

Third International Conference of the journal "Scuola Democratica" June 3-4-5-6, 2024 · University of Cagliari (Italy)

School Segregation And Compositional Effects

On Reading And Mathematics Performance Of Primary School Students In Europe

Daniel Bianchi

Universidad de La Laguna

Gabriela Sicilia

Universitat Politècnica de Catalunya

Leopoldo Cabrera

Universidad de La Laguna

School Segregation and Compositional Effects

On Reading And Mathematics Performance Of Primary School Students In Europe

Objectives

- 1) to test the variability of SES Compositional Effects between national contexts, and...
- 2) to what extend it is related to school segregation levels affecting lower-SES students.
- 3) to explore if lower-SES students or some levels of performance are more sensitive to compositional effects (differential compositional effects)

Data & Methods

- 96,860 students in 3869 schools (TIMSS-2019), 106,278 students in 3959 schools (PIRLS-2021)
- 27 European countries with valid cases for the IEA's SES variable
- MLM's to identify socioeconomic compositional (SEC) effects in MATHS and READING by country
- Multigroup MLM's to test for differential SEC effects between SES quintiles
- Multilevel Binomial Models for assessing non-linearities in SEC effects across levels of performance.

Student-SES residuals of Performance by School-SES

MATHS (TIMSS-19)

SW: Italy, Portugal, Spain; CW: Austria, Belgium (Fl.), France, Germany; NW: Denmark, Finland, Norway, Sweden; AS: Ireland, Northern Ireland;
SE: Albania, Bulgaria, Croatia, Montenegro, North Macedonia, Serbia; CE: Czech Republic, Hungary, Poland, Slovak Republic; NE: Latvia, Lithuania; IM: Cyprus, Malta

READING (PIRLS-21)

School proportion of Q1-SES

students

<25%

25-50% 50-75% >75%

Compositional Effects in Europe

$$Y_{ij} = \beta_{0j} + \beta_1 (\overline{SES}_{ij} - \overline{SES}_j) + \beta_2 (\overline{\overline{SES}}_j) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

→ STUDENT SES (School-Mean Centered)

→ SCHOOL MEAN SES

COMPOSITIONAL EFFECT =
$$\beta_2(\overline{SES}_j) - \beta_1(SES_{ij} - \overline{SES}_j)$$

	MA	THS	READING	
	$(\mu = 500,$	σ = 100)	$(\mu = 500, \sigma = 100)$	
	Model 1		Model 1	
	β	Std.β	β	Std.β
Intercept	501.9*	0.019	499.5*	-0.005
Student SES (ctred.)	37.7*	0.298*	35.9*	0.291*
School SES	66.2*	0.331*	66.3*	0.323*
Compositional Effect	28.5		30.4	
β School SES - β Stu. SES				
ICC	0.28		0.28	
% Between-School Variance Explained	40.2%		38.8%	
Num.Obs.	96860		106278	
* p < 0.001				

	WESTERN EUROPE			
	MATHS	READING		
	β	β		
Intercept	509.4*	504.6*		
Student SES (ctred.)	35.8*	35.2*		
School SES	61.5*	57.6*		
Compositional Effect	25.7	22.4		
ICC	0.239	0.213		
% Sch. Var. Explained	39.8%	37.8%		
Num.Obs.	45168	57347		
* p < 0.001				

	EASTERN EUROPE			
	MATHS	READING		
	β	β		
Intercept	493.7*	493.2*		
Student SES (ctred.)	39.7*	36.9*		
School SES	68.8*	74.1*		
Compositional Effect	29.1	35.1		
ICC	0.309	0.343		
% Sch. Var. Explained	41.4%	40.5%		
Num.Obs.	51692	48931		
* p < 0.001				

Compositional effect and segregation of Q1-SES students by country

^{*} Dashed lines indicate the fit lines excluding the countries marked with an asterisk (*)

Compositional effect and segregation of Q1-SES students by area

WESTERN EUROPE

EASTERN EUROPE

Differential Compositional Effects

Student-SES x School-SES Cross-Level Interaction on Achievement

-3.8*

-0.015*

106278

MATHS DIFFERENTIAL COMPOSITIONAL EFFECTS BY COUNTRY

READING DIFFERENTIAL COMPOSITIONAL EFFECTS BY COUNTRY

A closer look at Differential Compositional Effects. SPAIN.

Multi-Group Multilevel Model

Std. School SES Coefficient by group

Within-Group compositional effect

Differential Compositional Effects. Spain

(>550)

Jo 0.0

-1.0

*The interaction is not significant

Testing non-linear effects (Multilevel Logistic Regressions, MATHS benchmarks).

^{5%} of students pass this benchmark *The interaction is not significant

Differential Compositional Effects. Spain

of

-1.0

*The interaction is marginally significant

Testing non-linear effects (Multilevel Logistic Regressions, **READING** benchmarks).

*The interaction is marginally significant

Conclusion

- Socioeconomic compositional (SEC) effects vary across European countries:
- Both Reading and Maths SEC effects are higher in Eastern Europe, especially Reading SEC.
- In Western Europe, Maths SEC effects are slightly higher than those of Reading.
- Compositional effects slightly tend to increase with school segregation, both in Maths and Reading.
- Evidence of **differential SEC effects**:
- -According to the level of SES
 - → A small but significant higher sensitivity of low-SES students to school context, varying by country.
 - \rightarrow In the case of Spain, we found this effect in maths, but not in reading.

-According to the **level of achievement:**

- The growth in the probability of acquiring basic skills across school SES levels is higher for lower-SES students.
- → The growth in the probability of acquiring intermediate skills for lower-SES students becomes higher than for higher-SES students from average-SES schools onwards.

References

-Benito, R., Alegre, M. Á., & Gonzàlez-Balletbò, I. (2014). School segregation and its effects on educational equality and efficiency in 16 OECD comprehensive school systems. *Comparative education review*, 58(1), 104-134. -Bianchi, D. & Cabrera, L. (2023). Challenges and Opportunities for Primary Schools to Tackle the Effects of Early School Segregation. *RISE- International Journal of Sociology of Education*, *12*(1), 49–84. -Bonal, X. & Bellei, C. (2018). "The renaissance of school segregation in a context of globalization". In: *Understanding school segregation*. *Patterns, causes and consequences of spatial inequalities in education*. London: Bloomsbury.

-Bonal, X., Zancajo, A. y Scandurra, R. (2019). Residential segregation and school segregation of foreign students in Barcelona. Urban Studies, 56(15), 3251–3273.

-Bonal, X., Zancajo, A., & Scandurra, R. (2021). Student mobility and school segregation in an (un) controlled choice system: A counterfactual approach. British Educational Research Journal, 47(1), 42-64

-Boterman, W., Musterd, S., Pacchi, C., & Ranci, C. (2019). School segregation in contemporary cities: Socio-spatial dynamics, institutional context and urban outcomes. Urban Studies, 56(15), 3055-3073.

-Cabrera, L. & Bianchi, D. (2023). School segregation and its impact on the academic performance of primary school students in Spain. Social and Education History 12(1), 1-35.

-Cabrera, L., & Cabrera, B. (2008). Heterogeneidad de centros y desigualdad de rendimientos educativos. Tempora, (11), 61–99.

-Cordini, M. (2019). School segregation: institutional rules, spatial constraints and households' agency. International Review of Sociology, 29(2), 279-296.

-Cordini, M., Parma, A., & Ranci, C. (2019). 'White flight' in Milan: School segregation as a result of home-to-school mobility. Urban Studies, 56(15), 3216-3233.

-Dumay, X. (2009). Origins and consequences of schools' organizational culture for student achievement. Educational Administration Quarterly, 45(4), 523-555.

-Dumay, X., Dupriez, V., & Maroy, C. (2010). Ségrégation entre écoles, effets de la composition scolaire et inégalités de résultats. Revue française de sociologie, 51(3), 461-480.

-Dupriez, V., & Dumay, X. (2005). L'égalité des chances à l'école: analyse d'un effet spécifique de la structure scolaire. Revue française de pédagogie, 150, 5-17.

-Gamoran, A., & An, B. P. (2015). Effects of school segregation and school resources in a changing policy context. Educational Evaluation and Policy Analysis, 38(1), 43-64.

-Gómez-Espino, J. M. (2019). Zonificación escolar, proximidad espacial y segregación socioeconómica: los casos de Sevilla y Málaga. REIS: Revista Española de Investigaciones Sociológicas, (168), 35-54.

-IEA. (2020). Trends in International Mathematics and Science Study (TIMSS), 2019. Amsterdam: International Association for the Evaluation of Educational Achievement.

-IEA. (2023). Progress in International Reading Literacy Study (PIRLS) 2021. Amsterdam: International Association for the Evaluation of Educational Achievement.

-Lubián, C., & Langa, D. (2022). La segregación escolar en familias inmigradas: clase social y estatus migratorio. Revista Española de Sociología, 31(3), 1-21.

-Marcotte-Fournier, A. G. (2015). Ségrégation scolaire et différenciation curriculaire au Québec. Canadian Journal for New Scholars in Education / Revue canadienne des jeunes chercheures et chercheurs en education, Special issue, 1-9.

-Murillo, F. J. & Martínez–Garrido, C. (2018). Magnitud de la segregación escolar por nivel socioeconómico en España y sus Comunidades Autónomas y comparación con los países de la Unión Europea. RASE, 11(1), 37–58.

-Oberti, M., & Savina, Y. (2019). Urban and school segregation in Paris: The complexity of contextual effects on school achievement: The case of middle schools in the Paris metropolitan area. Urban studies, 56(15), 3117-3142 -Perry, L. B., Saatcioglu, A., & Mickelson, R. A. (2022). Does school SES matter less for high-performing students than for their lower-performing peers? A quantile regression analysis of PISA 2018 Australia. Large-scale assessments in education, 10(1), 17.

-Opdenakker, M. C., Van Damme, J., De Fraine, D. F., Van Landeghem, G., & Onghena, P. (2002). The effect of schools and classes on mathematics achievement. *School effectiveness and school improvement*, *13*(4), 399-427. -Opdenakker, M.-C., & Van Damme, J. (2001). Relationship between school composition and characteristics of school process and their effect on mathematics achievement. *British educational research journal*, *27*(4), 407-432. -Opdenakker, M.-C., & Van Damme, J. (2006). Differences between secondary schools: A study about school context, group composition, school practice, and school effects with special attention to public and Catholic schools and types of schools. *School Effectiveness and School Improvement*, *17*(1), 87-117.

-Pérez, C. N., Betancort, M., & Cabrera, L. (2014). Inversión pedagógica y éxito escolar del alumnado de clase obrera. RASE, 7(2), 410-428.

-Thrupp, M. (1995). The school mix effect: the history of an enduring problem in educational research, policy and practice. British journal of sociology of education, 16(2), 183-203.

-Thrupp, M., Lauder, H., & Robinson, T. (2002). School composition and peer effects. International Journal of Educational Research, 37, 483-504.

-Sciffer, M. G., Perry, L. B., & McConney, A. (2022). Does school socioeconomic composition matter more in some countries than others, and if so, why?. Comparative Education, 58(1), 37-51.

-Strand, S. (2016). Do some schools narrow the gap? Differential school effectiveness revisited. Review of Education, 4(2), 107-144.

-Valls-Carol, R., Rodrigues de Mello, R., Rodríguez-Oramas, A., Khalfaoui, A., Roca-Campos, E., Guo, M., & Redondo, G. (2022). The Critical Pedagogy that Transforms the Reality. International Journal of Sociology of Education, 11(1), 58–71.

-Van Ewijk, R., & Sleegers, P. (2010). The effect of peer socioeconomic status on student achievement: A meta-analysis. Educational research review, 5(2), 134-150.

-Zancajo, A., & Bonal, X. (2022). Education markets and school segregation: a mechanism-based explanation. Compare: A Journal of Comparative and International Education, 52(8), 1241-1258.

APPENDIX

Compositional Effects in Europe

EFFECT

COMPOSITIONAL

 $=\beta_2(\overline{SES_i}) - \beta_1(SES_{ii} - \overline{SES_i})$

MATHS Central-Central-Southweste Western Northweste Anglo-Southeaste Eastern Northeaster Saxon Europe rn Europe rn Europe Europe Insular Mediterranean rn Europe n Europe (Intercept) 493.417 502.767 522.250 554.698 470.328 503.745 531.39 502.873 Student SES (ctred.) 31.593 37.361 37.479 39.614 43.417 39.175 33.79 34.368 School SES 55.241 67.512 66.041 67.881 62.115 75.864 74.46 62.219 **Compositional Effect** 23.65 30.15 28.56 28.27 18.70 36.69 40.67 27.85 ICC 0.207 0.266 0.141 0.204 0.323 0.250 0.23 0.154 R2 Marg. 0.241 0.219 0.196 0.262 0.19 0.154 0.183 0.177 R2 Cond. 0.288 0.385 0.246 0.321 0.402 0.349 0.29 0.234 13299 10522 5747 22522 16268 6189 Num.Obs. 15600 6713.00

READING

		Central-				Central-		
	Southweste	Western	Northweste	Anglo-	Southeaste	Eastern	Northeaster	
	rn Europe	Europe	rn Europe	Saxon	rn Europe	Europe	n Europe	Insular Mediterranean
(Intercept)	488.174	488.455	518.279	559.470	477.216	511.452	519.54	475.046
Student SES (ctred.)	30.674	36.961	36.320	40.226	36.506	37.571	31.49	39.675
School SES	50.443	63.691	62.047	61.830	65.052	81.792	81.76	86.505
Compositional Effect	19.77	26.73	25.73	21.60	28.55	44.22	50.27	46.83
ICC	0.184	0.200	0.124	0.143	0.400	0.274	0.23	0.175
R2 Marg.	0.160	0.254	0.161	0.241	0.162	0.270	0.17	0.214
R2 Cond.	0.263	0.333	0.225	0.268	0.448	0.355	0.27	0.269
Num.Obs.	18345	14740	17677	6585	21046	17075	4585.00	6225

School SES, Student SES and Compositional Effects

Compositional effect by area

Central-Western Central-Eastern Southwestern Northwestern Northeastern Southeastern Insular Anglo-Saxon Europe Europe Europe Europe Europe Mediterranean Europe 40 COMPOSITIONAL EFFECT 30 ۲ 20 10 С Czech Republic Hungary Datand Dublic Slovak Republic -10 Northern Heland Lithuania any Dennatt inland horway eden Ireland Portugal Latvia Hally Spain Austria (FL) comany Belgium (FL) comany Cyprus Malta

• MATHS (TIMSS-2019) • READING (PIRLS-2021)

Compositional effect by COUNTRY AVERAGE ACHIEVEMENT

Country descriptives of achievement

	MATHS (TIMSS-19)						
	Maan	CD	Mean	Mean	Difference		
COUNTRY	wean	עכ	Q1SES	Q5SES	Q5-Q1		
Italy	516.9	61.6	489.1	543.9	54.8		
Portugal	529.6	71.8	483.9	574.1	90.2		
Spain	517.8	66.3	474.1	553.3	79.2		
Austria	543.0	61.2	499.9	587.7	87.7		
France	491.5	76.3	433.6	548.7	115.1		
Germany	538.3	62.8	493.2	573.2	80.0		
Belgium (Fl.)	534.6	63.1	493.0	571.7	78.7		
Denmark	541.3	67.8	508.4	571.1	62.8		
Finland	537.7	71.0	497.3	575.2	77.9		
Norway	562.8	68.9	518.5	601.7	83.2		
Sweden	531.3	68.9	481.9	574.2	92.3		
Ireland	553.5	71.9	501.2	594.9	93.7		
Northern Ireland	587.3	81.0	528.8	636.8	108.0		
Albania	501.4	79.1	458.0	562.3	104.3		
Bulgaria	534.4	75.0	461.7	579.3	117.5		
Montenegro	454.7	79.6	409.9	497.4	87.6		
Serbia	520.4	76.8	458.5	569.4	110.9		
North Macedonia	475.5	93.4	409.3	535.6	126.2		
Croatia	513.2	62.5	477.0	547.6	70.6		
Czech Republic	539.6	67.9	498.7	581.3	82.6		
Hungary	535.7	73.1	473.8	587.9	114.1		
Poland	523.6	73.3	477.0	570.1	93.1		
Slovak Republic	514.5	70.5	451.0	558.4	107.4		
Latvia	552.5	62.4	515.4	582.0	66.6		
Lithuania	544.4	69.3	494.2	585.9	91.7		
Cyprus	533.6	73.9	495.8	569.1	73.4		
Malta	516.3	70.6	473.2	553.1	79.9		

	READING (PIRLS-21)					
	Moon SD		Mean	Mean	Difference	
COUNTRY	wean	30	Q1SES	Q5SES	Q5-Q1	
Italy	541.9	61.1	510.4	574.5	64.1	
Portugal	521.5	66.9	484.9	561.5	76.6	
Spain	527.7	64.5	492.4	564.0	71.6	
Austria	533.7	64.5	477.9	582.8	104.9	
France	523.3	64.3	476.7	570.7	94.0	
Germany	550.5	66.1	501.8	588.9	87.1	
Belgium (Fl.)	516.8	62.1	480.9	549.9	69.1	
Denmark	545.8	67.4	502.7	580.2	77.5	
Finland	553.7	68.4	514.7	585.6	70.9	
Norway	547.2	68.3	505.9	582.6	76.7	
Sweden	564.1	71.0	513.8	604.9	91.1	
Ireland	583.3	70.0	532.8	629.9	97.1	
Northern Ireland	577.2	74.6	527.1	622.0	94.9	
Albania	527.9	69.4	487.2	574.4	87.2	
Bulgaria	555.3	77.6	478.7	600.0	121.2	
Montenegro	489.0	72.4	450.1	523.0	72.9	
Serbia	527.3	64.2	483.0	563.3	80.3	
North Macedonia	449.9	83.3	392.6	499.1	106.5	
Croatia	562.0	63.7	524.0	595.1	71.0	
Czech Republic	546.8	66.4	501.7	581.1	79.5	
Hungary	551.8	76.3	482.0	598.6	116.7	
Poland	553.2	65.9	511.4	590.4	79.0	
Slovak Republic	532.1	73.7	463.3	576.2	112.9	
Latvia	543.3	66.7	503.8	574.5	70.7	
Lithuania	579.6	65.3	535.1	605.4	70.3	
Cyprus	516.8	71.9	465.6	561.0	95.4	
Malta	524.6	75.6	488.3	567.0	78.7	

Differential Compositional Effects

Testing non-linear interactions (quintile by quintile)

