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Abstract · Resumen

Abstract

Bose-Einstein condensates (BECs) of ultracold atomic gases have

become pivotal for exploring superfluidity and nonlinear dynamics

since their initial realization. This study focuses on a two-component

pseudo-spin-1/2 BEC with repulsive interparticle interactions in a

ring geometry, where persistent currents and phase slips are inves-

tigated. We begin with the analysis of stationary states of linearly

coupled spin components, obtaining the spectrum of plane waves,

which support superfluid particle currents, and their linear excita-

tions, and highlighting the ground state properties. Our main goal

concerns the e↵ects of spin-orbit coupling (SOC), which is first

analyzed through the single-particle dispersion, and later through

nonlinear plane-wave states that show the emergence of di↵erent dy-

namical regimes, or phases, according to the ratio between the linear

coupling and the SOC strengths. This allows us to consider the case

study of coherent phase slips produced by the exchange of momen-

tum, carried by quantum vortices, between the spin components of

the condensate; this is the so-called quantum coherent phase slip,

which is the phase equivalent of the macroscopic transfer of parti-

cles by the Josephson e↵ect. To this end, numerical simulations of

the time-dependent Gross-Pitaevskii equation are performed, both in

the absence and in the presence of SOC, that show how the vortex

transfer is mediated by soliton-like structures. Our results are put in

context with the current research in ultracold gases.

Keywords: Spinnor Condensate – Josephson Vortices – Phase

Slip – Spin-Orbit Coupling.



Resumen

Los condensados de Bose-Einstein (BECs) de gases atómicos ultrafŕıos

se han vuelto fundamentales para explorar la superfluidez y la dinámi-

ca no lineal desde su desde su primera realización experimental. Este

trabajo se centra en un BEC de pseudo-esṕın-1/2 de dos componentes

con interacciones repulsivas entre part́ıculas en una geometŕıa de ani-

llo, donde se investigan corrientes persistentes y deslizamientos de fase.

Comenzamos con el análisis de estados estacionarios de componentes

de esṕın linealmente acoplados, obteniendo el espectro de ondas planas,

que admiten corrientes de part́ıculas superfluidas, y sus excitaciones

lineales, destacando las propiedades del estado fundamental. Nuestro

objetivo principal concierne a los efectos del acoplamiento esṕın-órbita

(SOC), que primero se analizan a través de la dispersión de part́ıculas

individuales, y luego a través de estados no lineales de ondas planas que

muestran la aparición de diferentes reǵımenes dinámicos, o fases, de

acuerdo con la relación entre el acoplamiento lineal y las intensidad del

SOC. Esto nos permite considerar el estudio del caso de deslizamientos

de fase coherentes producidos por el intercambio de momento, llevado a

cabo por vórtices cuantizados, entre los componentes de esṕın del con-

densado; esto es lo que se conoce como deslizamiento de fase coherente

cuántica, que es el equivalente de fase del corrientes macroscópicas de

part́ıculas por el efecto Josephson. Con este fin, se realizan simulacio-

nes numéricas de la ecuación de Gross-Pitaevskii dependiente del tiem-

po, tanto en ausencia como en presencia de SOC, que muestran cómo

se media la transferencia de vórtices mediante estructuras similares a

solitones.

Palabras clave: Condensado Spinnor – Josephson Vortices – Desli-

zamiento de Fase – Acoplamiento Spin-Orbita.



Phase Slips in Spin-Orbit-Coupled Bose-Einstein Condensates.

Bose-Einstein condensates (BECs) of ultracold atomic gases have become pivotal for ex-
ploring superfluidity and nonlinear dynamics since their initial realization. This study
focuses on a two-component pseudo-spin-1/2 BEC with repulsive interparticle interac-
tions in a ring geometry, where persistent currents and phase slips are investigated. We
begin with the analysis of stationary states of linearly coupled spin components, ob-
taining the spectrum of plane waves, which support superfluid particle currents, and
their linear excitations, and highlighting the ground state properties. Our main goal
concerns the effects of spin-orbit coupling (SOC), which is first analyzed through the
single-particle dispersion, and later through nonlinear plane-wave states that show the
emergence of different dynamical regimes, or phases, according to the ratio between
the linear coupling and the SOC strengths. This allows us to consider the case study
of coherent phase slips produced by the exchange of momentum, carried by quantum
vortices, between the spin components of the condensate; this is the so-called quantum
coherent phase slip, which is the phase equivalent of the macroscopic transfer of parti-
cles by the Josephson effect. To this end, numerical simulations of the time-dependent
Gross-Pitaevskii equation are performed, both in the absence and in the presence of
SOC, that show how the vortex transfer is mediated by soliton-like structures. Our
results are put in context with the current research in ultracold gases.
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I. INTRODUCTION

Bose-Einstein condensates represent a remarkable
quantum phenomenon where a large number of parti-
cles occupy the same quantum state. This phenomenon
arises after a phase transition that is somewhat anal-
ogous to a vapor condensing into a liquid; however, it
occurs purely due to quantum mechanics and, for a free
gas, it takes place in momentum space rather than in
physical space. The onset of BEC appears when the tem-
perature T drops below a critical temperature Tc, which
depends on the particle mass m and the particle density

n = N/V , and it roughly corresponds to the matching
of the de Broglie wave length and interparticle distance
λdB ∼ n−1/3 (Pathria, 2016).
The first experimental realizations of BEC in ultracold

atomic gases were achieved in 1995 in 87Rb and 23Na di-
lute atomic gases, by coolind down the atoms in magneto-
optical traps up to temperatures of a few nano-Kelvin.
Alkali atoms are particularly well-suited for these exper-
iments due to their effective laser cooling and further
temperature reduction via evaporative cooling (Pathria,
2016; Pitaevskii and Stringari, 2016). In these dilute
gases, where n ∼ 1014 cm−3, the range of interatomic
forces is negligible against the average interparticle dis-
tance so that the interparticle interaction can be mod-
eled by two-particle, contact collisions. As a result, the
low-energy interaction can be characterized by a single
quantity, the s-wave scattering length a, with a≪ n−1/3,
which enters the interaction strength g = 4πℏ2a/m that
plays a crucial role in determining the ground state of
the condensate (Pitaevskii and Stringari, 2016). For the
BEC to be thermodynamically stable, the s-wave scat-
tering length must be positive a > 0, ensuring that the
system is kept dilute. In the presence of external fields,
BECs can also exist in a metastable state even if the
scattering length is negative, provided it is sufficiently
small.
Since their first observation, BECs have emerged as a

powerful experimental platform for investigating waves
and excitations in superfluids and nonlinear systems
(Pitaevskii and Stringari, 2016). The study of wave-
related structures such as solitons and vortices, and their
stability, remains an active research area. Advances in
experimental techniques have facilitated the creation and
examination of diverse states and given access to quan-
tum simulations of other physical systems (Georgescu,
2020).
Persistent currents, a hallmark of superfluidity, have

been observed in BECs (Beattie et al., 2013; Ryu et al.,
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2007). In superconductors they manifest as dissipation-
less electric currents, while in electrically neutral super-
fluids produce particle flows without viscosity, as have
been realized both in liquid helium and BECs (Pitaevskii
and Stringari, 2016). Vortices play a crucial role in the
activation of persistent currents in ring geometries, with
phase slips occurring due to the transit of vortex struc-
tures (Anderson, 1966). A phase slip is characterized
by a sudden 2π change in the phase of a superfluid or
superconducting order parameter, caused by the move-
ment of quantized vortices through the medium. This
phenomenon leads to temporary disruptions of phase
coherence and is typically associated with dissipation .
Ultracold atoms, as superfluids, can also exhibit phase
slips, often by winding the phase through solitonic states,
and can generate quantum superpositions of macroscopic
flows (Eckel et al., 2014).

Bose-Einstein condensation of ultracold atoms has also
enabled the simulation of gauge fields in electrically neu-
tral systems, providing insights into synthetic magnetic
responses (Galitski et al., 2019; Lin et al., 2009). In
particular, the discovery of synthetic spin–orbit coupling
(SOC) in ultracold atoms has opened up new avenues
of research in spinor BECs (Lin et al., 2011). This cou-
pling refers to the interaction between the internal spin
degree of freedom of the atoms (so their intrinsic angu-
lar momentum) and their motion, and has been achieved
through kinetic effects in atom-light interactions. The
latter interactions are realized by counter-propagating
Raman laser beams that transfer momentum and cou-
ple spin states through two-photon processes. The re-
sulting system is subject to a one-dimensional SOC that
equally incorporates the Rashba and Dresselhaus spin-
orbit interactions known from solid-state physics (Lin
et al., 2011). The introduction of spin into the dynamics
of ultracold atoms enables the study of fascinating effects
such as the spin Hall effect, spin currents, or physical
properties that depends on the system topology.

In the present work, we consider a two-component,
interacting bosonic system with pseudo-spin-1/2 in an
idealized one-dimensional (1D) ring geometry, where pe-
riodic boundary conditions apply. These systems are
experimentally realizable in ultracold gas setups, where
quasi-1D geometries can be achieved through tight trans-
verse confinement. Within a mean-field framework,
based on the Gross-Pitaevskii equation, we study the
spectrum of plane-wave states of the system and analyze
their linear stability. Afterwards, the spin-orbit coupling
is introduced, specifically the type with equal contribu-
tions of Dresselhaus and Rashba couplings, as realized in
ultracold gas experiments (Lin et al., 2011). We show
how the presence of SOC significantly alters the proper-
ties of the ground state with respect to the case of just lin-
early coupled condensates, leading to diverse dynamical
phenomena (Recati and Stringari, 2022). Among them,
we focus on the transfer of quantum vortices between the

spin components of the condensate, or coherent phase
slips, by numerically solving the time-dependent Gross-
Pitaevskii equation. A similar study in the absence of
SOC has been reported in the literature (Gallemı́ et al.,
2015).
This work is structured as follows: Section II intro-

duces pseudo-spin-1/2 BECs, the mean-field energy func-
tional and the corresponding equation of motion for the
condensate wave function (or order parameter). Section
III details a plane-wave analysis including the ground
state properties, as energy and current density; it also
introduces a hydrodynamic analysis of the system based
on the particle density and superfluid velocity, with em-
phasis on the continuity equation. Section IV discusses
the linear stability analysis of plane waves, both po-
larized and non-polarized plane waves. Section V in-
troduces spin-orbit-coupled BECs, beginning with the
single-particle dispersion relations, following with non-
linear plane-wave states, and finishing with their linear
stability. Section VI focuses on our main goal, the in-
vestigation of coherent phase slips in spin-orbit-coupled
BECs, examining first the known cases without SOC;
particular types of solitons involved in the dynamics are
discussed. Finally, Section VII summarizes our work. An
appendix includes details on the numerical methods and
also on the type of solitons found in our numerical simu-
lations.

II. PSEUDO-SPIN-1/2 BECS

En esta sección se describe el sistema de estu-
dio como un condensado de Bose-Einstein (BEC)
con pseudo-esṕın-1/2, compuesto por dos compo-
nentes acoplados linealmente en una configuración
geométrica de anillo. Se detalla el modelo teórico
utilizado para describir la dinámica del sistema,
basado en la densidad Lagrangiana, para obtener la
ecuación de movimiento o ecuación de Gross-Pitaevskii.
. . . . . . . .

The system considered is a spinor Bose-Einstein con-
densate BEC composed of two linearly coupled compo-
nents arranged in a ring configuration. This system can
be obtained from a two-dimensional condensate experi-
encing a double-well potential with a sharp barrier di-
viding the two wells. The quantum coherent tunneling
through the barrier gives rise to a linear coupling between
components (Smerzi et al., 1997).
The Lagrangian density describing the dynamics of this

system, assumed to be 1D, is given by:

L = (iℏΨ∗∂tΨ− E) , (1)

where Ψ(x) = [Ψ↑(x),Ψ↓(x)]
T represents the complex-

valued wave functions associated with the two compo-
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nents of the condensate, and E is the energy density ex-
pressed as

E =
∑
σ=↑↓

[
ℏ2

2m
|∂xΨσ|2 +

g

2
|Ψσ|4 + V (x)|Ψσ|2

]
− ν

(
Ψ∗

↑Ψ↓ +Ψ∗
↓Ψ↑

)
. (2)

Here the terms, in sequence, denote the kinetic energy,
the interparticle interaction energy of strength g > 0,
energy of the external-potential V (x) affecting the 1D
system, and finally, the linear coupling term, which in-
troduces a coherent coupling of characteristic energy ν
between the two components and gives rise to a phase
correlation between them.

By using the principle of least action, from Eq. (1),

δL
δΨ∗ =

∂L
∂Ψ∗ − ∂

∂x

∂L
∂(∂xΨ∗)

= 0, (3)

the Gross-Pitaevskii (GP) equation for the system is ob-
tained:

iℏ∂tΨσ = − ℏ2

2m
∂2xΨσ + g|Ψσ|2Ψσ + VΨσ − νΨσ̄, (4)

where the subscript σ = {↑, ↓} represents one of the com-
ponents, while σ̄ signifies the other component. Notice
that this is a nonlinear equation in the condensate wave
function due to the interaction term. We will focus on
homogeneous systems, without external potential, that
is V (x) = 0. Then, Eq. (4) is written in matrix form as:

iℏ
∂Ψ

∂t
=

(
p̂2

2m + g |Ψ↑|2 −ν
−ν p̂2

2m + g |Ψ↓|2

)
Ψ, (5)

where p̂ = −iℏ∂x is the momentum operator.

III. NONLINEAR PLANE WAVES

A continuación se analiza el estado fundamental del
sistema. Se estudia la enerǵıa total del sistema y la den-
sidad de corriente. Se presentan las ecuaciones de con-
tinuidad y se examinan las caracteŕısticas de equilibrio
para la densidad en los componentes del condensado.
. . . . . . . .

An examination of the GP Eq. (5) suggests the pres-
ence of an underlying symmetry, since the absence of ex-
ternal potential in the equations implies the translational
invariance of the system. Therefore, we can construct an
ansatz composed of plane waves

Ψ =

[
Ψ↑
Ψ↓

]
= e−iµt/ℏ

[√
n↑e

ik↑x

√
n↓e

ik↓xeiφ

]
, (6)

with the corresponding normalization relation∮
dx |Ψ|2 = N↑ +N↓ = N, (7)

where µ is the chemical potential of the system, n↑,↓ are
constant particle densities, k↑,↓ are constant wave num-
bers, φ is a constant relative phase, and N is the total
number of particles in the system. Due to the presence
of the linear coupling, only N , but not the number of
particles in each component Nσ, remains conserved, and
it results in an identical chemical potential µ for both
components (Son and Stephanov, 2002).
From the substitution of Eq. (6) into Eq. (5) the

following system of equations is obtained:

µeik↑x =

(
ℏ2k2↑
2m

+ gn↑

)
eik↑x −

√
n↓
n↑
νeik↓xeiφ

µeik↓xeiφ =

(
ℏ2k2↓
2m

+ gn↓

)
eik↓eiφ −

√
n↑
n↓
νeik↑x.

(8)

Then, it can be seen that the eigenvalue Eq. (8) holds if
k↑ = k↓ = k and φ = 0, π, and the associated eigenvec-
tors are

Ψ− =

(√
n↑√
n↓

)
eikxe−iµkt/ℏ (9a)

Ψ+ =

( √
n↑

−√
n↓

)
eikxe−iµkt/ℏ. (9b)

As we show later, while Ψ− provides the system’s ground
state when k = 0, the wave function Ψ+, with relative
phase φ = π, is an excited state.
From Eq. (8) we find the following condition for the

component densities

(n↑ − n↓)

(
g ± ν

√
n↑n↓

)
= 0, (10)

where we will refer to ns = n↑ − n↓ as the spin density.
Equation (10) yields two sets of solutions, the first one
corresponds to states with equal number of particles in
both componentes, n↑ = n↓ and then N↑ = N↓, or (spin)
non-polarized states, and the second set corresponds to
the (spin) polarized states N↑ ̸= N↓. Their spin densities
are, respectively,

ns = 0, (11a)

ns = n

√
1−

(
2ν

gn

)2

. (11b)

Figure 1 represents the potential values of ns for spe-
cific ratios of the system parameters ν and gn. It demon-
strates the potential for density imbalance until reaching
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n
s
/n
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FIG. 1: Spin polarization of plane-wave states, where
the spin density ns = n↑ − n↓ is represented as a

function of the ratio 2ν/gn between the linear coupling
and the interaction terms. A bifurcation takes place at

the critical value 2ν = gn signing the absence of
polarized states for 2ν > gn.

the critical point gn = 2ν, beyond which the density im-
balance becomes forbiden for the system eigenstates.

Moreover, the system’s chemical potential is given by
the expression: 1

µk =
ℏ2k2

2m
+
gn

2
∓ ν√

1−
(
ns

n

)2 , (12)

where n = n↑+n↓, which in the non-polarized state takes
the form

µk =
ℏ2k2

2m
+
gn

2
∓ ν. (13)

Given that the system is a 1D-ring, with periodic
boundary conditions ψ(x = 0) = ψ(x = 2πR), the
wavevector must satisfy the condition

k =
j

R
, j ∈ Z, (14)

such that the discrete energy levels have the form

µj =
ℏ2j2

2mR2
+
gn

2
∓ ν, (15)

1 It is important to notice a crucial aspect regarding this expres-
sion: in the limit ns

n
→ 1 the chemical potential µk diverges.

This divergence indicates a breakdown in the validity of the
model. However, this issue is circumvented by the fact that
ns/n = 1 no longer corresponds to an eigenstate of the Hamilto-
nian.

or, by using the characteristic energy of the ring ϵ =
ℏ2/(mR2),

µj

ϵ
=
j2

2
+
gn/2∓ ν

ϵ
(16)

In figure 2 the dispersion relations of plane waves, µ ver-
sus k, are displayed according to Eq. (16).

4 2 0 2 4
kR

0

2

4

6

8

10

12

14

µ
/ε

Ground state
Excited state

FIG. 2: Dispersion relations of plane waves. Dashed
and solid lines (for higher and lower energy states,

respectively) serve as visual aids to reveal the functional
form of the discrete relationship. Here we are

considering gn/ϵ = 0.5 and ν/ϵ = 0.7

A. Energy

With the energy density of the system, as expressed in
Eq. (2), the energy functional is given by

E[Ψ] =
∑
σ=↑↓

∫ 2πR

0

dx

[
ℏ2

|∂xΨσ|2

2m
+
g

2
|Ψσ|4 + V |Ψσ|2

]

−
∫ 2πR

0

ν
(
Ψ∗

↑Ψ↓ +Ψ∗
↓Ψ↑

)
dx (17)

which, by splitting the wave function as Ψ = |Ψ|eiθ and
considering that there is no external potential V (x) = 0,
can be rewritten as:

E =
∑
σ=↑↓

∮
dx

{
ℏ2

2m
[∂x|Ψσ|+ |Ψσ|(∂xθ)]2 +

g

2
|Ψσ|4

}
−
∮
ν
(
Ψ∗

↑Ψ↓ +Ψ∗
↓Ψ↑

)
dx (18)

Given that our ground (for k = 0) and excited states
are described by Eq. (9a) and Eq. (9b), respectively,
and considering the inherent boundary condition of the
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system described by Eq. (7), we arrive at the energy per
particle

E

N
=

ℏ2k2

2m
+
gn

4
− ν

[
ν

gn
±
√
1−

(ns
n

)2]
, (19)

which for the unpolarized case ns = 0 takes the value

E

N
=

ℏ2k2

2m
+
gn

4
∓ ν. (20)

B. Current density

The current density of each condensate component can
be calculated from the expression

Jσ =
1

2m
[Ψ∗

σ (−iℏ∂xΨσ) + Ψσ (iℏ∂xΨ∗
σ)] (21)

After introducing the systems eigenstates, Eq. (9), the
following current densities are found

J↑ =
ℏk
m

n+ ns
2

,

J↓ =
ℏk
m

n− ns
2

,

(22)

which for the non-polarized case give

J↑ = J↓ =
nℏk
2m

. (23)

As it is known (Pitaevskii and Stringari, 2016), the su-
perfluid velocity vx is related to the total current density
J by the relation J = J↑ + J↓ = |Ψ|2vx, thus from Eq.
(22)

vx =
ℏk
m
, (24)

and it is also given by the definition

vx =
ℏ
m
∂xθ, (25)

where ∂xθ refers to the partial spatial derivative of the
total phase θ = (θ↑ + θ↓)/2, and θσ = kx − µkt/ℏ is the
phase of each spin component.

C. Continuity equations

The hydrodynamical analysis of a BEC provides a com-
prehensive framework that allows for a macroscopic inter-
pretation of the condensate properties. These are given
in terms of fluid-like equations of motion that describe
the dynamics in terms of the density |Ψ|2 and the ve-
locity vx fields, or alternatively the current density via

J = |Ψ|2vx. In particular, by starting with the GP Eqs.
(5) expanded as

iℏ∂tΨ↑ =
p̂2

2m
Ψ↑ + g|Ψ↑|2Ψ↑ − νΨ↓,

iℏ∂tΨ↓ =
p̂2

2m
Ψ↓ + g|Ψ↓|2Ψ↓ − νΨ↑,

(26)

and multiplying each equation on the left by the complex-
conjugate wave functions, ψ∗

σ, one gets new equations
whose imaginary parts give

∂t|Ψ↑|2 + ∂xJ↑ = −ν
ℏ
Sy,

∂t|Ψ↓|2 + ∂xJ↓ =
ν

ℏ
Sy,

(27)

where the right sides have been rewritten with the help
of Pauli matrices {σx, σy, σz} as

Sy = iΨ∗σyΨ = Ψ∗
↑Ψ↓ −Ψ↑Ψ

∗
↓. (28)

The right hand side of Eq. (27) can also be expressed
as νSy/ℏ = J , where

J =
ν

ℏ
√
n↑n↓ sinφ =

ν

2ℏ
√
n2 − n2s sinφ, (29)

is the Josephson current modulated by the relative phase
φ = argΨ↑ − argΨ↓. This is the macroscopic current of
particles flipping their spin by means of the Josephson ef-
fect (Pitaevskii and Stringari, 2016). The Josephson cur-
rent is suppressed for in-phase φ = 0 or phase-opposition
φ = π states.

By adding and subtracting Eqs. (27), we derive the
continuity equation for the total density

∂tn+ ∂xJ = 0, (30)

where J = J↑ + J↓ is the total current density, and the
continuity equation for the spin density ns

∂tns + ∂xJs = 2J , (31)

where Js = J↑−J↓ is the spin current density. From Eq.
(30), the conservation of the total number of particles
N = N↑+N↓ follows and is constrained by normalization
N =

∮
dxn. Additionally, Eq. (31) highlights the con-

servation of the population imbalance Ns = N↑ − N↓ =∮
dxns only in the absence of net Josephson currents,

i.e., for
∮
dxJ = 0. It is worth noting that in the spinor

view, the quantities ns = Ψ†σzΨ and Ns can be seen as
the local Mz and total mz magnetization, respectively,
of a magnetized system; see, e.g. (Recati and Stringari,
2022).
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IV. STABILITY ANALYSIS

En esta sección, se analiza la estabilidad de las
soluciones estacionarias mediante ecuaciones de Bogoli-
ubov. Se encuentran las frecuencias de excitación
para los estados fundamental y excitado, mostrando
cómo vaŕıan con el momento. Se identifican um-
brales de enerǵıa y velocidad que definen la esta-
bilidad del sistema frente a perturbaciones externas.
. . . . . . . .

After finding the stationary solutions in the previous sec-
tion, we proceed with the stability analysis by means of
the Bogolibov equations (Pitaevskii and Stringari, 2016).
They are obtained from the linearization of the GP Eqs.
(5) after adding small perturbartions on the stationary
states

Ψ(x, t) =

(
Ψ↑(x) + δ↑(x, t)

Ψ↓(x) + δ↓(x, t)

)
e−iµt/ℏ, (32)

where Ψ↑,↓(x) satisfy the time-independent Eq.(5) with
chemical potential µ, and δ↑,↓(x, t) are generic apace and
time dependent small perturbations. Inserting Eq.(32)
in Eq.(5) and keeping only the linear terms in δ↑,↓, the
following system of equations is obtained:

iℏ∂tδ↑ = − ℏ2

2m
∂2xδ↑ − µδ↑ + 2g|Ψ↑|2δ↑ + gΨ2

↑δ
∗
↑ − νδ↓,

iℏ∂tδ↓ = − ℏ2

2m
∂2xδ↓ − µδ↓ + 2g|Ψ↓|2δ↓ + gΨ2

↓δ
∗
↓ − νδ↑.

(33)
Next, one considers the following form for the perturba-
tions

δ↑(x, t) = u↑(x)e
−iωt + v∗↑(x)e

iω∗t,

δ↓(x, t) = u↓(x)e
−iωt + v∗↓(x)e

iω∗t,
(34)

such that the excitation energies ℏω and excitation modes
U(x) = [u↑(x), v↑(x), u↓(x), v↓(x)]

T are calculated by
solving the linear system

B U(x) = ℏω U(x), (35)

where the Bogoliubov matrix B is given by

B =


H↑ gΨ2

↑ −ν 0

−gΨ∗2
↑ −H↑ 0 ν

−ν 0 H↓ gΨ2
↓

0 ν −gΨ∗2
↓ −H↓

 , (36)

and Hσ = − ℏ2

2m∂
2
x − µ + 2g|Ψσ|2 with σ = {↑, ↓}. Dy-

namical instabilities are related to solutions to Eq. (35)
with complex frequencies ω, where the complex part of
ω is the rate of exponential growth ∝ exp[Im{ω}] of the

corresponding unstable mode2. The inverse of the imag-
inary part of the unstable frequency can thus be inter-
preted as the time taken for the mode to grow beyond
the perturbative limit.

A. Linear stability of plane waves

The direct substitution of the stationary plane wave
states Eq. (9), with chemical potential Eq. (12), into the
Bogoliubov Eqs. (35) gives:

Bk,∓ =


Hk,↑ gn↑e

i2kx −ν 0
−gn↑e−i2kx −Hk,↑ 0 ν

−ν 0 Hk,↓ gn↓e
i2kx

0 ν −gn↓e−i2kx −Hk,↓

 ,

(37)

where Hk,↑↓ = − ℏ2

2m∂
2
x − ℏ2k2

2m + g
2 (n± 2ns) ±

ν/

√
1− (ns/n)

2
. To simplify the Bogoliubov matrix and

remove the phase factors, we introduce the transformed
modes:

uj(x) = ũj(x)e
ikx,

vj(x) = ṽj(x)e
−ikx.

(38)

Next, we expand the perturbations into Fourier modes
Ũ(x) = Ũqe

iqx, where, due to the periodic boundary con-
ditions of the 1D ring, the same quantization rule Eq.
(14) follows, thus q = j/R, j ∈ Z. This reduces Eq. (37)
into

B̃{k,∓,q} =


ϵkq,↑ gn↑ −ν 0
−gn↑ −ϵ̄kq,↑ 0 ν
−ν 0 ϵkq,↓ −gn↓
0 ν −gn↓ −ϵ̄kq,↓,

 (39)

where:

ϵkq,↑↓ =
ℏ2

2m
(q + k)

2
+
g

2
(n± 2ns)±

ν√
1−

(
ns

n

)2 − ℏ2k2

2m

ϵ̄kq,↑↓ =
ℏ2

2m
(q − k)

2
+
g

2
(n± 2ns)±

ν√
1−

(
ns

n

)2 − ℏ2k2

2m
.

(40)
Here, the notation k,± as subindex denotes the station-
ary wave vector k under analysis, and whether this state
belongs to the lower (−) or upper (+) energy band of the
plane-wave spectrum (see Fig. 2).
We focus on the non-polarized states with ns = 0, and

find the following eigenvalues of the Bogoliubov matrix
Eq. (39):

2 The symmetry properties of the Bogoliubov equations, as re-
flected by Eqs. (34), includes both ω and ω∗ as eigenvalues
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• For the lower energy branch, including the ground

state with k = 0, Ψk,− =
√

n
2

(
1
1

)
eikx

ℏω(in)
{k,−},q =

ℏ2kq
m

±

√
ℏ2q2
2m

[
ℏ2q2
2m

+ gn

]
(41a)

ℏω(out)
{k,−},q =

ℏ2kq
m

±

√(
ℏ2q2
2m

+ 2ν

)[
ℏ2q2
2m

+ 2ν + gn

]
(41b)

• For the excited states Ψk,+ =
√

n
2

(
1
−1

)
eikx

ℏω(in)
{k,+},q =

ℏ2kq
m

±

√(
ℏ2q2
2m

− 2ν

)[(
ℏ2q2
2m

− 2ν

)
+ gn

]
(42a)

ℏω(out)
{k,+},q =

ℏ2kq
m

±

√
ℏ2q2
2m

(
ℏ2q2
2m

+ gn

)
(42b)

The superscripts indicate the presence of two distinct ex-
citation modes: in-phase and out-of-phase (phase opposi-
tion) modes. The in-phase modes correspond to density
modes, where the total density n couples strongly to the
overall phase θ, while the out-of-phase mode describes a
spin mode, where the spin density ns couples strongly
to the relative phase φ (Calderaro et al., 2017); in other
words, these modes are associated either with the ex-
citation of total density modulations or of spin density
modulations, respectively.

One can recognize the usual Bogoljubov excitation
spectrum of scalar condensates (Lamporesi, 2023) (set-
ting here k = 0 for the ground state)

ℏ2ω2 =
ℏ2q2

2m

(
ℏ2q2

2m
+ gn

)
. (43)

This excitation spectrum belongs to the in-phase fre-
quency branch of the ground state, and it also appears
in the out-of-phase frequency branch of the excited state
(when k = 0 is set). For low values of the wave num-
ber q the dispersion is linear, with slope given by the
corresponding speed of sound

lim
q→0

ℏω = ℏq
√
gn

2m
. (44)

Therefore we identify
√
gn/2m ≡ cs as the speed of

sound of small perturbations in the total density of the
condensate. This quantity is relevant for the superfluid
properties of the condensate, since excitations with en-
ergy ℏω and velocity smaller than cs cannot excite the

3 2 1 0 1 2 3
qR

8
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4

2

0

2

4

6

8

ω
/
ε

Sound speed
In phase
Out phase

FIG. 3: Energy of Bogoliubov excitations vs.
wavenumber q R for the system ground state. The
dashed lines are visual aids joining the discrete

spectrum. The system parameters are gn = 1.2ε and
ν = 0.7ε.
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2
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ω
/ε

Out phase
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In phase. Complex

FIG. 4: Energy of Bogoliubov excitations vs.
wavenumber q R for the branch of excited plane waves

at k = 0, with a dashed line as a visual aid. The
non-zero imaginary part of the frequencies (orange line)
correspond to unstable excitation modes. The system

parameters are gn = 1.2ε and ν = 0.7ε.

system; this is known as the Landau criterion for super-
fluidity, and forms the basis for the existence of persistent
currents (Pitaevskii and Stringari, 2016).

Another relevant feature of the system can be found in
the upper-energy (or spin) branch of excitation frequen-
cies of the ground state (see Fig. 3), that presents an
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energy gap. It depends on the linear coupling ν:

ℏωJ = 2ν

√
1 +

gn

2ν
, (45)

and corresponds to the Josephson frequency for small
amplitude oscillations of the spin density (Abad and Re-
cati, 2013) As cs, ℏωJ is relevant for the stability of the
system, since it defines an energy threshold for the exci-
tation of spin perturbations.

Similarly, one can obtain a gap for the branch of ex-
cited plane waves

ℏωJ+ = 2ν

√
1− gn

2ν
. (46)

but it exists only when gn < 2ν, where the non-polarized
states coexist along with polarized states (see Fig. 1).
Otherwise, as can be seen in Fig. 4, for gn > 2ν the in-
phase excitation modes produce complex, and thus un-
stable, excitation frequencies.

V. SPIN-ORBIT-COUPLED BECS

A continuación se introduce el acoplamiento esṕın-
órbita (SOC) en el sistema. Se analiza la dinámica
del sistema mediante un Hamiltoniano espećıfico y
estudia las soluciones estacionarias. Se estudia la
relación de dispersión de enerǵıa de part́ıculas únicas
y los estados de onda plana no lineales, identificando
distintas fases según la intensidad del acoplamiento.
. . . . . . . .

By means of atom-light interactions, spin-orbit-
coupled BECs can be realized in electrically neutral ul-
tracold gases (Lin et al., 2011). The dynamics of the
resulting systems are ruled by the following Hamiltonian

Ĥ =
1

2m
(p̂I2 − qAσz)

2
+
gn

2
I2 +

(gns
2

+ δ
)
σz + νσx,

(47)
where Aσz represents the (matrix of the) synthetic gauge
field, which couples spin to orbital motion with strength
q, and δ is a Zeeman term that shifts the energies of the
spinor components.

We will focus on a case with vanishing shift δ = 0, and
x-independent gauge fields qA = ℏkℓ, with characteristic
wave number kℓ and (recoil) energy Eℓ = (ℏkℓ)2/(2m)
(Recati and Stringari, 2022). After dropping constant
Eℓ terms, the Hamiltonian Eq. (47) reads

Ĥ =

(
p̂2

2m + g|Ψ↑|2 − ℏkℓ

m p̂ −ν
−ν p̂2

2m + g|Ψ↓|2 + ℏkℓ

m p̂

)
.

(48)
As the Hamiltonian of Section III, this is also transla-
tional invariant and then can be solved by plane wave

states. It is worth noting that, however, this system
is not Galilean invariant, since the transformation to a
moving reference frame change the energies of the spin
components in a different way.

The energy of the system E =
∮
dxε[Ψ]−EℓN can be

written through the energy density functional

ε =
(Π̂Ψ)†Π̂Ψ

2m
+
g(n2 + n2s)

4
− ν
√
n2 − n2s cosφ, (49)

where we have defined Π̂ = p̂I2−ℏkℓσz as the mechanical
momentum operator associated with the velocity of the
particles. Furthermore, the continuity equations keep the
same form as previously

∂tn↑ + ∂xJ↑ = − (∂tn↓ + ∂xJ↓) = J ,

and the only difference lies in the component current den-
sities Jσ, which include a SOC momentum term,

Jσ = Re [Ψ∗
σ (p̂± ℏkℓ)Ψσ] /m. (50)

Therefore, the overall and spin continuity equations keep
also the same functional form as before.

According to reference (Li et al., 2015), three distinct
dynamical regimes, or phases, can be distinguished in the
presence of spin-orbit coupling, depending mainly on the
parameter

η =
mν

(ℏkℓ)2
, (51)

which is the ratio between the characteristic energies of
the linear and SOC couplings. Firstly, for small values of
the parameter η, the stripe phase emerges, featured by
a ground state that can be understood as a superposi-
tion of two plane-wave states with equal weights, which
gives rise to the appearance of density modulations in
the form of stripes. Secondly, for larger values of the
linear coupling, thus of η, the system enters the plane-
wave phase, where the ground state settles in a state
well described by a single plane-wave state with definite
wavenumber k ̸= 0, the particle density is uniform, and
there is spin polarization. Lastly, at even larger values
of η, the system reaches the single-minimum phase (also
called zero-momentum phase), where the condensate has
zero momentum (so can be written as a plane wave with
k = 0), the density is uniform, and the average spin po-
larization identically vanishes. We elaborate on the two
latter phases by analyzing plane wave states.

A. Single-particle dispersion

Physical insight is gained by examining the noninter-
acting system. By setting g = 0 in the Hamiltonian Eq.
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FIG. 5: Single-particle energy dispersion relation as a
function of k/kℓ across a range of values of the

parameter η = mν/(ℏkℓ)2. Two minima at k ̸= 0 can be
observed in the low-energy branch until η < 1. The
upper-energy branch consistently exhibits a single

minimum at k = 0.

(48), the single particle dispersion relation of plane wave
states follows (Lin et al., 2011)

ϵk =
ℏ2k2

2m
∓

√(
ℏ2kℓ
m

k

)2

+ ν2, (52)

which is represented in Fig. 5 across a range of values
for the non-dimensional ratio η = mν/(ℏkℓ)2. It can be
observed that for values of ν < (ℏkℓ)2/m, the low-energy
branch ϵ− exhibits two degenerate minima at wave num-
bers

kmin = ±kℓ
√
1− η2. (53)

with non-zero spin density ns/n = ±kmin/kℓ. In fig 6a,
we can observe how by lowering the ratio η the system
increases the polarization of the ground state. For η > 1
the double minima disappear, and the system transitions
to a spectrum with a single minimum, that is a non-
degenerate ground state at k = 0. Regarding the excited
energy branch ϵ+, there is always a single minimum cor-
responding to k = 0.

For generic plane-wave states, Fig. 6b illustrates the
spin density change for varying wave number k at fixed
values of the ratio η. It shows how a higher momen-
tum leads to a more pronounced difference in component
densities. As η increases, indicating a stronger linear cou-
pling ν relative to the spin-orbit coupling kℓ, the onset
of a total population imbalance is delayed.
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η
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(a) Spin polarization of the ground state in the single
particle dispersion as a function of η
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(b) Spin polarization as a function of k/kℓ for fixed values of
the ratio 0.1 < η < 3.

FIG. 6: Variation of the spin polarization ns/n in the
single particle spectrum of plane waves.

B. Nonlinear plane-wave states

We seek the ground state of the system in the single-
minimum or plane-wave phases by employing the same
plane-wave ansatz Eq. (6) as in linearly coupled BECs.
From its substitution into Eq. (48), one obtains the
chemical potential

µk =
ℏ2k2

2m
+
gn

2
∓ ν

n√
n2 − n2s

,

which takes the same functional form as previously (with
kℓ = 0) but it is now constrained by the condition

(
n2 − n2s

)(
gns −

2ℏ2kℓ
m

k

)2

= 4ν2n2s, (54)
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FIG. 7: Numerical solution of Eq. (57) in systems with
fixed ν/gn = 5 for a range of values of the parameter η.
Increasing values of the spin-orbit coupling enhance the

prevalence of fully polarized states.

that manifests the explicit dependence on momentum of
the spin density ns (as in the single-particle case shown
before). From Eq. (49) the energy of plane-wave states
is

E

N
=
ℏ2k2

2m
+
gn

4

[
1 +

(ns
n

)2]
− ℏ2kℓk

m

ns
n

∓ ν

√
1−

(ns
n

)2
. (55)

Upon inspection of Eq. (54), we find that ns = 0 is
only possible for k = 0, leaving the chemical potential as:

µ0 =
gn

2
∓ ν. (56)

For k ̸= 0, we arrive at a fourth-degree polynomial equa-
tion (ns

n

)4
− 4γk

(ns
n

)3
+
(
β2 + 4γ2k − 1

) (ns
n

)2
+ 4γk

(ns
n

)
− 4γ2k = 0, (57)

where we have introduced the parameters

β =
2ν

gn
, (58)

γk =
ℏ2kℓ
mgn

k. (59)

When one examines the behavior of Eq. (57) for
ns/n → 0 all the higher order terms vanish, and
the polarization becomes linear in momentum ns/n ∼
ℏkℓ/(mgn)ℏk. On the other hand, since max |ns/n| = 1,
in the limit of γk ≫ 1 (thus k ≫ 1) the system ends

up completely polarized |ns/n| → 1. From the numeri-
cal solution of Eq. (57), one can see that the nonlinear
transition of ns/n (from 0 to 1) takes place in a small
range of low momenta. Otherwise, the significant contri-
bution of spin-orbit interaction alters the energy of each
component substantially, prohibiting the existence of un-
polarized states In what follows, we will focus on systems
where ν/gn ≫ 1, that is, where the contact interaction
strength is not the dominant energy term. Within this
regime, figure 7 represents the variation of the spin den-
sity with momentum for a range of values of the ratio η.
It is evident that an increase in linear coupling reduces
the prevalence of fully polarized states.

C. Linear stability for the Single Minimum phase.

The effect of the SOC is also seen in the linear excita-
tions of stationary states, which can be compared with
the case of linearly coupled condensates (see Section IV).
To this end, we now examine the linear stability of the
single minimum phase, whose ground state, characterized
by a plane wave with equal density distribution (ns = 0)
and zero momentum (k = 0), is

ΨSM =

√
n

2

(
1
1

)
e−iµt/ℏ, (60)

where the chemical potential is given by

µ =
gn

2
− ν. (61)

The generic Bogoliubov equations, B U(x) = ℏω U(x),
derived from the SOC Hamiltonian given in Eq. (48) lead
to the following matrix form:

B =


H↑ gΨ2

↑ −ν 0

−gΨ∗2
↑ −H∗

↑ 0 ν

−ν 0 H↓ gΨ2
↓

0 ν −gΨ∗2
↓ −H∗

↓

 , (62)

where Hσ = − ℏ2

2m∂x−µ+2g|Ψσ|2± iℏ
2kℓ

m ∂x, with σ = {↑
, ↓}. From the direct substitution of Eqs. (60-61) into Eq.
(62) and the expansion of the linear modes into Fourier
modes U(x) = Uqe

iqx one obtains

BSM,q =


ϵ↑ gn/2 −ν 0

−gn/2 −ϵ↓ 0 ν
−ν 0 ϵ↓ gn/2
0 ν −gn/2 −ϵ↑

 (63)

where ϵσ = ℏ2

2m (q ∓ kℓ)
2
+ gn

2 + ν − Eℓ. From diagonal-
ization, the dispersion relations are given by:

ℏω−
q = ±ℏ

√
ω2
q − 2(∆ωq)2,

ℏω+
q = ±ℏ

√
ω2
q + 2(∆ωq)2,

(64)
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FIG. 8: Dispersion of linear excitations around the
ground state in the single minimum phase of a SOC

system with β = 10 and η = 10.

where

(ℏωq)
2 =

(
ℏ2q2

2m
+ ν

)(
ℏ2q2

2m
+ gn+ ν

)
+

(
ℏ2kℓq
m

)2

+ ν2,

(ℏ∆ωq)
4 =

(
ℏ2q2

2m
+
gn

2
+ ν

)2

ν2

+

(
ℏ2kℓq
m

)2(ℏ2q2

2m
+ ν

)(
ℏ2q2

2m
+ gn+ ν

)
.

While the upper energy branch ω+
q presents an energy

gap given by

ℏωgap = ±2ν

√
1 +

1

β
, (65)

in the same way as in linearly coupled condensates, the
lower energy branch ω−

q tends linearly to zero ω−
q ≈ cs q

for low momentum q → 0, from which the speed of sound
is derived as

cs =

√
gn

2m

(
1− 4Eℓ

2ν + gn

)
. (66)

It is worth comparing this expression with the speed of
sound in the absence of SOC; for the same linear coupling
and density, the presence of SOC produces a reduction in
the speed of sound, therefore a reduction in the range of
stability of the superfluid system according to the Lan-
dau criterion. When Eℓ > (2ν + gn)/4 superfluidity in
the single minimum phase is lost, and the system transits
into the stripe phase (Li et al., 2015). Figure 8 shows the
excitation branches and the speed of sound for a partic-
ular case with β = 5 and η = 10.

VI. COHERENT PHASE SLIPS IN SPINOR BECS

Se investigan los deslizamientos de fase coherentes
en el sistema, tanto en ausencia como en presen-
cia de acoplamiento esṕın-órbita. Se utilizan simu-
laciones numéricas para estudiar la transferencia de
vórtices entre los componentes del condensado y se
describen diferentes reǵımenes dinámicos observados.
. . . . . . . .

A phase slip is characterized by a sudden 2π change
in the phase of a superfluid or superconducting order pa-
rameter. This occurs due to the movement of quantized
vortices through the medium; it is typically associated
with dissipation, and plays a critical role in the dynamics
of superfluidity and superconductivity (Anderson, 1966;
Astafiev et al., 2012; Beattie et al., 2013; Eckel et al.,
2014).

We investigate the transfer of vortices between the
spin components of a pseudo-spin-1/2 BEC by numer-
ically solving the time-dependent Gross-Pitaevskii Eq.
(5). Due to the linear coupling, these phase slips in the
spin components have not, in general, a dissipative ef-
fect, so that the total energy and total momentum of
the system are preserved. The Josephson effect is at the
basis of the dynamics (Pitaevskii and Stringari, 2016),
that here involves the net transfer of phase rather than
particles. Persistent currents are initially induced in
each component by imprinting linearly varying phases,
Ψσ → Ψσ × exp{iqσθ}, where θ = x/R is the azimuthal
angle in the ring, and the phases are characterized by
different winding numbers qσ = q↑, q↓ and q↑ ̸= q↓. Sub-
sequentyly, the system state |q↑, q↓⟩ is allowed to evolve
in time and the spin properties are monitored.

The simulated system comprises two (spin) rings with
circumference L = 11 ξ, where ξ = ℏ/√mgn is the
characteristic healing length of the system; this setup
fixes the ratio between the interaction energy gn and
the characteristic energy of the ring, of order ℏ2/(mL2),
to be gn = 121 ℏ2/(mL2). The initial state is shown
in Fig. 9, and it is set to two counter-rotating vor-
tices with winding number |q| = 1, i.e |q↑ = 1, q↓ = −1⟩
and equal, uniformly distributed component densities
|Ψ↑(t = 0)|2 = |Ψ↓(t = 0)|2 = n/2.

A. Absence of SOC

We begin with the simpler case without spin-orbit
coupling kℓ = 0, focusing on identifying different dy-
namical regimes based on the characteristic parameter
β = 2ν/(gn). As ilustrated in figure 10, three distinct
regimes emerge (Gallemı́ et al., 2015): at high β ≫ 1 an
oscillatory regime, with total transfer of momentum be-
tween components at frequency 2ν/ℏ, can be observed,
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phase (bottom) profiles of the initial state (at t = 0)
made of two counter rotating vortices with charge (or
winding number) |q| = 1 that results in a uniform

particle density.
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FIG. 10: Dynamical regimes of the momentum transfer
between components in a system without SOC. From

top to botom: self-trapping with β = 0.01; transition or
NCQPS regime, with β = 1; and complete momentum
transfer or CQPS with β = 10. For all cases Eℓ = 0.

whereas at low β ≪ 1 no appreciable momentum trans-
fer can be seen; in between, β ∼ 1, an irregular dynam-
ics takes place with partial momentum transfer at non-
constant rate. We will refer to these regimes as the coher-
ent quantum phase slip (CQPS) regime, the self trapping
regime, and the non-coherent quantum phase slip (NC-
QPS) regime, respectively.

In order to produce spin excitations, relevant for phase
slips in spinor condensates, it is necessary to overcome an
energy gap ∆ given by (Abad and Recati, 2013; Gallemı́
et al., 2015) ∆ = 2ν

√
1 + 1/β, which translates into
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FIG. 11: (a) Same as Fig. 9 for an intermediate time
t = 0.25T during the time evolution showing the

winding number exchange in a system with parameters
β = 10, Eℓ = 0. Two diametrically-opposed

density-depleted regions in each component (4 in total)
are generated. (b) Current densities (in arbitrary

units). The Josephson current J changes sign at the
points of minimum and equal densities.

a minimal coupling energy ℏνmin required to produce
phase slips. In the self-trapping regime, β ≪ 1, this en-
ergy gap is not overcome, causing the initial state of the
condensate to be essentially preserved during the time
evolution. For β ≫ 1 the predominant driving force of co-
herent phase slips is the linear coupling, which allows the
components to completely exchange their winding num-
bers. The system oscillates at a characteristic frequency
ω = 2ν/ℏ while the number of particles per component
remain unaltered.

During the momentum exchange, local density deple-
tions occur along two perpendicular ring diameters, and
each diameter determines two density minima per com-
ponent [see figure 11(a)]. The density depletions resemble
the formation of dark solitons (DSs) with their associated
π phase jumps. However, these excitations are better de-
scribed as Josephson vortices (JVs), which are character-
ized, apart from the deep depletion in the density profile,
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by a 2π-phase jump in the relative phase between compo-
nents. The main characteristic of the JV is the presence
of a localized supercurrent circulation which can be de-
scribed by persistent currents J↑,↓(x, t) along the compo-
nents, as well as by tunneling Josephson current J , Eq.
(29), between them (Kaurov and Kuklov, 2006). Figure
11(b) presents a snapshot of the condensate currents at
the instant of momentum exchange.

B. Presence of SOC

Our analysis primarily investigates a regime where
β ≫ 1, ensuring the coherent quantum phase slip
(CQPS) evolution of the system. We chose β = 10
for all subsequent simulations, while varying kl so that
η ∈ [∞, 0.15]. First, by employing imaginary time evolu-
tion, we observe that the system’s ground state belongs
to either the single minimum or the stripe phase, as il-
lustrated in Figure 12. These phases are clearly distin-
guished by their density modulations or constant density
(with zero momentum), respectively.

The spin-orbit coupling significantly influences the dy-
namics of momentum transfer by inducing a shift of ±ℏkl
in the average momentum of each component, as evident
from the mechanical momentum equation:

Π̂ = p̂I2 − ℏkℓσz,

that leads to oscillations around the shifted values. In
addition, the variation of the parameter η produces dif-
ferent outcomes, as shown in Figure 13, which depicts
the transition from η ≫ 1 (top) to η ∼ 1 (bottom). By
decreasing η the amplitude of the oscillations is reduced,
and the system transits into a regime with momentum
self-trapping; this transition is accompanied by an in-
creasing oscillation frequency, and by a reduction of the
Josephson currents.

Although, throughout the condensate’s evolution, the
number of particles per component remains constant, one
can see a pattern of density modulations similar to the
case of linearly coupled condensates with two density
depletions per component. However, as can be seen in
figure 14a, unlike in the case of linearly coupled con-
densates, the phase profiles show more progressive phase
jumps, closer to those of JVs with small Josephson cur-
rents. This difference is further illustrated in the current-
density profiles of figure 14b.

VII. CONCLUSIONS

In this work, we have investigated the phenomenon of
coherent phase slips in spinor Bose-Einstein condensates
(BECs), both in the absence and presence of spin-orbit
coupling (SOC), through numerical simulations based
on the time-dependent Gross-Pitaevskii equation. This
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(a) Stripe phase ground state.
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(b) Single Minimum ground state.

FIG. 12: Density and phase profiles of the ground states
in the two accessible regimes, stripe (top) and single
minimum (bottom) phases, for the exploration of
phase-slip dynamics. The system parameters are

η = 0.15 for the stripe phase, and η = 10 for the single
minimum phase, whereas β = 10 for both cases.

phenomenon has been previously explored in solid-state
physics, and also in linearly coupled BECs.

To reach this goal, our work began with the study
of spinor condensates made of bosonic atoms that are
endowed, by means of atom-laser interactions, with a
pseudo-spin-1/2 degree of freedom. The resulting system
is well described by two linearly coupled Gross-Pitaevskii
equations, where the nonlinearity accounts for the con-
tact interactions between atoms, and the linear coupling
allows for spin flips. The various accessible states, the
corresponding energies, and the continuity equations of
the system were examined, with particular attention paid
to plane wave states that support persistent currents.

Since many relevant features of the system can be ob-
tained from the spectrum of excitations of stationary
states, we analyzed their linear stability using the Bo-
goliubov equations that result from small perturbations
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FIG. 13: Oscillations of the mechanical momentum in
SOC systems with fixed parameter β = 10 and varying
η. The values range from η = ∞, (kℓ = 0) at the top to

η = 1.11 at the bottom.

on the steady state. By analyzing the dispersion rela-
tion of the corresponding excitation modes, we obtained
the conditions for dynamical stability based on the real
or complex nature of the excitation frequencies. In ad-
dition, by paying attention to the low energy (or long
wave-length) modes, the speed of sound, and the energy
gap between excitation branches were obtained.

After this, we introduced the spin-orbit coupling
(SOC) in the system, and showed how the previously
mentioned properties (stationary states, linear stability,
speed of sound, etc) are modified with respect to the
system of linearly coupled condensates. If the latter is
well characterized by just one nondimensional parameter
β = 2ν/(gn), the presence of SOC introduces a second
nondimensional parameter η = mν/(ℏkℓ)2; different val-
ues of the pair {β, η} lead the system into distinct dy-
namical regimes. Our case study on the coherent trans-
fer of vortices between the spin components takes place
within two of these regimes, the stripe phase and the
single-minimum phase.

In order to gain physical insight, we explored this
phase-slip phenomenon in the absence of SOC, revisit-
ing the dynamical scenarios governed by the parameter
β, and focusing our attention on cases at high β that are
characterized by complete momentum transfer between
components. When SOC was introduced, we observed
a transition from this situation to a new self-trapping
regime (different from the known case that occurs in the
absence of SOC) determined by low values of the new pa-
rameter η. This transition was marked by the shift from
the single minimum to the stripe phase in the ground
state of the system. On the other hand, higher values of
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(a) Density and phase profiles showing the formation
soliton-like structures with strong density modulations

similar to those observed in the absence of SOC.
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(b) Current-density profiles. The small Josephson currents
cannot produce the total exchange of momentum.

FIG. 14: Density, phase, and current-density profiles of
an intermediate state during the time evolution of a
SOC system with parameters β = 10 and η = 10.

the SOC lead to higher oscillation frequencies. Through-
out the condensate’s evolution, SOC did not hinder the
formation of solitonic structures (density depletions ac-
companied by sudden phase jumps) similar to Josephson
vortices.
As a whole, our study contributes to understanding the

dynamics of coherent phase slips in spinor Bose-Einstein
condensates. Further complementary investigations can
be suggested, as exploring the impact of different initial
states characterized by population imbalance, or investi-
gating systems with attractive (where g < 0) interparticle
interactions. Finally, the extension of this study from the
one-dimensional to two-dimensional space would provide
a more realistic approach to experimental conditions.
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Appendix A: Numerical solutions

Our computational investigations were conducted us-
ing the Julia programming language, using public li-
braries suitable for technical computing tasks. Among
the libraries employed, DifferentialEquations.jl was
used to supply different time integrators for solving
sets of ordinary differential equations (ODEs), and
LinearAlgebra.jl was used in handling essential linear
algebraic computations.
In particular, for the time domain, we employed the

Vern6 solver, an explicit Runge-Kutta method known
for its high 6th order of accuracy and effectiveness in
handling both stiff and non-stiff ODEs. Runge-Kutta
methods work by taking several intermediate calculations
within each time step to estimate the solution more ac-
curately. One notable feature of the Vern6 solver is its
adaptive step size control, which allows it to dynamically
adjust the step size based on the estimated error, optimiz-
ing computational resources while maintaining high pre-
cision. The time evolution typically spanned a duration
of 10 times the time unit defined by the linear coupling,
ensuring that the dynamics over relevant timescales were
adequately captured.
In discretizing the spatial domain, we opted for a reg-

ular grid comprising 1280 points to capture the intricate
dynamics of the system with high resolution. Addition-
ally, we utilized the Fast Fourier Transform (FFT) algo-
rithm to efficiently compute spatial derivatives, enabling
us to handle periodic boundary conditions and efficiently
calculate derivatives in momentum space.

Appendix B: Josephson Vortices

Josephson vortices are topological excitations in sys-
tems with linear coupling, such as two parallel coupled
BECs or long Josephson junctions in superconductors
(Kaurov and Kuklov, 2005). These vortices are charac-
terized by a localized relative phase difference that leads
to a supercurrent circulation around the vortex core situ-
ated in the junction (in the space between condensates).
The dynamics of JVs in a system of two coupled BECs

can be described by a stationary solution to the set of
linearly coupled GPEs (Baals et al., 2018):

ψ
(⊗)
↑ (x) =

√
n

[
tanh

(
x

ξν

)
+ i

√
1− 4ν

gn
sech

(
x

ξν

)]
,

ψ
(⊗)
↓ (x) =

[
ψ
(⊗)
↑ (x)

]∗
,

(B1)
where ξν = ℏ/

√
4mν is the ν-dependent length scale of

the Josephson vortex. The symbol ⊗ denotes the clock-
wise orientation of currents of the Josephson vortex (pos-

itive in component ψ
(⊗)
↑ and negative in ψ

(⊗)
↓

)
, symbol-

ically represented as ↑ ⊗ ↓. The typical phase profile of
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FIG. 15: Phase profile of a Josephson-vortex state.

these states is represented in Fig. 15. The energy of the
JV evaluates to:

EJV
s (ν) =

√
4ν

gn

(
3− 4ν

gn

)
EDS. (B2)

Here EDS is the energy of a dark soliton

Ψσ(x) =
√
n tanh

(
x

ξ

)
, (B3)

characterized by the healing length ξ =
√
2ℏ2/(mgn).

The study by Kaurov and Kuklov (Kaurov and Kuklov,
2005) highlights that Josephson vortices can transform
into dark solitons and vice versa depending on the
Josephson coupling strength ν, for ν < νc, the system
favors Josephson vortices, whereas for ν > νc, dark soli-
tons become stable. As the parameter decreases below
the critical value, a DS spontaneously transforms into
a JV, thereby breaking time-reversal symmetry. Con-
versely, as ν exceeds νc, the Josephson vortex transforms
back into a dark soliton, restoring symmetry.
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