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Abstract

The second Maxwell equation states that there can be no magnetic field sources.
However, for the last 130 years, physicists have speculated about the possibility
that these magnetic field sources—the magnetic monopoles—actually exist.

In this memoir we study and contextualize three of the most important
magnetic monopoles: the Dirac monopole, the U(1)-Seiberg-Witten monopole
and the SU(2)-Seiberg-Witten monopole, often called ’t Hooft-Polyakov monopole.

We also include a chapter on soliton solutions to Euler-Lagrange equations
and their interpretation in field theories and a comment on experimental research
for monopoles carried out by different experiments and collaborations in the
past 50 years and on the physical implications of the existence of magnetic
monopoles.

Keywords: Magnetic Monopoles – Charge Quantization – Gauge Theories – Gauge
Groups – Field Theories – Seiberg-Witten Equations – Symmetry.

Resumen

La segunda ecuación de Maxwell enuncia que no pueden existir fuentes de
campo magnético. Sin embargo, durante los últimos 130 años los fı́sicos han
especulado con la posibilidad de que estas fuentes de campo magnético—los
monopolos magnéticos—en realidad existan.

En esta memoria estudiamos y contextualizamos tres de los monopolos
magnéticos más importante: el monopolo de Dirac, el U(1)-monopolo de
Seiberg-Witten y el SU(2)-monopolo de Seiberg-Witten, a menudo llamado
monopolo de ’t Hooft-Polyakov.

Además, incluimos un capı́tulo sobre las soluciones solitónicas a ecuaciones
de Euler-Lagrange y su interpretación en teorı́as de campos, y un comentario
acerca de la búsqueda experimental de monopolos realizada por diferentes
experimentos y colaboraciones en los últimos 50 años y sobre las implicaciones
fı́sicas de la existencia de monopolos magnéticos.

Palabras clave: Monopolos Magnéticos – Cuantización de la Carga – Teorı́as Gauge –
Grupos Gauge – Teorı́as de Campos – Ecuaciones de Seiberg-Witten – Simetrı́a.
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Introduction

Magnetic monopoles are one of the
safest bets one can make about
physics not yet seen.

J. Pochilsky
-

Physics have historically tried to unite what at first glance may look as different
phenomena into the same theory. These phenomena turn out to be different
sides of the same dice. The first unification in physics was performed by James
Clerck Maxwell, who brought together electricity and magnetism into a single,
elegant theory: electromagnetism. Furthermore, electromagnetism was able to
also explain the behaviour of light, which turned out to be a perturbation of the
electromagnetic field: an electromagnetic wave.

Maxwell’s electromagnetism assumes that no magnetic charges exist, but
it does not explain why, neither does it forbid them. Isolated magnetic charges
were sometimes considered as a useful mathematical tool, but never as real
physical objects. A exception to this was Pierre Curie, who speculated on the
possibility of free magnetic charges in his 2-page 1894 article Sur la possibilité
d’existence de la conductibilité magnétique et du magnétisme libre: “Est-il absurde
de supposer qu’il existe des corps conducteurs du magnétisme, des courants
magnétiques, du magnétisme libre?” (1) [1].

When quantum mechanics arised, it first appeared to forbid isolated
magnetic charges. However, in 1931 P.A.M. Dirac showed that they allow
certain quantised magnetic charges [2]. Although quantization is something to
be expected in quantum mechanics, the surprise was that this quantization was
rooted in deep topological considerations, not in the spectrum of any magnetic
charge operator. Furthermore, the existence of magnetic charges would explain
the quantization of the electric charge.

In 1974, Gerard ’t Hooft and Alexander Polyakov showed that magnetic
monopoles are actually predicted by all GUTs (Grand Unification Theories)
and TOEs (Theories Of Everything) [11] such as superstring theory, which also
includes gravitation.

(1) “Is it absurd to suppose that there exist bodies conducting magnetism, magnetic
currents, free magnetism?”
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It is because of this that we would expect magnetic monopoles to exist.
Their discovery would go down on the history of physics as and incredible
breakthrough, and would allow scientist to design experiments to test GUTs
and TOEs directly, which with the current technology is impossible to do.
Unfortunately, all attempts of findin them have been in vain, but they are still
paving the way to the future of theoretical physics.
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Getting Acquainted with Magnetic Monopoles

Resumen

En este primer capı́tulo partiremos de las famosas ecuaciones de Maxwell y
veremos que para preservar su invarianza bajo transformaciones del grupo
U(1), deberı́an existir fuentes de campo magnético: monopolos magnéticos.

Asumiendo que generan un campo Coulombiano, estudiamos su topologı́a para
ver cómo serı́a el potencial que los define.

1.1 Classical Electrodynamics as a starting point

It all starts, of course, with Maxwell’s Equations. And in R3, at least by now.
This familiar vector space will be equipped with its familiar Euclidean structure:
an inner product ⟨ , ⟩ : R3 × R3 → R. Vectors in R3 will be denoted by an arrow
on top of them (or a hat if they happen to be unitary), and the elements of the
tangent bundle TR3 =

⊔
p∈R3

TpR3 will be denoted by the same letter but without
the arrow.

For the no-source scenario, one can write the Maxwell equations as these
two complex expressions:

∇⃗ × (E⃗ + iB⃗)− i
∂

∂t
(E⃗ + iB⃗) = 0

∇⃗ · (E⃗ + iB⃗) = 0

These equations are famously Lorentz invariant—actually, up to a certain
point they inspired the Special Relativity Theory—, gauge invariant and
conformally invariant, but they are also invariant under transformations of
the group U(1), i.e. if (E⃗ + iB⃗) is a solution to these equations, eiφ(E⃗ + iB⃗) is
also one. This is what we refer to as duality symmetry. In particular, we can see



2 1 Getting Acquainted with Magnetic Monopoles

that when φ = π/2, we may obtain a solution from our previous solution simply
by substituting E⃗ → −B⃗ and B⃗ → E⃗.

This symmetry is of course lost when we add field sources; but Dirac [2]
noticed that if it were possible for a magnetic charge to exist, it would be restored.

Following the foundations of electrostatics, Dirac assumed that this
magnetic charge—the magnetic monopole–would generate a central, Coulomb-like
field similar to the one generated by an electric monopole, i.e.

B⃗ =
g

ρ2
êρ, (1.1)

where g would be the charge of the monopole, whose unit in the SI is the Weber
(Wb) and êρ is the unit vector in the radial direction in spherical coordinates. In
cartesian coordinates,

B⃗ =
g

ρ3

xy
z


Since R3 is flat, there exists a natural isomorphism between R3 and TR3,

i.e. R3 ≃ TR3, and because TR3 ≃ Ω1(R3), the space of 1-forms in R3, we may
relate each vector p⃗ ∈ R3 with a 1-form p. Via the natural—sometimes called
musical—isomorphism we can forget about B⃗ and work with the 1-form

B̄ =
g

ρ3
(x dx+ y dy + z dz) (1.2)

Since B⃗ is normally defined as a cross product (it is the curl of the spatial
part of the 4-potential, to be precise), it is only natural to define the magnetic
field as a 2-form. In the n-dimensional Euclidean space Rn, Ωk(Rn) ≃ Ωn−k(Rn),
where 0 ≤ k ≤ n, via the Hodge star operator.

The Hodge star operator ⋆ : Ωk(V ) → Ωn−k(V ) is defined in spaces equipped
with an inner product by the following property:

α ∧ (⋆β) = ⟨α, β⟩ω (1.3)

for all α, β ∈ Ωk(V ) and ω = e1 ∧ · · · ∧ en. This way, for instance, ⋆dx = dy ∧ dz,
since dx ∧ (⋆dx) = ⟨dx, dx⟩ω = dx ∧ dy ∧ dz. It is trivial to see that ⋆ ⋆ σ = σ,
where σ ∈ Ωk(V ), i.e. ⋆2 = 1.

In this manner we may establish the isomorphism Ω1(R3) ≃ Ω2(R3),
which allows us to indeed write the magnetic field as a 2-form. Naming B = ⋆B̄,
we see that

B =
g

ρ3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy) (1.4)

This way, we have written our magnetic field in the most natural way.
It is in this spirit that we not only write the magnetic field in the language of
differential forms, but rather the whole theory of electrodynamics.
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1.2 Electrodynamics and Differential Forms

Now allowing the existence of field sources—a non-null current density 4-vector
(ρ, j⃗), ρ being the charge density and j⃗ the current density—, one can write
Maxwell’s equations in vacuum in its standard, vector-calculus fashion(1).

MAXWELL’S EQUATIONS
Vector-Calculus Version

∇⃗ · E⃗ = ρ ∇⃗ × E⃗ = −∂B⃗
∂t

∇⃗ · B⃗ = 0 ∇⃗ × B⃗ = j⃗ +
∂E⃗

∂t

Since E⃗ is usually integrated over one-dimensional paths, we could write
it as the 1-form E = Eidx

i(2). The exterior derivative dE of this 1-form will be
a 2-form related to ∇⃗ × E⃗, and ∇⃗ · E⃗ will be associated to the 3-form given by
d ⋆ E.

As stated earlier, the magnetic field vector will be replaced by a 2-form.
In a similar fashion, dB corresponds to the divergence of the magnetic field
and d ⋆ B—where the 1-form ⋆B is what we previously denoted as B̄—is the
tangent bundle homologous of the curl of B⃗. This way, one can write Maxwell’s
Equations in the language of differential forms (exterior algebra):

MAXWELL’S EQUATIONS
Exterior Algebra Version

d ⋆ E = ρ dE = −∂B
∂t

dB = 0 d ⋆ B = j +
∂ ⋆ E

∂t

Here, j is a 2-form and ρ a 3-form in order for the equations to make sense.
One could even be more ambitious and try to make the whole theory what

is called manifestly Lorentz covariant, i.e. write the theory in terms of Lorentz
invariants, such as scalars and dot products.

From special relativity we already know that we can join the scalar
potential ϕ and the vector potential A⃗ in a mathematical object: the 4-potential.
Using the (− + ++) signature for the Minkowski metric, one can write this
4-potential as

(1) We will be setting ε0 = µ0 = 1. This also implies c = 1.
(2) Einstein’s summation convention is assumed from now on unless otherwise stated.
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A = ηµνA
µdxν = −ϕ dt+ A⃗ · dx⃗

We now define the exterior derivative of this 1-form as the Maxwell field
strength tensor, i.e.

F = dA =
1

2
Fµν dx

µ ∧ dxν (1.5)

One can easily see that F is gauge invariant, i.e. if one performs the
transformation A 7→ A + df , where f is any differentiable function in R4(3),
then F = d(A + df) = dA + d2f = dA = F , since d is linear and d2 = 0.
Componentwise, the field strength tensor is given by

Fµν = ∂µAν − ∂νAµ, (1.6)

where the covariant ∂µ operator is given by ∂/∂xµ. It can be easily verified that
this tensor is antisymmetric(4). With this 2-form, F , Maxwell Equations may be
reduced in number to two, and they can be written in a beautiful, index-free
fashion.

MAXWELL’S EQUATIONS
Relativistic Exterior Algebra Version

d ⋆ F = j

dF = 0

where j is now a 3-form.
So far, we have taken a 19th–century theory and written it in more modern,

geometry based terms. If we wanted to restore the duality symmetry we
discussed in the beginning by introducing a fundamental magnetic charged
particle—the magnetic monopole—, the magnetic field would sieze to be
divergenceless, and this global potential A will no longer exist.

1.3 The Monopole’s Topology

If we take a look at (1.4), we can easily check that it has a singularity in the origin,
i.e. the domain of the magnetic field is R3 \ {⃗0}, which is of the same homotopy
type as the unit spherical shell S2.

S2 = {(x, y, z) | x2 + y2 + z2 = 1}

(3) The exterior derivative of a 0-form (function) is just its gradient ∇⃗f .
(4) Actually, every tensor that can be written in terms of a 2-form is antisymmetric, since

dxν ∧ dxµ = −dxµ ∧ dxν
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This is manifestly true when we write (1.4) in spherical coordinates(5):

B = g sinϕ dϕ ∧ dθ, (1.7)

which does not depend on ρ whatsoever(6). For this reason, the magnetic field
can be though as a 2-form living in S2. For the case when g ̸= 0, which is the
case we will always be interested in, we can see that, although closed, B is not
exact in R \ {⃗0}, i.e. there is no 1-form potential A(7) such that B = dA in R \ {⃗0}.

We shall quickly prove this statement by way of contradiction. Let us
suppose that there exists a 1-form potential A such that B = dA. Using Stoke’s
Theorem, it can be easily integrated over a 2-dimensional sphere of radius r
centered at the origin, B2

r(0), which is—as all balls are—with no boundary.∫
B2
r(0)

B =

∫
B2
r(0)

dA =

∫
∂B2

r(0)

A =

∫
∅
A = 0.

On the other hand, integrating directly, which we can do since we know the
explicit form of B, we arrive at the following:∫

B2
r(0)

B = g

(∫ 2π

0

dθ

)(∫ π

0

sinϕ dϕ

)
= 4πg,

a result that, except for the case when g = 0—the only one in which we are not
interested—is in contradiction with the Stokes Theorem, thus proving our initial
statement.

Dirac was obviously aware of this, and he knew—although he did not
phrase it the way we are going to—that if, instead of removing the origin from
R3, we removed a ray extending form the origin to infinity—a Dirac String—one
would obtain a subspace of R3 homotopically equivalent to the punctured plane
R2 \ {0}, whose second De Rham Cohomology group is trivial.

H2
De Rham(R

3 \ Dirac String) = 0.

On this manifold, every closed 2-form is also exact, and so would B. For
instance, on U− = R3 \ {(0, 0, z) | z ≥ 0}, the 1-form

A− =
g

ρ(ρ− z)
(y dx− x dy) = −g(1 + cosϕ) dθ (1.8)

fulfills dA− = B|U− . Analogously, on U+ = R3 \ {(0, 0, z) | z ≤ 0}, dA+ = B|U+

holds for the 1-form
(5) Although tedious, the result is simply obtained by performing a change of variables

from Cartesian to spherical coordinates.
(6) We will take ϕ to be the polar angle in spherical coordinates.
(7) It might be important to point out that this potential is again the usual vector potential,

not the 4-potential we worked with in the previous section.
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Dirac String

Fig. 1.1. A more visual approach to the second De Rham Cohomology group being trivial is that,
in R3 \ Dirac String, there is no way to have a closed 2-surface enclosing the origin: the point
where the magnetic field is singular.

A+ = − g

ρ(ρ+ z)
(y dx− x dy) = g(1− cosϕ) dθ. (1.9)

These potentials define a monopole: the so-called Dirac magnetic monopole.
With them we may get the form of the magnetic field generated by the
monopole(8). We can see that we have covered the entire domain of B with
two open sets in which we can define a potential 1-form(9). Note that for the case
when ϕ = π/2, i.e. the curve that encloses the singularity, denoted as U− ∩ U+,

A+ −A− = 2g dθ (1.10)

This result, that at the moment may look somehow arbitrary, is actually one of
the most fundamental ones in the magnetic monopole theory: it leads to the
quantization of the magnetic charge.

1.4 Dirac’s Quantization Condition in two different ways

Dirac was the first to derive the quantization condition that bears his name, but
we will not deal with his derivation here. Instead, we will present two proofs
based on more modern arguments. The first one, by Wu & Yang, is rooted in
gauge theory, and uses the results derived in the previous section [5].

The second one, however, is based in Quantum Field Theory (QFT),
particularly in the Aharanov-Bohm effect, and in this sense is probably more
intuitive [6, pp. 81-84].

(8) One may point out, and rightfully so, that we found this potential because we forced the
potential to be Coulomb-like. This is true, but in chapter 3 we will obtain a potential
through the Seiberg-Witten equations, and with it, we will be able to find the magnetic
field, until then unknown.

(9) U− ∪ U+ = R3 \ {0}.
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What Dirac’s Quantization Condition states is that, if magnetic monopoles
were to exist, then their magnetic charge g would be given in terms of the one of
the electric monopole, e(10), in the following way:

2ge ∈ Z, (1.11)

i.e. g = n/2e, with n an integer. It is conventional to set e = 1, therefore leaving
g to be a semi-integer. This allows us to write the potentials as

A± = ∓ n/2

ρ(ρ± z)
(y dx− x dy) = ±n

2
(1∓ cosϕ) dθ in U± (1.12)

1.4.1 Quantization à la Wu & Yang

Since we are now assuming that magnetic monopoles exist, ∇⃗ · B⃗ = gδ(r⃗),
we know that the potential we are working with is not global. However, the
different regions in which the potential is defined can be glued together via gauge
transformations. We have already discussed that Maxwell equations are gauge
invariant, i.e. if we perform the transformationA 7→ A′ = A+dχ, the observables
(the EM fields) remain invariant. When applying such transformations, a field of
charge e changes according to

ψ 7→ ψ′ = eieχψ

For this to be gauge, i.e. for the change to be unobservable, we need the gauge
eieχ to be single-valued. Since we are talking about actual physical points in
space, we will take every point at an angle χ to be equivalent to that at an angle
χ + 2πn, with n an integer. Therefore, we need to make the gauge fulfill the
condition

eieχ = eieχ+2πni = eie(χ+2π) , n ∈ Z.

from which we deduce that e must actually be an integer, i.e. e ∈ Z. In our
particular case, we would like

A+ = A− + d(2gθ)

to be a gauge transformation, in order for the magnetic field to be consistent. In
this situation, χ = 2gθ and the gauge would be ei2egθ, and we know that for it to
be single valued,

2ge ∈ Z,

as we wanted to show.

(10) The elementary electric charge is e ≃ 1.6 × 10−19 C. Electrons have charge −e and
protons have charge e.
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1.4.2 Quantization for the field enthusiast

In order to to derive Dirac’s Quantization Condition from a QFT standpoint,
we first need to introduce the Ahronov-Bohm effect, which is a quantum
phenomenon by which the presence of a magnetic field B⃗ affects the propagation
of a charged particle even when it is travelling through regions where the
magnetic field is zero.

In Quantum Mechanics, the evolution of a particle of charge e under the
influence of a magnetic field B⃗ = ∇⃗× A⃗ is given by the Schrödinger Equation(11):[

i
∂

∂t
+

1

2m
DkD

k

]
ψ = 0,

where Dµ = ∂µ − ieAµ is the gauge-covariant derivative operator.
The fact that B⃗ = ∇⃗ × A⃗ = 0⃗ does not imply that A⃗ itself is null,

which means that the potential can affect the evolution of the particle even
in zero-magnetic field regions, as we stated before.

In the path integral formalism, the probability amplitude of a particle
travelling from a⃗ to b⃗ in a time ∆t = t2 − t1 is given by

⟨⃗a, t1 |⃗b, t2⟩ =
∫

D[x⃗(t)] exp
{
iS[x⃗(t)]

}
, (1.13)

where
∫
D[x⃗(t)] means that one is integrating over all the possible curves x⃗(t)

that conect a⃗ to b⃗ and

S[x⃗(t)] =

∫ t2

t1

L(x⃗, ˙⃗x; t) dt (1.14)

is the action of the particle in each of the paths, with L being the Lagrangian of
the path. When there is a magnetic field present, the action of each one of the
paths is transformed in the following way [6, pp. 81-84]:

S[x(t)] 7→ S′[x(t)] = S[x(t)] + e

∫ b⃗

a⃗

A⃗ · dℓ⃗, (1.15)

so that each of the the paths receive a phase shift that will in general be different,
and when summed up, will change the wavefunction.

Let us now calculate this phase shift for the case of a particle orbiting
around the Dirac String(12), i.e.

(11) We will also set ℏ = 1.
(12) Strictly speaking, we should take into account all closed curves around the Dirac

String, but because of the topology of the manifold we find ourselves in, it can be
proven that the result actually does not depend on the shape of the curve, but rather
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Dirac String

ϕ

Fig. 1.2. A loop around the Dirac String. When ϕ → π, it turns into an infinitesimal loop. It
would be equivalent to the particle sitting in the string.

U [C] = exp

{
ie

∫
C

A⃗ · dℓ⃗
}

(1.16)

Since we know the explicit form of the potential—in the region where we are
working it will be A−—, we can integrate directly:∫

C

A⃗− · dℓ⃗ =
∫ 2π

0

Aθ
−dθ =

∫ 2π

0

−g(1− cosϕ)dθ = −2πg(1− cosϕ)

When ϕ→ π, we approach the limit of the particle just sitting on the Dirac String.
The integral turns into −4πg, and the phase factor into e−4πieg. Since we want
the string not to change our system, we will impose U [C] to be equal to 1, which
forces −4πeg to be a multiple of 2π. This leads, once again, to the quantization
of the magnetic charge:

2eg ∈ Z.

1.5 Letting magnetic monopoles sink in

In this section, the last one of this first chapter, we are going to explore some of
the ground-breaking implications about the existence of magnetic monopoles [6,
pp. 81-84].

• Since the electric charge in the previous derivations could have been a generic
one, say q, we see that if magnetic monopoles were to exist, the electric charge
would always have a magnetic counterpart.

on the fact that it encloses a singularity, and how many times the curve goes around
it. If the phase factor for a curve going around the Dirac string once is λ, the factor
for a curve going around the singularity n times will be nλ. Since at the end we get a
multiple of λ, the complex exponential always treats the phase factor as if n = 1 when
fixing it to be 1. It is because of this, for the sake of simplicity, that we only take into
account in the discussion those curves that go around the Dirac string once.
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• Furthermore, since we would have obtained a similar constraint by considering
a loop around the Dirac string of any other magnetic monopole, the quantization
condition must hold for every magnetic charge.

• For this reason, every possible choice of q and g will satisfy the quantization
condition. The only way this could happen is if q = mqmin and g = kgmin,
where m, k are integers and 2qmingmin = 1. Thus, the detection of even just
one magnetic monopole would explain the quantization of the electric charge!

• In the previous derivations, we explicitly took the monopole to have no
electric charge. If it were a dyon—a particle that would carry both electric
and magnetic charge—, it would have its own Dirac String, that would get
wound around the monopole. If this monopole was stationary, the discussion
would not change!

Besides, if monopoles were to exist, Maxwell equations with field sources—the
subindex e refers to electric andm to magnetic—would take the following form [4]:

∇⃗ × (E⃗ + iB⃗)− i
∂

∂t
(E⃗ + iB⃗) = i(⃗je + i⃗jm)

∇⃗ · (E⃗ + iB⃗) = ρe + iρm,

which are clearly invariant under U(1) transformations(13). We can check that
when (ρm, j⃗m) = 0, we retrieve the original Maxwell equations. Since the
magnetic field is no longer divergenceless, Helmholtz’s theorem does no longer
apply and B⃗ cannot be expressed only as the curl of a vector potential anymore.
We now have to add to the original 4-potential (ϕ, A⃗) another 4-potential (φ, a⃗)
to define the EM fields in the presence of both electric and magnetic monopoles.
The relations are the following [4]:

E⃗ = −∇⃗ϕ− ∂A⃗

∂t
− ∇⃗ × a⃗

B⃗ = −∇⃗φ− ∂a⃗

∂t
− ∇⃗ × A⃗

It gets even more beautiful, since this added symmetry allows us to write
the Maxwell equations—the explanation for all electromagnetic phenomena in
the Universe—in one single equation, in which α = 1, 2:

∂µF
µν
α = jνα, (1.17)

where Fµν
1 are the components of the Maxwell tensor, Fµν

2 are the components
of its Hodge dual, jν1 are the components of the electric current 4-vector and jν2
are the components of the magnetic current 4-vector (ρm, j⃗m).

(13) (⃗je + i⃗jm) 7→ eiθ (⃗je + i⃗jm), (ρe + iρm) 7→ eiθ(ρe + iρm) as well.
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Study and Interpretation of Solitons in Field Theory

Resumen

En el tercer capı́tulo estudiaremos el Monopolo de Seiberg-Witten en detalle,
pero desde un punto de vista geométrico y abstracto. No hablaremos

(explı́citamente) de Lagrangianos, energı́a u otras cantidades fı́sicas a las que
podamos estar acostumbrados, sino de spinores y grupos gauge. Este capı́tulo
pretende ser un puente entre las matemáticas abstractas y la intuición fı́sica del
monopolo magnético desde una perspectiva moderna. Los resultados derivados

aquı́ serán de campos clásicos, pero la subsiguiente teorı́a cuántica se puede
obtener cuantizando los resultados que presentaremos, aunque no lo haremos,

ya que el propósito de este capı́tulo es puramente ilustrativo.

2.1 From the point particle to the field

Let us assume a point particle in a potential. In classical Lagrangian mechanics,
one arrives at the equations of motion via the Euler-Lagrange Equations,

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0,

which are a consequence of the Principle of Least Action. Here, the {(qk, q̇k)}Nk=1

are the generalized coordinates and their time derivatives, that are closely
related to the position and velocity coordinates of our particle—and often are the
position and velocity coordinates—. When one solves this equations, one has an
explicit, functional form of the generalized coordinates, which define perfectly
the trajectory of the particle.

What happens, however, when we find ourselves in a scale such that the
laws of classical mechanics do not apply? We know from quantum mechanics
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that in this case the trajectory of a particle is not defined. There is no trajectory to
solve any equation for, but rather a wave function (a scalar field) Ψ that contains
all the information about the particle. This wavefuntion behaves according to
the Schrödinger equation:

i
∂

∂t
Ψ = ĤΨ

The well-known problem with this equation is that it is not invariant under
Lorentz transformations, i.e. not compatible with Special Relativity. A way to
construct relativistic field theories is by using the Lagrangian formalism. In this
case we work with a local version of the Lagrangian: the Lagrangian density L,
defined as follows:

L =

∫
R3

L(ϕ, ∂µϕ; t) d3x,

where the role of the generalized coordinates and their time derivative is taken
over by the field ϕ (there could be several, but we will focus on real scalar field
theory) and their derivatives ∂µϕ. A generalized version of the Principle of Least
Action yields this version of the Euler-Lagrange equations:

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L
∂ϕ

= 0.

In QFT, every particle has a (quantum and relativistic) field associated.
This field, in the same fashion as the wavefunction for the non-relativistic case,
contains all the information about the particle; and the perturbations of these
fields are the particles.

A soliton solution to a field equation is a non-dissipative non-trivial finite
energy solution. They are a subset of kinks. The particularity is that solitons
remain unperturbed in collisions with other solitons, while kinks in general do
not. However, the literature usually refers to kinks and solitons as the same
thing, as we shall do as well.

In scalar field theory, the standard Lagrangian(1) for an arbitrary potential
U(ϕ) is the following:

L =
1

2
|∂µϕ|2 − U(ϕ),

where the kinetic term is

1

2
|∂µϕ|2 =

1

2
|∂µϕ|2 =

1

2
(∂µϕ)(∂

µϕ) =
1

2
ηµν(∂νϕ)(∂µϕ) =

1

2
ηµµ(∂µϕ)

2,

with ηµν being the components of the (diagonal) Minkowski metric tensor. We
now compute the derivatives required by the Euler-Lagrange equations,

(1) In this context, it is understood that Lagrangian means Lagrangian density.
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∂µ

(
∂L

∂(∂µϕ)

)
= ∂µ(η

µµ∂µϕ) = ηµµ∂µ∂µϕ = ∂µ∂µϕ,

and
∂L
∂ϕ

= −∂U
∂ϕ

Therefore, the equation of motion for a field immersed in a general potential will
be the following:

∂µ∂µϕ− ∂U

∂ϕ
= 0 (2.1)

Note that for the free field case, i.e. U(ϕ) = 0, we get the wave equation.

2.2 On the ϕ4-theory

To illustrate how from a Lagrangian one can end up finding actual particles,
we will examine the ϕ4-theory(2), which is widely used because of it being
renormalizable and a good approximation to more complex potentials.

The Lagrangian of this theory has the following form:

L =
1

2
|∂µϕ|2 −

λ

4
(ϕ2 − v2)2 , (v2 = m2/λ), (2.2)

where m,λ are real parameters that define the potential and ϕ is the field. A
necessary condition for a potential to have soliton solutions is that it must have
at least two degenerate minima (the vacua), fulfilled by the ϕ4-potential. For this
potential, using (2.1), the equation of motion for the field has the following form,

∂µ∂µϕ− λ(ϕ2 − v2)ϕ = 0, (2.3)

which is clearly non-linear. We can see this equation has two trivial solutions,
ϕ = ±v, that correspond to the vacua solutions (for ϕ = ±v, U = 0). We will
be interested in finding non-trivial, finite energy solutions to this equation. For
simplicity, we will solve for the 1+1 dimensional case. Explicitly, our equation of
motion is

∂2ϕ

∂t2
− ∂2ϕ

∂x2
= −λ(ϕ2 − v2)ϕ (2.4)

We can also just seek stationary solutions to this equation, since we can trivially
find the time-dependent solutions just by performing Lorentz transformations
xµ 7→ Λµ

νx
ν on the stationary ones. Therefore, we set the time derivative of the

field to be zero.
(2) The theory gets its name because the potential that defines it is a polynomial of order

4 in the field.
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d2ϕ

dx2
− λ(ϕ2 − v2)ϕ = 0. (2.5)

Two solutions (the soliton and the antisoliton) to this differential equation
centered at x = x0 and with the additional condition

lim
x→∞

ϕ2 = v

are the functions [6, pp. 6-10] [7]

ϕ(x) = ±v tanh
(
m√
2
(x− x0)

)
(2.6)

The most intuitive way of realising that this is a soliton is by inspecting
the energy density, which can be computed explicitly. The energy density E (x)
will be given by the sum of the kinetic and potential terms in the Lagrangian, i.e.

E (x) =
1

2
|∂µϕ|2 +

λ

4
(ϕ2 − v2)2 (2.7)

Let us compute these terms, which will be equal for the soliton and antisoliton
solutions:

1

2
|∂µϕ|2 =

1

2

(
dϕ

dx

)2

=
1

2

(
vm√
2
sech2

(
m√
2
(x− x0)

))2

=
v2m2

4
sech4

(
m√
2
(x− x0)

)
=
m4

4λ
sech4

(
m√
2
(x− x0)

)

λ

4

(
ϕ2 − v2

)2
=
λ

4

(
v2

[
tanh2

(
m√
2
(x− x0)

)
− 1

])2

=
m4

4λ
sech4

(
m√
2
(x− x0)

)
,

recalling that v2 = m2/λ. Therefore,

E (x) =
m4

2λ
sech4

(
m√
2
(x− x0)

)
(2.8)

According to this result, we see that the energy of the field is concentrated
in a region of width ∼ m−1 centered at x0. The field ϕ is indistinguishable from
the vacuum far enough from x0. This localization of the energy may suggest that
the soliton could be interpreted as a particle of radius ∼ m−1 and mass M given
by the total energy of the field, i.e.
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Fig. 2.1. Representation of the energy density function E (x) centered at x0 = 0 for the
ϕ4-theory with m =

√
2, λ = 2 . These values make no physical sense and were only chosen for

normalization purposes.

M =

∫ ∞

−∞
E (x) dx =

2
√
2

3

m3

λ

This integral can be easily solved by considering the well-known relation
sech4(u) = sech2(u)(1 − tanh2(u)) and performing the change of variables
tanh2(u) = t.

Again, if we wanted to have the soliton moving with a constant velocity u,
we would just have to Lorentz-transform the stationary field ϕ, i.e.

ϕ(x, t) = ±v tanh
(
m√
2

x− x0 − ut√
1− u2

)
, (2.9)

and in this case the total energy of the field would correspond to that of a
Lorentz-contracted soliton of mass M , i.e.

E =

∫ ∞

−∞

[
−1

2

(
∂ϕ

∂t

)2

+
1

2

(
∂ϕ

∂x

)2

+ U(ϕ)

]
dx

=
M√
1− u2

Thus, from a quartic potential, we have found a particle, its radius and its
mass. It is interesting to notice that the energy density function E (x) does not
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dissipate. i.e. the width of the peak does not grow in time. In reality, it does, but
we are not accounting for the terms that make this happen in our Lagrangian L.

For instance, in the case of trying to describe a soliton in a water aisle, if
we did not take into account the air resistance and the superficial tension of the
water, amongst other factors, the soliton we would obtain would not dissipate,
when in reality it does. Really slowly, but it does.

This way, the Lagrangian of a theory will yield the equation of motion for
the field. Their non-trivial non-dissipative finite energy solutions will define a
soliton solution of the field, from which we will obtain the energy density of the
field. This, we can interpret as the actual particle: the monopole.
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The Seiberg-Witten Monopole

Resumen

En este capı́tulo estudiaremos el monopolo de Seiberg-Witten: un
U(1)-monopolo, y esbozaremos su generalización a SU(2)-monopolo, el

Monopolo de ’t Hooft-Polyakov. Resolveremos para cada caso las Ecuaciones de
Seiberg-Witten, distinguiendo para el U(1)-monopolo entre las ecuaciones en R4

y en el espacio-tiempo de Minkowski R1,3.

3.1 Seiberg-Witten Equations in Flat Spacetime

Although we will not derive them here, the Seiberg-Witten equations describe
a coupling between the space(time) 4-manifold (via the connection A and its
curvature) and a spinor field ψ associated to the monopole, and they emerge as
a consequence of duality arguments in the framework of N = 2 supersymmetric
Yang-Mills theory. The fact that the monopole is described by a spinor field
implies that it is a spin-1/2 particle, and therefore a fermion, just like its electric
counterparts. It would also be a fundamental particle, i.e. they would not be
formed by more primordial constituents, having its own place in the Standard
Model of Particle Physics. Let us write the equations and then dissect them:

SEIBERG-WITTEN EQUATIONS

D/Aψ = 0 (3.1)

ρ+(FA) = (ψ ⊗ ψ†)0 (3.2)

we will denote by R either the Euclidean 4-space R4 (gµν = δµν) or the
Minkowski spacetime R1,3 (gµν = ηµν). Let us write A = Aαdx

α for a
U(1)-potential and
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FA = dA =
∑
α<β

Fαβdx
α ∧ dxβ =

∑
α<β

(∂αAβ − ∂βAα)dx
α ∧ dxβ (3.3)

for its curvature. For any map

ψ =

(
ψ1

ψ2

)
: R→ C2, (3.4)

we denote by ψ ⊗ ψ† the following endomorphism of C2:

ψ ⊗ ψ† =

(
ψ1

ψ2

)(
ψ̄1 ψ̄2

)
=

(
|ψ1|2 ψ1ψ̄2

ψ̄1ψ2 |ψ2|2
)
, (3.5)

where ψ† denotes the congugate transpose of ψ and ψ̄i the complex conjugate of
its components. The RHS of (3.2) refers to the traceless part of ψ ⊗ ψ†, i.e.

(ψ ⊗ ψ†)0 =
1

2

(
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ̄1ψ2 |ψ2|2 − |ψ1|2.

)
(3.6)

This can be written in terms of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
as

(ψ ⊗ ψ†)0 =
1

2

3∑
i=1

(ψ†σiψ)σi

Furthermore, if we recall that the basis quaternions are given by I1 ≡ I = iσ1,
I2 ≡ J = iσ2, I3 ≡ K = iσ3, the the RHS of (3.2) can also be written as

(ψ ⊗ ψ†)0 = −1

2

3∑
i=1

(ψ†Iiψ)Ii ∈ H. (3.7)

To define other objects such as D/A and ρ+ in (3.1) and (3.2), we need to
take into account the metric. This, of course, gives a distinction between the
Euclidean and the Minkowskian scenarios.

3.1.1 Seiberg-Witten Equations in R4

The reason for this division is that we need precise information about the Clifford
algebras of R4 and R1,3, since they do not coincide. As we know, the standard
R4 scalar product between two vectors x⃗ and y⃗ is given by:

⟨x⃗, y⃗⟩4 = x0y0 + x1y1 + x2y2 + x3y3 = δµνx
µyν
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Let us now construct a convenient way of computing the scalar product. Let R4

be the set of all 2× 2 complex matrices X such that

X =

(
α β
−β̄ ᾱ

)
=

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
= x01+ x1I + x2J + x3K,

where 1 is the identity matrix. Then, one can easily note that ⟨x⃗, x⃗⟩4 = det(X).
Let us now notice that for each x⃗ in R4 its transpose conjugate has the following
form(1):

X† = x01− x1I − x2J − x3K, (3.8)

and define the map T : R4 → C4×4 as

T (x⃗) =

(
0 X

−X† 0

)
(3.9)

This map T is linear and injective, which implies that R4 ≃ T (R4) ⊂ C4×4.
A basis for T (R4) is given by {T (êα)}3α=0, where êα , α = 0, 1, 2, 3, are the
canonical basis vectors in R4. We shall denote {T (êα)}3α=0 as {γα}3α=0, i.e.

γα = T (êα) (3.10)

These γ-matrices anticommute as follows:

γαγβ + γβγα = −2δαβ1, (3.11)

where 1 is still the identity matrix, but in this case in four dimensions. The
Clifford algebra Cl(R4) of R4 is the real subalgebra of C4×4 generated by
the γ-matrices. The basis of Cl(R4) include scalars (the identity), vectors (the
generators of the algebra), bivectors (the products γαγβ for α < β), trivectors
(the products γαγβγµ for α < β < µ) and a pseudo-scalar (the element γ0γ1γ2γ3).
Any other product between the gamma matrices can be computed using the
elements of the basis of the algebra and the anticommutation relations. That
is why they are called elements of the basis. In total there are 24 = 16 of them,
meaning that the real dimension of Cl(R4) is 16.

In what follows, we will write C4 as the direct sum of two subspaces, each
one of them isomorphic to C2:

C4 =W+ ⊕W−,

where

(1) This can be easily seen recalling that the Pauli matrices are Hermitian, and therefore
I†i = i†σ†

i = −iσi = −Ii.
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W+ = {(z1, z2, 0, 0) | z1, z2 ∈ C}
and

W− = {(0, 0, z3, z4) | z3, z4 ∈ C}
The even elements of Cl(R4), i.e. those formed by the span the identity, the
bivectors and the pseudo-scalar preserve W±, whereas the odd ones do not.

Any map Ψ : R4 → C4 will be called a 4-component spinor field on R4. A
2-component positive spinor field is a map ψ : R4 → W+ and a 2-component
negative spinor field is a map ϕ : R4 →W−.

With a little abuse of notation, we will write

ψ =

(
ψ1

ψ2

)
instead of ψ =


ψ1

ψ2

0
0

 (2)

and

Ψ =

(
ψ
ϕ

)
instead of Ψ =


ψ1

ψ2

ϕ1
ϕ2


This differentiation really responds to the physical interpretation of the

spinor fields. In this chapter, Ψ plays the role that ϕ(x) played in the previous
one: it is the field that describes the particle (a spinor field instead of a scalar one,
but a field nonetheless). A spin-1/2 particle—like our monopole—is described
by a spinor. Dirac showed this while stating and solving the famous equation
that bears his name [9]. The two upper elements of the spinor correspond to the
particle associated to the field, while the other two correspond to its antiparticle
(from here the notation for the subspaces W± and the ± signs).

Associated to a U(1)-potential A, we introduce the covariant differential
as

∇Ψ = (∇αΨ)dxα = (∂α +Aα)Ψ dxα, (3.12)

used to define the so-called “physicist’s Dirac operator” DA as

DAΨ =

3∑
α=0

γα∇αΨ (3.13)

To write this out explicitly we need to recall that γα = T (êα), and that
X(êα) = Iα, if we let I0 be the 4× 4 identity matrix,

γ0 =

(
0 I0

−I0 0

)
γi =

(
0 Ii
Ii 0

)
,

(2) Idem for ϕ.
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or, to put it in a more explicit way:

γα =

(
0 Iα

(−1)δα0Iα 0

)
(3.14)

Now, we can write DAΨ as follows

DAΨ =
∑
α

(
0 Iα

(−1)δα0Iα 0

)
∇α

(
ψ
ϕ

)
=

∑
α

(
0 Iα

(−1)δα0Iα 0

)(
∇αψ
∇αϕ

)
=

∑
α

(
Iα∇αϕ

(−1)δα0Iα∇αψ

)
=

(
∇0ϕ+ I∇1ϕ+ J∇2ϕ+K∇3ϕ

−∇0ψ + I∇1ψ + J∇2ψ +K∇3ψ

)
It is interesting to note that this operator carries a positive spinor to a

negative one, and vice versa.
The second component of this vector is what we define to be the “mathematician’s
Dirac operator” D/A acting on the 2-component positive spinor field ψ,

D/Aψ = −∇0ψ + I∇1ψ + J∇2ψ +K∇3ψ, (3.15)

which, according to equation (3.1), is known to be zero. This way, we have
expressed out the first Seiberg-Witten in a more explicit fashion:

∇0ψ = I∇1ψ + J∇2ψ +K∇3ψ (3.16)

If we go further and write out the covariant differentials, identifying
(x0, x1, x2, x3) 7→ (t, x, y, z), we get the following system of equations:

(i∂1 − ∂0 + iA1 −A0)ψ1 = − (i∂3 + ∂2 + iA3 +A2)ψ2

(i∂3 − ∂2 + iA3 −A2)ψ1 = (i∂1 + ∂0 + iA1 +A0)ψ2

In order to construct the second Seiberg-Witten equation (3.2), we must
describe a natural action of complex-valued 2-forms on C4. If we think of all
C-linear endomorphisms of C4 as a vector space, EndC(C4), we may define the
map ρ : Ω2(R4)⊗ C → EndC(C4)(3) as

ρ(F ) = ρ

∑
α<β

Fαβe
α ∧ eβ

 =
∑
α<β

FαβT (êα)T (êβ) =
∑
α<β

Fαβγαγβ

(3) Ω2(R4)⊗ C is the complexification of Ω2(R4).
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=


(F01 + F23)I
+(F02 + F31)J 0
+(F03 + F12)K

−(F01 − F23)I
0 −(F02 + F13)J

−(F03 − F12)K,


where here 0 is the 2× 2 zero matrix. Since it is diagonal, ρ preserves W±, so we
can define

ρ±(F ) = ρ(F )|W±

In particular, to write out the LHS of (3.2),

ρ+(F ) = (F01 + F23)I + (F02 + F31)J + (F03 + F12)K

In order to achieve (3.2), we compare with expression (3.7) to obtain

F01 + F23 = −1

2
(ψ†Iψ)

F02 + F31 = −1

2
(ψ†Jψ)

F03 + F12 = −1

2
(ψ†Kψ),

(3.17)

or, explicitly:

∂0A1 − ∂1A0 + ∂2A3 − ∂3A2 = − i

2
(|ψ1|2 − |ψ2|2)

∂0A2 − ∂1A3 − ∂2A0 − ∂3A1 = −iIm(ψ̄1ψ2)

∂0A3 + ∂1A2 − ∂2A1 − ∂3A0 = −iRe(ψ̄1ψ2).

We have dedicated the last few pages to finding out the explicit form
of the Seiberg-Witten equations in the hope of being able to solve them, but
Witten proved [8] that if a 1-form A and a positive 2-component spinor ψ satisfy
(3.16) and (3.17), then ψ ≡ 0(4), i.e. there are no non-relativistic U(1)-magnetic
monopoles. This is why we need to extend our analysis to the Minkowski
spacetime.

3.1.2 Seiberg-Witten Equations in R1,3

To write the Seiberg-Witten equations in flat Minkowski spacetime R1,3, the only
thing we must take into account is that the Clifford algebra is (slightly) different.
In this case, the scalar product of two vectors (what we call events in special
relativity) x⃗ and y⃗ of R1,3 is given by

(4) At least for ψ ∈ L2(R4).
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⟨x⃗, y⃗⟩1,3 = −x0y0 + x1y1 + x2y2 + x3y3 = ηµνx
µyν

If we now let R1,3 be the set of all 2× 2 complex matrices X of the form

X = x0σ0 + x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

we note that − det(X) = ⟨x⃗, y⃗⟩1,3. Now, for every X = xασα ∈ R1,3, we define
X̃ as

X̃ = x0σ0 − x1σ1 − x2σ2 − x3σ3, (3.18)

while the map T : R1,3 → C4×4 is defined as

T (x⃗) =

(
0 X̃

−X̃ 0

)
.

Again, T is linear and injective, so we may identify R1,3 with T (R1,3) ⊂ C4×4. A
basis of the space will be given by:

γα = T (êα),

and satisfy the anticommutation relations:

γαγβ + γβγα = −2ηαβ1 (3.19)

This way, the Clifford algebra of R1,3 is the real subalgebra Cl(R1,3)
generated by these γ-matrices. Now, proceeding in the exact same fashion as in
the previous section, one finds the Seiberg-Witten equations can be written as

∇0ψ = σ1∇1ψ + σ2∇2ψ + σ3∇3ψ (3.20)

F01 + iF23 =
1

2
(ψ†σ1ψ)

F02 + iF31 =
1

2
(ψ†σ2ψ)

F03 + iF12 =
1

2
(ψ†σ3ψ)

(3.21)

Witten’s theorem still holds in R1,3, but physically relevant solutions can be
found, unlike in the Euclidean scenario. For these coupled system of PDEs there
is a particularly interesting solution, found by P. Freund [8]. Once again we will
rename (x0, x1, x2, x3) 7→ (t, x, y, z). Then, on R1,3 \ {(t, 0, 0, z) | t ∈ R, z ≥ 0}, a

solution A = Aαdx
α, ψ =

(
ψ1

ψ2

)
to (3.20) and (3.21)—this is, a time independent

solution for the region that in chapter 1 we denoted by U−—is given by:
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A0 = A3 = 0, A1 = i
−y

2ρ(ρ− z)
, A2 = i

x

2ρ(ρ− z)
(3.22)

(
ψ1

ψ2

)
=

1

ρ
√
2ρ(ρ− z)

(
x− iy
ρ− z

)
. (3.23)

The potential

A = −iy dx− x dy

2ρ(ρ− z)
= i(1 + cosϕ)dθ = −iA−

is, except for a global phase factor, identical to the potential A− found in chapter
1 on U− for a monopole with the least positive magnetic charge. This way, we
again meet the Dirac monopole, i.e. doing a thorough examination of equations
deeply rooted in symmetry, geometry and topology yields the same result that
assuming that the monopole would create a Coulomb-like potential. Quite
fascinating! Actually, the RHS of all three equations in (3.21)—known as the
curvature equations—essentially say that the spinor ψ defines a Coulomb-like
field:

1

2
(ψ†σjψ) =

1

2

xj

ρ3
. (3.24)

3.2 SU(2) Generalization of the Seiberg-Witten Monopole: the
’t Hooft-Polyakov Monopole

There is another important kind of magnetic monopole in R1,3: the SU(2)-mono-
pole, often called ’t Hooft-Polyakov monopole. As we will see in the following
chapter, ’t Hooft-Polyakov monopoles are predicted by all Grand Unification
Theories (GUTs) and Theories of Everything (TOEs) [11], so their experimental
discovery would open a door to experimental evidence on theories such as
superstrings theories. Since the energies required to perform direct observation
are of the order of 1015 GeV for GUTs and 1019 GeV for TOEs and since the
Large Hadron Collider (LHC) works, at best, in the order of 103 GeV, as for
now, one would think that direct experimental confirmation for such theories is
impossible.

For this monopole the procedure is essentially the same. We will simply
write the Seiberg-Witten equations and present an interesting solution. A sketch
of the derivation may be found in [8].

Using the matrices Ti = σi/2 as a basis for su(2)—the Lie algebra of
SU(2)—, the structure constants are given by the Levi-Civita symbols

[Ti, Tj ] = εijkTk. (3.25)

In this case, our SU(2) gauge potential A is given by:
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A = AαTα = Aµdx
µ = (Aα

µTα)dx
µ,

and our 4-component spinor field may be written in terms of the su(2) basis
elements as

Ψ = ΨαTα =

(
ψα

ϕα

)
Tα = (Ψα

µTα)dx
µ

In this scenario, the Seiberg-Witten equations are too complicated to be
explicitly written, but when A1 = A2 = A3

0 = 0, Ψ3 = 0 and both the potential
and the spinor field are independent of x0, the equations take the form:

∂1Ψ
1
2 +

1

2
A3

1Ψ
2
2 − i

(
∂2Ψ

1
2 +

1

2
A3

2Ψ
2
2

)
+ ∂3Ψ

1
1 = 0

∂1Ψ
1
1 +

1

2
A3

1Ψ
2
1 + i

(
∂2Ψ

1
1 +

1

2
A3

2Ψ
2
1

)
− ∂3Ψ

1
2 = 0

∂1Ψ
2
2 −

1

2
A3

1Ψ
1
2 − i

(
∂2Ψ

2
2 −

1

2
A3

2Ψ
1
2

)
+ ∂3Ψ

2
1 = 0

∂1Ψ
1
2 −

1

2
A3

1Ψ
1
1 + i

(
∂2Ψ

2
1 −

1

2
A3

2Ψ
1
1

)
− ∂3Ψ

2
2 = 0

(3.26)

−∂3A3
2 = Im

(
Ψ̄2

1Ψ
1
2 + Ψ̄2

2Ψ
1
1

)
∂3A

3
1 = Re

(
Ψ̄2

2Ψ
1
1 − Ψ̄2

1Ψ
1
2

)
∂1A

3
2 − ∂2A

3
1 = Im

(
Ψ̄2

1Ψ
1
1 − Ψ̄2

2Ψ
1
2

)
,

(3.27)

A solution to this system of coupled PDEs in U− was found by T. Dereli
and M. Tekmen in [10], which we now present ((x1, x2, x3) 7→ (x, y, z)):

A1 = A2 = 0, A3 = −(1 + cosϕ)dθ =
y dx− x dy

ρ(ρ− z)
(3.28)

Ψ1 =
1√
2

1

ρ
(ξ + η), Ψ2 =

1√
2

1

ρ
(−ξ + η), Ψ3 = 0, (3.29)

where

ξ =
1√

2ρ(ρ− z)

(
x− iy
ρ− z

)
∈W+

η =
1√

2ρ(ρ− z)

(
ρ− z

−x− iy

)
∈W−

This way, we recover the Dirac monopole once more:

A =
y dx− x dy

ρ(ρ− z)

(
1 0
0 −1

)
(3.30)
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Furthermore, we can check that the U(1)-monopole is contained in this solution,
which is reasonable, since U(1) is a subgroup of SU(2).

The SU(2) Seiberg-Witten equations also admit a non-Abelian monopole
solution singular only at the origin and not in the entire z-axis [10].

Finally, let us mention that Seiberg-Witten equations can also be generalized
to any gauge group SU(n).
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Research on Magnetic Monopoles and Implications
of its Existence

Resumen

En este último capı́tulo, discutiremos los esfuerzos pasados y presentes más
relevantes realizados por la comunidad cientı́fica para encontrar monopolos

magnéticos experimentalmente y las consecuencias que su existencia tendrı́a en
la fı́sica.

4.1 Research on Magnetic Monopoles

Historically, the search for magnetic monopoles has been carried out in three
different ways:

• Directly producing them in particle accelerators such as the LHC.
• Searching for magnetic monopoles in cosmic rays or trapped in materials.
• Looking for indirect signs of magnetic monopoles in astronomical observations.

4.1.1 Particle accelerator searches

As we advanced in the previous chapter, the energy required to observe
GUT-predicted monopoles (’t Hooft-Polyakov monopoles) is a billion(1) times
higher than the one currently achievable by the LHC, so one would quickly
disregard this option. However, we are only familiar with the laws of physics
up to the electroweak scale, which is ∼ 100 GeV, and it is therefore possible
for an unknown, lighter monopole to exist. These are called intermediate-mass
monopoles (IMM), and if they were to exist, they could very well be produced in
LHC experiments.

(1) A million times a million.
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Unlike most of the particles searched at particle accelerators, magnetic
monopoles are stable and can only be annihilated by encountering an anti-
monopole. This way, once a monopole is created, it will not decay. This is the
inspiration behind the experiment MoEDAL (Monopole and Exotics Detector
at the LHC), a project consisting on plastic nuclear track detector sheets
placed around the LHCb (LHC-beauty) experiment. This way, if monopoles are
produced during LHCb collisions, they will fly through the sheets, leaving marks
on them that can be detected when the sheets are removed and analysed [13].
Other accelerators like Tevatron, LEP and HERA have also tried to find magnetic
monopoles in the past, but they were not successful [12]. Not finding monopoles,
however, sets a lower bound for their masses: if magnetic monopoles existed
their masses could not be lower than roughly 103 GeV [11].

This means that monopoles would be really massive particles. Primordial
GUT monopoles—sometimes called supermassive monopoles—, possibly formed
in the early stages of the Universe, such as the ‘t Hooft-Polyakov monopoles,
would have masses in the order of 1016 − 1017 GeV, which is 14 to 15 orders of
magnitude greater than the mass of a proton!

The intermediate mass monopoles would still be very massive, having
masses in range of 105 − 1013 GeV [12]. However, the uncertainty in this data is
quite large.

4.1.2 Direct Searches

Since magnetic monopoles would be very stable, one could try, instead of
creating them, search for the ones that already exist. The level of difficulty
of this task is determined by how many of them there are; or more precisely, by
their flux F . This quantity does not only depend on the number of monopoles
but also on their velocities.

Magnetic monopoles have long been searched for in cosmic rays. Obviously,
the higher the flux of monopoles, the more often we will find them in cosmic
rays. In the 1970s and the 1980s several detections compatible with magnetic
monopoles were made, but since later experiments have not been able to
reproduce these results, they are believed to be caused by some other effects [11].
Furthermore, these experiments were also able to search for different particles
in cosmic rays, inspiring the way we search for dark matter nowadays.

The strongest bounds for GUT monopoles were found by the MACRO
(Monopole, Astrophysics and Cosmic Ray Observatory) experiment, which
operated from 1989 until the year 2000. It had a total effective area of approximately
104 m2, and since it did not detect any monopoles, they were able to conclude
that F ≲ 10−16 cm−2s−1 sr−1. Experiments such as AMANDA (Antarctic Muon
And Neutrino Detector Array) and Baikal later confirmed this bound.

Apart from cosmic rays, attempts have also been made to detect magnetic
monopoles in meteorites, moon rocks and sea water, since they could be trapped
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Fig. 4.1. The 90% confidence level (CL) lower limits for a flux of cosmic GUT monopoles with
magnetic charge g = gD = ℏc/2e given by different experiments as function of β = v/c the
velocity of the monopole. Source: [12]

in there, because of them being very stable. Once again, there has been no success
so far [14].

4.1.3 Astrophysical Bounds

If magnetic monopoles were real, they would certainly produce astrophysical
effects, which we might be able to measure. Perhaps, one of the most significant
ones would be that they would be accelerated by magnetic fields, generating
currents that would drain energy from the field [11] . The magnetic flux would
tell us how the energy of the magnetic field decreases.

If the flux were very high, there would not be any large-scale magnetic
fields in space, since they would have dissipated. However, it is known that in the
Milky Way there is a magnetic field of ∼ 3 µG, which means that the monopole
flux cannot be very high. This is known as the Parker Bound: F ≲ 10−15 cm−2s−1

sr−1. This limit was then extended to the EPB (Extended Parker Bound) by
taking into account that this effect is mass dependent: F ≲ m1710

−16 cm−2s−1

sr−1, where m17 = mM × 10−17, with mM being the mass of the monopole [12].
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4.2 Implications of the Existence of Magnetic Monopoles

Although—as we have seen in the previous section—magnetic monopoles have
not yet been discovered, even as a theoretical chimera they have proven to be an
extremely useful tool in theoretical physics.

They, for instance, are compatible with Kaluza-Klein theories, which aim
to generalize General Relativity by interpreting gauge fields as components of a
higher-dimensional geometry.

It spacetime were 5-dimensional, adding a periodic x4 dimension, then this
5-dimensional gravity gives rise to gravity and Maxwell field in 4 dimensions.
The metric components gµ4 are given by the Maxwell potential, and gauge
invariance arises from reparametrizations of x4. What we would see as electric
charge would actually be momentum in x4, and it would be quantized because
of it being periodic [3].

Including magnetic monopoles in QFT has forced physicists to develop
new calculation techniques.The standard way to do calculations in QFT is
perturbation theory, which cannot be used for topological solitons such as
magnetic monopoles. Besides, perturbation theory assumes that the particles
interact weakly with one another. The strength of the interaction between
electrons is given by the fine structure constant α ≃ 1/137, but for the magnetic
monopoles it would be given by its inverse, because of Dirac’s Quantization
Condition, αM = 1/α ≃ 137, which is most definitely not a small number. This
way, the interaction between magnetic monopoles is actually very strong, and
perturbation theory is not generally applicable.

All GUTs and TOEs predict magnetic monopoles [11]. Therefore, if we
detected magnetic monopoles, we could have direct experimental evidence to
contrast the predictions of theories such as string theory or supergravity theories,
for which we have no experimental support yet.

As a last example, magnetic monopoles could also help us to understand
Quantum Chromodynamics (QCD) better. The theory is written in terms of
quarks and gluons, which have never been seen as free particles because
of a phenomenon called asymptotic confinement. In 1976, G. ’t Hooft and S.
Mandelstam suggested that this confinement would be explained by magnetic
monopoles [11].

This way, as we can see, the experimental discovery of magnetic monopoles
would explain many unkwown phenomena and pave the way for the future of
theoretical physics.
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Conclusions

In the same way as in a significant part of theoretical physics, we have
seen that not having experimental evidence on magnetic monopoles has not
stopped scientists from developing both a mathematically consistent theory for
monopoles and experiments to search for them both in the smallest and largest
scales of the Universe.

As we have seen, magnetic monopoles are of great relevance in the
modern theoretical physics landscape: there are plenty of phenomena this
spin-1/2 particle could be involved in, and its existence would prove that the
Standard Model of Particle Physics is at least incomplete, since it would be a
new fundamental particle. Even if it is not real after all, the questions they have
raised and the challenges they have thrown at the scientific community have
been of paramount importance in the development of modern particle and high
energy physics.

There are however many symmetry-based arguments in favor of the
existence of magnetic monopoles that would imply a total change in how we
see the world and a very beautiful way to turn physics upside down.





References
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