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Abstract

A more advanced version (with respect to previous works [5]) of differential equations has
been used to show the correct behavior, at all times t > thor, of the density fluctuations. In
order to solve these equations, different numerical methods and approximations have been
used. Through the analysis of the obtained solutions, a study is carried out on the main
phenomena that affect density fluctuations, such as photon diffusion, Silk Damping, or free
streaming. To illustrate the reliability of the solutions, different numerical analysis are made
with the formalism used in [5], as well as qualitative comparisons with other publications
[6]. Approximated relativistic corrections have been also implemented and studied, with the
aim of describing the evolution of fluctuations at t ≲ thor. Although the main objective has
been to obtain relatively simple equations and their sufficiently precise solutions, the results
also have practical interest. In particular, through immediate modifications, the effect of
massive neutrinos or the possible decay of dark matter on the BAO can be determined.

Resumen

En el presente trabajo, se expone y resuelve numéricamente el sistema de ecuaciones diferen-
ciales exactas (Betancort-Rijo 2024) que rigen la evolución de las fluctuaciones de densidad
de fotones, bariones y materia oscura en el universo primordial. Este estudio surge como una
continuación del trabajo previo [5], en el que se presentaban unas expresiones aproximadas
cuyas soluciones describ́ıan correctamente el comportamiento de estas fluctuaciones hasta el
momento del desacople. En este trabajo anterior, se trataba a los fotones y bariones como
un único fluido casi-adiabático, al que se le añad́ıa un factor correctivo para dar cuenta del
efecto difusivo de los fotones durante las oscilaciones. Esta aproximación arrojaba buenos
resultados, pero no es la interpretación correcta para la interacción radiación-materia. En el
desarrollo de las nuevas ecuaciones tratadas en este trabajo, los fotones y bariones se consid-
eran constituyentes independientes, cuyas fluctuaciones de densidad evolucionan cada una
según una ecuación diferencial diferente, aunque simétrica. En cada una, se tiene en cuenta
la interacción gravitatoria, el acoplamiento radiación-materia, la presión de radiación, las
anisotroṕıas en la distribución angular de fotones y la difusión de fotones que afectan a la
evolución de ambas fluctuaciones, desde que la escala en cuestión entra en el horizonte hasta
el momento del desacople, y que explican fenómenos importantes como el Silk damping.

Además, con este nuevo tratamiento, se logra reproducir también el comportamiento de las
fluctuaciones más allá del momento del desacople, explicando el amortiguamiento de las
fluctuaciones de radiación por el proceso de free streaming de fotones y el crecimiento de
fluctuaciones bariónicas debido a la interacción gravitatoria.

En una segunda parte de este trabajo, se añaden las fluctuaciones de densidad correspon-
dientes a la materia oscura, obteniendo también soluciones consistentes con el acelerado
crecimiento bariónico que se sucede tras el desacople, causado por a la interacción gravi-
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tatoria con la materia oscura. Con esta modificación, también se reproduce correctamente
el continuo crecimiento de las perturbaciones de densidad de materia oscura, debido a que
esta no interactúa electromagnéticamente con la materia bariónica ni con la radiación.

Por último, se consideran unas correcciones relativistas aproximadas, estrictamente nece-
sarias para explicar el comportamiento de las fluctuaciones antes de su entrada en el hor-
izonte, pues con el tratamiento relativista se obtiene un crecimiento erróneo de las per-
turbaciones. En este último análisis, se consideran también las fluctuaciones de densidad
de neutrinos, para las que se obtienen unas soluciones cualitativamente correctas. Estas
reflejan su comportamiento oscilatorio una vez la escala entra en el horizonte, similar al
experimentado por los fotones, pero que únicamente es debido a la presión de los propios
neutrinos.

Este trabajo se centra en la resolución numérica del nuevo sistema de ecuaciones, para la que
serán necesarias diferentes aproximaciones, tanto teóricas como numéricas, y metodoloǵıas,
con el objetivo de solventar inestabilidades en la integración y de ahorrar tiempo de cómputo.
Para comprender cómo afectan cada una de las interacciones mencionadas a las fluctua-
ciones de densidad, se resuelve, en primer lugar, una versión parcial de las ecuaciones que
tan solo considera la interacción gravitatoria, el acoplamiento radiación-materia y la presión
de radiación. Posteriormente, se modifica esta expresión para dar cuenta de la anisotroṕıa
presente en la distribución angular de los fotones, efecto que disminuye la amortiguación de
las oscilaciones. Por útlimo, se completan las ecuaciones con una serie de términos de fuga
de fotones, que representan la difusión de fotones que provoca un mayor amortiguamiento
de las oscilaciones, eliminándolas por completo en el caso de algunas escalas (Silk damp-
ing). Aśı, se consigue interpretar por separado la importancia de los diferentes efectos que
influyen en la evolución de las fluctuaciones.

Una vez se tienen las ecuaciones completas y se han reproducido correctamente los difer-
entes efectos f́ısicos que tienen lugar, se proponen dos metodoloǵıas para su resolución. Una
primera aproximación, considerando una distribución exponencial del camino libre medio de
los fotones a todo tiempo (que estrictamente sólo es válida para t ≲ tdec), arroja soluciones
consistentes con trabajos anteriores, para los intervalos temporales analizados. Posterior-
mente, con una resolución más aproximada, mediante el método de Montecarlo, se obtienen
soluciones que reproducen correctamente la evolución de las fluctuaciones de densidad más
allá del desacople.

Se logra, aśı, obtener unas soluciones numéricas a las ecuaciones exactas, que describen
adecuadamente los diferentes efectos e interacciones que tienen lugar entre los constituyentes
del universo primordial, aśı como reproducen correctamente la evolución de sus fluctuaciones
de densidad.
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1 Introduction

Our universe is homogeneous and isotropic at large scale. This is the main hypothesis
of modern cosmology, known as the first cosmological principle (1.1), and has been con-
firmed by multiple observations of the cosmic microwave background (CMB), such as those
of COBE [3] or WMAP [12]. These observations (Figure 1) show that the temperature
anisotropies at the recombination time were of the order of µK [9]. Moreover, the CMB is
considered as the most perfect black-body, at the temperature T = 2.725 K [4], is the best
fit ever obtained for the Planck distribution [7].

Despite this large-scale homogeneity, these small anisotropies are of special interest, as it is
theorized [2] that these structures have grown over time, due to gravitational interaction,
to become the galaxies and clusters we observe today. Such inhomogeneities can be treated
as small-scale perturbations of a quasi-homogeneous and quasi-isotropic evolution of the
large-scale universe. Thus, the problem can be approached using linear perturbation theory
(1.2).

Figure 1: CMB anisotropies map, obtained from the weighted linear combination of the
five WMAP frequency maps The linear scale goes from-200 to 200 µK. (NASA / LAMBDA
Archive Team).

In this work, evolution equations of these density fluctuations (EEDF), obtained from a new
exact formalism (Betancort Rijo, 2024) will be commented. Then their numerical solutions
will be implemented and, through several approximations, the relevance of various physical
effects are explored. Once these solutions have been obtained, they will be used to estimate
different representative values of the composition of the universe throughout its evolution.

So, this work is structured as follows. In the remainder of this introduction, the cosmolog-
ical principle and the universe of Friedmann-Robertson-Walker are presented in subsection
1.1 and linear perturbation theory is introduced in subsection 1.2. In section 2, we justify
the motivations that have led us to develop this work, as well as provide the context for the
research line, which has already been initiated in previous works [5], [1]. In section 3, we
present the novel system of equations that describe the evolution of density fluctuations of
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the different universe constituents. In section 4, several approximation methods and alter-
native procedures are presented, which were necessary to solve the equations correctly and
avoid various instabilities. Finally, in section 5, we present the obtained results, considering
a purely baryonic universe and also a universe with dark matter.

1.1 Cosmological principle and the Friedmann-Robertson-Walker uni-
verse

The universal homogeneity established by the cosmological principle implies that all ob-
servers in the universe see the same sequence of events. They can then synchronize their
clocks to a universal cosmic time, t. This time can be identified with the universal Newto-
nian time. It can be shown [10] that the velocity v⃗ of any particle in the universe is either
zero or positive directly proportional to the distance to the observer, r⃗.

v⃗(t) = H(t) · r⃗(t) (1)

Equation (1) explains Hubble’s Law and hence H(t) is known as the Hubble’s expansion

parameter. Writing H(t) = ȧ(t)
a(t) , this directly implies, integrating with time, that

dr⃗

dt
=

1

a(t)

da(t)

dt
⇒ r⃗(t) = a(t) · r⃗0 (2)

where r⃗0 is a constant vector. That is, the expansion of the universe is spatially homo-
geneous and is governed by the so-called scale factor of the universe, a(t). This spatial
expansion affects the wavelength of radiation traveling through the universe, thus causing
a cosmological redshift, z.

a(t)

a0
=

1

1 + z
(3)

being a0 ≡ a(t0), that is, the scale factor at today’s time, t0. Given this definitions, the
Hubble constant is defined as the Hubble’s expansion parameter at t = t0.

H0 =
ȧ0
a0

≃ 100 h0 km s−1 Mpc−1 (4)

It can be shown [11] that the most general metric satisfying the cosmological principle
previously stated is the Robertson-Walker metric.

ds2 = −c2dt2 + a2(t)

[
dr2

1− εr2
+ r2(sin2θdϕ2 + dθ2)

]
(5)

where ε is the spatial curvature sign of the universe. This quantity can take the values
ε = {0,±1}. The case ε = 0 is that of an Euclidean space. ε = +1 and ε = −1 correspond
to a spherical and hyperbolic geometric space, respectively. The metric of our universe
(homogeneous and isotropic) is therefore determined by the curvature ε and the scale factor
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a(t).

The dynamics of a expanding universe are determined by the Einstein’s field equation [11].

Rµν − 1

2
gµνR =

8πG

c4
Tµν (6)

where gµν designates the metric, Tµν is the energy-momentum tensor and Rµν and R are the
Ricci’s tensor and scalar, respectively. Considering the case of a homogeneous and isotropic
universe, the energy-momentum tensor takes the form of a perfect fluid, and the metric is
as described above (5). In this framework, Einstein’s equation field become a system of two
second-order differential equations called Friedmann’s equations.

ä

a
= −4πG

3

(
ρ+

3p

c2

)
(7)

(
ȧ

a

)2

= H2 =
8π

3
ρ− ε

a2
c2 (8)

The system of Friedmann equations, together with a suitable state equation, p = p(ρ), allows
us to find the time evolution of the scale factor a(t). For each component of the universe,
the equation of state can be stated as a linear relation between pressure and density.

p = wρc2 (9)

The proportionality constant, w, takes different values depending on which constituent is
considered (matter, radiation, curvature...). Assuming thermodynamic equilibrium among
all the constituents of the universe, a single equation of state can be taken, which, together
with the Friedmann equations, gives the evolution of the density as a function of the scale
factor.

ρ = ρ0

(a0
a

)3(1+w)
(10)

The ω values and the corresponding relationships between density and scale factor, depend-
ing on which constituent dominates in each epoch of the universe, are listed below.

Universe dominated by non-relativistic matter⇒ w = 0, ρ ∝ a−3

Universe dominated by radiation (relativistic matter)⇒ w = 1/3, ρ ∝ a−4

Universe dominated by cosmological constant ⇒ w = −1, ρ ∝ a0

Universe dominated by curvature ⇒ w = −1/3, ρ ∝ a−2

(11)

During its first 4.2 · 105 years of life, the universe was hot and very dense, the photons were
energetic enough to keep the protons and electrons separated, forming an ionized plasma.
The universe was then dominated by radiation, so density was ρ ∝ a−4. Then, the universe
cools down and the recombination of protons and electrons into neutral H atoms takes place.
Photons do not interact with neutral H, so they decouple from baryons, and the universe
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became dominated by matter, ρ ∝ a−3, which experiences only the force of gravity (which
is practically the self-gravity of the matter itself, since that corresponding to the photons
is negligible).

From (8), we can define the critical density, ρc, such that the universe curvature is zero
(12).

ρc ≡
3H2

8π
(12)

Ωi =
ρi
ρc

Ωi,0 =
ρi,0
ρc

(13)

This allows us to define the dimensionless density parameters (13), which, at the present
time, are constants. With this, we can rewrite second Friedmann equation as (14).

H = H0

√∑
i

Ωi,0a−3(1+w) (14)

1.2 Linear perturbation theory

Linear perturbation theory considers the real universe or perturbed universe as the result of
applying small local density perturbations δ(x⃗, t) to an ideal universe. The ideal universe,
which preserves the properties of homogeneity and isotropy, and therefore has constant den-
sity ρ(t), is the Friedmann-Robertson-Walker universe described in 1.1, and remains valid
at large scales.

A density perturbation at a certain comoving point in the universe, x⃗, at a time t, is defined
as a deviation from the density of the ideal universe.

δ(x⃗, t) =
ρ(x⃗, t)− ρ(t)

ρ(t)
≪ 1 (15)

In this linear regime, the growth of the perturbation δ is independent of its shape, so it is
convenient to consider a spherical perturbation, which can be solved analytically, using the
classical Newtonian theory of fluids. Applying then Euler, Poisson and continuity equations
to this model, the second order differential equation (16) is obtained.

δ̈k + 2
ȧ

a
δ̇k = 4πGρδk −

c2sk
2

a2
δk (16)

Where we have considered the Fourier transformation of the density fluctuation (17), and
k⃗ is its wavelength number (λ = 2π/k).

δk =
1

(2π)3/2

∫
δ(x⃗)e−ik⃗·x⃗dnx⃗ (17)
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First summand in equation 16 accounts for the gravitational attraction, which favors the
growth of the fluctuation, while second represents radiation pressure, which opposes the

former. If the term
(
4πGρ− c2sk

2

a2

)
is negative, equation 16 is the equation of a harmonic

oscillator with variable amplitude (due to expansion): pressure gradient countereacts gravity
and the amplitude of the fluctuation oscillates with time, mantaining a stable regime until
radiation and baryonic matter decouple (decoupling time, tdec). In the other case, where
this term is positive, we have an unstable regime: gravity dominates and collapses the
fluctuation. Thus, Jean’s scale (18), is defined as the stability limit of density fluctuations.
Scales such that λ > λJ will be unstable; gravity will be greater than the pressure gradient
and fluctuations will grow, leading to the formation of structures.

λJ =
cs
a

√
π

Gρ
(18)

From its expression, 18, dependent on the scale factor and the fluctuation density, it is
clear that the Jeans scale varies with the expansion of the universe. Also, Jean’s mass is
defined as the mass enclosed in a sphere of radius λJ .

In the stable regime, oscillations of density fluctuations give rise to zones of “overdensity”,
with higher temperature and energy, and zones of “underdensity”, with lower temperature
and energy. Thus, photon diffusion must take place, from denser to less dense zones.
This effect would cause an additional damping of the oscillations, called Silk damping or
diffusion damping. This damping may be such that it completely eliminates the oscillation
before decoupling occurs. Silk’s scale is then defined, such that scales with M < MSilk

will be damped out.
MSilk = 1.3 · 1012 · (Ω0,barh

2)−3/2 M⊙ (19)

MSilk is defined so that the damping is a factor 1/e, which, in a pure baryonic universe,
takes the value (19) [8].

2 Motivations and theoretical context

In previous works, [5], [1], approximate equations of evolution of density fluctuations were
obtained in such a way that they explained well the behavior of the density fluctuations,
from instants immediately after inflation, up to the decoupling between radiation and bary-
onic matter. The aim of this work is to find a single system of formally exact equations,
whose solutions describe the evolution of the fluctuations at any instant of time after in-
flation, both before and after decoupling. The reliability of this new equations, already
consistent by construction, will be demonstrated through the study of their numerical so-
lutions, which will form the central framework of this work.

In [5], the evolution of photon and baryon fluctuations (δγ and δbar, respectively) was
approximated by treating them as a single fluid, in which both components were strongly
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coupled. It was considered, then, a single second order differential equation for baryon
fluctuations, along with a simple first-order differential equation (20) to obtain photon
fluctuations, that account for photon leakage.

δ̇γ =
4

3
δ̇bar −

∇⃗x · F⃗γ

ργ
(20)

This equation is a quasi-adiabatic relation between baryons and photons, modified by the
photon flux, F⃗γ , in the comoving system with baryons. Photon flux is given by F⃗γ =

−µργ∇⃗xδγ , where µ is the coefficient of photon energy diffusion, µ = 1
3

1
ne(a)σT

c, given by

the mean free path approach of the kinetic theory. Relation (20) can also be expressed in
transformed Fourier space as (21).

δ̇γ,k =
4

3
δ̇bar − µ

k2

a2
δγ,k (21)

This approximation, based on classical fluid mechanics, is valid as long as the photon mean
free path, λ̄ = 1/neσT , is small compared to the considered scale length, λ, which holds
true for relevant scales up to previous instants close to decoupling. This has been a suitable
approximation for treating Silk damping, but if we wanted to apply it to obtain the dark
matter transfer function, or more generally, to obtain the evolution of fluctuations δbar, δγ
and δDM during and beyond decoupling, we would need to consider photons and baryons as
two separate fluids, coupled only by gravity. This would lead to a sudden change in regime
at the decoupling moment, transitioning from the single-fluid treatment to the two-fluid
treatment.

A standard treatment of the problem involves the application of kinetic theory (Boltzmann
equation for statistical equilibrium), which leads to complex integro-differential equations.
However, in the present work, a different approach (Betancort-Rijo, 2024) is proposed, which
allows obtaining a system of second-order differential equations for δbar, δγ and δDM . These
equations are formally exact, although some approximations are applied, with negligible
errors, solely motivated by simplifying their numerical resolution and saving computational
cost. As mentioned earlier, in this approach, photons and baryons each follow a different
second-order differential equation. Photons experience gravity and the associated pressure,
as well as deceleration (during the decreasing phase) or acceleration (during the increasing
phase) caused by baryons through Thomson scattering. On the other hand, baryons only
experience the force of gravity and the drag caused by photons.

The velocity of a photonic fluid element is determined by the velocity of the reference frame
in which the average momentum of photons is zero. This velocity is given by the action of
gravity and the pressure gradient. The displacement divergence, up to a given time, deter-
mines the δγ at that time. But, in addition to this evolution of δγ due to the fluid elements
motions, the gradient of photon number density, nγ , implies an additional flow of photons
(and, therefore, of their associated energy) in the proper frame with these elements. This
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leads to the inclusion of additional terms, called “photon leakage terms” in the evolution
equation for δγ .

If λ̄ ≪ λ1, when the single-fluid treatment of [5] is valid, the photon pressure term considered
in this work coincides with that of [5]. However, when λ̄ ≲ λ, this pressure term is modulated
by a certain function of kλ̄, which is smaller, in absolute value, than in [5]. This is because,
in this limit, photon angular distribution is no longer isotropic. The effect of this anisotropy
is determined by the function G(kλ0) given by an an interpolating fit (8), for photons that
have traveled freely a comoving distance λ0 (22) since their last scattering, at time te.

λ0(te, t) =

∫ t

te

c

a(t′)
dt′ (22)

To obtain the exact pressure term, one must averageG(kλ0) over the probability distribution
of λ0, with mean λ̄, at each given time t (23).

⟨G(kλ0)⟩(t) =
∫ t

0
G (kλ0 (te, t))Pt(te)dte (23)

where Pt(te) is the probability distribution of the time of last scattering, te, before time t.

Pt(te) = e−τ(te,t)σTne(te)c (24)

given the optical depth from te to t:

τ(te, t) =

∫ t

te

σTne(t
′)cdt′ (25)

The same occurs with photon leakage terms, which are proportional to the average (27) of
a function V (kλ0), given by (26).

V (y) =
sin(y)− y cos(y)

y2
(26)

⟨V (kλ0)⟩(t) =
∫ t

0
V (kλ0 (te, t))Pt(te)dte (27)

Until times shortly after decoupling, the probability distribution of λ0 is exponential, and
therefore the averaging in (23) and (27) can be performed analytically, using H(kλ̄), speci-
fied in (28).

H(kλ̄) =

∫ inf

0
e−λ0/λ̄G(kλ0)dλ0 (28)

⟨G(kλ0)⟩ = H(kλ̄) if t < tdec (29)

1As mentioned earlier, and as will remain throughout this work, λ̄ denotes the mean free path, and λ is
the mode wavelength.
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⟨V (kλ0)⟩ = kλ̄H(kλ̄) if t < tdec (30)

However, for times long after decoupling, although λ0, is similar for all photons, the func-
tion G(kλ0) changes significantly with λ0. For this reason, neither H(kλ̄) nor G(kλ̄) can be
used and, instead, it is necessary to average with the exact probability distribution, which
is no longer exponential. This makes the treatment more complicated (further explained
later in this work).

It should also be mentioned that the equations used in this work lead to an initial growth
(at times t ≲ thor) of the fluctuations that is not correct. At times before the scale enters
the horizon, certain relativistic corrections must be applied, which will also be presented as
the final part of this work.

3 Novel equations of evolution of density fluctuations

With the approach mentioned in the previous section (Betancort-Rijo, 2024), the following
equations are obtained for the evolution of density fluctuations of photons δγ , baryons, δbar,
and dark matter, δDM .

δ̈k,γ + 2
ȧ

a
δ̇k,γ =

16

3
πG (ρbarδk,bar + 2ργδk,γ + ρDMδk,DM )︸ ︷︷ ︸

gravitational interaction

+
7

12
σTnec

(
δ̇k,bar −

3

4
δ̇k,γ

)
︸ ︷︷ ︸

photon-baryon coupling

− k2

a2
c2⟨G(kλ0)⟩δk,γ︸ ︷︷ ︸
photon pressure

− ȧ

a

kc

a
⟨V (kλ0)⟩ −

kc

a
⟨V (kλ0)⟩δ̇k,γ −

k2c

a
⟨G(kλ0)⟩ ˙̄λδk,γ︸ ︷︷ ︸

photon leakage

(31)

δ̈bar + 2
ȧ

a
δ̇bar = 4πG (ρbarδbar + 2ργδγ + ρDMδk,DM )︸ ︷︷ ︸

gravitational interaction

− 7

12
σTnec

ργ
ρbar

(
δ̇bar −

3

4
δ̇γ

)
︸ ︷︷ ︸

photon-baryon coupling

(32)

δ̈DM + 2
ȧ

a
δ̇DM = 4πG (ρbarδbar + 2ργδγ + ρDMδk,DM )︸ ︷︷ ︸

gravitational interaction

(33)

With ⟨G(kλ0)⟩ and ⟨V (kλ0)⟩ given by (23) and (27). The integration of this equations,
along with suitable initial conditions, gives us the evolution of the density fluctuations. As
the main interest is the relative value of the fluctuations at each time, we chose the initial
conditions (34), corresponding to the increasing mode.

δγ(tin) =
4

3
δ̇γ(tin) =

4

3

1

tin
δDM (tin) = δbar(tin) = 1 δ̇bar(tin) = δ̇DM (tin) =

1

tin
(34)
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Energy densities of each constituent, ρbar, ργ , ρDM , can be calculated according to (35),
(36), (37), obtained from (10) and the definition of dimensionless density parameter at the
present time, Ωi,0 ≡ ρi,0/ρi,c.

ρbar(t)

ρt(t)
=

Ω0,bara
−3

(Ω0,DM +Ω0,bar)a−3 +Ω0,rada−4
(35)

ρDM (t)

ρt(t)
=

Ω0,DMa−3

(Ω0,DM +Ω0,bar)a−3 +Ω0,rada−4
(36)

ργ(t)

ρt(t)
=

Ω0,γa
−4

(Ω0,DM +Ω0,bar)a−3 +Ω0,rada−4
(37)

The different terms, theoretically introduced in section 2, can be distinguished in equations
(31), (32) and (33). In all three equations there is a gravitational term (first summand
on the right-hand side), proportional to the gravitational constant G and to the density of
all the constituents. This term is always positive, since it represents an attractive force that
favors the increase of the fluctuation density.

The second summand on the right-hand side in (31) and (32), proportional to
(
δ̇bar − 3

4 δ̇γ

)
,

accounts for the coupling between photons and baryons. This term is negative for photons
in the decreasing phase, since baryons pull back photons that tend to escape from over-
dense regions (the opposite happens to baryons). As mentioned above, in previous works
[5], the set of photons and baryons was considered as a single quasi-adiabatic fluid, with a
small modification to account for photon diffusion. In this work, photons and baryons are
considered as two independent constituents from the beginning, interacting by gravity and
Thomson scattering. This interaction is strongly dominant before decoupling, so photons
and baryons will oscillate synchronously until this moment.

In (31), there are four additional terms. First one, proportional to the average of G(kλ0), is
the relative to the photon-photon pressure, previously mentioned. This term accounts
for the decrease in photon density due to intrinsic collisions between photons. Last three
terms are the defined “photon leakage terms”.

Once this equations have been presented, the next step is to solve them and analyze their
solutions. As mentioned, this differential system has no analytical solution, so numerical
integration methods have been used to solve the system simultaneously with Friedmann
equation (14).

4 Numerical resolution: Methodology and instabilities

Direct numerical integration of equations (31) and (32) gives rise to an instability, caused by
the strong coupling between photons and baryons. Slight differences in δ̇γ and δ̇bar, resulting
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from numerical errors, led to artificially large values of the coupling terms, which give rise
to an instability. In order to avoid this instability, an alternative quantity is introduced:
∆̇ ≡ δ̇k,bar − 3

4 δ̇k,γ . Taking equations (31) and (32), we derive (39) as the new differential
equation for baryonic density fluctuations.

δ̈k,γ + 2
ȧ
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16

3
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− k2

a2
c2⟨G(kλ0)⟩δk,γ −
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k2c
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∆̈ + 2
ȧ

a
∆̇ = −σTnec

(
ργ
ρbar

+
3

4

)
∆̇ +

3k2

4a2
c2δk,γ⟨G(kλ0⟩)

+
3

4

ȧ

a

kc

a
⟨V (kλ0)⟩+

3

4

kc

a
⟨V (kλ0)⟩δ̇k,γ +

3

4

k2c

a
⟨G(kλ0)⟩ ˙̄λδk,γ (39)

Despite this change of formalism, new instabilities were encountered for this new quantity,
∆, which shoots up and diverges rapidly. Therefore, an alternative is proposed. We consider
the system (40) with the new term T (t), given by (41). This is obtained by neglecting the
term ∆̈ in (39) (WKB approximation). The pressure and photon leakage terms are also
neglected since they play no role at the times when this approximation is used. This system

is integrated as long as condition
∣∣∣k2c24a2

δγ

∣∣∣ ≫ ∣∣∣T (t+∆t)−T (t))
∆t

∣∣∣ is verified. When the condition

is no longer fulfilled, the approximation is not valid anymore, and the complete equations
(38) and (39) are integrated instead. In this way, the divergences present in the integration
have been avoided and solutions will remain consistent.

∆̇(t) =
k2c2

4a2
δγ−T (t+∆t)−T (t)

∆t

2 ȧ
a
+σTnec

(
ργ

ρbar
+ 3

4

)
δ̈γ + 2 ȧ

a δ̇γ = 2
(
ȧ
a

)2 (ρbar
ρt

δbar + 2
ργ
ρt
δγ

)
+ σTnec∆̇− k2

3a2
c2δγ

(40)

T (t) ≡ k2c2δγ

4a2
[
2 ȧ
a + σTnec

(
ργ
ρbar

+ 3
4

)] (41)

In addition, as anticipated in section 2, numerical integration of expressions (38) and (39)
is computationally expensive, because it requires performing a new integral, (23) and (27),
at each time integration step. This is why a simplified alternative has been proposed as
follows. At any given time t, it is considered that the distribution of λ0 is an exponential
characterized by λ̄ (an assumption that holds true until shortly before the decoupling), and
approximated by (42). In turn, we also first considered (29) and (30) valid at all times. To
obtain λ̄, we use the expression valid in the static case (first branch in (42)), as long as its
time derivative grows more slowly than the horizon (ṙhor = c/a(t)). Otherwise, we assume
that λ̄ grows like the horizon (second branch in (42)).

λ̄(t) =


1

σTne(a)a
t ≤ t0∫ t

t0
c

a(t)dt t > t0
(42)
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[
c

a(t)

]
t=t0

=

[
d

dt

(
1

σTne(a)a

)]
t=t0

(43)

This methodology yields correct results until the moment of decoupling. From then on, the
fluctuations δγ grow continuously, which is an incorrect behavior, as they should dampen
over time. To avoid this result without having to perform integrals (23) and (27) at each
integration step, the Montecarlo procedure has been followed, considering at each step a
single value of λ0, determined stochastically by (44).

λ0 = λ̄(t0)(−ln(w)) + I(t) w ≡ random(0, 1) (44)

I(t) =

{
0 t ≤ t0∫ t

t0
c

a(t′)dt
′ t > t0

(45)

Functions H(y) and G(y) were obtained through interpolation fitting, whose representation
can be seen in the appendix of this work (13), (??). So we will integrate the differential
system (38) and (39) using the Euler method along with Friedmann equation (14), using the
Runge-Kutta 4 method, and applying the methodologies described above. Lastly, we also
want to note that, for some short time intervals, it was necessary to implement a smaller
integration step size, also to overcome minor specific numerical instabilities. It was also
necessary to set a lower limit of 5 ·10−4 for the ionization fraction value, χe, as values below
this caused instabilities that led the numerical solution to diverge.

5 Numerical results

To illustrate the relevance of each of the different terms in the evolution equations, we will
first integrate the equations neglecting the leakage terms and using H(kλ̄) = 1/3 (isotropic
case), and compare this with the results obtained in [5]. Next, we will implement the cor-
rect function H(kλ̄) (valid as long as λ0 follows an exponential distribution) to observe the
differences. These two integrations serve as an exercise to verify, afterwards, the effect of
adding the leakage terms. In this way, the complete equations (including the leakage terms)
will also be integrated using the H(kλ̄) approximation, and finally, the results from applying
the Montecarlo procedure, which is much more precise and where values of ⟨G(kλ0)⟩ and
⟨V (kλ0)⟩ are used, will be presented.

This procedure will be carried out separately, considering first a purely baryonic universe
(Ω0,bar = 0.04) and later a universe with dark matter (Ω0,bar = 0.04, Ω0,DM = 0.26). This
methodology has two important advantages. First, we ensure that the integration is correct
and we can identify more easily and correct computational errors or instabilities. Secondly,
this methodology will allow us to evaluate separately the influence of the different effects
(already described) that take place in the evolution of the density fluctuations: photon dif-
fusion, anisotropic angular distribution of photons or presence of dark matter, for example.
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5.1 Purely baryonic universe

In first place, in a universe consisting only of baryons and photons, ρDM = Ω0,DM =
0, neglecting the terms related to photon leakage and considering an insotropic angular
distribution of photons, equations (31), (32) and (14) simplify to (46) (47) and (48).

δ̈k,γ + 2
ȧ

a
δ̇k,γ =

16

3
πG (ρbarδk,bar + 2ργδk,γ) +

7

12
σTnec∆̇− 1

3

k2

a2
c2δk,γ (46)

∆̈ + 2
ȧ

a
∆̇ = −σTnec

(
ργ
ρbar

+
3

4

)
∆̇ +

k2

4a2
c2δk,γ (47)

H = H0

√
Ω0,bara−3 +Ω0,rada−4 +Ω0,ka−2 (48)

Results from integration at different scales are shown in Figure 2, in comparison with those
obtained in [5]. In particular, mass scale M = 4.74 · 1014 M⊙ has been plotted, as it is the
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Figure 2: Density fluctuations evolution of photons (green) and baryons (blue), obtained
from equations (46), (47) for different scales, along with solutions in [5].

value of Silk mass considering a pure baryonic universe (19). It can be seen how the solu-
tions are similar, although, especially at smaller scales, fluctuation oscillations obtained in
[5] are rather more damped. This difference is expected to be corrected when adding photon
leakage terms, which, as explained, cause an additional damping of the oscillations (keep
in mind that there will always be some damping of the oscillations due to the expansion of
the universe).

In Figure 2, it can also be seen that this treatment is not suitable to describe the evolution
of fluctuations beyond decoupling. From this time, amplitude of photonic fluctuations
is expected to decrease much faster. Since photons stop interacting with matter, their
mean free path, λ̄, increases significantly, so they start free streaming behavior and their
oscillations should dampen considerably.

5.1.1 The effect of photon angular distribution anisotropies: Implementation
of H(kλ̄)

Introducing, now, the function H(kλ̄) instead of the factor 1/3, in the photon-photon pres-
sure term, that account for the anisotropies present in the angular distribution of photons,
we integrate equations (49) and (50).

δ̈k,γ + 2
ȧ

a
δ̇k,γ =

16

3
πG (ρbarδk,bar + 2ργδk,γ) +

7

12
σTnec∆̇− k2
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c2H(kλ̄)δk,γ (49)

∆̈ + 2
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a
∆̇ = −σTnec

(
ργ
ρbar

+
3

4

)
∆̇ +

3k2

4a2
c2H(kλ̄)δk,γ (50)
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Figure 3: Density fluctuations evolution of photons (green) and baryons (blue), obtained
from equations (49), (50) for different scales, along with solutions in [5].
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When comparing solutions represented in Figure 2 with those in Figure 3, we can see that
the effect of the anisotropy is to decrease the damping of oscillations, whose amplitudes are
now slightly higher, as they approach the decoupling time, tdec (see Table 1).

5.1.2 The effect of photon diffusion: Implementation of photon leakage terms

Equations (51) and (52) contain all the terms present in the evolution of density fluctuations.
Before integrating the exact relations, the results obtained using approximations (29) and
(30) at every time are shown in Figure 4.
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H(kλ̄) ˙̄λδk,γ (52)

18



Figure 4: Density fluctuations evolution of photons (green) and baryons (blue), obtained
from equations (51), (52) for different scales, along with solutions in [5].

It can be seen that, now that photon leakage terms are included, solutions are very similar
with that obtained in [5], at t < tdec. It is thus confirmed that the photon diffusion effect
produces additional damping.

At this point, it is convenient to make an explicit comparison of these results with those
obtained in [5]. Figure 5 and Figure 6 show the amplitudes and times corresponding to
each of the baryonic oscillation peaks. It can be seen that the numerical results are very
close between both formalisms.

It is important to note that the approximated formalism used in [5] remains valid at times
thor < t < tdec, so it is expected that the solutions in both cases coincide. However, as
mentioned before, relativistic corrections must be applied for t ≲ thor, while the exact
equations used in this work are necessary for t > tdec, as well as a more precise integration
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method, which is studied in next subsection.

Figure 5: Amplitudes (blue) and times (green) of each baryonic oscillation peak for M =
1013 M⊙, obtained in [5] (dashed) and in this work (solid).

Figure 6: Amplitudes (blue) and times (green) of each baryonic oscillation peak for M =
4.74 · 1014 M⊙, obtained in [5] (dashed) and in this work (solid).

For a better understanding of these results, compared to those obtained previously in [5],
ratios between the amplitudes of baryonic oscillations at the horizon crossing time and at
the moment of the first oscillation peak are shown in Table 1.
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M (M⊙)
δbar(thor)/δbar(tpeak 1) thor/tpeak 1

This work TFG [5] This work TFG [5]

1013 1.539 1.539 12.38 · 10−2 12.34 · 10−2

1014 1.458 1.453 10.08 · 10−2 10.02 · 10−2

4.74 · 1014 1.419 1.412 9.12 · 10−2 9.04 · 10−2

1015 1.404 1.396 8.72 · 10−2 8.62 · 10−2

1016 1.360 1.352 7.37 · 10−2 7.22 · 10−2

Table 1: Ratios between baryonic fluctuations at the horizon crossing time and at first
oscillation peak, for different scales, in a purely baryonic universe.

Numerical values corresponding to TFG [5] have been recalculated, using the same equa-
tions in [5], but with a better approximation for the horizon radius, rhor(t).

In addition, in Table 2, we have collected the peak values of baryonic fluctuations, for
each considered case. It can be observed that approximation H(kλ̄) = 1/3 describes well
the fluctuations at early times. However, as oscillations approach the decoupling time, its
amplitudes decrease too much, since the anisotropies in the angular distribution of photons
are being neglected. Nevertheless, this correction is very small in comparison with the
effect produced by the photon leakage terms. It is evident that this effect significantly
damps the fluctuations, resulting in much smaller peaks in this case, and even eliminating
by Silk dampling perturbations of certain scales (M = 1013 M⊙) which, if this effect were
not taken into account, would have survived until the moment of decoupling.

M (M⊙) Case δbarmax

1013
H = 1/3 12.37 6.22 4.79 4.04 3.57 3.22 2.93 2.66 2.36
H(kλ̄) 12.37 6.22 4.79 4.04 3.57 3.23 2.94 2.68 2.40

Photon leakage 12.37 6.17 4.61 3.63 2.82 2.14 1.52 0.97 0.55

4.74 · 1014
H = 1/3 88.72 44.78 34.25 28.23
H(kλ̄) 88.72 44.79 34.31 32.76

Photon leakage 88.75 43.47 29.87 16.84

1016
H = 1/3 439.56
H(kλ̄) 439.58

Photon leakage 439.15

Table 2: Peaks of baryonic fluctuations, δbar, in each of the considered cases, for different
scales.

All this numerical comparisons have been done using solutions obtained in this subsection,
with approximations (29) and (30), since they are completely valid within the time integra-
tion intervals we are analyzing, and they do not generate the small stochastic errors that
Montecarlo method may present.
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5.1.3 Precise solution: Montecarlo procedure

As we have just seen, approximations (29) and (30) accurately describe the evolution of
fluctuations until t ≲ tdec. However, beyond this time, this approximation is no longer valid
for integrating the equations, since the probability distribution of λ0 is not an exponential
anymore. Therefore, we use the Montecarlo method, with λ0 given stochastically at each
integration step as indicated in (44). In this subsection, we show the results obtained
from solving the exact equations, in a purely barionic universe, applying this Montecarlo
procedure.
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Figure 7: Density fluctuations evolution of photons (green) and baryons (blue), obtained
from equations (53), (54) with Montecarlo procedure for different scales, along with solutions
in [5].

With this last methodology, we have obtained numerical solutions of (53) and (54) that
indeed describe density fluctuations, both at t ≲ tdec and for t after the radiation-matter
decoupling. Scale M = 1013 M⊙ experiences Silk damping, resulting in a complete sup-
pression of fluctuations. However, scales M = 4.74 · 1014 M⊙ and M = 1016 M⊙ show
how, post-decoupling, photon fluctuations persist but are heavily damped due to the free
streaming effect.

Drag time and fluctuation scales

The time when baryons are released from the drag of photons is called drag time, tdrag, or
drag epoch zd. It can be interpreted as the moment when the gravitational force surpasses
the radiation pressure in the radiation-matter interaction. It’s important to distinguish this
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time from the decoupling time, tdec, which occurs slightly earlier. In this subsection, we
estimate the drag time values for different fluctuation scales, as a practical application of
the solutions obtained in 5.1.2, in the case of a purely baryonic universe.

M (M⊙) 1013 1014 4.74 · 1014 1015 1016 1017

a(tdrag) 1.222 · 10−3 1.248 · 10−3 1.231 · 10−3 1.230 · 10−3 1.206 · 10−3 1.209 · 10−3

Table 3: Scale factor at drag time for different scales in a purely baryonic universe.

In practice, we have defined the drag time as the moment when the right-hand side of
baryonic fluctuations equation (32) has the same sign as the density of baryonic fluctua-
tions, δbar. In Table 3, we show the drag times obtained, using solutions from 5.1.2, for
different scales. Although this solutions are only valid at t < tdec, given the proximity of
the decoupling time with the drag time, it has also been considered valid for this analysis.
It can be seen that, for all considered scales, the obtained drag time is always higher than
the decoupling time, which we have considered as adec ∼ 9.9 · 10−4 (3.8 · 105 years). Also, in
Figure 8 we have plotted the evolution of the gravitational term and the radiation pressure
term from (32) for M = 1014 M⊙.

Figure 8: Evolution of gravitational interaction and photons pressure for M = 1014 M⊙.
The scale factor adrag corresponds with the moment when gravity is higher, in absolute
value, than radiation pressure.

5.2 Universe with dark matter

Considering now the presence of dark matter, ρDM ̸= 0 and Ω0,DM = 0.26, we will first
integrate the complete equations (55), (56) and (57) with (58) using the approximations
⟨G(Kλ0)⟩ = H(kλ̄) and ⟨V (kλ0)⟩ = kλ̄H(kλ̄) at every integration time. Finally, we will
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show the solutions of the exact equations, using the Montecarlo procedure.
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5.2.1 Approximate solution

In Figure 9, we can see again that approximations (29) and (30) are not valid after the
decoupling, as the behavior of photons after that time is incorrect. As we have mentioned,
after decoupling, photons do not interact with matter, instead, they experience free stream-
ing, propagating freely through the universe. In this way, their fluctuations should not
grow as they do in 9. However, baryonic fluctuations behavior seems to be correct. Scale
M = 4.74 · 1014 M⊙ has been plotted in logarithmic scale, to better observe how baryonic
fluctuations grow rapidly, once they have decoupled from photons, to match the growth
rate of dark matter fluctuations.
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Figure 9: Density fluctuations evolution of photons (green), baryons (blue) and dark matter
(black), obtained from equations (55), (56) and (57) with approximations (29) and (30) for
different scales.

M (M⊙)
δbar(thor)/δbar(tpeak 1) thor/tpeak 1

This work TFG [5] This work TFG [5]

1013 1.678 1.550 16.63 · 10−2 20.30 · 10−2

1014 1.708 1.581 11.73 · 10−2 13.78 · 10−2

4.74 · 1014 1.787 1.530 10.04 · 10−2 10.78 · 10−2

1015 1.869 1.497 9.41 · 10−2 9.48 · 10−2

Table 4: Ratios between baryonic fluctuations at the horizon crossing time and at first
oscillation peak, for different scales, in a universe with dark matter.

5.2.2 Precise solution: Montecarlo procedure

Applying this methodology, λ0 is, at each time step, stochastically determined, so it is, as
already emphasized, a suitable numerical method to solve the exact equations. As it can
be seen in Figure 10 and Figure 11, solutions obtained with this procedure align well with
the expected behavior of density fluctuations δγ , δbar and δDM . Similarly to the previous
case, some scales have been represented on a logarithmic scale to facilitate the visualization
of the results. The “oscillations” observed at the end of scales M = 4.74 · 1014M⊙ and
M = 1 · 1016 M⊙ are due to stochastic noise.

Dark matter does not interact electromagnetically and does not emit or absorb light. Due to
this non-collisional nature, dark matter perturbations continue growing without a practical
limit in scale, unlike baryons, which, as we have seen, are influenced by radiation pressure
and other electromagnetic forces that limit their collapse to smaller scales. In this way, until
decoupling time, photons and baryons remain oscillating together. Once baryonic matter
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is decoupled from radiation, it evolves under the gravitational influence of dark matter, so
baryonic fluctuations grow until they match the growth rate of dark matter perturbations.
At this time, photons do not interact electromagnetically, so they diffuse away from bary-
onic fluctuations and their oscillations dampen very quickly.

We have included the plotting of M = 1015 M⊙, since we would like to compare it with
the obtained in [6] (Figure 11). Even though the units of the perturbations δ are arbitrary,
it can be seen, qualitatively, that the solutions of the exact equations (55), (56) and (57),
obtained through this methodology, are very similar with that illustrated in Figure 11.
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Figure 10: Density fluctuations evolution of photons (green), baryons (blue) and dark
matter (black), obtained from equations (55), (56) and (57) with Montecarlo procedure for
different scales.

Figure 11: Density fluctuations evolution of
photons (green), baryons (blue) and dark mat-
ter (black), obtained from equations (55), (56)
and (57) with Montecarlo procedure for M =
1015 M⊙ in logarithmic scale (left). Density
fluctuations, in the same case, illustrated in [6]
(right).

28



6 Relativistic corrections

Until now, a quasi-Newtonian (or non-relativistic) formalism has been used. This inter-
pretation is only valid for times t > thor, as it predicts an artificial growth of density
fluctuations for earlier times (t ≲ thor). In this work, a first attempt is made to derive new
equations to characterize the behavior of fluctuations at t ≲ thor. At the limit t ≪ thor, a
logarithmic growth should occur, which is accurately reproduced by the equations presented
here (Betancort-Rijo 2024). In this relativistic case, neutrino density fluctuations, δν , must
be taken into account. The equation for their evolution (61) is essentially a simplification
of that for photons (31), since neutrinos are decoupled from matter at all times t. Thus,
neutrinos mean free path is equal to the horizon radius, rhor(t), at all t, so, in this case, it
is not necessary to average G and V functions over the neutrinos mean free path.
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′
ν

)
− 2

k2c2

a2
G(krhor(t))δν

− kc

a
V (krhor(t))δ̇ν −

ȧ

a
V (krhor(t))

kc

a
δν (61)

Although (59), (60) and (61) are not the exact relations, we will see that they describe
properly the evolution of perturbations at t ≪ thor. Since the effect of these corrections
is significantly only at t < thor, we can use approximations (29) and (30) to solve these
relativistic equations. To avoid computational instabilities that arise when attempting to
integrate equation (61), an approximate integrated expression (62) is used for describe the
neutrino density perturbations.

δν = δν(tin)
sen(krhor(t))

krhor(t)

krhor(tin)

krhor(tin)
+

+
16πGa2

c2k2
(
ρbar(t)δ

′
bar + 2ργδ

′
γ + 2ρνδ

′
ν

)(
1− sen(krhor(t)− rhor(tin))

k(rhor(t)− rhor(tin))

)
(62)

By integrating (59) and (60) using (62) and the new initial conditions δν(tin) = δγ(tin) = 4/3
and δ̇γ(tin) = δ̇bar(tin) = δ̇ν(tin) = 0, we get the solutions represented in Figure 12. These
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approximate equations that have been used assume corrections for t < thor, so we will not
focus on observed behavior after thor. It can be seen that now, before the entry to the
horizon, we no longer have that erroneous growth of the perturbations that we had been
observing with the non-relativistic treatment.

In addition, solutions density perturbations of neutrinos have been obtained and represented
in Figure 12. As we mentioned, neutrinos do not interact with baryons and photons, so,
when these fluctuations enter the horizon, they start to oscillate because of their own
pressure, independently of the rest of the constituents. Neutrino oscillations experience
damping due to neutrino diffusion, similar to photon oscillations. Recall that equations for
photons (59) and neutrinos (61) are practically the same, except for the coupling term, and
the dependencies of the leakage terms.

Figure 12: Density fluctuations evolution of photons (green), baryons (blue) and neutrinos
(black), obtained from relativistic equations (59), (60) and (62) with approximations (29)
and (30) for different scales, in a purely baryonic universe.
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7 Conclusions

This work has involved the numerical resolution of exact equations of evolution of density
fluctuations of photons, δγ , baryons, δbar and dark matter, δDM . Given by (31), (32) and
(33), we have seen that this equations describe adequately the behavior and evolution of
this perturbations. Throughout the resolution of the equations and the analysis of its so-
lutions, we have studied the effect of the different terms that constitute them, as well as
the interactions between the considered components: radiation, baryonic matter and dark
matter. In addition, we have used several numerical methods and approximations, both
analytical and numerical, to solve the expressions in the most precise and efficient manner
(aiming to save computational costs).

In first place, we treated the case of a purely baryonic universe. In subsection 5.1.1, we have
seen that the radiation pressure term must be modulated by a function of λ0, the photon
mean free path, to take into account the anisotropies present in photon angular distribu-
tion. Solutions indicate that, with this small correction, oscillations have higher amplitudes
(Table 1), as photons exhibit slightly more diffuse movements due to this anisotropy.

Then, we have included the terms corresponding to photon leakage, and it has been seen
that this diffusion effect of radiation is crucial in the damping of the perturbations. With
this terms, we already have the complete equations of evolution of density fluctuations. We
have used two different procedures to solve the exact equations. First, approximations (29)
and (30), formulated to be valid at t ≲ tdec, were found to be consistent with that obtained
in previous work [5] (Figure 5 and Figure 6). Later, by solving the equations with Monte-
carlo procedure, we obtained solutions that properly describe the behavior of fluctuations
beyond tdec, when the effect of free streaming shows up.

Later, we considered the case of a universe with dark matter. As in the previous case,
equations were first solved approximately and it was verified that, also in this case, this
method is valid for t ≲ tdec. At times t > tdec, Montecarlo procedure was necessary to
solve the equations correctly, in Figure 11, we show the agreement between the solutions
of these new equations and those in [6], to illustrate, in a qualitative way, the reliability of
the formalism presented in this work.

Finally, approximate equations considering relativistic corrections have been presented and
solved. As the relativistic treatment is strictly necessary for t < thor, where the quasi-
Newtonian treatment predicted an incorrect growth of the perturbations, it is in this interval
where we analyze the obtained solutions. It can be seen, qualitatively, how the application
of these corrections solves the initial growth of flucuations. In this treatment it is also nec-
essary to consider the neutrinos, whose perturbations have also been adequately obtained.

In conclusion, this work has been based on the numerical solutions of non-relativistic equa-
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tions to reproduce and understand how density perturbations evolve in the first instants of
the universe, as well as to deeply understand each of the physical phenomena that take place
on the different constituents. In parallel, the resolution of these equations has involved the
use of different numerical techniques and approximations, both numerical and theoretical,
such as the Montecarlo method or the WKB approximation.

With this study, the bases of the non-relativistic analysis of density perturbations are con-
solidated, having verified the reliability of the equations that govern them, and, on the
other hand, the relativistic treatment of these is initiated, starting with the application of
approximate corrections to the previous equations.
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8 Appendix

Relevant quantities

– Hubble’s constant: H0 = 7.1638 · 10−11 yr−1

– Universal gravitational constant: G = 8.93 · 10−3 Mpc3yr−2M−2
⊙

– Thomson’s cross section: σT = 6.9863e− 74 Mpc2

– Dimensionless density parameters:
Ω0,bar = 0.3, Ω0,DM = 0.26, Ω0,γ = 5.0467 · 10−5, Ω0,ν = 3.49 · 10−5

– Electron number density: ne(a) ≃ 4.94408 · 1066χe(a)a
−3

(
Ω0,bar

0.04

)(
h0
0.7

)2
Mpc3

– Ionization fraction:

χe(a) =

{
A a < 5.33 · 1014

A exp−( a
1−a

−B)
2

2C2 a > 5.33 · 1014

with A = 1.079, B = 5.33 · 10−4, C = 2.055 · 104

– Horizon radius: rhor(t) =
∫ t
0

c
a(t′)dt

′ =
∫ t
0

1
a(t′)2

√∑
iΩi,0a(t′)−3(1+w)dt′

– Fluctuation mass: M(R) = 3.465 · 1011h−1
(

R
h−1Mpc

)3
Ωm
0.3

Interpolation of functions G(kλ0) and H(kλ0)

The interpolation fitting of functionsG(y) andH(y) has been performed with Akima1DInterpolator
from the library scipy.interpolate from Python.

Figure 13: Interpolation fitting of functions G(y) and H(y).
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y H(y) y G(y) y G(y)

0 1/3 0 1/3 8 0.115
0.1 0.331 0.1 0.332 9 2.21e-2
0.2 0.325 0.2 0.329 10 -0.07
0.4 0.304 0.4 0.317 12 -3.23e-2
0.6 0.276 0.5 0.308 14 0.071
0.8 0.245 0.7 0.286 14.5 6.04e-2
1 0.215 0.8 0.272 15 3.62e-2
1.3 0.175 0.9 0.256 15.5 5.06e-3
1.7 0.134 1 0.239 16 -2.53e-2
2 0.112 1.2 0.201 17 -0.058
2.5 8.38e-2 1.3 0.181 18 -3.14e-2
3 6.48e-2 1.4 0.159 19 1.33e-2
3.5 5.15e-2 1.5 0.137 20 4.74e-2
4 4.18e-2 1.7 9.05e-2 21 3.71e-2
4.6 3.33e-2 1.8 6.68e-2 22 -4.53e-3
5 2.9e-2 2 1.92e-2 23 3.86e-2
6 2.13e-2 2.2 -0.0275 24 3.61e-2
7 2.48e-2 2.5 -9.36e-2 25 -2.11e-5
8 1.29e-2 2.7 -0.133 26 3.11e-2
9 1.03e-2 3 -0.183 27 3.45e-2
10 8.53e-3 3.3 -0.220 28 7.19e-5
15 4.00e-3 3.7 -0.246 29 -0.0246
20 2.31e-3 4 -0.247 30 -3.25e-2
30 1.04e-3 4.5 -0.216 31 -1.11e-2
60 2.43e-4 5 -0.154 32 1.88e-2
100 6.67e-5 5.5 -0.0723 33 3.02e-2
120 6.67e-5 6 0.0094 34 1.4e-2
140 6.67e-5 6.5 7.71e-2
160 6.67e-5 7 0.121
180 6.67e-5

Table 5: Numerical values used for the interpolation fitting of functions G(y) and H(y).
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[5] Bárbara Pérez Pérez y Juan Betancort Rijo. “Estudio detallado de algunos efectos
potencialmente relevantes para la determinacion de espectros de materia oscura”. In:
(2018).

[6] Malcolm S. Longair. Galaxy Formation. Astronomy and Astrophysics Library. Hei-
delberg, Germany: Springer, 2008. isbn: 978-3-540-73477-2, 978-3-540-73478-9. doi:
10.1007/978-3-540-73478-9.

[7] J. C. Mather et al. “A Preliminary Measurement of the Cosmic Microwave Background
Spectrum by the Cosmic Background Explorer (COBE) Satellite”. In: 354 (May 1990),
p. L37. doi: 10.1086/185717.

[8] P. J. E. Peebles. “Primeval adiabatic perturbations - Constraints from the mass dis-
tribution”. In: 248 (Sept. 1981), pp. 885–897. doi: 10.1086/159219.

[9] Planck Collaboration. “Planck 2018 results. VI. Cosmological parameters”. In: As-
tronomy & Astrophysics 641 (2020), A6. doi: 10.1051/0004-6361/201833910. url:
https://www.aanda.org/articles/aa/abs/2020/09/aa33910- 18/aa33910-

18.html.

[10] M. Rowan-Robinson. Cosmology. Oxford physics series. Clarendon Press, 1977, p. 412.

[11] S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity. Wiley, 1972, pp. 154–68.

[12] Wilkinson Microwave Anisotropy Probe. NASA. url: https://map.gsfc.nasa.gov/.

35

https://lambda.gsfc.nasa.gov/product/cobe/
https://lambda.gsfc.nasa.gov/product/cobe/
https://doi.org/10.1088/0004-637x/707/2/916
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://dx.doi.org/10.1088/0004-637X/707/2/916
https://doi.org/10.1007/978-3-540-73478-9
https://doi.org/10.1086/185717
https://doi.org/10.1086/159219
https://doi.org/10.1051/0004-6361/201833910
https://www.aanda.org/articles/aa/abs/2020/09/aa33910-18/aa33910-18.html
https://www.aanda.org/articles/aa/abs/2020/09/aa33910-18/aa33910-18.html
https://map.gsfc.nasa.gov/

	Introduction
	Cosmological principle and the Friedmann-Robertson-Walker universe
	Linear perturbation theory

	Motivations and theoretical context
	Novel equations of evolution of density fluctuations
	Numerical resolution: Methodology and instabilities
	Numerical results
	Purely baryonic universe
	The effect of photon angular distribution anisotropies: Implementation of H(k)
	The effect of photon diffusion: Implementation of photon leakage terms
	Precise solution: Montecarlo procedure

	Universe with dark matter
	Approximate solution
	Precise solution: Montecarlo procedure


	Relativistic corrections
	Conclusions
	Appendix

