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July 4, 2024



Contents

1 Introduction 3
1.1 General relativity and lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Gravitational lensing and types of lensing . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dark Matter and Galactic substructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Primordial Black holes formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Motivation and Objectives 5

3 Methods 6
3.1 The Lens Equation and Image Magnification . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Inverse ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Used lens mass distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Nearest Neighbours Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Python and FORTRAN codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Use of online IPM code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results and Discussion 11
4.1 Clustered BH’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Magnification probabilities for a population of random uniformly distributed BH’s 11
4.1.1.1 Comparison with the theoretical result in the sparse case . . . . . . . . 11
4.1.1.2 Magnification maps and PDF’s . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.2 Magnification probabilities for clustered BH’s. . . . . . . . . . . . . . . . . . . . . 15
4.1.2.1 Small and large scales: pseudo-particles limit . . . . . . . . . . . . . . . 15
4.1.2.2 Constant size, variable number of BH’s . . . . . . . . . . . . . . . . . . 18

4.1.3 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3.1 Observed millilensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3.2 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Gaussian subhaloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Magnification probabilities for a population of Gaussian subhaloes . . . . . . . . 20
4.2.2 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusions 27

6 Appendix 28
6.1 Python3 and FORTRAN95 scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Extra Magnification Maps and BH’s distribution for Clustering cases, with sizeRcluster =

4ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Extra case, with Constant size Rcluster = 7ER and variable number of bh . . . . . . . . 36

Abstract

The aim of this TFM is to probe candidates to Dark Matter through their effect on the proba-
bility density function of the magnification induced by gravitational lensing, PDF (µ). This is done
by simulating the millilensing effect using the inverse ray tracing algorithm in both Python3 and
FORTRAN95. Furthermore, we have implemented the nearest neighbours algorithm in the codes
and performed a comparison of the computational efficiency between Python3 and FORTRAN95
scripts. To cross-check our numerical models we compare with the theoretical predictions for the
sparse case. Our first candidates to dark matter are primordial black holes, which become an
interesting possibility after LIGO-VIRGO observations. In this TFM we are considering them
grouped in clusters of variable compactness, instead of following a random uniform distribution.
Furthermore, we study whether at large scales a compact cluster behaves as a pseudo-particle being
indistinguishable from a single black hole with the same mass of the cluster. Our second candidates
under study are DM subhaloes. The existence of these subhaloes is predicted by CDM models of
structure formation. We analyze whether the gravitational lensing magnification induced by DM
Gaussian subhaloes with different compactness is consistent with real observations. A Bayesian
analysis based on compactness and magnification shows that, according to observations, clustering
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makes less probable the existence of PBH’s and that a large compactness of the subhaloes should
result in millilensing magnification larger than observed.

Resumen

El efecto lente gravitacional está predicho desde la formulación de la relatividad general, y de
hecho uno de los test clásicos de esta teoŕıa se realizó midiendo en 1919 la deflexión de la luz
producida por el Sol. Desde entonces se han detectado distintos fenómenos relacionados con el
efecto lente gravitatoria en el universo. Los más notables son los clasificados como eventos de
lente fuertes producidos por un objeto (la lente) que divide la luz de una fuente (generalmente
un quasar) en múltiples imágenes. Por otro lado, cuando la masa de la lente es relativamente
pequeña y las imágenes no se pueden separar con los telescopios actuales, el fenómeno se conoce
como micro/mililensing. Este efecto es una de las principales herramientas para probar la natu-
raleza de la Materia Oscura. El objetivo de este TFM es valorar dos posibles candidatos a Materia
Oscura. En primer lugar los PBH’s, Primordial Black Holes (Agujeros negros primordiales), que
a diferencia de otros estudios [1], vamos a considerar organizados en cúmulos. La existencia de
PBH’s está apoyada en observaciones de LIGO-VIRGO. Desde la detección de la primera onda
gravitacional en 2016, se han sumado otras observaciones que han llevado a la conclusión de que
la presencia de agujeros negros de masa intermedia 3M⊙ ≤ M ≤ 60M⊙ es significativa [1]. Por
otro lado, las teoŕıas sobre el origen de los PBH’s predicen que se forman en cúmulos [2]. Un
segundo candidato a deflector son los subhalos de materia oscura, predichos en modelos de for-
mación de estructuras basados en CDM. Estudiaremos estos dos candidatos a lente gravitacional
considerando diferentes grados de compacidad, a través su efecto sobre la función de densidad
de probabilidad de magnificación inducida por el efecto lente gravitacional PDF (µ). Con este
objetivo construiremos mapas de magnificación. Dado que la ecuación de la lente no tiene por lo
general una solución anaĺıtica, los mapas se calcularán usando métodos numéricos, en particular
el algoritmo de trazado de rayos inverso (IRS), con programas escritos en Python3 y en FOR-
TRAN95. Al código de IRS le implementaremos un algoritmo de próximos para obtener mapas
menos ruidosos. Debido a la versatilidad y flexibilidad de este lenguaje, comenzamos a hacer las
simulaciones del TFM con Python3, sin embargo el tiempo de ejecución es demasiado elevado, y
decidimos cambiar el código a FORTRAN95. Un análisis comparativo en el que hemos investigado
la dependencia del tiempo de ejecución con el número de rayos, nos ha llevado a la conclusión
de que el tiempo de ejecución se reduce en un factor 17 en promedio, cambiando el código de
Python3 a FORTRAN95. Sin embargo, para los cálculos masivos que hemos necesitado hacer, la
eficiencia del IRS incluso con FORTRAN95 no es suficiente y hemos tenido que hacer uso del algo-
ritmo inverse polygon mapping (IPM) descrito en [3]. Este algoritmo se ejecuta en la página web:
https://gloton.ugr.es/microlensing/, y por defecto creará una distribución uniforme de lentes. En
el caso de que queramos estudiar una distribución de lentes agrupadas en cúmulos, tendremos que
suministrar nosotros la distribución espacial de los agujeros negros. La eficiencia computacional
es muy importante en este TFM, dado que necesitamos hacer un gran número de realizaciones,
debido a que las PDF’s son muy sensibles a la varianza muestral. Se han calculado miles de sim-
ulaciones (mapas de magnificación) de las cuales hemos usado 553 en la versión final del TFM.
Para asegurarnos de que nuestros métodos son correctos verificaremos nuestras simulaciones con la
solución teórica disponible para el caso de lentes dispersas. Una distribución de micro/mililentes se
considera dispersa cuando en una región de varios radios de Einstein alrededor de cada microlente
la desviación de los rayos de luz depende marginalmente del resto de las microlentes. Los resultados
de este análisis muestran un buen acuerdo entre la expresión teórica de la PDF y la PDF obtenida
de las simulaciones. No obstante, encontramos un abultamiento en la PDF de las simulaciones
producidas por las caústicas que no está predicha en la expresión teórica y una desviación respecto
al comportamiento asintótico para altas magnificaciones debida a la limitada resolución del mapa
(el tamaño del pixel). Una vez comprobado que nuestras simulaciones reproducen los resultados
teóricos correctamente estudiamos el efecto de los cúmulos de PBH’s a grandes y pequeñas escalas
en los mapas de magnificación y en las PDF’s, llegando a la conclusión de que cuando un cúmulo
es suficientemente compacto, este es indistinguible de una lente puntual, produciendo una única
escala de grandes caústicas en el mapa de magnificación. Cuando el cúmulo no es tan compacto
puede percibirse una segunda estructura de caústicas a escala más pequeña producida por los PBH
individuales. Es decir, hemos comprobado que los cúmulos a una escala suficientemente grande
se comportan como una pseudo-part́ıcula. Una vez analizado el efecto de los cúmulos a distintas
escalas, antes de continuar con los objetivos del TFM hay que tener en cuenta que dado que cada
realización depende altamente de la distribución de lentes y cúmulos, estos tendrán un significativo
ruido poissoniano, por lo que será necesario promediar 50 realizaciones de cada caso. El siguiente
paso es estudiar como vaŕıan las PDF’s de los cúmulos de PBH’s con la compacidad, considerando
un tamaño constante y variando el numero de BH’s por cúmulo. Un análisis Bayesiano basado
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en valores t́ıpicos observados de las anomaĺıas de flujo en sistemas múltiples de quasares, indica
que la probabilidad de reproducir las observaciones disminuye con la compacidad. Es decir, el
agrupamiento en cúmulos hace menos probable la existencia de PBH’s. En la segunda parte del
TFM estudiamos distribuciones de subhalos, considerando que su perfil radial de masa es Gaus-
siano, para simplificar el analisis. Para hacer un test de nuestras simulaciones, también en este
caso, comparamos la PDF de la lente Gaussiana a muy alta compacidad con la PDF de la lente
puntual, la cual debeŕıa ser su caso ĺımite. A continuación, analizamos las PDF’s de los subhalos
Gaussianos a distinta compacidad, determinando que también en este caso la probabilidad de las
altas magnificaciones aumenta con la compacidad. Finalmente, el análisis Bayesiano basado en
la compacidad de los subhalos Gaussianos y las anomaĺıas de flujo observadas, muestra que, solo
subhalos de baja compacidad pueden explicar las observaciones.

1 Introduction

Light deflection by matter had great importance in the history of modern physics, in fact one of the
classical tests of general relativity was made by Eddington’s team, when they measured the apparent
displacement of the stars induced by the Sun’s gravity during the solar eclipse of 1919, in agreement
with the predictions of Einstein’s theory [4]. Nowadays gravitational lensing is a widely used tool in
many kinds of researches, like the discovery of Eärendel, the more distant star ever found, or the study
of dark matter and cosmology.

1.1 General relativity and lensing

Certainly, gravitational lensing is a consequence of general relativity, which established that gravity was
a curvature in space-time and not a force. The key idea is that mass modifies the surrounding space-
time making light to bend as it pass through. The fundamental equations describing this space-time
curvature are known as the Einstein field equations:

Gµν + Λgµν =
8πG

c4
Tµν . (1)

Applying these field equations considering the general symmetries of a space-time metric surrounding
a static point mass M would lead to Schwarzschild metric:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (2)

From the metric in the weak field approximation the expression of the angle of deflection of the light
rays, α̂, can be derived. This is the only equation from general relativity that we need for our work:

α̂ =
4GM

rc2
[5] (3)

1.2 Gravitational lensing and types of lensing

Even though general relativity was demonstrated by gravitational lensing in 1919, it was unclear at
this epoch whether the study of light bending would have a future in its own right. Indeed, Einstein
considering star by star lensing dismissed the possibility that phenomena such as multiple images could
actually be observed. It was not until 1979 that with the discovery of the quasar Q0957+561 lensed
by a galaxy, it was confirmed that gravitational lensing is a common phenomenon in the universe [4].
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(a) Hubble Space Telescope image of the strong
lens system Q0957+561. The two bright spots
of the centre are in fact the same quasar lensed
by the galaxy in between.

(b) Hubble Space Telescope image of the galaxy
cluster Abell 370. The long structure to the lower left
of the center was the first lensed arc to be discovered.
This kind of events are tricky since separate lensed
images can merge together, creating structures that
are visually striking but may be hard to identify.

Figure 1: Hubble Space Telescope images of strong lensing events [4].

Gravitational lensed systems like Q0957+561 are classified as strong lensing events, as they consist on
an intervening object (the lens) which splits the light from a more distant source into multiple images
[4]. In Q0957+561 the faraway object is a quasar lensed by a galaxy cluster. Moreover these strong
lensing events are not common to observe as it is needed that the quasar, the cluster and the Earth
are aligned.

On the other hand, when the mass of the lens is relatively small and the images cannot be sep-
arated, the magnification phenomenon of the background source produced by the foreground lens is
known as microlensing, which cannot be identified in a single epoch observation because we do not
know the intrinsic brightness of the object. However, the change in magnification resulting from the
relative motion of the observer, lens, and source, which occurs on timescales of months or years can
be measured. Einstein dismissed such lensing phenomenon in the context of star by star lensing, but
nowadays it is measurable with the advances of technology and indeed the study of microlensing helped
to demonstrate that massive astrophysical compact halo objects (MACHOs), including brown dwarfs
and a variety of stellar remnants exist in quantities too small to account for the DM [4].

Moreover, if the spatial scale for these perturbations is typically of a few to tens of milliarcseconds,
the phenomenon is referred to as millilensing, and at difference from microlensing which is typically
produced by stars, these millilensing events could be produced by galactic substructures of DM or by
large mass BH’s [4].

1.3 Dark Matter and Galactic substructures

The deviation of light induced by a massive object is one of the clues that modern physics has for the
existence of DM. Since the discovery of the ”Missing Mass” problem, several candidates to DM have
been considered. They can be grouped into two types; elementary particles known as WIMP (Weakly
interacting massive particle) and compact objects; like MACHO (Massive Compact Halo Objects) or
BH’s.

DM as a elementary particle is the main hypothesis and is included in the nowadays standard model
of cosmology CDM (Cold Dark Matter), which considers DM to be non-baryonic matter produced in
the early stages of the Big Bang, hence not related to the nucleosynthesis [5]. These particles would
have slow velocities, contrary to other models like HDM (Hot Dark Matter) which considers DM to
be relativistic particles [6]. Nevertheless, for the time being particle physics is unable to find a reliable
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candidate particle, following the CDM model, to explain DM [7].

The statistical amount of MACHOs in our galaxy can not explain its dark mass, so this is not
a current line of research and lower masses than 1M⊙ are excluded by galactic microlensing experi-
ments, [7] so we are running out of candidates. However, compatible with cosmological nucleosynthe-
sis calculations, at least part of this mass must be in the form of non-baryonic particles or perhaps
primordial BH’s which formed before nucleosynthesis and therefore did not participate in it [5]. More-
over, LIGO (and VIRGO) experiments show that DM could consist of primordial BH’s with masses
1M⊙ < M < 1000M⊙ [7].

Simulations of structure formation, based on CDM model show that a halo of mass M contains
numerous halos of much lower mass, the subhaloes [6]. This can be expected because clusters of
galaxies contain substructures, visible in the form of the cluster galaxies. Some of these substructures
are recognized in our Milky Way, known as satellite galaxies like the Magellanic Clouds. However, fewer
than 40 members of the Local Group are known whereas the numerical simulations predict hundreds
of satellite galaxies for the Galaxy. This deficit is known as the ”Missing Satellites Problem” [6]. This
could suggest that the visible satellites are a subset of a large population of subhaloes, and the rest
remained like bound clumps of DM that orbit within the galaxy’s overall DM halo [4].

1.4 Primordial Black holes formation

There are several models of PBH’s formation. They can be formed at the early dust-like stages, or
at stages of a dominance of dissipative superheavy metastable particles owing to a rapid evolution of
star-like objects, or even PBH’s can be formed from the baryon charge fluctuations. Another formation
schemes are considered in inflationary models. [2]

The standard cosmological model CDM presents several unsolved issues. That is why inflation
theory arises to solve some of the main problems of CDM model; such as the flatness problem, the
cosmological horizon problem or the monopole problem. [5]. As inflation is subdued to quantum
physics then it would present quantum fluctuations, which would lead to the formation of closed
domain walls. After the inflation is finished, the walls could collapse into BH’s in the final state. The
so-called primordial black holes (PBH) [2].

Inflationary models establish that these PBH’s could have formed grouped in clusters. This fact
can be supported by the BH’s mergers detected by LIGO-VIRGO. These clusters would consist in a
PBH in company of BH’s of smaller mass, which eventually would merge, forming PBH’s around the
original one (the parent PBH), giving rise to a fractal structure [2]. The study of the gravitational
lensing magnification induced by these BH’s clusters could give us a clue about whether they are a
viable solution for the DM problem.

2 Motivation and Objectives

As commented in the Introduction, DM is one of the biggest problems in modern physics. In the actual
paradigm it is widely accepted its existence. In particular, its effect is very notable in gravitational
lensing. Although there are many others phenomena like the measurement of the rotation profile of
galaxies or the bullet cluster that otherwise would not have a satisfactory explanation without DM.

DM is an important ingredient in the cosmological model, CDM, as well as Dark Energy or the
Inflationary field. This is, among other reasons, because DM accelerates structure formation such as
galaxies. It is located forming a halo surrounding their galaxies (wider than the galactic halo) and in
a cosmological large scale forming cosmic webs. The candidate that makes up DM must fulfill these
conditions. The lack of evidence of candidates such as compact objects like MACHO or BH’s from a
stellar origin, or elementary particles leads to consider other alternatives like PBH’s.

Observations from LIGO-VIRGO give support to consider PBH’s as a non-negligible alternative
to DM. Since the first detection of a gravitational wave in 2016, other observations have been added
that led to the idea that the presence of BH’s of intermediate mass 3M⊙ ≤M ≤ 60M⊙ is significant.
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As the masses detected by LIGO were significantly larger than originally expected for BH’s of stellar
origin, this detection renewed the interest in PBH’s as DM constituents [1].

An interesting way, in the context of gravitational lensing to detect the PBH’s is through the
micro/millilensing effect. Until now, the published studies [1] indicate that if the DM were formed
by PBH’s, the expected flux anomalies caused by micro/millilensing should be larger than the ones
observed. However, these studies focus on a random uniform distribution of non clustered BH.

Consequently, the first objective of this TFM is to study the effect of the clustering of BH’s,
analyzing how the compactness of these clusters induces anomalies in the flux ratios of the images
of lensed quasars via the millilensing effect. This will be done modifying two variables; the number
of BH’s per cluster and the size of these clusters. In order to do this, we use in the first place, our
own simulation scripts written in Fortran95 and Python3. Some of the simulations will require a more
sophisticated online software to use the Inverse Polygonal Mapping algorithm described in [3].

Using PDF’s of the magnifications induced by millilensing conditioned to different compactness
of the clusters and observed magnifications, we will perform a Bayesian analysis to infer the most
probable cluster’s compactness.

The second objective of this TFM is to study the compactness of subhaloes and its effect on the
millilensing. As commented in the Introduction, CDM model predicts an amount of substructures in
the DM haloes in the form of subhaloes or satellites that is much higher than the number of luminous
satellites observed around the Milky Way [8] (Missing Satellites Problem). So, in the second part of the
TFM we are going to simulate Gaussian subhaloes of different compactness, calculating the expected
PDF’s of the magnifications and comparing the results with the observations.

3 Methods

To introduce gravitational lensing simulations it is convenient to very briefly review the basis of lensing
theory. Starting with the geometry of light bending and continuing with how should this effect be
simulated.

3.1 The Lens Equation and Image Magnification

Let S be a source, L a massive object that creates a gravitational field and O an observer. The light
ray coming from S to O is bent by lens L creating an image I seen by observer O. The angle measured
by the observer O between S and I is the deflection angle α̂, which expression is given by (Eq. 3) [4].

Figure 2: Gravitational lens system; being Ds the angular size distance between the observer and the
source, Dd the distance from us of the lens, Dds the distance between the source and the lens and α̂
is the deflection angle [6].

From similarities between triangles, the lens equation can be written as the following expression:

η⃗
Dd

Ds
= ξ⃗ − DdsDd

Ds
α̂ (4)
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The lens equation is multivaluated, since we can associate multiple images to the same source, so we
need to invert and reduce it to its dimensionless equation. So considering that β is the true angular
position of the source:

β =
η

Ds
(5)

and being ξ the position of the light ray in the lens plane, its angular position θ will be given by:

θ =
ξ

Dd
(6)

and therefore from the general expression of the lens equation (Eq. 4), it can be defined the dimen-
sionless deflection angle:

α⃗(θ) =
Dds

Ds
α̂(Ddθ), (7)

and, finally, changing β −→ y⃗ and θ −→ x⃗, then the reduced lens equation is given by the expression:

y⃗ = x⃗− α⃗(x⃗). (8)

[6]
An image with position θ will be magnified by an amount µ(θ) which satisfies:

|µ| =
∣∣∣∣ θdθβdβ

∣∣∣∣ , (9)

Since the reduced lens equation (Eq. 8) tells us how β depends on θ, it is easier to work with the
inverse magnification:

µ−1(θ) =
βdβ

θdθ
=

(
1− α

θ

)(
1− dα

dθ

)
, (10)

From (Eq. 10) it can be noted that the magnification diverges if either (or both) of the factors vanishes,
i.e., if α = θ or dα/dθ = 1. Values of θ that satisfy these relations are said to lie on critical curves.
Under the lens equation, critical curves correspond to curves in the source plane called caustics [4].

Defining the Einstein radius as:

ξ0 =

√
Dds

DdDs

4GM

c2
[4] (11)

Using the Einstein radius as the unit allows us to work with masses on an arbitrary scale.

3.2 Inverse ray tracing

The lens equation (Eq. 8) in its general expression has one or several solutions. Analytically the
equation can not be inverted except for some particular mass distribution of the lens but it can be
numerically solved using the inverse ray tracing algorithm. The first thing to do, is to divide the source
and image plane regions under study into pixels/cells: F (i1, i2) ←− F (y⃗) and I(j1, j2) ←− I(x⃗). Being
2xl and 2yl the size of the square regions at the lens and source planes. Hence, the size of the cells
are xs = 2xl/(nx − 1) and ys = 2yl/(ny − 1). The algorithm starts reading the source as a matrix
F (i1, i2). Then at the image plane we can transform from pixel to coordinates:

x1 = −xl + (j1 − 1)xs + 1 x2 = −xl + (j2 − 1)xs + 1 (12)

After that, it is applied the inverse transformation, which is always uni-valuated, x⃗ −→ y⃗ = x⃗. Next
step, is to transform at the source plane from coordinate to pixel:

i1 =
y1 + yl

ys
i2 =

y2 + yl
ys

(13)
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Subsequently, it is checked if the image pixels are inside the considered region at the source plane to
assign I(j1, j2) = F (i1, i2), otherwise it is done I(j1, j2) = C where C is sky’s background constant
(normally 0).

Simultaneously, it is built the magnification map of the lens by defining a new matrix A(i1, i2) initialized
at 0. When the inversely mapped image pixels are inside the considered region at the source plane we
add an area of size 1 to the pixel of the source plane A(i1, i2) = A(i1, i2)+1, and if the ray falls outside
the matrix, we simply ignore it. The representation of this matrix is known as the magnification map.

3.3 Used lens mass distributions

The basic lens equations that are going to be used in this TFM are the following:

� Point mass:

y⃗ = x⃗− x⃗− x⃗0

(x⃗− x⃗0)2
(14)

� Point mass plus Quadrupolar Perturbation:

y⃗ =

(
1− κs − γ 0

0 1− κs + γ

)
x⃗− x⃗− x⃗0

(x⃗− x⃗0)2
(15)

� SIS (Singular Isotherm Sphere):

y⃗ = x⃗− x⃗− x⃗0

| x⃗− x⃗0 |
(16)

� SIS plus QP:

y⃗ =

(
1− κs − γ 0

0 1− κs + γ

)
x⃗− x⃗− x⃗0

| x⃗− x⃗0 |
(17)

� Gaussian lens:

y⃗ =

(
1− κs − γ 0

0 1− κs + γ

)
x⃗− x⃗− x⃗0

(x⃗− x⃗0)2
erf

(
x⃗− x⃗0√
2σξ0

)
(18)

The point lens represents a point of mass, is a fully theoretical construct where all the mass is con-
centrated at a single point in space. On the other hand a SIS considers a mass distribution where the
density of matter decreases linearly with distance from the center of the sphere.

Additionally the quadrupolar perturbation takes into account two terms: the smooth matter con-
vergence κs that allows to consider an additional local superficial density of the mass (which may
represent smooth DM), and the gravitational shear γ which measures the separation of the mass dis-
tribution from the axial symmetry. Note that the total convergence κ depends on the smooth matter
convergence κs and the stars convergence κ∗, which depends on the fraction of the stars in a surface,
so κ = κ∗ + κs.

Thus, in addition to these basic equations we have also considered a system with N particles (Nbh or
Nsh Gaussian lenses). These are given by κ∗.

Nbh =
κ∗

π

(2xl)
2

Mbh
(19)

Therefore, the mean magnification produced by a lens distribution depends on the total convergence
κ and the shear γ.

< µ >=
1

(1− κ− γ)(1− κ+ γ)
(20)

This equation (Eq. 20) is going to be very useful to analyze our results.
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3.4 Nearest Neighbours Algorithm

When we shot a ’ray’ from the image plane it hits a given position at the source plane that is then
discretized to the limits of a pixel size causing noise. To reduce this noise we can diminish the pixel size
and increase the number of pixels, which is computationally expensive. A ’cheaper’ strategy to reduce
noise is to apportioning the ray between the neighbouring pixels (nearest neighbours algorithm).

Here is how it works: as it was explained before, with each iteration we identify the pixel that is
inside the source (I(j1, j2) = F (i1, i2)), then the algorithm identifies the nearest known pixels; right,
above, and diagonally upper-right and assigning each of these four pixels a corresponding section of
the area of size 1 (instead of A(i1, i2) = A(i1, i2) + 1). This approach helps to reduce the noise,
resulting in a more smooth magnification map. An example of the improvement of the use of the
nearest neighbours algorithm and its comparison without using it is shown at Figure 3:

Figure 3: Comparison between a magnification map slice using the nearest neighbours algorithm and
not using it. It can be seen that the curve is very much smoother for the nearest neighbours
algorithm.

The Figure 3, presents a slice of the same magnification map done with the nearest neighbours
algorithm and the original one, it can be seen that it is smoother than the one made without it.

3.5 Python and FORTRAN codes

Fortran95 has demonstrated significantly higher efficiency compared to Python3 (see Figure: 4).
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Figure 4: Execution time comparison for the same random uniform distribution map with 200 point
lenses (Eq. 15), considering different number of rays (nx) for Python3 and FORTRAN95. Notice
that the time execution dependency is quadratic with the number of rays.

Figure 4 shows a quadratic dependence between the number of rays and the execution time. This
behavior is expected, since the inverse ray shooting algorithm employs a double loop that depends on
nx. This Figure also shows that by changing the code from Python3 to FORTRAN95 we will achieve
a considerable time reduction, by a factor of 17 in average.

3.6 Use of online IPM code

Even with the use of the Nearest Neighbours algorithm in Fortran95 our code has its limits, and as
it is necessary to do massive simulations, we need to make use of more advanced algorithms. That
is why it is going to be used the code based in Inverse Polygon Method described by [3] that can be
executed at the internet address: https://gloton.ugr.es/microlensing/.

The program works as follows:

� Select parameters of the simulation: such as convergence (κ), smooth matter convergence
(κs), shear (γ), minimum and maximum mass of the lenses, map size (yl) and number of pixels
(ny).

� Generate the distribution of millilenses: There are two options; the program can generate
a random uniform distribution of point masses, or a distribution previously created by us can be
uploaded.

� Generate magnification map and histogram: When everything is ready, the simulation
can start and it would produce a magnification map and its histogram, then we download our
magnification file data produced by the program to later make our averaged histogram.

For a random uniform distribution of BH’s, the program will be left to create this distribution of BH’s,
meanwhile for a clustered distribution of BH’s, these can not be generated by the program, so the
spatial distribution of BH’s would be generated by us.

The computational efficiency is very important in this TFM, as we need to do a large number of
magnification maps, as the PDF’s are very sensible to sample variance. We have done thousands of
realizations of which we have used 553 of them.
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4 Results and Discussion

4.1 Clustered BH’s

4.1.1 Magnification probabilities for a population of random uniformly distributed BH’s

As previously mentioned, published studies [1] indicate that DM are unlikely to consist in PBH’s,
however they do not contemplate a clustered distribution of PBH’s. This clustered distribution should
generate flux-ratio anomalies in the images of lensed quasars images similar to the ones observed, to
be considered a viable alternative to explain DM.

4.1.1.1 Comparison with the theoretical result in the sparse case

In order to check that our results are consistent, it is convenient to compare our simulations with the
theoretical predictions available for the sparse case. We are going to do this through the study of the
magnification probability density function, PDF (µ). These are defined as the normalized histogram
of the magnification. Therefore, it represents the likelihood of a given magnification to be produced
by a given lens distribution. A distribution of micro/millilenses is considered sparse when in a region
of several Einstein radii around each microlens the deflection of the light rays depends only marginally
on the rest of the microlenses [9]. From [9] the PDF (µ) of the sparse case is given by the function:

PDF (µ) =
2 < µ > κ

(µ2 − 1)3/2
. (21)

Then we simulate 50 magnification maps considering a relatively low mass density: κ∗ = 0.1, κs = 0,
γ = 0, yl = 25ER, ny = 2000, a minimum mass of 0.999 and a maximum mass of 1.001. The
theoretical magnification for these parameters is 1.2345 mag (Eq. 20). An example of this type of map
is presented in Figure 5:

(a) Random uniform distribution of BH’s; the
mapped region is enclosed by the black dashed
lines.
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Magnification Map

(b) Magnification map of the random uniform
distribution of BH’s shown in Figure 5a.

Figure 5: Random uniform distribution of BH’s with its magnification map considering κ∗ = 0.1,
κs = 0, γ = 0, yl = 25ER, ny = 2000, a minimum mass of 0.999 and a maximum mass of 1.001.

The Figure 5 shows that the distribution is not perfectly sparse, because of the presence of caustics,
since we are considering a distribution of point lenses.

Averaging the PDF’s of 50 different magnification maps to reduce sample variance, which were obtained
using the IPM algorithm, the comparison with the sparse case function (Eq. 21) can be done (see Figure
6).
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Figure 6: Average PDF obtained from 50 magnification maps for the case κ∗ = 0.1, κs = 0, γ = 0,
yl = 25ER, ny = 2000, a minimum mass of 0.999 and a maximum mass of 1.001, compared with the
function for the sparse case (Eq. 21).

Figure 6 is a verification of our simulation procedure. There is a bump excess between 0.5 < log10(µ) <
1.5, due to the caustic contribution, produced by the combined action of two or more microlenses on
the light rays, which is not taken into account in the theoretical prediction (Eq. 21). On the other
hand for log10(µ) > 1.5 appears a deviation from the µ−3 theoretical law, because of the limited
resolution (pixelsize) that smooths the magnification map.

4.1.1.2 Magnification maps and PDF’s

The objective of this TFM is to study the effect of clustering on the magnification induced in a
lensed quasar by a population of compact objects in the lens galaxy, so the natural basis to start is
to study a non-clustered random uniform distribution of BH’s specifically in order to illustrate the
effects of clustering, we will start comparing the results obtained from a random uniform distribution
of BH’s, and a clustered case with the same number of BH’s, with clusters of Rcluster = 4ER and 40
BH’s per cluster.

In Figures 7 and 8 we compare the distribution of BH’s in both cases and the magnification maps,
respectively. The most interesting result of the comparison between magnification maps is the scale
of the caustic structure, which is very much larger for the clustered BH’s. As we will see in section
4.1.2.1 this reflects that clusters act like giant pseudo-particles.
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(a) Random uniform distribution of BH’s. (b) Clustered distribution of BH’s, with clusters of
Rcluster = 4ER and 40 BH per cluster.

Figure 7: Comparison between a random uniform distribution of BH’s and a clustered case with
clusters of Rcluster = 4ER and 40 BH per cluster. Considering for both cases: yl = 50ER,
ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of 0.999 and a maximum mass of 1.001.

(a) Magnification map of a random uniform
distribution of BH’s.

(b) Magnification map of a clustered distribution of
BH’s, with clusters of Rcluster = 4ER and 40 BH per
cluster.

Figure 8: Magnification map of a random uniform distribution of BH’s and a clustered distribution of
BH’s, with clusters of Rcluster = 4ER and 40 BH per cluster.

In Figure 8 we can see that the uniform distribution has a unique scale for the caustics, while the clus-
tered distribution has caustics with a large scale produced by the clusters action, previously mentioned,
and caustics with a small scale produced by single BH’s.

In Figure 9 we show the corresponding normalized magnification histograms. Notice that the one
associated to the clustered BH’s appears much more irregular. This is a consequence of clustering. As
we will see in section 4.1.2.1 clusters act like giant pseudo-particles and, hence clustering result in a
decrease of the number of effective particles with a consequent increase of the impact of fluctuations
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related to sample variance.

(a) Magnification histogram of a random uniform
distribution of BH’s and clustered distribution of
BH’s.

(b) Magnification histogram of a clustered distribution
of BH’s, with clusters of Rcluster = 4ER and 40 BH
per cluster.

Figure 9: In Figure 9 we show the corresponding normalized magnification histograms. Notice that
the one associated to the clustered BH’s appears much more irregular.

As we can see from the Figure 9 the individual maps are truly erratic due to the random distribution
of both clusters and BH’s, as a consequence we need to do several realizations for each case in order
to reduce the sample variance. Thus, we will average 50 magnification maps for each case. In Figure
10 we show the results of averaging in the case of the random uniformly distributed BH’s.

(a) Average magnification histogram for a population
of random uniformly distributed BH’s,
and the 50 single realizations of magnification
histograms.

(b) Average magnification histogram for a population
of random uniformly distributed BH’s. To make easier
the visualization, in this plot we present only 10 of the
single realizations of the single realizations.

Figure 10: Average magnification histogram for a population of random uniformly distributed BH’s,
considering yl = 50ER, ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of 0.999 and a
maximum mass of 1.001.

In Figure 11 we show the results of averaging for the clustered distribution of BH’s, with clusters of
Rcluster = 4ER and 40 BH per cluster.
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(a) Average magnification histogram for a population
of clusters with Rcluster = 4ER
and 40 bh per cluster, and the 50 included
magnification histograms.

(b) Average magnification histogram for a population
of clusters with Rcluster = 4ER and 40 bh per cluster.
To make easier the visualization, in this plot we
present only 10 of the included PDF’s.

Figure 11: Average magnification histogram for a population of clusters with Rcluster = 4ER and 40
bh per cluster, considering yl = 50ER, ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of
0.999 and a maximum mass of 1.001.

∆µ is defined as the change of magnification produced by the lenses, defining the difference in flux
between the source lensed and unlensed,

∆µ = −2.5log
(

µ

< µ >

)
. (22)

Hereafter, we will average the histograms of 50 magnification maps to mitigate sample variance
(like in Figure 10).

4.1.2 Magnification probabilities for clustered BH’s.

In this section we are going to study the clustering of BH’s and its effects on magnification statistics.
Our first aim is to analyze to what extent a compact cluster is analogous to a single point object.

The second objective is to analyze how the magnification statistics changes depending on the
clumpiness of the cluster. We have decided to maintain a constant size for the clusters Rcluster = 4ER
and varying the number of BH’s per cluster.

4.1.2.1 Small and large scales: pseudo-particles limit

We are going to study to what extent at large scales a compact cluster behaves as a pseudo-particle
and is in practice indistinguishable from a single compact object of the same mass than the cluster.

To check this hypothesis we have considered a random uniform distribution of BH’s with mass 80,
and located at the same places two distribution of clusters with 80 BH’s of 1 mass one of them with
Rcluster = 1ER and another clustered distribution with Rcluster = 5ER. See Figure 12.
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(a) Distributions of 1007 clusters with 80 BH’s and
Rcluster = 1ER (green points) and the random
uniform distribution of BH’s with 80 mass (red
points).

(b) Distributions of 1007 clusters with 80 BH’s and
Rcluster = 5ER (green points) and the random
uniform distribution of BH’s with 80 mass (red
points).

Figure 12: Comparison between the random uniform distribution of BH’s with mass 80 and the
clusters (located in the same places) with 80 BH’s with 1 mass and radii 1ER and 5ER.

In Figures 13 and 14 we show the corresponding magnification maps and PDF (µ) histograms corre-
sponding to the cases of the uniform distribution of BH’s with mass 80 and the clustered case with
Rcluster = 1ER.
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(a) Magnification Map of a distribution of BH’s
with masses 80.
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(b) Magnification Map of a distribution of cluster of
1ER with 80 BH’s per cluster.

Figure 13: Comparison of magnification maps between the case of a distribution of 1007 BH’s with
mass 80 and the magnification map of the same distribution of 1007 cluster of 1ER with 80BH’s per
cluster.

In Figure 13 we can see that the magnification maps of both cases are virtually indistinguishable.
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Figure 14: Magnification histogram of 1007 clusters with 80 BH’s and 1ER case and the single BH’s
with a mass of 80 case.

In Figure 14 we can see that the PDF’s of both distributions are very similar. This implies that
the large scale structure corresponding to the clusters acting as giant pseudo-particles is ruling the
magnification statistics.

In Figure 15 we can see the magnification map for the Rcluster = 5ER case and the PDF (µ) histograms
corresponding to the cases of the uniform distribution of BH’s with mass 80 and the clustered case
with Rcluster = 5ER.
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(a) Magnification Map of a distribution of cluster of
5ER with 80 BH’s per cluster.
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(b) Magnification histogram of 1007 clusters with 80
BH’s and 5ER case and the single BH’s with a mass
of 80 case.

Figure 15: Magnification Map and histogram obtained from the clustered distribution of 1007
clusters with 80 BH’s and Rcluster = 5ER case (Figure 12b).

As we can see in Figures 15a and 13a, the magnification map of both cases are very similar although
in the map of the clustering case with Rcluster = 5ER (Figure 15a), we can see that the pattern of the
large caustics is different, as they are more separated, and we can see small caustics generated by the
single 1 mass BH’s. These differences are almost not appreciable when the comparison is made with
the clustering of Rcluster = 1ER (see Figure 13b).
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4.1.2.2 Constant size, variable number of BH’s

We are going to study the PDF’s produced by clusters distributions with the same size and different
number of BH’s per cluster. We have shown some of the results in section 4.1.1.2, so considering
yl = 50ER, ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of 0.999 and a maximum mass
of 1.001. The theoretical magnification for these parameters is 10.0 mag (Eq. 20).

In Figure 16 we can see the PDF (µ) histograms corresponding to the cases with the same size
(Rcluster = 4ER) varying the number of BH’s per cluster; 10 : 20 : 40 : 80, compared with the random
uniform distribution case.

Figure 16: Averaged magnification histogram of 50 maps, each with a constant size of
Rcluster = 4ER and varying numbers of BH’s per cluster: 10 bh (orange) with a mean magnification
of 10.02 mag, 20 bh (green) with a mean magnification of 9.74 mag, 40 bh (red) with a mean
magnification of 9.44 mag and 80 bh (purple) with a mean magnification of 8.42 mag, compared with
the random uniform distribution (blue) with a mean magnification of 9.94 mag.

As we can see in Figure 16, the probabilities of large magnifications increases with compactness.

Furthermore, with the decrease of the number of BH’s per cluster, the shape of the histograms tends
to be narrower being the random uniform distribution of BH’s their limit.

It can be noticed that the mean magnification decreases with compactness, this seems to be odd since
the theoretical mean magnification depends in the convergence κ and the shear γ. Nevertheless, since
we are working with clusters that behave like pseudo-particles of mass the sum of the masses of the
individuals BH’s, the number of pseudo-particles per magnification map will be relatively small and,
consequently, the spatial cluster distribution will be significantly affected by random fluctuations. This
can be partially solved by increasing the map size (and hence the number of clusters) of lenses and
averaging 50 magnification maps so that we mitigate the impact of sample variance, explained in
section 4.1.1.2. However, it is impossible to have an infinite number of pseudo-particles, and this is a
limit in our simulations, since clusters inside the mapping region bend rays coming from the outside
inward, while clusters outside the mapping region divert the rays inward, so if the number of clusters
were infinite, then the rays from outside and inside would compensate, but since we are limited, we
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will have a deficit in the rays that enter the mapping region, and therefore the mean magnification
will be in the average less than the theoretical magnification.

4.1.3 Bayesian Analysis

The Bayes theorem is given by the expression:

P (A|B) =
P (B|A)P (A)

P (B)
(23)

Where P (A|B) is posterior probability of A given B, P (B|A) is the conditional probability of B given
A and P (A) and P (B) are the unconditional probabilities of A and B.

In the context of this TFM we want to estimate the probability of a given compactness, for an observed
magnification, P (compactness|∆µ), so applying the Bayes theorem:

P (compactness|∆µ) ∝ P (∆µ|compactness)P (compactness). (24)

We obtain P (∆µ|compactness) from our simulations (in Figure 16) and we consider a uniform prob-
ability for P (compactness).

4.1.3.1 Observed millilensing

Comparing the flux ratios between the images of quadruply lensed quasars with 4 images predicted
by lens models based in the positions of the images with the observed flux-ratios, Heydenreich et
al. 2024 [10] obtain a mean anomaly (i.e. a difference between the model and the observations) of
|∆µ| = 0.27± 0.1 mag.

4.1.3.2 Bayesian Analysis

The Figure 17 shows the 2D PDF depending on the compactness and the magnification, for the
case of clusters with constant size, Rcluster = 4ER. From the simulated data obtained in Figure 16.

Figure 17: 2D PDF depending on the number of BH per cluster and the magnification, considering
clusters with Rcluster = 4ER.

Figure 18 shows the probability of different magnifications (∆µ = −1. : −0.5 : −0.25 mag) depending
on the size and the number of BH’s per cluster.
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Figure 18: Probability density functions PDF (µ) vs number of BH’s per cluster, for the different
microlensing magnifications, considering clusters with Rcluster = 4ER.

As the mean measured anomalies are about 0.27 mag. We can conclude from Figures 17 and 18 that
the uniform distribution has more probability to generate the observed magnification anomalies than
the clustered distributions. Notice that to favour the clustering hypothesis the observed magnifications
should be as large as −1 mag.

4.2 Gaussian subhaloes

As pointed out in the Introduction, simulation of structure formation show that galactic haloes could
contain haloes of much lower mass, the subhaloes. In this section we are going to study these subhaloes
and their effect in the magnification map and the PDF (µ). To simplify this study we are going to
consider that these subhaloes have a Gaussian radial mass profile.

The lensing equation for this Gaussian subhaloes corresponds to (Eq. 18), where ξ0 is the Einstein
radius of the subhalo. In order to work in Einstein radii units we will consider ξ0 = 1ER.

4.2.1 Magnification probabilities for a population of Gaussian subhaloes

In this part of the section we are going to compare the magnification probability density functions,
PDF (µ) for different subhaloes of compactness σ = 0.01ξ0 : 1ξ0 : 2ξ0 : 4ξ0 and the point lens. This
subhaloes are supposed to be distributed sparsely, so the considered parameters for the simulations
are yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The theoretical magnification for these
parameters is 1.2345 mag (Eq. 20).

In Figure 19 we show an example of the random uniform distribution of Gaussian subhaloes.
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Figure 19: Distribution of subhaloes, considering the parameters; yl = 60ER, ny = 1000, γ = 0.0,
κ∗ = 0.1, κs = 0.0.

In Figure 20 we show the magnification map and the histogram corresponding to the random uniform
distribution of Figure 19 considering the lenses to be punctual.
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(a) Magnification map of a random uniform
distribution of point lenses.
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(b) Magnification histogram of a random uniform
distribution of point lenses.

Figure 20: Magnification map and histogram of the distribution from Figure 19 using point lenses,
considering; yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The mean magnification is 1.2317
mag.

In Figure 21 we show the magnification map and the histogram of the random uniform distribution of
Figure 19 considering the lenses to be Gaussian subhaloes with σ = 0.01ξ0.
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(a) Magnification map of a random uniform
distribution of Gaussian subhaloes with σ = 0.01ξ0.
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(b) Magnification histogram of a random uniform
distribution of Gaussian subhaloes with σ = 0.01ξ0.

Figure 21: Magnification map and histogram of the distribution from Figure 19 using Gaussian
subhaloes with σ = 0.01ξ0, considering; yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The
mean magnification is 1.2317 mag.

In Figure 22 we show the magnification map and the histogram of the random uniform distribution of
Figure 19 considering the lenses to be Gaussian subhaloes with σ = 1ξ0.
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(a) Magnification map of a random uniform
distribution of Gaussian subhaloes with σ = 1ξ0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10( ) [mag]

4

3

2

1

0

1

lo
g1

0(
PD

F)

Magnification Histogram;  = 1

(b) Magnification histogram of a random uniform
distribution of Gaussian subhaloes with σ = 1ξ0.

Figure 22: Magnification map and histogram of the distribution from Figure 19 using Gaussian
subhaloes with σ = 1ξ0, considering; yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The mean
magnification is 1.2303 mag.

In Figure 23 we show the magnification map and the histogram of the random uniform distribution of
Figure 19 considering the lenses to be Gaussian subhaloes with σ = 2ξ0.
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(a) Magnification map of a random uniform
distribution of Gaussian subhaloes with σ = 2ξ0.
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(b) Magnification histogram of a random uniform
distribution of Gaussian subhaloes with σ = 2ξ0.

Figure 23: Magnification map and histogram of the distribution from Figure 19 using Gaussian
subhaloes with σ = 2ξ0, considering; yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The mean
magnification is 1.2288 mag.

In Figure 24 we show the magnification map and the histogram of the random uniform distribution of
Figure 19 considering the lenses to be Gaussian subhaloes with σ = 4ξ0.
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(a) Magnification map of a random uniform
distribution of Gaussian subhaloes with σ = 4ξ0.
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(b) Magnification histogram of a random uniform
distribution of Gaussian subhaloes with σ = 4ξ0.

Figure 24: Magnification map and histogram of the distribution from Figure 19 using Gaussian
subhaloes with σ = 4ξ0, considering; yl = 60ER, ny = 1000, γ = 0.0, κ∗ = 0.1, κs = 0.0. The mean
magnification is 1.2255 mag.

From the different magnification maps, we can see that the caustics tend to disappear with the increase
of σ. This implies that the high magnifications are going to be less probable.
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The point lens equation (Eq. 15) is a limit case of Gaussian subhalo lens equation (Eq. 18) with an
infinite compactness, so in order to cross-check that our simulating results are correct, we are going
to compare the case of Gaussians subhaloes with high compactness (σ = 0.01ξ0) distribution and the
case of point lens distributions. In Figure 25 we show a comparison between the PDF’s of these cases.

Figure 25: Comparison between the cases of a point lens distribution with a mean magnification of
1.2335 mag, and the case of Gaussians subhaloes with σ = 0.01ξ0 with a mean magnification of
1.2335 mag.

Figure 25 shows that the point lens case is a limit case of a Gaussian subhalo with a sufficiently high
compactness (σ << 1).

In Figure 26 we show the PDF (µ) with different compactness σ = 1ξ0 : 2ξ0 : 4ξ0 and the point lens
case, compared with the theoretical sparse case function (Eq. 21).
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Figure 26: Averaged magnification histogram of 50 maps, considering different compactness: σ = 1ξ0
(orange dots) with a mean magnification of 1.2319 mag, σ = 2ξ0 (green dots) with a mean
magnification of 1.2303 mag, σ = 4ξ0 (red dots) with a mean magnification of 1.2269 mag, the point
lens case (blue dots) with a mean magnification of 1.2335 mag, compared with the function for the
sparse case (Eq. 21), from [9].

Figure 26 shows how the different cases of Gaussians subhaloes PDF’s behave with different compact-
ness, comparing them with the point lens case and the sparse function (Eq. 21). It shows that the
probability of high magnifications increases with compactness. The most compact cases are in a very
good agreement with the theoretical sparse case function, and (similarly to the results obtained in
Figure 6) there is a bump excess due to the presence of caustics, and there is a decay for the highest
values of magnification because of the limited resolution (pixelsize).

4.2.2 Bayesian Analysis

Figure 27 shows the 2D PDF depending on the Gaussian subhaloes compactness and the magnification,
These data are taken from Figure 26.
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Figure 27: 2D PDF depending on the Gaussian subhaloes compactness and the magnification.

In Figure: 28 we show the probability of different magnifications (∆µ = −0.1 : −0.2 : −0.3 : −0.4 :
−0.5 : −0.6) depending on the Gaussian subhaloes compactness.

Figure 28: Probability density functions PDF (µ) vs compactness (σ), for the different microlensing
magnifications.

As it can be seen in Figure 28, for relatively small magnifications ∆µ ≲ 0.3, the less compact subhaloes
are the more likely. On the contrary, for large magnifications, ∆µ ≳ 0.4, the more compact subhaloes
are favored. Thus, the observed anomalies (∆µ ∼ −0.25) indicate that the subhaloes can not be very
compact.
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5 Conclusions

In this TFM we have studied the impact of the compactness of two different populations of millilenses
(either BH’s clusters or subhaloes) in the alteration of the intrinsic flux ratios between the images of
lensed quasars. We have simulated the millilensing effect using inverse ray tracing algorithms coded
in both Python3 and FORTRAN95. The main results of this TFM are;

1. The implementation of the nearest neighbours algorithm in the IRS code resulted in more ac-
curate magnification maps (and PDF’s), although the tail of the PDF’s is still affected by the
finite size of the pixel.

2. We have achieved a considerable reduction (by a factor > 17) of execution time by changing the
millilensing code from Python3 to FORTRAN95.

3. Our numerical simulations reproduce the theoretical results for PDF (µ) in the sparse case limit
for both, the BH’s and the Gaussians subhaloes.

4. We have explicitly shown the pseudo-particle limit for clusters: if a cluster is small enough the
resulting PDF (µ) is indistinguishable from the PDF (µ) produced by a point lens with the same
mass than the cluster.

5. Since we are working with clusters that behave like pseudo-particles of mass the sum of the
masses of the individuals BH’s, the number of pseudo-particles per magnification map will be
relatively small and, consequently, the spatial cluster distribution will be significantly affected
by random fluctuations. For this reason it is necessary to average the PDF’s from many single
realizations (50 individual maps) to reduce sample variance.

6. We have obtained PDF (µ) for clusters of different compactness varying the number of BH’s per
cluster obtaining that the probability of large magnifications increase with compactness.

7. A Bayesian analysis based in our simulated PDF (µ|Nbh) and in typical values of the flux anoma-
lies in lensed quasars indicates that clustering makes more unlikely the observations respect to a
random uniform distributions of BH’s.

8. We have derived PDF (µ) for Gaussian subhaloes with different compactness concluding that
the probability of large magnifications increases with compactness. A Bayesian analysis based
in our simulated PDF (µ|σ) and typical flux ratio anomalies indicates that according to the
observations subhaloes of high compactness are unlikely.
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6 Appendix

6.1 Python3 and FORTRAN95 scripts

In this section we are writing the codes used in Python3 and Fortran95 in order to perform the
simulations.

Therefore, the code to generate a data file of a random uniform distribution of BH’s is:

import numpy as np

from matplotlib import pyplot as plt

from datetime import datetime

startTime = datetime.now()

gamma =0.45

kappa =0.45

kappa_smooth =0.

min_mass =0.999

max_mass =1.001

ny=1000

yl=50

allowance1 =2

allowance2 =1.5

xl=allowance1*yl/(1-kappa -gamma)

XL=5.*xl

num_bh=round(kappa *(2*XL )**2/np.pi)

rl=allowance2*np.sqrt (2)*xl

num=1

for abc in range (50):

M=np.random.uniform(min_mass ,max_mass ,num_bh)

x01=np.random.uniform(-XL ,XL,num_bh)

x02=np.random.uniform(-XL ,XL,num_bh)

fig , ax = plt.subplots ()

plt.scatter(x01 ,x02 ,color=’green’,sizes=np.array ([0.001]* len(x01 )))

mask = x01 **2+ x02**2<=rl**2

x01=x01[mask]

x02=x02[mask]

plt.scatter(x01 ,x02 ,color=’blue’,sizes=np.array ([0.001]* len(x01)))

#Save Data File

data=np.empty ((len(x01),3))

for i in range(len(x01 )):

data[i,0]= x01[i]

data[i,1]= x02[i]

data[i,2]=M[i]

np.savetxt(’stars_uniform_dist_ ’+str(num)+’.dat’, data)

plt.xlabel(’ER’);plt.ylabel(’ER’)

ax.set_box_aspect (1)

plt.savefig(’stars_uniform_dist_ ’+str(num),dpi =300)

num +=1

plt.show()

print(datetime.now() - startTime)

and the code to generate data file of a clustered distribution of BH’s is:

radius =4

bh_por_cluster =40

import numpy as np

from matplotlib import pyplot as plt

from datetime import datetime
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startTime = datetime.now()

def clustering(x_centre ,y_centre ,R):

r=R*np.random.rand()

theta =2*np.pi*np.random.rand()

x01=r*np.cos(theta)+ x_centre

x02=r*np.sin(theta)+ y_centre

#print((x01 -x_centre )**2+(x02 -y_centre )**2<=R**2)

return x01 ,x02

gamma =0.45

kappa =0.45

kappa_smooth =0.

min_mass =0.999

max_mass =1.001

ny=1000

yl=50

allowance1 =2

allowance2 =1.5

xl=allowance1*yl/(1-kappa -gamma)

XL=5.*xl

num_bh=round(kappa *(2*XL )**2/np.pi)

rl=allowance2*np.sqrt (2)*xl

num=1

for abc in range (50):

M=np.random.uniform(min_mass ,max_mass ,num_bh)

#Clusters

num_clusters=num_bh // bh_por_cluster

x_centre =2*XL*np.random.rand(num_clusters)-XL

y_centre =2*XL*np.random.rand(num_clusters)-XL

radii=np.array([ radius ]* num_clusters)

#BH’s

x01=np.empty (( num_clusters ,num_bh // num_clusters ))

x02=np.empty (( num_clusters ,num_bh // num_clusters ))

for j in range(num_clusters ):

for i in range(num_bh // num_clusters ):

x01[j,i],x02[j,i]= clustering(x_centre[j],y_centre[j],radii[j])

x01=x01.flatten ()

x02=x02.flatten ()

#We add the missing BH’s

for j in range(num_bh -num_clusters*int(num_bh/num_clusters )):

x,y=clustering(x_centre[j],y_centre[j],radii[j])

x01=np.append(x01 ,x)

x02=np.append(x02 ,y)

mask = x01 **2+ x02**2<=rl**2

x01=x01[mask]

x02=x02[mask]

#Save Data File

data=np.empty ((len(x01),3))

for i in range(len(x01 )):

data[i,0]= x01[i]

data[i,1]= x02[i]

data[i,2]=M[i]

np.savetxt(’stars_ ’+str(num)+’.dat’, data)

num +=1
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print(datetime.now() - startTime)

The millilensing algorithm is done in FORTRAN95:

module StarModule

implicit none

integer , parameter :: num_bh = 2000

real (8) :: x01(num_bh), x02(num_bh), mass(num_bh)

contains

subroutine ReadStars(input_file)

character(len=*), intent(in) :: input_file

integer :: i, ios

open(unit=10, file=input_file , status=’old’, action=’read’)

do i = 1, num_bh

read(10, *, iostat=ios) x01(i), x02(i), mass(i)

if (ios /= 0) exit

end do

close (10)

end subroutine ReadStars

end module StarModule

PROGRAM Magnification

USE OMP_LIB

use StarModule

IMPLICIT NONE

INTEGER :: ny , nx

REAL(KIND =8) :: shear , kappa , kappa_smooth , yl, xl

REAL(KIND =8) :: min_mass , max_mass

REAL(KIND =8) :: xs , ys

real(8), allocatable :: A(:,:)

REAL(KIND =8) :: x1 , x2 , y1, y2, r1, r2

REAL(KIND =8) :: Area_A , Area_B , Area_C , Area_D

REAL(KIND =8) :: mean_th , mag_nolensing

INTEGER :: unit_number ,the_unit , estado ,i, j1, j2, i1, i2

REAL(KIND=8), ALLOCATABLE :: d(:)

REAL(KIND =8) :: sigma

real (8) :: T1 ,T2

integer :: argc

character(len =30) :: input_file , output_file

call cpu_time(T1)

! Get input and output filenames from command -line arguments

call get_command_argument (1, input_file)

call get_command_argument (2, output_file)

call ReadStars(input_file)

!call PrintStars(output_file)

ALLOCATE(d(num_bh ))

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!sigma =0.01

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

kappa =0.1

kappa_smooth =0.0

shear =0.0

ny=1000

nx =10000

yl=60.

xl=100.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ALLOCATE(A(ny,ny))

mag_nolensing =(yl **2*( real(nx) -1)**2)/( xl **2*( real(ny) -1)**2)
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! Cell/Pixel size

xs=2.0* xl/REAL(nx -1)

ys=2.0* yl/REAL(ny -1)

mean_th =1.0/((1.0 - shear -kappa )*(1.0+ shear -kappa))

! Magnification Map

A = 0.0

! Loop

!$OMP PARALLEL DO PRIVATE(j1,j2 ,i,d,y1,y2 ,i1,i2,r1 ,r2) shared(nx,num_bh ,xl,xs ,

kappa ,shear ,x01 ,x02 ,sigma ,yl,y2,ny ,A)

DO j1 = 1, nx -1

!$OMP PARALLEL DO PRIVATE(i,d,y1 ,y2,i1,i2 ,r1,r2) shared(j1 ,j2,num_bh ,x1,x2,

x01 ,x02 ,sigma ,yl ,ys,ny,A)

DO j2 = 1, nx -1

! Pixels to Coordinates

x1=-xl+REAL(j1 -1)*xs

x2=-xl+REAL(j2 -1)*xs

! Lense

y1=x1*(1.0- kappa_smooth -shear)

y2=x2*(1.0- kappa_smooth+shear)

DO i = 1, num_bh

d(i)=(x1 -x01(i))**2+(x2-x02(i))**2+1.0E-12

y1=y1-mass(i)*((x1-x01(i))/d(i))!*ERF(abs((x1-x01(i))/( SQRT (2.0)*( sigma /1.0))))

y2=y2-mass(i)*((x2-x02(i))/d(i))!*ERF(abs((x1-x01(i))/( SQRT (2.0)*( sigma /1.0))))

END DO

! Coordinates to Pixels

i1=int((y1+yl)/ys+1)

i2=int((y2+yl)/ys+1)

! Nearest Neighbours Algorithm

r1 = ((y1+yl)/ys+1)

r2 = ((y2+yl)/ys+1)

Area_A=ABS((r1+1-INT(r1 +1))*( r2+1-INT(r2+1)))

Area_B=ABS((r1-INT(r1 +1))*( r2+1-INT(r2 +1)))

Area_C=ABS((r1-INT(r1 +1))*(r2-INT(r2+1)))

Area_D=ABS((r1+1-INT(r1 +1))*(r2 -INT(r2 +1)))

IF ((i1.ge.1). and.(i1.le.ny).and.(i2.ge.1). and.(i2.le.ny)) THEN

A(i1,i2)=A(i1 ,i2)+ Area_C

IF (i1+1.le.ny) THEN

A(i1+1,i2)=A(i1+1,i2)+ Area_D

END IF

IF (i2+1.le.ny) THEN

A(i1,i2+1)=A(i1,i2+1) + Area_B

END IF

IF (i1+1.le.ny .AND. i2+1.le.ny) THEN

A(i1+1,i2+1)=A(i1+1,i2+1)+ Area_A

END IF

END IF

END DO

!$OMP END PARALLEL DO

END DO

!$OMP END PARALLEL DO

call cpu_time(T2)

! Open the output file and write the magnification map

open(unit=20, file=output_file , status=’replace ’, action=’write’)

write(20, *) A/mag_nolensing

close (20)

WRITE(*, *) TRIM(output_file)

END PROGRAM Magnification

Additionally, we have developed an algorithm to plot the magnification maps and the histograms:

import numpy as np

from matplotlib import pyplot as plt
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from datetime import datetime

startTime = datetime.now()

#############################################

sigma =1.

#############################################

kappa =0.1

kappa_smooth =0.

gamma =0.

min_mass =0.999

max_mass =1.001

ny=1000

nx =50000

yl=60.

xl=1.5* max(yl/(1-kappa -gamma),yl/(1-kappa+gamma))

num_bh=round(kappa *(2*xl )**2/np.pi)

mean_th =1.0/((1.0 - gamma -kappa )*(1.0+ gamma -kappa))

Magnification=np.loadtxt(’Magnification_1.out’, dtype=float)

A=Magnification.reshape ((ny ,ny))

#Magnification Map

plt.matshow(A)

plt.title(’Magnification␣Map’+’␣yl␣=␣’+str(yl)+’␣\u03C3␣=␣’+str(sigma))

plt.savefig(’Magnification_map_sigma1 ’,dpi =300)

plt.show()

#Magnification Histogram

A+=10** -12

mean=np.mean(A)

bins=np.linspace ( -2.7 ,2.7 ,1000)

Delta_mu =-2.5*np.log10(A.flatten ()/ mean_th)

hist=np.histogram(Delta_mu ,bins)

bincenters =0.5*( hist [1][1:]+ hist [1][: -1])

integral=sum(hist [0])

DeltaMu=bincenters [1]- bincenters [0]

Const =1/( integral*DeltaMu)

plt.figure ()

plt.plot(bincenters ,Const*hist [0])

plt.xlabel(’\u0394\u03BC(mag)’)

plt.ylabel(’log10(PDF)’);plt.yscale(’log’)

plt.ylim (10** -4 ,1000)

plt.title(’Magnification␣Histogram ’+’␣yl␣=␣’+str(yl)+’␣\u03C3␣=␣’+str(sigma))

plt.savefig(’Magnification_Histogram_sigma1 ’,dpi =300); plt.show()

print(datetime.now() - startTime)

6.2 Training

We started the TFM learning and checking the use of the algorithms, recreating real gravitational lens
systems. Figures 29, 30 and 31 show real strong lensing events and the recreation performed by the
algorithm.
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(a) Real gravitational lens
event; B1422+231. (b) Resultant image of the

source magnified recreating the
event B1422+231.

(c) The source and its relative
position on the magnification
map.

Figure 29: Recreation of the gravitational lens event B1422+231. It is used a SIS with quadrupolar
perturbation, the relative position of the source at the magnification map is at one of the vertex of
the diamond.

(a) Real gravitational lens
event; PG1115+80. (b) Resultant image of the

source magnified recreating the
event PG1115+80.

(c) The source and its relative
position on the magnification
map.

Figure 30: Recreation of the gravitational lens event PG1115+80. It is used a SIS with quadrupolar
perturbation, the relative position of the source at the magnification map is at one of the sides of the
diamond.

(a) Real gravitational lens
event; B1938+666. (b) Resultant image of the

source magnified recreating the
event B1938+666.

(c) The source and its relative
position on the magnification
map.

Figure 31: Recreation of the gravitational lens event B1938+666. In this case it is used a isotherm
sphere (Eq. 16), to produce an Einstein Ring, the source and the lens must be aligned.

As we can see, the script is able to recreate different strong lensing events. For all of them we have
used a SIS+Qp lens (Eq. 17), but for the case of Figure 31 where we have used a SIS (Eq. 16).
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Furthermore, the animation shows on the left side the magnification map with the caustics produced
by the lens, and the relative position of the source respect to the lens. On the right side the animation
shows the image of the source produced by the lens. In this case we have used also a SIS with a
quadrupolar perturbation (Eq. 17).

6.3 Extra Magnification Maps and BH’s distribution for Clustering cases,
with size Rcluster = 4ER

In this appendix we are going to add some magnification maps examples that were used on the TFM,
for the clustering cases.

In Figure 32 we show the BH’s distribution and magnification map of one case with Rcluster = 4ER
and 10 bh per cluster.
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(a) Clustered distribution of BH’s, with clusters of
Rcluster = 4ER and 10 BH per cluster. (b) Magnification map of a clustered distribution of BH’s, with

clusters of Rcluster = 4ER and 10 BH per cluster.

Figure 32: Clustered distribution of BH’s and its magnification map, considering yl = 50ER,
ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0, a minimum mass of 0.999 and a maximum mass of 1.001.

In Figure 33 we show the BH’s distribution and magnification map of one case with Rcluster = 4ER
and 20 bh per cluster.

(a) Clustered distribution of BH’s, with clusters of
Rcluster = 4ER and 20 BH per cluster. (b) Magnification map of a clustered distribution of BH’s, with

clusters of Rcluster = 4ER and 20 BH per cluster.

Figure 33: Clustered distribution of BH’s and its magnification map, considering yl = 50ER,
ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0, a minimum mass of 0.999 and a maximum mass of 1.001.

In Figure 34 we show the BH’s distribution and magnification map of one case with Rcluster = 4ER
and 80 bh per cluster.
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(a) Clustered distribution of BH’s, with clusters of
Rcluster = 4ER and 80 BH per cluster. (b) Magnification map of a clustered distribution of BH’s, with

clusters of Rcluster = 4ER and 80 BH per cluster.

Figure 34: Clustered distribution of BH’s and its magnification map, considering yl = 50ER,
ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of 0.999 and a maximum mass of 1.001.

6.4 Extra case, with Constant size Rcluster = 7ER and variable number of
bh

We have done an extra clustering case considering also a constant size for the clusters Rcluster = 7ER,
also considering yl = 50ER, ny = 1000, γ = 0.45, κ∗ = 0.45, κs = 0.0 a minimum mass of 0.999 and
a maximum mass of 1.001. The theoretical magnification for these parameters is 10.0 mag (Eq. 20).
Thus, we can see the effect of the clustering with different size by comparing it with the previous case
with size Rcluster = 4ER.

In Figure 35 we can see the PDF (µ) histograms corresponding to the cases with the same size
(Rcluster = 7ER) but varying the number of BH’s per cluster, compared with the random uniform
distribution case.
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Figure 35: Averaged magnification histogram of 50 maps, each with a constant size of
Rcluster = 7ER and varying numbers of BH’s per cluster: 10 bh (orange) with a mean magnification
of 10.14 mag, 20 bh (green) with a mean magnification of 9.58 mag, 40 bh (red) with a mean
magnification of 9.31 mag, 80 bh (purple) with a mean magnification of 9.01 mag, compared with the
random uniform distribution (blue) with a mean magnification of 9.94 mag.

As in the previous case with Rcluster = 4ER, it can be seen in Figure 35 that the probabilities of large
magnifications increase with compactness. Furthermore, with the decrease of the number of BH’s per
cluster, the shape of the histograms tends to be narrower being the random uniform distribution of
BH’s their limit.
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Figure 36: 2D PDF depending on the number of BH per cluster and the magnification, considering
clusters with Rcluster = 7ER.

The Figure 36 shows the 2D PDF depending on the clumpiness and the magnification, for the case of
clusters with constant size, Rcluster = 7ER. From the simulated data obtained in Figure 35.

Figure 37: Probability density functions PDF (µ) vs number of BH’s per cluster, for the different
microlensing magnifications, considering clusters with Rcluster = 7ER.

Similarly to the previous case with Rcluster = 4ER, we can conclude from Figures 36 and 37 that
the uniform distribution has more probability to generate typical magnifications than the clustered
distributions.

We had to be careful selecting the sizes of the clusters, because if we select a cluster size that is too
large they would intersect between them generating pseudo-clusters instead of dissolve, that is what
we are looking for, so they tend to the random uniform distribution case.
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