, we validated our
findings by analytically calculating ambiguities in a simplified scenario, finding agreement with
HAZEL’s computational results, thus affirming the program’s accuracy.

21

References

[1] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Mechanics Volume I.
2nd. Weinheim, Germany: Wiley-VCH, 2006.

[2] M. J. Mart́ınez González et al. “SPECTRO-POLARIMETRIC IMAGING REVEALS HE-
LICAL MAGNETIC FIELDS IN SOLAR PROMINENCE FEET”. In: The Astrophysical
Journal 802.1 (Mar. 2015), p. 3. doi: 10.1088/0004-637X/802/1/3. url: https://dx.
doi.org/10.1088/0004-637X/802/1/3.

[3] Egidio Landi Degl’Innocenti and Marco Landolfi. Polarization in Spectral Lines. Vol. 307.
Astrophysics and Space Science Library. Dordrecht: Springer, 2004. isbn: 9781402014291.
doi: 10.1007/978-1-4020-2415-3.

[4] A. Asensio Ramos, J. Trujillo Bueno, and E. Landi Degl’Innocenti. “Advanced Forward
Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and
Zeeman Effects”. In: The Astrophysical Journal 683.1 (Aug. 2008), p. 542. doi: 10.1086/
589433. url: https://dx.doi.org/10.1086/589433.

[5] Andrés Asensio Ramos. HAZEL2 Documentation. Accessed: 2024-03-05. 2023. url: https:
//aasensio.github.io/hazel2/index.html.

[6] J. Trujillo Bueno. “Atomic Polarization and the Hanle Effect”. In: Advanced Solar Polarime-
try – Theory, Observation, and Instrumentation. Ed. by Michael Sigwarth. Vol. 236. Astro-
nomical Society of the Pacific Conference Series. Jan. 2001, p. 161. doi: 10.48550/arXiv.
astro-ph/0202328. arXiv: astro-ph/0202328 [astro-ph].

[7] J. Trujillo Bueno. “New Diagnostic Windows on the Weak Magnetism of the Solar Atmo-
sphere”. In: Solar Polarization. Ed. by Javier Trujillo-Bueno and Jorge Sanchez Almeida.
Vol. 307. Astronomical Society of the Pacific Conference Series. Jan. 2003, p. 407.

22

7 Appendices:

7.1 Appendix 1. Heat maps

1 import numpy as np

2 from numpy import pi as pi

3 from HazelAmbig2 import solve_ambiguities

4 import matplotlib.pyplot as pl

5 import hazel

6 import os as os

7 import time

8

9 os.chdir(’’)

10

11 label = [’I’, ’Q’, ’U’, ’V’]

12

13 def round_to_p(x, p=0):

14 """ Rounds to p + 1 significant figures

15

16 Args:

17 x (float): number to round

18 p (int , optional): significant figures - 1. Defaults to 0.

19

20 Returns:

21 _type_: _description_

22 """

23 if x == 0:

24 return 0

25 return np.round(x, int(-np.floor(np.log10(abs(x))) + p))

26

27 def edit_configuration_file(file_path , parameter_name , new_value):

28 """ Rewrite the variable in the config file

29

30 Args:

31 file_path (str): path to config fle

32 parameter_name (str): parameter to write

33 new_value (float): value

34 """

35 # Read the content of the file

36 with open(file_path , ’r’) as file:

37 lines = file.readlines ()

38

39 # Modify the identified value

40 for i, line in enumerate(lines):

41 # Strip leading and trailing whitespace from the line

42 stripped_line = line.strip ()

43 # Check if the stripped line starts with the specified

parameter name

44 if stripped_line.startswith(parameter_name):

45 # Replace the original line with the modified line

46 lines[i] = f"{stripped_line.split(’ = ’)[0]} = {new_value }\

n"

47 break # Stop searching once the parameter is found

48

23

49 # Write the modified content back to the file

50 with open(file_path , ’w’) as file:

51 file.writelines(lines)

52

53 def make_noise(stokes , noiseI , noiseQ , noiseU , noiseV):

54 """ Creates a profile from ’stokes ’ with added normal noise

55

56 Args:

57 stokes (array): original profile

58 noiseI (float): standard deviation for I

59 noiseQ (float): standard deviation for Q

60 noiseU (float): standard deviation for U

61 noiseV (float): standard deviation for V

62

63 Returns:

64 array: profile with noise

65 """

66 noise = np.zeros(stokes.shape)

67 noise [0,:] = noiseI

68 noise [1,:] = noiseQ

69 noise [2,:] = noiseU

70 noise [3,:] = noiseV

71 stokes_noise = np.copy(stokes)

72 stokes_noise [0] += np.random.normal(loc=0, scale=noise[0,0], size=

stokes [0]. shape)

73 stokes_noise [1] += np.random.normal(loc=0, scale=noise[1,0], size=

stokes [0]. shape)

74 stokes_noise [2] += np.random.normal(loc=0, scale=noise[2,0], size=

stokes [0]. shape)

75 stokes_noise [3] += np.random.normal(loc=0, scale=noise[3,0], size=

stokes [0]. shape)

76

77 return stokes_noise , noise

78

79 #%%

80 def make_map_perfil(recalculate = False , confpath=’configurations/

conf_single.ini’,

81 select = None ,

82 select_value = None ,

83 show = False ,

84 perfil = False ,

85 res_theta = 100,

86 res_phi = 100,

87 B_ini = 10,

88 theta_ini = 45,

89 phi_ini = 45,

90 tau_ini = 1,

91 v_ini = 0,

92 deltav_ini = 8,

93 LOS_ini_theta = 0,

94 LOS_ini_phi = 0,

95 LOS_ini_gamma = 90,

96 noiseI = 10e-5,

97 noiseQ = 10e-5,

24

98 noiseU = 10e-5,

99 noiseV = 10e-5,

100 B_all = None ,

101 tau_all = None ,

102 v_all = None ,

103 deltav_all = None

104):

105 """ Generates the Heat Map

106

107 Args:

108 recalculate (bool , optional): Should the stokes profiles

109 be racalculated ?. Defaults to

False.

110 confpath (str , optional): path to config file.

111 Defaults to ’configurations/

conf_single.ini ’.

112 select (str , optional): variable name to alter.

113 Defaults to None.

114 select_value (float , optional): value for ’select ’.

115 Defaults to None.

116 show (bool , optional): show map.

117 Defaults to False.

118 perfil (bool , optional): show profile.

119 Defaults to False.

120 res_theta (int , optional): number of divitions in theta.

121 Defaults to 100.

122 res_phi (int , optional): number of divitions in phi.

123 Defaults to 100.

124 B_ini (int , optional): strengh of file of measurement.

125 Defaults to 10.

126 theta_ini (int , optional): theta of measured.

127 Defaults to 45.

128 phi_ini (int , optional): phi of measured.

129 Defaults to 45.

130 tau_ini (int , optional): optical thickess for measurement.

131 Defaults to 1.

132 v_ini (int , optional): plasma speed for measurement.

133 Defaults to 0.

134 deltav_ini (int , optional): velocity delta in plasma.

Measurement.

135 Defaults to 8.

136 LOS_ini_theta (int , optional): LOS theta. Measurement.

137 Defaults to 0.

138 LOS_ini_phi (int , optional): LOS phi. Measurement.

139 Defaults to 0.

140 LOS_ini_gamma (int , optional): LOS gamma. Measurement.

141 Defaults to 0.

142 noiseI (float , optional): standard deviation for I signal.

143 Defaults to 10e-5.

144 noiseQ (float , optional): standard deviation for Q signal.

145 Defaults to 10e-5.

146 noiseU (float , optional): standard deviation for U signal.

147 Defaults to 10e-5.

148 noiseV (float , optional): standard deviation for V signal.

25

149 Defaults to 10e-5.

150 B_all (float , optional): assumed field strenght when measuring.

151 Defaults to None.

152 tau_all (float , optional): assumed optical thickness when

measuring.

153 Defaults to None.

154 v_all (float , optional): assumed plasma speed when measuring.

155 Defaults to None.

156 deltav_all (float , optional): assumed plasma speed delta when

measuring.

157 Defaults to None.

158 """

159 def calc_stokes_all ():

160 """ Calculates all the stokes profiles

161

162 Returns:

163 array: stoke profiles values

164 """

165 all_stokes = np.zeros ((res_theta , res_phi , 4, 100))

166 for i in range(res_theta):

167 print(f’Lineas calculadas: {i} de {res_theta}’, end=’\r’)

168 for j in range(res_phi):

169 mod.atmospheres[’ch1’]. set_parameters(

170 [Bx_all[i, j], By_all[i, j], Bz_all[i, j],

171 datos[’tau_all ’], datos[’v_all ’], datos[’

deltav_all ’],

172 1.0, 0.0], 1.0

173)

174 mod.synthesize ()

175

176 all_stokes[i, j, :, :] = mod.spectrum[’spec1 ’]. stokes

177 print ()

178 print(f’Lineas calculadas: {i} de {res_theta}’)

179 np.save(npy_file_path , all_stokes)

180 return all_stokes

181

182 chromo_check = -1

183

184 datos = {}

185 datos[’B_ini ’] = B_ini

186 datos[’theta_ini ’] = theta_ini

187 datos[’phi_ini ’] = phi_ini

188 datos[’LOS_ini_theta ’] = LOS_ini_theta

189 datos[’LOS_ini_phi ’] = LOS_ini_phi

190 datos[’LOS_ini_gamma ’] = LOS_ini_gamma

191 datos[’tau_ini ’] = tau_ini

192 datos[’v_ini ’] = v_ini

193 datos[’deltav_ini ’]= deltav_ini

194 datos[’noiseI ’] = noiseI

195 datos[’noiseQ ’] = noiseQ

196 datos[’noiseU ’] = noiseU

197 datos[’noiseV ’] = noiseV

198

199 datos[’B_all ’] = B_all

26

200 datos[’tau_all ’] = tau_all

201 datos[’v_all ’] = v_all

202 datos[’deltav_all ’] = deltav_all

203

204 if select != None and select not in datos:

205 raise ValueError(f"The key ’{select}’ is not one of the

dictionary keys."

206 "Must be one of {datos.keys()}")

207

208 if select != None:

209 datos[select] = select_value

210

211 for x in datos:

212 if datos[x] == None:

213 datos[x] = datos[x.replace(’all’, ’ini’)]

214

215 datos_rounded = {k:round_to_p(v, p=2) if (isinstance(v,float) or

isinstance(v,int))

216 else v for k,v in datos.items()}

217 datos_for_names = [v for k,v in datos_rounded.items ()]

218

219 if datos[’LOS_ini_theta ’] == 90:

220 chromedef=’offlimb ’

221 else:

222 chromedef=’disk’

223 # Hay que actualizar la cromosfera?

224 if chromo_check != datos[’LOS_ini_theta ’]:

225 tmp=hazel.tools.File_chromosphere(mode = ’single ’)

226 tmp.set_default(n_pixel = 1, default = chromedef)

227 tmp.save(’chromospheres/model_chromosphere ’)

228 chromo_check = datos[’LOS_ini_theta ’]

229

230 Bx_ini = datos[’B_ini ’]*np.sin(datos[’theta_ini ’]*pi /180)*np.cos(

datos[’phi_ini ’]*pi /180)

231 By_ini = datos[’B_ini ’]*np.sin(datos[’theta_ini ’]*pi /180)*np.sin(

datos[’phi_ini ’]*pi /180)

232 Bz_ini = datos[’B_ini ’]*np.cos(datos[’theta_ini ’]*pi /180)

233

234 edit_configuration_file(confpath , ’LOS’,

235 f"{datos[’LOS_ini_theta ’]}, "

236 f"{datos[’LOS_ini_phi ’]}, "

237 f"{datos[’LOS_ini_gamma ’]}")

238

239 mod = hazel.Model(confpath , working_mode=’synthesis ’, verbose =0)

240 mod.atmospheres[’ch1’]. set_parameters ([Bx_ini , By_ini , Bz_ini ,

datos[’tau_ini ’],

241 datos[’v_ini ’], datos[’

deltav_ini ’],

242 1.0, 0.0], 1.0)

243

244 mod.synthesize ()

245

246 stokes = mod.spectrum[’spec1 ’]. stokes

27

247 stokes_noise , noise = make_noise(stokes , datos[’noiseI ’], datos[’

noiseQ ’],

248 datos[’noiseU ’], datos[’

noiseV ’])

249

250 if perfil == True:

251 fig_perfil , ax = pl.subplots(nrows=2, ncols=2, figsize =(10 ,10))

252 fig_perfil.suptitle(r’θ ={}, φ ={}, B={}’.format(

datos[’theta_ini ’],

253 datos[’

phi_ini ’

],

254 datos[’

B_ini ’]),

fontsize

=20)

255 ax = ax.flatten ()

256 for i in range (4):

257 ax[i].plot(mod.spectrum[’spec1’]. wavelength_axis - 10830,

stokes[i,:], color=’k’)

258 ax[i].plot(mod.spectrum[’spec1’]. wavelength_axis - 10830,

stokes_noise[i,:])

259

260 for i in range (4):

261 ax[i]. set_xlabel(’Wavelength - 10830[\AA]’)

262 ax[i]. set_ylabel(’{0}/Ic’.format(label[i]))

263 ax[i]. set_xlim ([-4,3])

264

265 perfil_image_path = f’Images/Perfiles/Perfil_{datos_for_names }.

png’

266 pl.savefig(perfil_image_path)

267 pl.tight_layout ()

268 if perfil == False:

269 perfil_image_path = None

270

271 theta = np.linspace(pi/(2* res_theta), pi-pi/(2* res_theta),

res_theta)

272 phi = np.linspace (2*pi/(2* res_phi), 2*pi -2*pi/(2* res_phi), res_phi)

273

274 Bx_all = datos[’B_all ’]*np.outer(np.sin(theta), np.cos(phi))

275 By_all = datos[’B_all ’]*np.outer(np.sin(theta), np.sin(phi))

276 Bz_all = datos[’B_all ’]*np.outer(np.cos(theta), np.ones(phi.shape

[0]))

277 chi2 = np.zeros([res_theta , res_phi])

278 chi2NoV = np.zeros([res_theta , res_phi])

279

280 npy_datos = [datos_for_names [13],

281 [datos_for_names [14], datos_for_names [15],

datos_for_names [16]] ,

282 datos_for_names [17], datos_for_names [18],

datos_for_names [19]]

283 npy_file_path = (’Perfiles calculados/models_ ’ +

284 f’{npy_datos }.npy’)

285 if recalculate:

28

286 print(f’Calculando perfil con {npy_file_path.split ("_")[-1]}’)

287 st = time.time()

288 calc_stokes_all ()

289 et = time.time()

290 # print(’Ha tardado {} minutos.’.format ((et-st)/60))

291 else:

292 if not os.path.exists(npy_file_path):

293 print(f’Calculando perfil con {npy_file_path.split ("_")

[-1]}’)

294 st = time.time()

295 calc_stokes_all ()

296 et = time.time()

297 # print(’Ha tardado {} minutos.’.format ((et-st)/60))

298

299 all_stokes = np.load(npy_file_path)

300

301 print ()

302 for i in range (res_theta):

303 for j in range(res_phi):

304 chi2[i, j] = np.mean (((all_stokes[i, j] - stokes_noise) /

noise) ** 2)

305 chi2NoV[i, j] = np.mean (((all_stokes[i, j, 0:3] -

stokes_noise [0:3]) / noise [0:3]) ** 2)

306

307

308 fig_mapa , ax = pl.subplots(nrows=1, ncols=2, figsize =(10 ,5),

309 sharey=True , dpi =150)

310

311 titulo = (fr"$\theta ={ datos_rounded[’theta_ini ’]}^o$, "

312 fr"$\varphi ={ datos_rounded[’phi_ini ’]}^o$, "

313 f"B={ datos_rounded[’B_all ’]} [G]")

314 if select is not None:

315 titulo = titulo + f", {select }={ select_value}"

316

317 fig_mapa.suptitle(titulo , fontsize =20)

318

319 # ambig = solve_ambiguities (0, theta_ini*pi/180, phi_ini*pi/180,

320 # theta_ini*pi/180, phi_ini*pi/180)

321 # ax[0]. scatter(ambig [: ,: ,0]*180/pi, ambig [: ,: ,1]*180/pi,

322 # color=’r’, marker=’o’, s=10, label=’Real ’)

323

324 ax[0]. imshow(np.transpose(np.log10(chi2NoV)), cmap=’Greys’,

325 extent =(0, 180, 0, 360), origin=’lower’, aspect =.5)

326 ax[0]. set_title(’IQU’)

327 ax[0]. scatter(datos[’theta_ini ’], datos[’phi_ini ’],

328 color=’r’, marker=’o’, s=10, label=’Real’)

329 ax[0]. set_xlabel(r’θ [deg]’)

330 ax[0]. set_ylabel(r’φ [deg]’)

331 ax[1]. set_title(’IQUV’)

332 ax[1]. set_xlabel(r’θ [deg]’)

333 ax[1]. imshow(np.transpose(np.log10(chi2)), cmap=’Greys’,

334 extent =(0, 180, 0, 360), origin=’lower’, aspect =.5)

335 ax[1]. scatter(datos[’theta_ini ’], datos[’phi_ini ’],

336 color=’r’, marker=’o’, s=10, label=’Real’)

29

337

338 if show == True:

339 pl.show()

340 map_image_path = fr’Images/Mapas/Mapa_{datos_for_names }.png’

341 fig_mapa.savefig(map_image_path)

342 pl.close()

343 return map_image_path , perfil_image_path , datos_rounded

344

345 if __name__ == ’__main__ ’:

346

347 make_map_perfil(perfil=False , show=True ,

348 theta_ini =45, phi_ini =45)

7.2 Appendix 2. Sculptures

1

2 import numpy as np

3 from MapaHazel import round_to_p

4 from numpy import pi as pi

5 import plotly.graph_objects as go

6 from plotly.subplots import make_subplots

7 import hazel

8 import os as os

9

10 os.chdir(’’)

11

12 label = [’I’, ’Q’, ’U’, ’V’]

13

14 def edit_configuration_file(file_path , parameter_name , new_value):

15

16 with open(file_path , ’r’) as file:

17 lines = file.readlines ()

18

19 for i, line in enumerate(lines):

20

21 stripped_line = line.strip ()

22

23 if stripped_line.startswith(parameter_name):

24

25 lines[i] = f"{stripped_line.split(’ = ’)[0]} = {new_value }\

n"

26 break

27

28 with open(file_path , ’w’) as file:

29 file.writelines(lines)

30

31

32 def make_noise(stokes , noiseI , noiseQ , noiseU , noiseV):

33 noise = np.ones(stokes.shape)

34 noise [0,:] = noiseI

35 noise [1,:] = noiseQ

36 noise [2,:] = noiseU

37 noise [3,:] = noiseV

30

38 stokes_noise = np.copy(stokes)

39 stokes_noise [0] += np.random.normal(loc=0, scale=noise[0,0], size=

stokes [0]. shape)

40 stokes_noise [1] += np.random.normal(loc=0, scale=noise[1,0], size=

stokes [0]. shape)

41 stokes_noise [2] += np.random.normal(loc=0, scale=noise[2,0], size=

stokes [0]. shape)

42 stokes_noise [3] += np.random.normal(loc=0, scale=noise[3,0], size=

stokes [0]. shape)

43

44 return stokes_noise , noise

45

46 def make_map_perfil(recalculate = False , confpath=’configurations/

conf_single.ini’,

47 select = None ,

48 select_value = None ,

49 res_theta = 100,

50 res_phi = 100,

51 B_ini = 10,

52 theta_ini = 45,

53 phi_ini = 45,

54 tau_ini = 1,

55 v_ini = 0,

56 deltav_ini = 8,

57 LOS_ini_theta = 0,

58 LOS_ini_phi = 0,

59 LOS_ini_gamma = 90,

60 noiseI = 10e-5,

61 noiseQ = 10e-5,

62 noiseU = 10e-5,

63 noiseV = 10e-5,

64 B_all = None ,

65 tau_all = None ,

66 v_all = None ,

67 deltav_all = None

68):

69 """ Same as the Heat Maps but adapted to return the points.

70 """

71 def calc_stokes_all ():

72 all_stokes = np.zeros ((res_theta , res_phi , 4, 100))

73 for i in range(res_theta):

74 print(f’Lineas calculadas: {i} de {res_theta}’, end=’\r’)

75 for j in range(res_phi):

76 mod.atmospheres[’ch1’]. set_parameters(

77 [Bx_all[i, j], By_all[i, j], Bz_all[i, j],

78 datos[’tau_all ’], datos[’v_all ’], datos[’

deltav_all ’],

79 1.0, 0.0], 1.0

80)

81 mod.synthesize ()

82

83 all_stokes[i, j, :, :] = mod.spectrum[’spec1 ’]. stokes

84 print ()

85 print(f’Lineas calculadas: {i} de {res_theta}’)

31

86 np.save(npy_file_path , all_stokes)

87 return all_stokes

88

89 chromo_check = -1

90

91 datos = {}

92 datos[’B_ini ’] = B_ini

93 datos[’theta_ini ’] = theta_ini

94 datos[’phi_ini ’] = phi_ini

95 datos[’LOS_ini_theta ’] = LOS_ini_theta

96 datos[’LOS_ini_phi ’] = LOS_ini_phi

97 datos[’LOS_ini_gamma ’] = LOS_ini_gamma

98 datos[’tau_ini ’] = tau_ini

99 datos[’v_ini ’] = v_ini

100 datos[’deltav_ini ’]= deltav_ini

101 datos[’noiseI ’] = noiseI

102 datos[’noiseQ ’] = noiseQ

103 datos[’noiseU ’] = noiseU

104 datos[’noiseV ’] = noiseV

105

106 datos[’B_all ’] = B_all

107 datos[’tau_all ’] = tau_all

108 datos[’v_all ’] = v_all

109 datos[’deltav_all ’] = deltav_all

110

111 if select != None and select not in datos:

112 raise ValueError(f"The key ’{select}’ is not one of the

dictionary keys."

113 "Must be one of {datos.keys()}")

114

115 if select != None:

116 datos[select] = select_value

117

118 for x in datos:

119 if datos[x] == None:

120 datos[x] = datos[x.replace(’all’, ’ini’)]

121

122 datos_rounded = {k:round_to_p(v, p=2) if (isinstance(v,float) or

isinstance(v,int))

123 else v for k,v in datos.items()}

124 datos_for_names = [v for k,v in datos_rounded.items ()]

125

126 if datos[’LOS_ini_theta ’] == 90:

127 chromedef=’offlimb ’

128 else:

129 chromedef=’disk’

130 # Hay que actualizar la cromosfera?

131 if chromo_check != datos[’LOS_ini_theta ’]:

132 tmp=hazel.tools.File_chromosphere(mode = ’single ’)

133 tmp.set_default(n_pixel = 1, default = chromedef)

134 tmp.save(’chromospheres/model_chromosphere ’)

135 chromo_check = datos[’LOS_ini_theta ’]

136

32

137 Bx_ini = datos[’B_ini ’]*np.sin(datos[’theta_ini ’]*pi /180)*np.cos(

datos[’phi_ini ’]*pi /180)

138 By_ini = datos[’B_ini ’]*np.sin(datos[’theta_ini ’]*pi /180)*np.sin(

datos[’phi_ini ’]*pi /180)

139 Bz_ini = datos[’B_ini ’]*np.cos(datos[’theta_ini ’]*pi /180)

140

141

142 edit_configuration_file(confpath , ’LOS’,

143 f"{datos[’LOS_ini_theta ’]}, "

144 f"{datos[’LOS_ini_phi ’]}, "

145 f"{datos[’LOS_ini_gamma ’]}")

146

147 mod = hazel.Model(confpath , working_mode=’synthesis ’, verbose =0)

148 mod.atmospheres[’ch1’]. set_parameters ([Bx_ini , By_ini , Bz_ini ,

datos[’tau_ini ’],

149 datos[’v_ini ’], datos[’

deltav_ini ’],

150 1.0, 0.0], 1.0)

151

152 mod.synthesize ()

153

154 stokes = mod.spectrum[’spec1 ’]. stokes

155 stokes_noise , noise = make_noise(stokes , datos[’noiseI ’], datos[’

noiseQ ’],

156 datos[’noiseU ’], datos[’

noiseV ’])

157

158 theta = np.linspace(pi/(2* res_theta), pi-pi/(2* res_theta),

res_theta)

159 phi = np.linspace (2*pi/(2* res_phi), 2*pi -2*pi/(2* res_phi), res_phi)

160

161 Bx_all = datos[’B_all ’]*np.outer(np.sin(theta), np.cos(phi))

162 By_all = datos[’B_all ’]*np.outer(np.sin(theta), np.sin(phi))

163 Bz_all = datos[’B_all ’]*np.outer(np.cos(theta), np.ones(phi.shape

[0]))

164 chi2 = np.zeros([res_theta , res_phi])

165 chi2NoV = np.zeros([res_theta , res_phi])

166

167 npy_datos = [datos_for_names [13],

168 [datos_for_names [14], datos_for_names [15],

datos_for_names [16]] ,

169 datos_for_names [17], datos_for_names [18],

datos_for_names [19]]

170 npy_file_path = (’Perfiles calculados/models_ ’ +

171 f’{npy_datos }.npy’)

172 if recalculate:

173 print(f’Calculando perfil con {npy_file_path.split ("_")[-1]}’)

174

175 calc_stokes_all ()

176

177 all_stokes = np.load(npy_file_path)

178

179 else:

180 if not os.path.exists(npy_file_path):

33

181 print(f’Calculando perfil con {npy_file_path.split ("_")

[-1]}’)

182

183 calc_stokes_all ()

184

185 all_stokes = np.load(npy_file_path)

186

187 print ()

188 for i in range (res_theta):

189 for j in range(res_phi):

190 chi2[i, j] = np.mean (((all_stokes[i, j] - stokes_noise) /

noise) ** 2)

191 chi2NoV[i, j] = np.mean (((all_stokes[i, j, 0:3] -

stokes_noise [0:3]) / noise [0:3]) ** 2)

192

193 logChi2 = np.log10(chi2)

194 logChi2NoV = np.log10(chi2NoV)

195

196 return [logChi2 , logChi2NoV , res_theta , res_phi , theta , phi]

197

198 def sculpt(select , select_values , max_chi =.5):

199 """ Creates the sculptures from the dots of

200 the heat maps.

201

202 Args:

203 select (str): variable name for z axis

204 select_values (float): values for ’select ’

205 max_chi (float , optional): max value of logchi2 for the dots.

206 Defaults to .5.

207 """

208

209 k = 0

210 for select_value in select_values:

211

212 return_list = make_map_perfil(select = select , select_value =

select_value)

213

214 logChi2 = return_list [0]

215 logChi2NoV = return_list [1]

216 res_theta = return_list [2]

217 res_phi = return_list [3]

218 theta = return_list [4]

219 phi = return_list [5]

220

221 print(logChi2.shape [0])

222

223 if k == 0:

224 lista_puntos = np.zeros([len(select_values)*res_theta*

res_phi , 5])

225

226 for i in np.arange(res_theta):

227 for j in np.arange(res_phi):

228 N = k*res_theta*res_phi + i*res_phi + j

229 lista_puntos[N,0] = theta[i]*180/ pi

34

230 lista_puntos[N,1] = phi[j]*180/ pi

231 lista_puntos[N,2] = select_value

232 lista_puntos[N,3] = logChi2[i,j]

233 lista_puntos[N,4] = logChi2NoV[i,j]

234

235 k += 1

236

237 np.random.seed (0)

238 x = lista_puntos [:,0]

239 y = lista_puntos [:,1]

240 z = lista_puntos [:,2]

241 t = lista_puntos [:,3]

242

243 filtered_x = x[t < max_chi]

244 filtered_y = y[t < max_chi]

245 filtered_z = z[t < max_chi]

246 filtered_t = t[t < max_chi]

247

248 trace = go.Scatter3d(

249 x=filtered_x ,

250 y=filtered_y ,

251 z=filtered_z ,

252 mode=’markers ’,

253 marker=dict(

254 size=5,

255 color=filtered_t ,

256 colorscale=’Greys ’,

257 opacity =0.8

258),

259 text=filtered_t ,

260 hovertemplate=

261 ’theta: %{x}
’+

262 ’phi: %{y}
’+

263 ’B_ini: %{z}
’+

264 ’logChi2: %{text}
’,

265)

266

267 fig = go.Figure(data=[trace])

268

269 fig.update_layout(

270 scene=dict(

271 aspectmode=’manual ’,

272 aspectratio=dict(x=1, y=2, z=1),

273 yaxis=dict(range =[0, 360]) ,

274 xaxis=dict(range =[0, 180]) ,

275 xaxis_title=’theta[deg]’,

276 yaxis_title=’phi [deg]’,

277 zaxis_title=f’{select} [gauss]’

278),

279 title ={

280 ’text’: f"3D Scatter Plot with logChi2 < {max_chi}",

281 ’y’:0.9,

282 ’x’:0.5,

283 ’xanchor ’: ’center ’,

35

284 ’yanchor ’: ’top’

285 }

286)

287

288 fig.show()

289

290 if __name__ == ’__main__ ’:

291

292 sculpt(’theta_ini ’, np.linspace(0, 90, 21), max_chi =.4)

7.3 Appendix 3. Video generator

1 import numpy as np

2 import imageio

3 import os as os

4 import MapaHazel as mh

5

6 os.chdir(’’)

7

8 def make_video(select ,

9 select_values):

10 """ Generates a video of the heatmaps for all

11 values passed for the selected variable

12

13 Args:

14 select (str): variable name

15 select_values (array): values to give to ’select ’

16 """

17

18 if not ((isinstance(select_values , np.ndarray) or isinstance(

select_values , list)) and len(select_values)!=1):

19 print(’Must send numpy array with more than one value to

iterate for the video.’)

20 return

21

22 first_loop = True

23 fotogramas_tot = len(select_values)

24 fotograma = 0

25 print("\033[2J")

26 for select_value in select_values:

27 print(f’\033[2;0 HFotogramas generados: {fotograma} de {

fotogramas_tot}’)

28

29 mapa_image_path , _, datos_rounded = mh.make_map_perfil(

recalculate = False , select = select ,

30 select_value = select_value)

31

32 if first_loop == True:

33 datos_rounded[select] = (

34 f’{mh.round_to_p(select_values [0],2)}-{mh.round_to_p(

select_values [-1],2)}’)

35 datos_for_names = [v for _,v in datos_rounded.items ()]

36

36 video_filename = f’Images/Videos/HAZEL -{ datos_for_names }.

mp4’

37 writer_mapa = imageio.get_writer(video_filename , fps = 10)

38 first_loop = False

39

40 image = imageio.v3.imread(mapa_image_path)

41 writer_mapa.append_data(image)

42

43 fotograma += 1

44 print(f’\033[2;0 HFotogramas generados: {fotograma} de {

fotogramas_tot}’)

45

46 writer_mapa.append_data(image)

47 writer_mapa.close ()

48

49 if __name__ == ’__main__ ’:

50

51 make_video(’LOS_ini_gamma ’, np.linspace(0, 90, 11))

52 print ()

7.4 Appendix 4. Ambiguities

1 import numpy as np

2 from numpy import pi as pi

3 import ctypes

4 import matplotlib.pyplot as pl

5

6 def calc_Q(theta_B , Theta_B , Phi_B):

7 return (3*np.cos(theta_B)**2 - 1)*np.sin(Theta_B)**2*np.cos (2* Phi_B

)

8 def calc_U(theta_B , Theta_B , Phi_B):

9 return (3*np.cos(theta_B)**2 - 1)*np.sin(Theta_B)**2*np.sin (2* Phi_B

)

10

11 def differences(case , Phi_B):

12 """ Returns the case differences for the coefficients.

13

14 Args:

15 case (int): number of the case

16 Phi_B (_type_): Phi_B

17

18 Returns:

19 int , float: return the correct values for each case

20 """

21 # Case Phi = Phi’

22 if case == 1:

23 return -1, +1, np.cos(Phi_B), 0

24 # Case Phi = Phi’ + pi

25 elif case == 2:

26 return +1, +1, np.cos(Phi_B), pi

27 # Case Phi = Phi’ + pi/2

28 elif case == 3:

29 return +1, -1, np.sin(Phi_B), pi/2

37

30 # Case Phi = Phi’ - pi/2

31 elif case == 4:

32 return -1, -1, np.sin(Phi_B), -pi/2

33

34 def solve_ambiguities(theta , Theta_B , Phi_B , theta_B , phi_B):

35 """ Only for disk center solutions

36

37 Args:

38 theta (float): LOS theta

39 Theta_B (float): field theta from LOS

40 Phi_B (float): field phi from LOS

41 theta_B (float): field theta from vertical

42 phi_B (float): field phi from vertical

43

44 Returns:

45 _type_: possible solution values

46 """

47

48 cases = [1, 2, 3, 4]

49

50 coeff = np.zeros (5)

51 ambiguities = np.zeros ([4, 8, 7], dtype=’complex_ ’)

52

53 n = 0

54 for case in cases:

55

56 sign1 , sign2 , sin_cos_Phi_B , fase = differences(case , Phi_B)

57

58 A = -3*np.cos(theta)**2 + 3*np.sin(theta)**2* sin_cos_Phi_B **2

59

60 B = 3*np.cos(theta)**2 - 1

61

62 C = sign1 *6*np.cos(theta)*np.sin(theta)*sin_cos_Phi_B

63

64 K = sign2 *(3*(np.cos(Theta_B)*np.cos(theta)

65 - np.sin(theta)*np.sin(Theta_B)*np.cos(Phi_B))**2 - 1)*

np.sin(Theta_B)**2

66

67 # Coeff of equation in Z

68 coeff = [

69 (C**2 + A**2),

70 (-C**2 + 2*A*B),

71 (-2*A*K + B**2),

72 (-2*B*K),

73 (K**2)

74]

75

76 Z_roots = np.roots(coeff).astype(complex)

77

78 t = np.zeros(4, dtype=’complex_ ’)

79 # ind_real = np.where(np.abs(Z_roots.imag) < 1e-15)

80 # Z_roots = Z_roots[ind_real]

81 t = np.sqrt(Z_roots)

82 t = np.append(t, -t)

38

83

84 Theta_B_prime = np.arcsin(t).real % np.pi

85 Phi_B_prime = (Phi_B + fase)

86

87 Q = calc_Q(theta_B , Theta_B , Phi_B)

88 U = calc_U(theta_B , Theta_B , Phi_B)

89

90 print(Q, U)

91

92 k = 0

93 for i, solution in enumerate(Theta_B_prime):

94 Q_t = calc_Q(solution , solution , Phi_B_prime)

95 U_t = calc_U(solution , solution , Phi_B_prime)

96 DeltaQ = np.abs(Q - Q_t)

97 DeltaU = np.abs(U - U_t)

98

99 ambiguities[n, k, 0] = solution

100 ambiguities[n, k, 1] = (Phi_B_prime + np.pi) % (2 * np.pi

) - np.pi # Transform to -pi , pi

101 ambiguities[n, k, 2] = Q_t

102 ambiguities[n, k, 3] = U_t

103 ambiguities[n, k, 4] = DeltaQ

104 ambiguities[n, k, 5] = DeltaU

105

106 if (DeltaQ < 1e-3 and DeltaU < 1e-3):

107 ambiguities[n, k, 6] = 1

108 print(t[i],’| |’, solution * 180/np.pi,’| |’,

Phi_B_prime * 180/np.pi)

109

110 k += 1

111

112 n += 1

113

114 return ambiguities

115

116 def compute_chi2(Theta_B , Phi_B , theta_B , phi_B):

117 Qref = calc_Q(theta_B , Theta_B , Phi_B)

118 Uref = calc_U(theta_B , Theta_B , Phi_B)

119

120 TB = np.linspace (0.0, np.pi , 100)

121 PB = np.linspace(-np.pi , np.pi , 100)

122 TB, PB = np.meshgrid(TB, PB)

123 Q = calc_Q(TB, TB, PB)

124 U = calc_U(TB, TB, PB)

125 chi2 = (Q - Qref)**2 / 0.1**2 + (U - Uref)**2 / 0.1**2

126

127 return TB, PB, chi2

39

