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Abstract

The decoherence of quantum systems, i.e., the loss of purity generated by the coupling
of the systems to uncontrollable environments, represents one of the main challenges in the
creation and implementation of quantum technologies. This work focuses on a method recently
developed for addressing this problem and extending the coherence times: the Continuous
Dynamical Decoupling (CDD) method. This technique has been proven useful in numerous
contexts: its applicability to reduce the effects of magnetic noise in atomic multiplets, to
extend coherence in trapped-ion systems, or to perform noise spectroscopy is continuously
being reported.

The study begins with a review of general aspects of stochastic processes. A detailed
characterization of three types of noise, white noise, the Ornstein-Uhlenbeck process, and 1/f
fluctuations, which are particularly relevant to quantum information protocols, will be provided.
Subsequently, the introduction of generic time-dependent fluctuations into the description of
the dynamics of a simple quantum system will be tackled. In this line, the dependence of the
consequent dephasing effect on the correlation time of the fluctuations will evaluated. Particular
attention will be paid to the dephasing resulting from the previously mentioned three types of
noise. The central part of the work deals with the basic component of the CDD method, i.e.,
with the application of a conveniently chosen driving field that allows relegating the effect of
noise to a secondary (perturbative) role. Working in the basis of eigenstates of the driving
term, the effect of noise on the populations of dressed states will be described. Actually, the
magnitude of the noise-induced transfer of populations will be used as an indicator of the
method’s efficiency. The emergence of features specifically associated to the noise spectrum
will be uncovered. Moreover, it will be shown that the system responses to the considered
three types of noise can be regarded as illustrative examples of the diverse phenomenology
that can be found in stochastic environments. The obtained results will allow discussing the
applicability and efficiency of the method for various experimental conditions. Finally, the basis
of the concatenation schemes commonly employed in experimental setups will be analyzed.



Resumen

La decoherencia de los sistemas cuánticos, i.e., la pérdida del carácter de estado puro gen-
erada por el acoplamiento de los sistemas a entornos incontrolables, representa uno de los
principales desaf́ıos en la creación e implementación de tecnoloǵıas cuánticas. Este trabajo
se centra en un método desarrollado recientemente para abordar este problema y extender los
tiempos de coherencia: el método de Desacoplamiento Dinámico Continuo (CDD). Esta técnica
ha demostrado ser especialmente útil en numerosos contextos: su aplicabilidad para reducir los
efectos del ruido magnético en multipletes atómicos, para extender tiempos de coherencia en
sistemas de iones atrapados, o para realizar espectroscoṕıa de ruido se sigue documentando
continuamente.

El estudio comienza con una revisión de los aspectos generales de los procesos estocásticos.
Se proporcionará una caracterización detallada de tres tipos de ruido: ruido blanco, el proceso
Ornstein-Uhlenbeck, y las fluctuaciones 1/f , particularmente relevantes para los protocolos de
información cuántica. Posteriormente, se abordará la introducción de fluctuaciones genéricas
dependientes del tiempo en la descripción de la dinámica de un sistema cuántico simple. En
la misma ĺınea, se evaluará la dependencia con el tiempo de correlación del desfase surgido. Se
prestará especial atención al desfase resultante de los tres tipos de ruido mencionados anteri-
ormente. La parte central del trabajo trata con los componentes básicos del método CDD, i.e.,
con la aplicación de un campo de control (driving field) convenientemente elegido que permita
relegar el efecto del ruido a un papel secundario (perturbativo). Trabajando en la base de
autoestados del término de driving, se describirá el efecto del ruido en las poblaciones de los
estados vestidos. De hecho, la magnitud de la transferencia de poblaciones inducida por el
ruido se utilizará como un indicador de la eficiencia del método. Se descubrirán caracteŕısticas
espećıficamente asociadas al espectro del ruido. Además, se mostrará que las respuestas del
sistema a los tres tipos de ruidos considerados pueden ser vistas como ejemplos ilustrativos
de la diversa fenomenoloǵıa que se puede encontrar en entornos estocásticos. Los resultados
obtenidos permitirán discutir la aplicabilidad y eficiencia del método para diversas condiciones
experimentales. Finalmente, se analizará la base de los esquemas de concatenación comúnmente
empleados experimentalmente.
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1 INTRODUCTION

1 Introduction

En esta sección se introducirá el problema de la decoherencia y se discutirá su importancia
en el desarrollo de tecnoloǵıas cuánticas. Asimismo se mostrará el surgimiento de la
decoherencia a partir de un modelo sencillo y se discutirán brevemente las principales
técnicas para su reducción.
. . . . . . . .

In this Section, general aspects of the decoherence problem will be addressed. First, the
crucial relevance of the problem to the realization of quantum technologies will be discussed.
Then, through the use of a basic model system, the emergence of decoherence in a general con-
text will be traced. Finally, a brief account of the methods of Dynamical Decoupling, proposed
for decoherence reduction, will be given.

Quantum technologies are playing a leading role in the fast development of fields like infor-
mation processing, metrology, or sensing. As they are based on resources specifically associated
to the quantum character of the dynamics, their potential depends crucially on maintaining
the quantum signatures in the employed setups [1]. A central objective of the research in these
fields is the implementation of technical schemes that allow controlling the dynamics while
preserving the quantum features. Particularly important in this context is the decoherence
problem: the loss of purity generated by the coupling of the primary system to non-controllable
environments is a fundamental difficulty in the realization of intrinsically quantum effects. For
instance, the relevance of the decoherence issues to the feasibility of the quantum-computing
proposals is evident: the power associated to the possibility of working with a superposition
of states disappears when the information on the relative phases is lost, i.e., when decoher-
ence turns up. Hence, it is understood that curbing the effect of fluctuations rooted in the
interactions with the environments, and, consequently, extending the coherence times is a basic
requirement for advancing in the implementation of quantum technologies [2], [3]. Apart from
technical importance, preserving the coherence has central relevance to fundamental areas of
research. In this sense, it is worth pointing out its crucial role in the realization of fundamental
effects with ultracold atoms [4].

The general aim of this work is to evaluate how the efficiency of the method of Continuous
Dynamical Decoupling, proposed to reduce decoherence effects, depends on the spectral char-
acteristics of the fluctuations. In order to achieve this objective, the analysis of the decoherence
mechanisms and the precise characterization of the sources of noise are required.

Tracing the emergence of decoherence

Valuable insight into the emergence of decoherence can be obtained from the study of a basic
model where fundamental aspects of open quantum systems can be traced [5]. Specifically, let
us consider the system formed by two interacting qubits, one of them playing the role of primary
system and the other standing for the environment . The dynamics are assumed to be governed
by the Hamiltonian
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1 INTRODUCTION

H =
h̄

2
ω1σz,1 +

h̄

2
ω2σz,2 + Aσz,1σz,2, (1)

whose eigenstates are given by

|±1⟩ ⊗ |±2⟩ , (2)

where σz,1 |±i⟩ = ± |±i⟩ , i = 1, 2. In the interaction picture, the time-evolution operator reads

U(t) = eitAσz,1σz,2/h̄. (3)

Now, let us assume that the system is prepared in the state

|Ψ(t = 0)⟩ = |ΦS,1⟩ ⊗ |ΦS,2⟩ , (4)

with |ΦS,i⟩ = 1√
2
(|+i⟩+ |−i⟩), i = 1, 2. The evolution is straightforwardly derived

|Ψ(t)⟩ = 1

2
(|+1,+2⟩+ e−

i
h̄
2At |+1,−2⟩+ e−

i
h̄
2At |−1,+2⟩+ |−1,−2⟩), (5)

where the compact notation |±i,±j⟩ has been used.
However, this expression is not applicable if the second qubit is regarded as an environment .

On this point, one must recall that, in the standard procedure to deal with open quantum sys-
tems, the partial trace of the density matrix over the bath degrees of freedom is carried out since
there is no access to information on the reservoir dynamics. Therefore, in the present case, we
must partially trace over the degrees of freedom associated to the second qubit. Consequently,
we obtain for the (reduced) density operator of the first qubit the expression

ρ(t) = Tr2[|Ψ(t)⟩ ⟨Ψ(t)|] = 1

2

(
1 cos(2At)

cos(2At) 1

)
. (6)

From it, one can single out some important features resulting from the combined effect
of coupling to the second qubit and partial tracing. First, the evaluation of Trρ2 uncovers
a cyclic process of loss and revival of the pure-state character. Second, as the decoherences
are not observed to eventually decay, (the off-diagonal elements of the reduced density matrix
experience a mere cyclic evolution with no damping), one can infer that some fundamental
components of the decoherence scenario are missed in the model. In fact, in order to simulate
an environment, the model must be generalized: the coupling of the primary system to a set
of (bath) qubits, with continuously distributed characteristics, must be incorporated. In that
framework, the coherences can be shown to be given by a sum of oscillating functions cos(2At),
the associated frequencies 2A varying continuously. Specifically, assuming that the amplitudes
of coupling of the basic system to the different qubits are distributed according to the function
WD(A), the coherence is found to evolve as

ρ1,2(t) ∝
∫

dAWD(A) cos(2At), (7)

which can be shown to correspond to a time decaying function. In particular, when the coupling
amplitude A is normally distributed, namely, for
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WD(A) =
1√

2πvar[A]
exp

{
−(A− ⟨A⟩)2

2var[A]

}
, (8)

a Gaussian decay is observed:

ρ1,2(t) ∝ e−
1
2
var[A]t2 cos(2⟨A⟩t). (9)

Remarkably, it is the functional form of the distribution of coupling amplitudes that deter-
mines the form of the decay. It is also pertinent to stress that the considered model actually
emulates the specific type of decoherence process known as dephasing : the populations main-
tain their initial values and the coherences decay and eventually disappear. This behavior is
rooted in the structure of the coupling terms, which, as can be seen in 1 do commute with
the uncoupled Hamiltonian. The scenario changes significantly if the coupling is, for instance,
considered to have the form Aσx,1σx,2. Then, a relaxation process with evolution of popula-
tions and coherences can be shown to occur. We emphasize that the considered dephasing
process can also be reproduced via a Hamiltonian where the global effect of the environment
is incorporated through a stochastic driving term. Specifically, the observed fixed values of the
populations and the decay of the coherences are also found when the Hamiltonian is assumed
to have the form

H =
h̄

2
ω1σz,1 + Aζ(t)σz,1, (10)

where ζ(t) is a random signal. In this case, as we will show further in our work, it is the
spectral density of noise that determines the form of the coherence decay. This dual picture of
the dephasing mechanism is an illustration of a general parallelism existent in the study of open
quantum systems. Indeed, there are two general alternative approaches to describe dissipation.
In the first line, as in the model previously considered, the environment is explicitly incorporated
into the quantum formalism [6]. Subsequently, a reduced description of the primary system is
achieved via a partial tracing, and a master equation is derived. In the second line, the role of the
environment is described as a random driving that enters directly the primary system. In this
case, the procedure applied incorporates as a first step the evaluation of the (unitary) evolution
for each noisy trajectory, i.e., for each set of values realized by the random variable along a
time sequence. Subsequently, the statistical average over noise realizations is carried out. The
choice of one of the alternatives to deal with a specific problem depends on the environment
characteristics, in particular, on the potential requirement of a quantum treatment of the bath.

In the present work, we will be focused on decoherence originated by fluctuations present in
the intensities and frequencies of electromagnetic fields which do not require a quantum treat-
ment. Consequently, we will be using the second (stochastic) approach to describe decoherence.
Here, it is worth mentioning that, in standard setups, when both decoherence mechanisms (the
one associated to a quantum bath and that corresponding to classical noise) coexist, it is the
second one that usually dominates, so their effects must be addressed first.
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1 INTRODUCTION

Methods for decoherence reduction

In the last decades, different methods for decoherence reduction have been proposed and
applied. Indeed, a variety of strategies have been designed to cope with the specific character-
istics of the different sources of noise. Significant objectives have been achieved: in some cases,
the coherence times have been enlarged by orders of magnitude [7]. Among the methods ap-
plied, the techniques of dynamical decoupling stand out as particularly effective. They basically
consist in strategies to effectively disconnect the system from the environment that generates
the fluctuations. Their original design incorporated sequences of pulses of control intended to
average out the effect of noise [8], [9]. In order to facilitate the integration of the information
protocols and aiming at simplifying the experimental realization, the pulses were replaced by
continuous-wave driving fields in subsequent variations of the original proposals [10], [11]. For
those methods to be operative it is necessary to minimize their (unavoidable) invasive effect
on the system whose control is intended. In this sense, concatenation schemes set up to deal
with the extra noise introduced by the auxiliary fields have been proposed. The applicability
of those techniques to qubits realized with trapped ions and atoms, nitrogen vacancies (NV)
centers in diamond, or quantum dots has been extensively reported [12]-[15].

Here, it is worth stressing that it is in slow-noise setups where the performance of the CDD
techniques have been mainly evaluated. Moreover, in the studies where non-static noise has
been contemplated, its effect has been frequently analyzed via numerical simulation or through
approximations valid only in specific regimes [16] (the limit of large observation times or the
adiabatic scenario have been usually tackled). It is pertinent to add that the majority of those
studies have dealt with the pulsed variant of the dynamical-decoupling technique. In the present
work, we will go beyond that scenario: the potential applicability of the CDD method to deal
with generic fluctuations will be analytically evaluated. Actually, given the variety of sources
of noise that can be relevant to the experimental setups, it is sensible to go beyond a scenario
where all the fluctuations (the original input and those resulting from random variations of the
different auxiliary fields) are considered to be static. Indeed, a realistic consideration of the
applicability of CDD methods should contemplate the potential role of finite correlation times.

The outline of this report is as follows. In Sec. II, I will make a review of general aspects
of the characterization of stochastic variables. Moreover, I will review the properties of three
specific types of noise, potentially relevant to different experimental setups. Specifically, we
will deal with white noise, an Ornstein-Uhlenbeck process, and 1/f fluctuations. The effects
of those random processes on the qubits dynamics will analyzed along the work. In Sec. III,
I will describe some fundamental properties of the decohering effects of generic noise. An
approach of complete validity will allow us to trace general dephasing features emergent in the
asymptotic regimes. Additionally, we will describe the loss of purity in a general time regime
for the three previously introduced stochastic processes. In Sec. IV, the system dynamics in the
CDD scheme will be tackled. The analytical characterization of the noise-induced transfer of
population between dressed states will be used to scrutinize the efficiency of the CDD method.
Again, asymptotic expressions valid for generic noise and results for specific types of noise in
a general time regime will be given. The inclusion of concatenation schemes will be evaluated.
Finally, the general conclusions are summarized in Sec. V.
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2 NOISE

2 Noise

En esta sección se dará una breve introducción al estudio de procesos estocásticos y se
presentarán las principales herramientas para su caracterización. Asimismo, se expondrán
algunos de los ruidos más relevantes para el estudio de protocolos de información cuántica
y se comentarán sus caracteŕısticas fundamentales.
. . . . . . . .

In this Section I present first a short review of the primary tools used in the general character-
ization of stochastic processes. Then, that basic methodology will be applied to the description
of different types of noise relevant to the systems considered in the realization of quantum-
information protocols.

2.1 Stochastic Processes

In nature, systems do not behave in an entirely deterministic way. In fact, in the description
of any system we must cope with the problem of limited predictability : for sufficiently precise
measurements, one can observe fluctuations emerging from a generally well-defined determin-
istic global behavior. The origin of the fluctuations can be traced back to the coupling of the
system to uncontrollable environments. Moreover, even if the system can be considered to be
highly isolated, the lack of predictability can enter the description via fundamental aspects of
the dynamics like the chaotic character of the classical dynamics or the lack of determinism
intrinsic to the quantum evolution. Understanding the different sources of fluctuations is there-
fore fundamental to a wide range of fields. Much effort has been dedicated towards this goal,
in this sense, we must recall the pioneering work on Brownian Motion independently developed
by Einstein [17] and Smoluchowski [18].

Two equivalent approaches are standardly applied to describe a stochastic process. The
first one consists in using a stochastic differential equation to characterize the evolution of
the random variable x(t). Specifically, the dynamical equations corresponding to the primary
deterministic process are modified to incorporate random terms (random forces) that account
for the presence of fluctuations. The noisy terms are modeled according to the properties of
the environment that generate them. In this approach, frequently denominated a Langevin-
type description, the stochastic variable can potentially follow a variety of noisy trajectories ,
associated to the different realizations of the random forces. The global effect of noise on the
system is obtained by averaging over all trajectories.

The second (counterpart) approach deals with obtaining the distribution function W (x, t)
that gives the probability for the stochastic variable to reach a specific value. A partial differ-
ential equation, usually called a Fokker-Planck equation, is set up for W (x, t). This differential
equation incorporates both the deterministic system-components and the characteristics of the
fluctuations [19].

Any of the two approaches can provide the information required for describing the stochastic
process. In our analysis of the efficiency of the technique of Continuous Dynamical Decoupling
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2 NOISE

to curb the decohering effects of noise we will use elements from both approaches.

The above general arguments are clearly illustrated by the study of Brownian motion, i.e.,
the diffusion process experienced by a macroscopic particle immersed in a fluid due to the
unpredictable kicks generated by the fluid molecules. The two lines originally followed in the
description of Brownian motion correspond to the two previously referred standard approaches.
Indeed, the explanation of that process set the basis for the development of stochastic analysis.
The first (Langevin) line is based on setting up a differential equation where the effect of the
fluid enters via both a deterministic friction force and a rapidly-fluctuating force with zero-
mean value. The alternative approach is the (original) Einstein derivation of the probability-
distribution function: from general considerations on the effect of the fluid, a diffusion (partial-
differential) equation is built up and solved. In both lines, the properties of the environment
correspond to the fluctuations presently known as white noise. In the following, we will precisely
define the characteristics of this and other types of fluctuations.

2.2 General Characteristics of Noise

There is a variety of sources of fluctuations that can be relevant to decoherence in Quantum
Mechanics. To deal with the associated broad range of noise properties, an operative approach
is needed. The usual procedure consists in setting up models where different stages of increas-
ing complexity are gradually incorporated. In the present work, we will restrict to the basic
scenario, i.e., we will deal with random variables x(t) which are assumed to be completely
characterized by two properties, namely, their mean value and their autocorrelation function.
Those variables are termed Gaussian variables. One basic objective of the present work is to
account for the effect of Gaussian fluctuations on the Quantum Dynamics. The implications of
going beyond the Gaussianity assumption will be punctually discussed.

The mean value of x(t), denoted as ⟨x(t)⟩, is trivially defined as the average over stochastic
realizations. (Here, it is important to realize that it is always possible to work with zero-mean
random variables since a non-zero mean value can be straightforwardly incorporated into the
deterministic dynamics). The second fundamental characteristic is the autocorrelation function,
denoted by G(τ), and given by

G(τ) = ⟨x(t) x(t+ τ)⟩. (11)

It is apparent that G(τ) is an indicator of how a particular noise realization affects the
consecutive ones. From the form of G(τ), two additional (secondary) parameters are derived.
The first one is the variance, which measures the magnitude of the noisy dispersion, is defined
by var[x(t)] = ⟨x2(t)⟩ − ⟨x(t)⟩2 and can be rewritten as:

var[x(t)] = G(0)− ⟨x(t)⟩2. (12)

Hence, in the case of a zero-mean variable, we simply have:

var[x(t)] = G(0). (13)

This expression will be frequently used in the present work as we will generally work with
zero-mean value random variables.
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2 NOISE

Another parameter derived from G(τ) is the correlation time τc, defined by

τc =
1

var[x(t)]

∫ ∞

0

G(τ)dτ, (14)

which gives the magnitude of the time interval for the decay of the correlation.
Importantly, in our basic model, the random variables, apart from Gaussian, are assumed

to be stationary, i.e., the mean value ⟨x(t)⟩ is considered to be the same at any time (actually,
there is no time dependence in the mean value), and the autocorrelation function is assumed
to depend on the time interval τ , but not on the absolute time t.

Very convenient to the identification of the different types of noise is the use of the spectral
density S(ω) defined as

S(ω) = lim
T−→∞

1

2πT

∣∣∣∣∫ T

0

dte−iωtx(t)

∣∣∣∣2. (15)

In Appendix I, I also present the derivation of the Wiener-Khinchin-Theorem, i.e., of the
relationship

S(ω) =
1

2π

∫ ∞

−∞
dτe−iωτG(τ), (16)

between the spectral density and the Fourier transform of the autocorrelation function. S(ω),
which can be interpreted as an indicator of the weight that each Fourier component of noise
has in the total random signal, is an operative tool in the experimental characterization of the
fluctuations. Moreover, we will see that S(ω) plays a key role in our objective of understanding
the relevance of the noise spectrum to the efficiency of the CDD method. As a preamble
to achieving that goal, three types of noise with widely different spectra are tackled in the
following.

2.3 White noise

The term white noise refers to an idealized delta-correlated stochastic process: the autocor-
relation function is given by

G(τ) = 2πCδ(τ), (17)

and, correspondingly, the spectrum is constant

S(ω) = C, (18)

i.e., all the Fourier components of noise have equal weight.
White noise is used to model stochastic setups where an almost sudden complete loss of

correlation can be assumed. Here, we use the term idealized as in practice there is always a
finite smallest time-scale for observing the system. Hence, a sudden loss of correlation must
necessarily be an idealization. Notice that, formally, for a white-noise process the variance
is infinite and the correlation time is zero. The divergence disappears as soon as a coarse-
graining over the smallest time-scale for observing the system is carried out. Apart from directly
modeling noisy environments, white noise enters as a random force in stochastic differential
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2 NOISE

equations used to generate finite correlation-time (colored-noise) processes. This is illustrated
by the build up of an Ornstein-Uhlenbeck process presented in the next Section.

2.4 Ornstein-Uhlenbeck process

This type of stochastic process, which was first described by Leonard Ornstein and George
E. Uhlenbeck in 1930 [20], is widely applied in Physics.

Formally, a stochastic variable x(t) is said to describe an Orntein-Uhlenbeck process when
it obeys the following stochastic differential equation

dx = −αxdt+ Γ(t)dt, (19)

where α is a positive real constant, and Γ(t) denotes a stochastic force with white-noise char-
acteristics, i.e.,

⟨Γ(t)Γ(t′)⟩ =
√
Dδ(t− t′), (20)

with D being a positive real constant. Although the case of a nonzero mean-value of Γ(t) can
be straightforwardly incorporated in this framework, here, for simplicity, a zero mean-value,
⟨Γ(t)⟩ = 0, is taken.

Applying standard techniques to solve stochastic differential equations, it is shown that, in
the stationary regime, the mean value and the correlation function of x(t) are respectively given
by

⟨x(t)⟩ = 0, (21)

and

⟨x(t)x(t+ τ)⟩ = D

2α
e−α|τ |. (22)

Accordingly, the correlation time is τc = α−1.
It is equally shown that the spectral density of the process has a Lorentzian functional-form,

namely,

S(ω) =
D

2π(α2 + ω2)
. (23)

The Ornstein-Uhlenbeck process is widely used in different scientific contexts to emulate
finite correlation-time random inputs, from Physics [21], [22] to Financial Mathematics [23]
and even in Evolutionary Biology [24]. Actually, the main components of the fluctuations
emerging in a variety of environments seem to be well modeled by the exponential decay of the
correlation and the associated Lorentzian spectrum of an Ornstein-Uhlenbeck process.

2.5 1/f noise

This type of noise, is found widely in nature, from Physics to Music, passing through
Biology, Economics, Psychology or even in Language [25]-[27]. Firstly discovered by Johnson
[28] in 1925, it has been shown to appear in the annual flood levels of various rivers, in electronic
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2 NOISE

devices, or to even be related to ion channels in brains (in this last case, deviations from 1/f
noise can even be used to identify epilepsy in clinical EEGs [29], [30]).

Formally, the term 1/f noise refers to fluctuations with a spectral density of the form

S(ω) =

{
A
ω
, ω ∈ (ω1, ω2)

0 , ω /∈ (ω1, ω2)
(24)

where ω1 y ω2 are the limits of the frequency range on which the system is accessible. Corre-
spondingly, 1/ω2 y 1/ω1 define the bounds of the time interval where the system is observable.
In particular, the smallest time-scale to extract information from the system is given by 1/ω2

and the asymptotic limit corresponds to the time 1/ω1.
From the spectral density, we can obtain the autocorrelation function applying the Wiener-

Khinchin Theorem as follows

G(τ) =

∫ ∞

−∞
dωeiωτS(ω) = 2A

∫ ω2

ω1

dω
cos(ωτ)

ω
, (25)

and, to solve the integral, we evaluate first the time derivative and then make a coarse-graining
over the smallest time-scale 1/ω2, namely,

dG(τ)

dτ
= −2A

∫ ω2

ω1

dω sin(ωτ) =
4A

τ
sin

(
(ω2 − ω1)τ

2

)
sin

(
(ω1 − ω2)τ

2

)
≃ −4A

τ
sin2

(ω2τ

2

)
≃ −2A

τ
,

(26)

where we have also considered ω2 ≫ ω1. Now, integration is straightforward. We can adjust
the integration constant to cover the value of the variance at time 1/ω2

var[x(t)] = G(0) = 2

∫ ω2

ω1

dω
A

ω
= 2A ln

(
ω2

ω1

)
, (27)

and therefore

G(|τ |) = 2A ln

(
1

ω1|τ |

)
, (28)

which reflects that, consistently, the correlation decays to zero at the asymptotic value of time
1/ω1. Fluctuations with a 1/f spectrum are ubiquitous in Physics. They are particularly
relevant to the field of Quantum Information as they are known to be the main source of
decoherence in solid-state devices proposed to implement qubits. In quite generally accepted
theoretical approaches, the emergence of 1/f noise is traced to the presence of impurities in the
solid substrate which can be modeled as two-level systems. In this framework, each two-level
unit is considered as a fluctuator: the system can randomly jump between the two states. It
is shown that, for specific forms of the distribution of impurities, the combined action of the
stochastic transitions of the system in the different fluctuators leads to a global noisy output
with a 1/f spectral density [31]. Important for the objectives of our study is to identify the
features of the decoherence process which are linked to specific characteristics of the spectrum.
As we will see, differential aspects associated to the 1/f spectrum can be singled out.
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3 Noise-induced decoherence: Analytical study of

dephasing processes

Esta sección se centrará en la introducción de fluctuaciones genéricas en sistemas de rele-
vancia para protocolos de información cuántica. Se analizarán sus efectos anaĺıticamente,
primero desde un enfoque general aplicable a cualquier tiempo para fluctuaciones genéricas.
Tras ello, se hará un análisis en profundidad donde se estudiarán diferentes ĺımites y tipos
de ruido concretos.
. . . . . . . .

In this Section, I present a general analytical approach to incorporate fluctuations into the
evolution of systems relevant to Quantum Information techniques. First, a general description,
valid at any time regime and applicable to generic fluctuations, will be given. Subsequently, an
in-depth analysis of different asymptotic regimes and types of noise will be presented.

3.1 The model system

As a starting point, a simple scenario where the fluctuations enter the system as a classical
driving field. Specifically, we deal with the Hamiltonian

H = (ω0 + δω0(t))Fz, (29)

where Fz is an Angular Momentum operator, ω0 represents a characteristic system-frequency,
and δω0(t) accounts for random variations in the frequency. Note that no restrictions on the
number of involved states are assumed as the quantum number F is not specified. Although
the used notation specifically refers to a hyperfine Zeeman multiplet, as considered in [16],
the above Hamiltonian can actually be regarded as a model system of wide applicability: it is
relevant to any context where noisy changes of the characteristic frequencies can occur.

It is worth stressing that this kind of processes, associated to a stochastic modulation of
the system frequencies, are usually termed as dephasing . In the application of the method of
Continuous Dynamical Decoupling, we will also face (alternative) dissipation processes induced
by fluctuations entering the system via a nondiagonal term (i.e., a term which does not commute
with the undriven Hamiltonian). We will see that the evolution of populations and coherences
presents differential aspects depending on how stochasticity enters the system.

Convenient for a compact characterization of the dynamics is changing to the rotating frame
defined by the unitary transformation

U(t) = eiω0tFz/h̄. (30)

The transformed Hamiltonian is given by the expression

H̃ = UHU † + ih̄U̇U † = (ω0 + δω0(t))Fz + ih̄
iω0

h̄
Fz = δω0(t)Fz, (31)

which is derived making use of the Baker-Campbell-Hausdorff formula (see Appendix II).
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In turn, the Schrödinger equation is solved in the form

∂t |Ψ(t)⟩ = − i

h̄
δω0(t)Fz |Ψ(t)⟩ =⇒ |Ψ(t)⟩ = e−iFzξ(t)/h̄ |Ψ(0)⟩ , (32)

where we have introduced the (random) phase shift ξ(t) given by

ξ(t) =

∫ t

0

δω0(t
′)dt′. (33)

Obviously, this procedure allows also solving for the time evolution of the density operator,
obtained as

ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)| . (34)

Moreover, in the representation of states {k;m} (m being the quantum number associated to
Fz, and k accounting for additionally required quantum numbers), the density-matrix elements
are given by

ρm,m′(t) = ρm,m′(0)ei(m−m′)ξ(t). (35)

Now, in order to completely characterize the system dynamics, the average over noise real-
izations must be carried out. Notice that this last step parallels the derivation of the reduced
master equation in a framework based on a complete quantum treatment of the fluctuations.
Indeed, in that scenario [5], the analog procedure is tracing over the environment degrees of
freedom, which leads to the reduced description. In our approach, the (reduced) density-matrix
elements read

ρm,m′(t) = ρm,m′(0) ⟨ei(m−m′)ξ(t)⟩. (36)

From this expression, it is apparent that no changes in the populations take place in the
considered dephasing setup. On the contrary, the coherences can be predicted to evolve, the
specific form of their time evolution being determined by the noise characteristics. In the
following, we will show that it is possible to go further analytically at specific time regimes and
for particular noise properties.

3.2 Dephasing induced by generic fluctuations: Analysis of the asymp-
totic time regimes

Even when a complete characterization of the random input δω0(t) is not accessible, and,
consequently, when the properties of the random term ξ(t) are not completely known, it is
possible to identify two distinct regimes where analytical conclusions on the evolution of the
density-matrix elements can be drawn. Depending on the magnitude of the correlation time
τc, (i.e. of the time scale over which the random variable remains correlated), it is possible to
identify the following distinct regimes:
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The limit of large correlation times

At times much smaller than the correlation time, i.e., for t ≪ τc, the phase shift can be
approximated as

ξ(t) =

∫ t

0

δω0(t
′)dt′ ≃ δω0(0)t. (37)

Therefore, we can calculate the average of the density-matrix elements from the probability
distribution-function for δω0(t), WD[δω0(t)], namely,

ρm,m′(t) = ρm,m′(0)

∫ ∞

−∞
d(δω0)WD(δω0)e

i(m−m′)δω0t. (38)

Hence, this approximation allows us drawing the functional form of the coherence decay
from the mere knowledge of general characteristics of the fluctuations, specifically, from the
magnitude of the correlation time and from the probability distribution-function.

The predictive power of having analytical results in this regime is illustrated by considering
the case of Gaussian noise. For a Gaussian input δω0(t) with mean value ⟨δω0(t)⟩ = 0 and
variance var[δω0(t)], and, consequently, with the distribution function being given by

WD(δω0) =
1√

2πvar[δω0]
exp

[
− (δω0)

2

2var[δω0]

]
, (39)

the averaging in Eq.(38) is straightforwardly carried out to obtain

ρm,m′(t) ∝ e−
1
2
var[δω0]t2(m−m′)2 , (40)

which corresponds to Gaussian decay with characteristic time

τd =

√
2

(m−m′)
√

var[δω0]
. (41)

Note that for m = m′, one finds τd −→ ∞, as corresponds to the previously remarked lack of
evolution of the populations.

The limit of short correlation times

In the opposite limit, namely, for t ≫ τc, it is possible to rewrite ξ(t) in the form

ξ(t) =

∫ ∆t

0

δω0(t)dt+

∫ 2∆t

∆t

δω0(t)dt+ ...+

∫ t

(n−1)∆t

δω0(t)dt, (42)

i.e., as the sum of n integrals each of them covering a time interval ∆t = t
n
. In the considered

limit, it is feasible to make compatible a large number of terms in the sum (a high value of
n) with ∆t being much larger than the correlation time. Hence, from the application of the
Central Limit Theorem [19], one concludes that, since ξ(t) can be expressed as the sum of a large
number of statistically independent variables, it presents an approximate normal distribution.

Page 12
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Therefore, one simply needs to evaluate the mean ⟨ξ(t)⟩ and the variance ⟨ξ2(t)⟩ − ⟨ξ(t)⟩2 to
completely characterize ξ(t). Accordingly, we proceed as

⟨ξ(t)⟩ =

〈∫ t

0

δω0(t
′)dt′

〉
= n

∫ ∆t

0

⟨δω0(t
′)⟩ = ⟨δω0⟩t = 0, (43)

where we have assumed an stationary process (i.e., ⟨δω0(t
′)⟩ = ⟨δω0⟩).

Additionally, we can calculate the variance

var[ξ(t)] = ⟨ξ2(t)⟩ =

〈(∫ t

0

dτδω0(τ)

)(∫ t

0

dτ ′δω0(τ
′)

)〉
. (44)

Solving this integral, as detailed in Appendix III, shows that in the considered limit,

var[ξ(t)] ≃ 2πS(0)t. (45)

It is possible to make an averaging as in Eq. (38). Indeed, from Eq.(36), one finds

ρm,m′(t) = ρm,m′(0)

∫
d(ξ(t))WD[ξ(t)]e

i(m−m′)ξ(t)

= ρm,m′(0)

∫ ∞

−∞
d(ξ(t))

1√
2πvar[ξ(t)]

exp

[
− ξ2(t)

2var[ξ(t)]

]
ei(m−m′)ξ(t)

= ρm,m′(0)e−
1
2
(m−m′)⟨ξ(t)⟩.

(46)

It is then concluded that, in the regime considered, the coherences present an exponential
decay,

ρm,m′(t) ∝ exp
[
−(m−m′)2πS(0)t

]
, (47)

the 1/e scaling time being,

τd = [(m−m′)2πS(0)]−1. (48)

Hence, it is the noise spectrum at zero frequency that determines the magnitude of the
dephasing time. The emergence, irrespective of the noise properties, of a universal exponential-
decay regime in the limit of long observation times has been observed in studies on dephasing
in different physical contexts. At this point, it is worth emphasizing that a different functional
form is associated to processes induced by 1/f noise, as we will see in the next Section.

3.3 Dephasing induced by specific types of noise: Analysis of the
general time regime

In order to identify the type of noise present in a particular setup, the results extracted
from the above analysis of the asymptotic regimes are not sufficient. Advances in tracking the
fluctuations demand a more complete description of the coherence decay. A detailed modeling of
the noise characteristics is needed to establish the origin of features emergent in the decoherence
process. In the following, we will proceed along this line by identifying differential properties
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of the dephasing process associated to the three different types of noise characterized in Sec.
2. Accordingly, the random input into the system, i.e., the stochastic variable δω0(t), will be
consecutively assumed to correspond to white noise, to an Ornstein-Uhlenbeck process, and to
1/f fluctuations. In the three cases, the Gaussian character of the variables will be considered.
Moreover, without loss of generality, we will deal with zero mean-value variables, ⟨δωo⟩ = 0. It
follows that ξ(t), given by the time integral of δω0(t), is also a Gaussian variable. Moreover, it
is trivially found that, for stationary processes, it has zero mean-value ⟨ξ(t)⟩ = 0.

Therefore, only the variance ⟨ξ2(t)⟩ is required for a complete characterization of the prob-
ability distribution-function of ξ(t), WD[ξ(t)], and, in turn, for obtaining the time-evolution of
the density-matrix elements as shown in Eq.(46).

Correspondingly, we address now the evaluation of the variance of ξ(t) for the three con-
sidered types of noise using the associated autocorrelation functions presented in the previous
Section:

For white noise, we obtain

⟨ξ2(t)⟩ =
∫ t

0

dτ

∫ t

0

dτ ′⟨δω0(τ)δω0(τ)⟩ =
∫ t

0

dτ

∫ t

0

dτ ′2πCδ(τ − τ ′) = 2πS(0)t. (49)

For an Ornstein-Uhlenbeck process,

⟨ξ2(t)⟩ =
∫ t

0

dτ

∫ t

0

dτ ′
D

2α
e−α|τ−τ ′| =

D

2α

∫ t

−t

dτ(t− |τ |)e−α|τ−τ ′|

=
D

α2

(
t+

e−αt − 1

α

)
= 2πS(0)

(
t+

e−αt − 1

α

)
.

(50)

And for a 1/f noise

⟨ξ2(t)⟩ =
∫ t

0

dτ

∫ t

0

dτ ′(−2A) ln(ω1|τ |) = −4A

∫ t

0

dτ(t− |τ |) ln(ω1|τ |)

= At2 (3− 2 ln(ω1t)) +O

[
4A

ω1ω2

ln

(
ω1

ω2

)]
.

(51)

From the above results some preliminary conclusions can be drawn:

i) For a noisy input with white-noise characteristics, the decay of the coherences is exponen-
tial in the whole temporal range. Note that the previously analyzed limit of large correlation
times, t ≪ τc, cannot be reached as the fluctuations (formally) have zero correlation time.
The system is permanently in the other asymptotic regime studied, i.e., in the limit of short
correlation times. Indeed, there is complete agreement between the exact value of the variance
given by Eq.(49) and that obtained through the approximate analysis of the asymptotic regime.
Notice that, in order to emphasize that agreement, in Eq.(49), we have (formally) written the
variance in terms of the zero-frequency value of the spectral density S(0). In fact, as shown in
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the former Section, the white-noise spectrum is flat, so there is no frequency dependence in the
spectral density.

ii) For the case of δω0(t) corresponding to an Ornstein-Uhlenbeck process, the results ob-
tained in the two asymptotic regimes are consistently recovered from Eq.(50): by fixing α, (we
recall that the correlation time in this case is τc = α−1 ), and taking the limits t −→ 0 and
t −→ ∞ in that equation, we find the results previously derived using general arguments in the
limits of large correlation time (t ≪ α−1) and small correlation time (t ≫ α−1 ). In particular,
it is shown that, at large times, ⟨ξ2(t)⟩ is correctly expressed as a function of the zero-frequency
value of the spectrum S(0). On the other hand, for large correlation times, a faster exponen-
tial decay is observed. (Indeed, a Gaussian decay is found, i.e. ⟨ξ2(t)⟩ ≃ 2πS(0)αt2). In the
crossover between the two asymptotic regimes, a complex time-dependence, determined by the
specific value of the correlation time, is observed.

iii) Special care is needed in the analysis of the results for 1/f fluctuations. Actually,
important specific features can be observed. First, one finds that the results obtained in the
study of the limit of large correlation times are consistently recovered, as we had assumed
Gaussian variables. However, a functional form different from the exponential decay previously
identified as typical of the asymptotic limit of short correlation times is found. Indeed, a
Gaussian decay is predicted from Eq.(51). This disagreement is understood taking into account
that the analysis made in the limit t ≫ τc is not applicable to 1/f noise.

That analysis was based on approximating the integrand in Eq.(44) in terms of the Dirac-
delta function (See Appendix III). That approximation is based on regarding the integrand as

the product of a highly peaked function
[ sin(ωt/2)

ω/2

]2
and a smooth function S(ω). However, in

the case of 1/f fluctuations that approximation is not valid as the function S(ω) does not vary
smoothly at ω = 0; in fact, it formally diverges. Useful to clarify this point is comparing with
the behavior at ω = 0 of the (smooth) spectral density (a Lorentzian function) corresponding
to an Ornstein-Uhlenbeck process. (Eq.(22)).
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4 The Method of Continuous Dynamical Decoupling

Esta sección estará centrada en el desarrollo de la base teórica básica del esquema de
concatenación del método de Desacoplamiento Dinámico Continuo. Asimismo se expondrá
su aplicabilidad en distintos tipos de ruido y se estudiará su eficacia en cada caso.
. . . . . . . .

This Section will be focused on the theoretical basis of the Method of Continuous Dynami-
cal Decoupling (CDD). The fundamental scheme will be tackled first. Then, the applicability
of the method to different types of noise will be analyzed. Finally, some conclusions on the
relevance of the noise spectrum to the efficiency of the CDD method will be drawn.

4.1 Basic components of the CDD method

The CDD method is based on using driving fields with characteristics appropriate to force
the fluctuations present in the original system to play a secondary (irrelevant) role in the dy-
namics. This general principle is illustrated by its application to the case considered in [16].
There the original system is a hyperfine Zeeman multiplet. In that setup, the fluctuations
present in the Zeeman field, being diagonal in the Hamiltonian-eigenstate representation, have
a strong dephasing effect on the system’s evolution. In order to mitigate that effect, the CDD
method incorporates an orthogonal driving field with a frequency resonant or quasiresonant
with the multiplet splitting and with an amplitude sufficiently large to force the noise to have a
perturbative character in the driven dynamics. Moreover, to deal with the noise introduced into
the system via the driving-field intensity, the scheme includes a second field of control orthogo-
nal to the first one and with frequency and amplitude conveniently chosen. This concatenation
scheme can be continued until the required precision is reached. The whole mechanism can
then be characterized as a continuous adjustment of the dynamics to reduce the effect of noise
(i.e., to decouple the original system from the fluctuations).

Here, we will consider the setup realized in [16] as a prototype model system where the com-
ponents and requirements for the CDD to be operative can be appropriately studied. Specifi-
cally, we focus on the Hamiltonian given by Eq.(29) in the previous Section, where now a first
driving field along the OX-axis is incorporated,

H = (ω0 + δω0(t))Fz + 2Ωd cos(ωdt)Fx. (52)

Note that the control-field parameters, i.e., the frequency ωd and the amplitude, incorpo-
rated into Ωd, can be tuned as can be demanded by the operativity of the CDD method.

It is also important to remark that, whereas in the model used to analyze the results of [16],
only static (i.e., time-independent) fluctuations were considered, here, the situation of having
nonstatic noise is also evaluated. Actually, this is not a secondary aspect of the problem since
the experimental setup is known to present time-dependent fluctuations. Going further in this
line, our study will be centered on revealing how the efficiency of the CDD method depends on
the noise spectrum.

Page 16
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In our procedure to solve for the dynamics governed by the Hamiltonian given by Eq.(52), we
start by choosing the driving frequency as ωd = ω0, and applying the following rotating-frame
transformation

U1(t) = eiωdFzt/h̄. (53)

For simplicity, we will keep on using the same notation, H, for the transformed Hamiltonian,
which, accordingly, is written as

H = ΩdFx + δω0(t)Fz, (54)

where we have made the Rotating Wave Approximation, i.e., we maintain the secular terms and
neglect the oscillations with frequency 2ωd (See Appendix IV). This approximation is justified
as we assume that the restriction ωd ≫ Ωd is fulfilled. It is apparent in Eq.(54) that, in the
case of static fluctuations, the Hamiltonian eigenstates can be straightforwardly obtained. In
contrast, we must face a non- trivial problem in the case of nonstatic noise. Let us see how
that problem can be approximately solved using time-dependent Perturbation Theory. In order
to precisely discuss our approach, it is convenient to make a second unitary transformation,
namely,

U2(t) = ei
π
2
Fyt/h̄, (55)

which amounts to rotate the system a π/2 angle around the OY -axis. Consequently, the
Hamiltonian is rewritten as

H = ΩdFz − δω0(t)Fx. (56)

(We recall that the technical procedure applied in the consecutive changes in the Hamilto-
nian incorporates the use of the BCH formula, see Appendix II). From the above equation, the
feasibility of applying Perturbation Theory becomes evident: for driving-field intensities much
larger than the magnitude of the fluctuations, i.e., for Ωd ≫ |δω0(t)|, the Hamiltonian can be
regarded as composed by a zero- order term (the time-independent contribution H0 ≡ ΩdFz)
and a perturbative random part, W (t) ≡ δω0(t)Fx. Consequently, we rewrite Eq.(56) as

H = H0 +W = ΩdFz − δω0(t)Fx. (57)

Hence, writing the eigenstates of H0 as |k;m⟩ (the associated eigenvalues being mΩdh̄), and
using time-dependent Perturbation Theory [33], one can evaluate the probability of having a
noise-induced transition between the states m and m′. First, we formally consider a particular
stochastic trajectory, i.e., a specific noise realization, and write

Pm,m′(t) =
1

h̄2

∣∣∣∣∫ t

0

dt′Wm,m′(t′)ei(Em′−Em)t′/h̄

∣∣∣∣2
=

|(Fx)m,m′ |2

h̄2

∣∣∣∣∫ t

0

dt′δω0(t
′)ei(m−m′)Ωdt

′
∣∣∣∣2,

(58)

where we have incorporated the matrix elements:
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Wm′,m(t
′) = δω0(t

′)(Fx)m′,m, (59)

and have introduced the eigenvalues Em′ − Em = (m′ −m)Ωdh̄.
Second, we proceed on averaging over stochastic realizations. Accordingly, we must evaluate

⟨Pm,m′(t)⟩ = |(Fx)m,m′|2

h̄2

〈∣∣∣∣∫ t

0

dt′δω0(t
′)ei(m

′−m)Ωdt
′
∣∣∣∣2
〉

=
|(Fx)m,m′|2

h̄2

∫ t

0

∫ t

0

dτdτ ′⟨δω0(τ)δω0(τ
′)⟩eiΩe(τ−τ ′)

= Fm,m′

∫ t

0

∫ t

0

dτdτ ′G(τ − τ ′)e−iΩe(τ ′−τ)

(60)

Observe that the notation has been simplified by introducing the effective frequency Ωe =

(m′ −m)Ωd and using Fm,m′ for the global multiplicative factor, i.e., Fm,m′ =
|(Fx)m,m′ |2

h̄2 . Ad-
ditionally, through an appropriate change of variables (94), assuming a stationary process and
using the Wiener-Khinchin theorem, the probability of population transfer can be cast into the
form

⟨Pm,m′(t)⟩ = Fm,m′

∫ t

−t

dτDG(τD)e
−iΩeτD(t− |τD|)

= Fm,m′

∫ ∞

−∞
dω

∫ t

−t

dτ(t− |τ |)e−iΩeτeiωτS(ω)

= Fm,m′

∫ ∞

∞
dω S(ω)

(
sin[(ω − Ωe)t/2]

(ω − Ωe)/2

)2

.

(61)

Hence, we have derived two expressions, Eqs. 60 and 61, which can alternatively be used to
evaluate the efficiency of the CDD method. It is worth stressing that the probability of popu-
lation transfer provides a good measure of the effect of noise: for small values of the transition
probabilities, the dressed states, obtained through the applied sequence of unitary transforma-
tions, can be considered as closely approaching the eigenstates of the complete Hamiltonian,
i.e., to approximately be noise immune.

4.2 Dressed-state population transfer induced by generic fluctua-
tions: Analysis of the limit of short correlation times

In the limit t ≫ τc, it is possible to go further analytically in the evaluation of the population
transfer. The analysis of the integral in Eq.(61) gives the clues to proceed: it can be shown
that for t being much larger than the inverse width of the spectral density (τc), the integrand
can be approximated in the form (see Appendix III)

S(ω)

(
sin[(ω − Ωe)t/2]

(ω − Ωe)/2

)2

∼ 2πtS(ω)δ(ω − Ωe). (62)
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Actually, in that limit, S(ω) varies smoothly in the range where
( sin[(ω−Ωe)t/2]

(ω−Ωe)/2

)2
is a nonzero

and highly-peaked function. Consequently, the integral in Eq.(61) is directly evaluated to obtain

⟨Pm,m′(t)⟩ ≃ Fm,m′2πtS(Ωe). (63)

This result provides a clear insight into the mechanism of noise reduction incorporated by
the CDD method. More specifically,

i) It is apparent that it is the spectral density at the effective frequency Ωe that determines
the magnitude of the noise effect, (i.e., of the noise-induced population transfer). This pre-
liminary conclusion will be generalized later on: we will introduce the Fourier components of
noise and will conclusively show that the decoherence process is determined by the components
which are quasiresonant with the effective frequency.

ii) A strategy for noise reduction is uncovered: by controlling the effective frequency Ωe,
which can be achieved by modifying the intensity of the driving field Ωd, it is possible to displace
the characteristic frequency of the system to a region of reduced spectral density. For instance,
for a decaying spectral density, an increase in Ωe leads to noise reduction.

iii) It is also clear that this strategy does not work for white noise: in that case, the spectral
density is the same in the whole range of frequencies. We will see that the above arguments,
which have been shown to be applicable only in the limit of short correlation times, can, in
large extent, be extrapolated to a general time regime for the types of noise that are usually
found in experimental setups.

4.3 Dressed-state population transfer induced by specific types of
noise: Analysis of the general time regime

The functional form of the probability for noise-induced transitions can be analytically
characterized with no restrictions on the time regime in the following three cases, which actually
correspond to fluctuations standardly used to emulate random environments. In our calculation
procedure, we have introduced the autocorrelation function for each kind of noise in Eq.(60),
and have subsequently evaluated the integral through appropriate changes of variables. A
summary of the results is presented:

White noise

⟨Pm,m′(t)⟩ = Fm,m′

∫ t

0

dτ

∫ t

0

dτ ′2πCδ(τ − τ ′)e−iΩe(τ ′−τ) = Fm,m′2πS(0)t. (64)

This result makes it apparent that there is no possibility of control in the case of white
noise. Because of the at-spectrum characteristics, the transition probability does not change
when Ωe is modified.

The Ornstein-Uhlenbeck process

⟨Pm,m′(t)⟩ = Fm,m′

∫ t

0

dτ

∫ t

0

dτ ′
D

2α
e−α|τ−τ ′|e−iΩe(τ ′−τ)

= Fm,m′2πS(Ωe)

(
t+

1

α

Ω2
e − α2

Ω2
e + α2

[1− e−αt cos(Ωet)]−
2Ωee

−αt

Ω2
e + α2

sin(Ωet)

)
,

(65)

where we have used the form of the autocorrelation function for this type of noise.
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Figure 1: Probability as a function of time (in arbitrary units) for dressed-state population
transfer induced by an Ornstein-Uhlenbeck process. (F = Fm,m′2π). The used parameters
are α = 1 and Ωe = 1 (a); and, α = 1 and Ωe = 2 (b). In the inset, the spectral density is
represented as a function of the frequency f = ω/2π in arbitrary units. (B is a scale factor
proportional to the noise variance).

Figure 2: Same as Figure 1, with α = 10 and Ωe = 1 (a); and, α = 10 and Ωe = 2 (b).
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Notice that the general result obtained formerly in the limit t ≫ τc (Eq.(63)) is consistently
recovered here. Another proof of consistency of the whole approach is obtained by checking that
the results corresponding to static fluctuations are recovered in the limit of large correlation
times: for τc −→ ∞ (α −→ 0), the transfer of population matches the average over noise real-
izations of the probability of transition between two dressed states induced by a static random
perturbation W = δω0Fx [16].

In order to illustrate how the efficiency of the CDD method depends on the noise spectrum,
we represent in Figs. 1 and 2, the transition probability as a function of time for two sets of
parameters that differ in the spectral width (α = 1 in Fig. 1, and α = 10 in Fig. 2). Hence,
as can be seen comparing the insets, the spectrum is much broader in the case depicted in Fig.
2. In both cases, the effective frequency Ωe has been considered to take the values Ωe = 1 and
Ωe = 2. It is observed that, as predicted from general considerations, the efficiency of the CDD
method declines as fluctuations with broader spectra are confronted. In Fig. 2, the spectral
density slightly diminishes as the effective frequency is varied from Ωe = 1 to Ωe = 2. As a
consequence, only a small reduction of the population transfer is achieved through the effective-
frequency doubling. In contrast, for the narrow spectrum corresponding to Fig. 1, a significant
reduction of the spectral density, and, in turn, of the transition probability is brought about by
doubling the frequency. Consequently, the efficiency of the CDD method significantly improves.

1/f noise

⟨Pm,m′(t)⟩ = −Fm,m′

∫ t

0

dτ

∫ t

0

dτ ′2A ln(ω1|τ − τ ′|)e−iΩe(τ ′−τ)

= Fm,m′2πS(Ωe)

{
t

∫ t

0

dτ
2 sin(Ωeτ)

πτ
+[

(ln[ω1τ ] + 1)

(
2 cos(Ωeτ)

πΩe

)]t
0

−
∫ t

0

dτ
2 cos(Ωeτ)

πτΩe

}
,

(66)

where we have again employed the specific form of the autocorrelation function.
It is important to emphasize that the divergences that appear in Eq.(66) are merely formal.

The smallest time scale relevant to the case of 1/f noise is the inverse of the cutoff frequency
1/ω2. (See the characterization of 1/f fluctuations in Section 2.5). Therefore, in Eq.(66), t = 0
actually refers to t = 1/ω2.

Also in this case, the general result obtained formerly in the limit t ≫ τc is consistently
recovered. In fact, the analysis of the recovery of that limit is particularly interesting in this
case. Actually, the approximation of the Dirac delta function (see Eq. (63)) applied to analyze
that regime is valid for 1/f noise except for ω = 0, where the spectral density (formally)
diverges. This is the reason why the results from the asymptotic regime are not recovered for
1/f noise in the absence of the driving field. (See the discussion after Eq.(51) in the previous
Section).

Fig. 3 illustrates how increasing the effective frequency, and, in turn, reducing the value of
the associated spectral density, a noise reduction can be achieved. Here, as in Figs. 1 and 2, a
damped oscillation with the effective frequency is added to the linear asymptotic increase. In
the case of Ornstein-Uhlenbeck fluctuations the damping rate is given by α, the inverse of the
correlation time. For 1/f noise, as shown in Eq.(66), a different form is observed: the damping
is dependent on the effective frequency.
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4 THE METHOD OF CONTINUOUS DYNAMICAL DECOUPLING

Figure 3: Probability as a function of time (in arbitrary units) for dressed-state population
transfer induced by 1/f noise. (F = Fm,m′2π). The used parameters are ω1 = 0.01, ω2 = 60,
and Ωe = 1 (a); and, ω1 = 0.01, ω2 = 60, and Ωe = 2 (b). In the inset, the spectral density
is represented as a function of the frequency f = ω/2π in arbitrary units. (A log− log scale is
used). (B is a scale factor proportional to the noise variance).

Some general comments are pertinent:

i) Notice that the three final expressions contain the factor S(Ωe). Then, the validity of
the strategy for controlling the noise effect proposed from the results corresponding to the
asymptotic regime t ≫ τc is confirmed by the findings for a general time regime.

ii) We emphasize the relevance of having analytical results in the whole time regime. Recent
experimental studies on noise spectroscopy indicate that, in particular experimental setups, as
some system parameters are modified, the fluctuations that dominate the decoherence process
display changing characteristics. Specifically, transitions between Ornstein-Uhlenbeck and 1/f
properties were detected [32]. The differential features of the population transfer obtained here
for those types of fluctuations can be an additional tool to clarify that issue.

iii) It is worth pointing out that, since the application of time-dependent perturbation theory
to first-order requires only up to the second moment of noise, the used framework embodies in
fact a Gaussian approximation for the fluctuations.

iv)It is interesting to consider, even as a thought experiment, the situation corresponding
to work with an effective frequency Ωe that overcomes the whole spectral range of noise. The
developed theory predicts an almost complete cancellation of the effect of noise. Indeed, this
prediction is confirmed by our numerical calculations. It is also worthwhile to trace a parallelism
between this scenario and that corresponding to the suppression of the effect of static noise via
the CDD method. In both cases, the cancellation of the fluctuations is achieved by shifting the
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4 THE METHOD OF CONTINUOUS DYNAMICAL DECOUPLING

effective system frequency outside the relevant spectral range. Whereas that effect has been
realized in the case of static noise, its implementation in the case of 1/f noise requires a careful
evaluation of potential setups.

4.4 Reinterpreting the noisy dynamics in the CDD scenario

Useful insight into the dynamical features previously identified is provided by arguments
relative to the spectral decomposition of the fluctuations. In this sense, it is convenient to work
with the Fourier transform of the stochastic variable δω0(t). Accordingly, we write

δω0(t) =

∫
dω c(ω) eiωt, (67)

where the harmonic components are given by

c(ω) =
1

2π

∫
dt δω0(t)e

−iωt. (68)

As can be seen, assuming a stationary process, c(ω) is a stochastic variable which fulfills
c(ω) = c∗(−ω) and which is characterized by its mean value

⟨c(ω)⟩ = 1

2π

∫
dt ⟨δωt(t)⟩ e−iωt = 0, (69)

and by its autocorrelation function

⟨c(ω)c∗(−ω′)⟩ = 1

(2π)2

∫ ∫
dt dt′ ei(ω

′t′−ωt)⟨δω0(t)δω0(t
′)⟩

=
δ(ω − ω′)

2π

∫
dτG(τ)eiω

′τ = δ(ω − ω′)S(ω′).

(70)

Now, using Eq.(67), the Hamiltonian in Eq.(57) can be rewritten as

H = ΩdFz −
(∫

dω c(ω) eiωt
)
Fx. (71)

In this picture, it is apparent that the system can be regarded as corresponding to a multiplet
driven by a superposition of harmonic fields with frequencies continuously distributed. More-
over, in the monofrequency reduction, the scenario corresponds to the standard Rabi-oscillation
model (ROM). Therefore, it is possible to apply our knowledge of the ROM dynamics to inter-
pret the effects of noise. In this sense, we remark:

i) Only the harmonic signals with frequencies close to the characteristic frequency of the
system are able to induce significant changes of population between the states of the used rep-
resentation. (Note that the system frequency is the effective frequency previously used and that
the states are in fact the dressed states obtained via the sequence of unitary transformations).

ii) The probability for a transition between states is proportional to the weights that the
quasiresonant components of noise have in the Fourier integral. Hence, the crucial role of
the spectral density at the effective frequency S(Ωe), previously observed, finds an insightful
interpretation here.
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iii) Although the continuous character of the distribution of frequencies implies dealing with
a generalized version of the ROM, the whole framework provides an operative approach where
the effects of noise can be explained and where conjectures on the implications of considering
diverse noise properties can be soundly set up.

4.5 Applying the CDD method: the concatenation scheme

In this Section, I will analyze the generalization of the basic version of the CDD method
to incorporate a concatenation scheme that allows dealing with the effect of noise introduced
into the system by the first driving field. The focus will be put on two schemes frequently
used in practice, which, actually, can be shown to be equivalent. A first common variation of
the previously studied CDD techniques consists in applying a field orthogonal to the primary
driving term. Specifically, The Hamiltonian given by Eq.(52) is modified according to

HC1 = [ω0 + δω0(t)]Fz + 2[Ω1 + δΩ1(t)] cos(ω0t)Fx + 2Ω2 cos[(ω0 + ωp)t]Fy, (72)

where fluctuations in the amplitude of the first field of control are explicitly taken into account:
they are represented by δΩ1(t). To reduce the effect of those fluctuations is why the second
field of control is introduced. Observe that the second driving term, with amplitude 2Ω2 and
frequency ω0+ωp, has been considered to be applied along the OY−axis. The other standardly
used concatenation scheme is based on applying a phase modulation in the primary field of
control. Specifically, it corresponds to the Hamiltonian

HC2 = [ω0 + δω0(t)]Fz + 2[Ω1 + δΩ1(t)] cos[ω0t+ Φ(t)]Fx, (73)

where the phase modulation has the form

Φ(t) =
2Ω2

Ω1

sin(ωpt) , Ω2 ≪ Ω1. (74)

The application of a convenient sequence of unitary transformations to the Hamiltonians
given by Eqs. 72 and 73, transforms them until reaching compact forms where the strategy to
reduce the effect of the noisy term δΩ1(t) can be implemented. Let us illustrate the procedure
with the specific form of transforming HC2. We start with the unitary transformation

U(t) = eiω0tFz/h̄, (75)

which converts HC2 into the form

HC2 =≃ δω0(t)Fz + [Ω1 + δΩ1(t)]Fx + 2Ω2 sin(ωpt)Fy. (76)

At this point, it is important to take into account that, since the parameters of the first
driving field have been chosen to approximately suppress the effects of the random term δω0(t),
we can safely neglect its contribution to the Hamiltonian HC2, which, consequently, can be
rewritten as

HC2 =≃ [Ω1 + δΩ1(t)]Fx + 2Ω2 sin(ωpt)Fy. (77)

Now, the rotation of the system a π/2 angle around the OY−axis, via U(t) = ei
π
2
Fy/h̄,

transforms HC2 as
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HC2 = [Ω1 + δΩ1(t)]Fz + 2Ω2 sin(ωpt)Fy. (78)

Finally, by choosing ωp = Ω1, and going to the rotating frame defined by the unitary
transformation

U(t) = eiωptFz/h̄, (79)

and making the Rotating Wave Approximation once again, we arrive at

HC2 ≃ δΩ1(t)Fz + Ω2Fx. (80)

Here, it is important to notice that, in this final form, HC2 has the same structure as the
Hamiltonian given by Eq.(54) (in the preceding Section), whose analysis allowed us to con-
clude that the effect of the random term δω0(t) could be conveniently reduced by appropriately
choosing the parameters of the first driving field. A similar analysis can then be carried out to
deal with the stochastic term δΩ1(t). It is then apparent that the applied concatenation scheme
can serve the purpose of mitigating the effect of the additional noise introduced into the system
through the amplitude of the field of control. Indeed, one can conclude that the noise-induced
transitions between dressed states (now doubly dressed-states because of the use of two driving
fields) can be inhibited by an appropriate choice of the field-dependent effective frequency of
the system Ωe. Specifically, the effect of the fluctuations can be reduced by shifting the effective
system frequency to a range where the spectral density is significantly lower.

The above conclusions, extracted from the study of the CDD method with a concatenation
arrangement, i.e., for the scheme incorporating two driving fields or, equivalently, a phase
modulated driving field, are straightforwardly extrapolated to more elaborate setups. As, in any
stage in the CDD scheme, the last noisy component entering the system is transferred to an off-
diagonal term through an appropriate change of representation, its effect on the dynamics can
always be characterized in terms of a population transfer between effective zero-order eigenstates
similar to that given by Eqs. 66, 65, 64. Therefore, the effectiveness of the decoherence-
reduction method is guaranteed provided that the final interstate transition frequencies are
out of the dominant part of the spectral range of the residual noise. Note that controlling the
frequencies of transition, in particular, the effective frequency Ωe, to avoid the occurrence of
resonances with the noise spectral components has the limitations associated to the application
of the RWA and to the system reduction employed in the description of the model system.
A careful analysis of each experimental setup is needed: since the consecutive application of
the RWA as different drivings are incorporated implies a reduction in the magnitude of the
splittings, keeping the last Ωe outside the spectral range of the corresponding final noise is not
trivial.
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5 Conclusions

En esta sección se presentan las conclusiones de este trabajo. Se expone la efectividad del
método CDD y se discuten brevemente las limitaciones a la hora de aplicar el esquema de
concatenación planteado.
. . . . . . . .

In the present work, I have analyzed some fundamental aspects of the applicability of the
CDD method to systems of general interest in Quantum Technologies. I have combined the
revision of established bibliography with the consideration to some open issues. Specifically, the
evaluation of the efficiency of the CDD method to deal with 1/f noise constitutes the original
part of the study. The main achieved objectives are summarized in the following points:

i) The physical basis of the CDD techniques has been identified as rooted in making the
fluctuations to have a second-order perturbative effect on the dynamics. A key point is to set
up a dressed state-basis associated to the applied driving field where the noise becomes off-
diagonal. In this framework, the effects of the fluctuations can be mitigated for a sufficiently
large separation of the diagonal components. Whereas, previous to the application of the CDD
method, it is the zero-frequency value of the noise spectrum that determines the asymptotic
dephasing rate, in the CDD setup, the decoherence time is basically determined by the noise
spectrum at the final effective frequency Ωe. Decoherence is significantly reduced if Ωe does not
enter the relevant part of the spectrum. The same mechanism is responsible for the operative
character of the concatenation schemes.

ii) The present study allows evaluating previous approaches to the physics of the CDD
method based on a static scenario for the fluctuations. The use of simplified time-independent-
noise models implies assuming that the original stochastic input and the random variations
of the different auxiliary fields have very large correlation times. Those models are found to
be appropriate as far as the inter-state transition frequencies are far from the (near-to-zero)
spectral range of the fluctuations.

iii) Rigorous formal support has been given to the generally accepted criterion on the inabil-
ity of the methods of Dynamical Decoupling to deal with white noise. More generally, it has
been traced how the performance of the methods decline as the noise correlation-time decreases.

iv) The application of our approach to 1/f noise has been carried out using a compact ex-
pression for the associated correlation function derived from the spectrum functional form. The
efficiency of the CDD method to deal with 1/f noise is guaranteed provided that a significant
increase in the system effective frequency is implemented.

v) Differential effects associated to the spectral characteristics of the fluctuations have been
detected in the analysis of the noise-induced dephasing processes. In contrast with the asymp-
totic exponential decay of the coherences corresponding to fluctuations with Ornstein-Uhlenbeck
characteristics, a Gaussian decay is observed in dephasing induced by 1/f noise.

vi) The analytical expressions obtained for the population transfer between dressed states
can find applicability as elements of noise identification methods. The high level of control
achieved in the experimental setups makes it advisable to employ the techniques proposed for
the realization of quantum information protocols in Noise Spectroscopy.
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From the present work, a critical evaluation of of the CDD scheme can be made. The
following comments are to the point:

vii) A first criticism refers to the changes in the magnitude of the effective energy splitting
occurring as the different driving fields are applied. One could think that adjusting the field
intensities can be an appropriate strategy to fix the spectral range in the sequence of energy
splittings. However, there are serious limits on this plan of action. First, the intensities must be
large enough for the noise to be considered as a perturbation. Second, since larger intensities
can lead to the transfer of population to states left out of the model, they can put at risk
the applicability of the different state-reductions applied in the design of the methods. An
additional argument in the same line refers to the Rotating Wave Approximation, implemented
in the description of the method procedure. Actually, for the RWA to be applicable, i.e., for
soundly neglecting rapidly oscillating terms in the Hamiltonians, the Rabi frequencies, which
are proportional to the field intensities, must be much smaller than the original frequencies.
Notice that this is actually a fundamental limitation of the CDD schemes which can make them
to be inappropriate for some applications. Indeed, the convenience of the imposed variation of
the original spectral range must be pondered in each particular case.

viii) Closely related to the previous criticism is the requirement, for the method to be
operative, of reaching a point in the sequence of driving fields where the magnitude of the
remnant noise, entering the system through the last driving field, can be considered to be
negligible compared with the final splitting. One must be aware of the difficulty of reaching
that compromise given the diminishing energy separation implemented in the experiments.

Finally, it is worth depicting some lines of research where the generalization of the the-
oretical framework developed in the present work can find applicability. Particular interest
has the analysis of the role of non-Gaussian fluctuations. Previous effort in this line has been
concentrated on the effect of random telegraph noise (RTN), associated to a Poissonian distri-
bution function and to a Lorentzian spectrum. It is apparent that dealing with that kind of
fluctuations requires going beyond the perturbative approach: since the application of time-
dependent perturbation theory to first-order requires only up to the second moment of noise,
the used framework embodies in fact a Gaussian approximation. This problem is actually con-
nected with a second topic of general importance, namely, the emergence of 1/f noise from
the microscopy of the environment. In a quite generally accepted model, 1/f fluctuations are
regarded as formed by specific distributions of RTN fluctuators. The connection between the
characterized global effect of the distribution and the role of each particular fluctuator is a
challenging problem.
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6 Appendix I. The Wiener-Khinchin Theorem

En este complemento se presenta el Teorema de Wiener-Khinchin junto con una breve
demostración del mismo.
. . . . . . . .

In this complement we present this famous theorem firstly developed by Norbert Wiener
[34] for well-defined functions and later expanded for stochastic processes by A. Khintchine [35].

The Wiener-Khinchin Theorem states that the spectral density of a random variable x(t),
defined as

S(ω) = lim
T−→∞

1

2πT

∣∣∣∣∣
∫ T

0

dte−iωtx(t)

∣∣∣∣∣
2

, (81)

and the autocorrelation function, given by

G(τ) = ⟨x(t)x(t+ τ)⟩, (82)

(⟨ ⟩ denotes the average over stochastic realizations), are connected by the relation

S(ω) =
1

2π

∫ ∞

−∞
dτe−iωτG(τ), (83)

i.e., the spectral density is the Fourier transform of the autocorrelation function.

Proof
It is important to remark that in the derivation of Eq. (83) the ergodic character of x(t) will

be assumed, i.e., the average over stochastic realizations at a particular time will be considered
to be equal to the time average in a particular noisy trajectory over a large time interval.
Consequently, the autocorrelation function can be expressed as

G(τ) = lim
T−→∞

1

T

∫ T

0

dtx(t)x(t+ τ). (84)

As a first step in our procedure, Eq. (81) is rewritten as

S(ω) = lim
T−→∞

1

2πT

(∫ T

0

dte−iωtx(t)×
∫ T

0

dt′eiωt
′
x(t′)

)
= lim

T−→∞

1

2πT

∫ T

0

dt

∫ T

0

dt′e−iω(t−t′)x(t)x(t′).

(85)

Moreover, through an appropriate change of variables, one finds

S(ω) = lim
T−→∞

1

2πT

[∫ 0

−T

dτeiωτ
∫ T

−τ

dtx(t)x(t+ τ) +

∫ T

0

dτeiωτ
∫ T−τ

0

dtx(t)x(t+ τ)

]
. (86)
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Now, additional changes of variables and the explicit consideration of the limit T −→ ∞,
allows one to establish the connection with the autocorrelation function. Specifically, it is shown
that

S(ω) =
1

π

∫ ∞

0

dτ cos(ωτ)G(τ). (87)

Finally, taking into account that the autocorrelation function fulfills the relation G(τ) =
G(−τ), Eq. (87) can be recast into the standard form of the Wiener-Khinchin Theorem, namely,

S(ω) =
1

2π

∫ ∞

−∞
dτe−iωτG(τ). (88)
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7 Appendix II. BCH formula

En este complemento se presenta de forma detallada la aplicación de la fórmula Baker-
Cambell-Hausdorff.
. . . . . . . .

This complement aims to give an overview of the application of the Baker-Cambell-Hausdorff
to different Hamiltonians, such as (31) or (52).

The BCH formula, derived from general considerations on the algebra of linear operators,
establishes that two generic linear operators A and B satisfy

exABe−xA = B + x[A,B] +
x2

2!
[A, [A,B]] +

x3

3!
[A, [A, [A,B]]] + ... (89)

The applicability of the above expression in the implementation of unitary transformations
in Quantum Mechanics is evident. For instance, in the case of Eq.(31), applying the unitary
transformation (30) requires us to evaluate

H̃ = eiωFz/h̄[(ω0 + δω0(t))Fz]e
−iωFz/h̄ + ih̄(

iωFz

h̄
), (90)

for which we must resort to the aforementioned expression (Eq. (89)). Thus, setting x = iωt/h̄,
A = Fz and B = Fz, we trivially get,

eiωFzt/h̄Fze
−iωFzt/h̄ = Fz. (91)

And using this result, we have shown how the unitary transformation (30) transforms the
operator Fz.

For other cases such as Eq.(52), we may have to consider other operators. In the mentioned
case, we would use B = Fx, obtaining

eiωdFzt/h̄Fxe
−iωdFzt/h̄ = Fx − (ωdt)Fy −

1

2!
(ωdt)

2Fx +
1

3!
(ωdt)

3Fy +
1

4!
(ωdt)

4Fx + ...

= cos(ωdt)Fx − sin(ωdt)Fy.
(92)
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8 Appendix III. Characterization of an integrated

stochastic variable: limit of short correlation times

En esta sección se tratará la integración de una variable estocástica, necesaria para su
caracterización. Asimismo, se contemplará su evaluación en el ĺımite de tiempos de cor-
relación cortos.
. . . . . . . .

The integral expression for a zero-mean variance (Eq.(44)) can be written as

⟨ξ2(t)⟩ =
∫ t

0

∫ t

0

dτ ′dτ⟨δω0(τ)δω0(τ
′)⟩, (93)

which can be further simplified employing a suitable change of variables, namely,{
τD = τ ′ − τ

τS = 1
2
(τ ′ + τ)

(94)

resulting in,

⟨ξ2(t)⟩ =
∫ t

−t

dτD

∫ t−|τD|
2

|τD|
2

dτS

〈
δω0

(
τS − τD

2

)
δω0

(
τS +

τD
2

)〉
, (95)

and considering a stationary process,

⟨ξ2(t)⟩ =
∫ t

−t

dτDG(τD)(t− |τD|). (96)

Employing the Wiener-Khinchin theorem (Eq.(16)),

⟨ξ2(t)⟩ =
∫ ∞

−∞
dω

∫ t

−t

dτ(t− |τ |)eiωτS(ω), (97)

which when integrated can be expressed as

⟨ξ2(t)⟩ =
∫ ∞

−∞
dω S(ω)

(
sin(ωt/2)

ω/2

)2

. (98)

Evaluating this expression in the considered limit can be done via the following function

ϵ

π

sin2(x/ϵ)

x2
, (99)

which approaches δ(x) when the parameter ϵ approaches zero (from the positive side).
In order to arrive to a similar form for integral (98), we can define the parameter ϵ = 1

t
,

make the change of variables ω
2
= x, multiply by ϵ

2π
and consider said limit for ϵ, i.e.,

lim
ϵ−→0+

ϵ⟨ξ2(t)⟩
2π

= lim
ϵ−→0+

∫
S(2x)

(
ϵ

π

sin2(x/ϵ)

x2

)
dx. (100)
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Identifying δ(x), it follows that

lim
ϵ−→0+

ϵ⟨ξ2(t)⟩
2π

=

∫
S(2x)δ(x)dx = S(0) =⇒ lim

t−→∞
⟨ξ2(t)⟩ = lim

t−→∞
2πtS(0). (101)

At this point we can also check how, had we considered the limits of Eq.(44) to be ∆t
instead of t:

⟨ξ2(t)⟩ = t

∆t
·

〈(∫ ∆t

0

dτδω0(τ)

)(∫ ∆t

0

dτ ′δω0(τ
′)

)〉
, (102)

and it is easy to see how in Eq.(98) t would be ∆t. With a similar procedure (now defining the
parameter ϵ = 1

∆t
), we can show how

⟨ξ2(t)⟩ϵ∆t

2πt
=

∫ ∞

−∞
dωS(ω)

sin2(ω/(2ϵ))

(ω/2)2
=⇒ lim

ϵ−→0+
⟨ξ2(t)⟩ = lim

ϵ−→0+
2πtS(0)

=⇒ lim
∆t−→∞

⟨ξ2(t)⟩ = lim
∆t−→∞

2πtS(0).
(103)

Therefore obtaining the same result. It is important to note that this treatment just assumes
∆t ≫ τc, something previously considered for the use of the Central Limit Theorem.
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9 Appendix IV. The Rotating-Wave Approximation

En este complemento se expone la Aproximación de Onda Rotante y se discute brevemente
su validez en relación con los Hamiltonianos considerados en el trabajo.

. . . . . . . .

In the context considered in the present study, the Rotating Wave Approximation basically
consists in retaining only the secular terms, i.e., the terms with slow time dependence, in the
different Hamiltonians obtained after applying the sequence of unitary transformations. Hence,
the rapidly oscillating terms (usually with frequencies which duplicate the frequency of the
rotating frame defined by the applied unitary transformation) are neglected. A typical example
of the application of the RWA is given by the transformation of Hamiltonian (52). Specifically,
after applying the specified unitary transformation (30), it is cast into the following form

H̃ =
Ωd

2

[
(Fx + iFi)e

2iωdt + (Fx − iFi)e
−2iωdt + 2Fx

]
+ (ω0 + δω0(t)− ωd)Fz. (104)

Note that the corresponding trigonometric functions have been expressed in their respective
exponential forms for clarity.

The application of the RWA to the above expression implies neglecting the terms that
contain the (rapidly oscillating) functions e±2iωdt. Hence, after applying the RWA, one writes

H̃ ≈ ΩdFx + δω0(t)Fz. (105)

This approximation is justified as these terms averaged over a measurable time provide a
null contribution, and is valid as long as ωd ≫ Ωd. (The approximation fails for ωd ∼ Ωd).
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